线性代数答案解答

合集下载

线性代数课本答案

线性代数课本答案
2 a11 x1
1.2 矩 阵 的基本 运 算
+ + ··· +
a21 x1 x2
2 a22 x1
+ + ··· +
··· ··· ··· ···
+ + ··· +
an1 x1 xn an2 x2 xn ···
2 ann xn
a12 x1 x2 ··· a1n x1 xn
··· a2n x2 xn
α1 + α2 0.
= 4 β1 + 4 β1 = 4|A| + 4|B| = 20 ,|A − B| =
β2 + β2 β2 β2 β2 0 B4. 能拆成4个二阶行列式的和. a+1 b+2 a b+2 1 b+2 a b a 2 1 b 1 2 = + = + + + = ad − bc + 4a − 2c + d − 3b − 2. c+3 d +4 c d +4 3 d +4 c d c 4 3 d 3 4 B6. 总按第一行展开. 1 + a1 1 1 ··· 1 0 1 + a1 1 1 ··· 1 1
1 B7. 证法一:Dn = ··· 1 1 1 + a2 ··· 1 1 1 ··· 1 1 ··· ··· ··· ··· 1 ··· 1 + an−1 1 1 ··· + 1 1 1 ··· 1 1 1 + a2 ··· 1 1 1 ··· 1 1 ··· ··· ··· ··· 1 ··· 1 + an−1 1 0 ··· 0 an

线性代数第五版答案(全)

线性代数第五版答案(全)

线性代数课后习题答案第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c ac b c b a ; 解ba c a cbc b a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ; 解222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然 数 从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n ); 解 逆序数为2)1(-n n : 3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4. 计算下列各行列式:(1)7110025*******214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---=143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 265232112131412-26503212213041224--=====cc 041203212213041224--=====rr000003212213041214=--=====r r .(3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b ec b e c b ad f ---=abcdefadfbce 4111111111=---=.(4)dc b a 100110011001---.解dc b a100110011001---dc b a ab ar r 10011001101021---++=====d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cdc ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213ab a b a a b a ab ac c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3. (2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b ba a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有111 00 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x xa xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得nnnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ,11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明DD D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a aa a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a DD n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=. DD D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算 下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n行展开))1()1(10 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=an-a n -2=a n -2(a 2-1).(2)xa a a x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上 , 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a na a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)d e t (⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121n n n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 1111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nnn a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i nn a a a a a a a a 1111131********0010 00000 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 2841120351*******1512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==DD x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D ,15075100165100065100650000611==D , 114551010651000650000601000152-==D ,7035110065000060100051001653==D , 39551601000051000651010654-==D ,2121100005100065100651100655==D ,所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ .用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i ns i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i n s i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211.12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(d i a g 4-= =2diag(1, -2, 1). 22.已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26.计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫⎝⎛=22022A ,则 ⎪⎭⎫ ⎝⎛=21A O OA A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫⎝⎛OB A O ; 解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143.由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD OBD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211BD CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201;解⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001.(2)⎪⎪⎭⎫ ⎝⎛----174034301320;解⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. ) ~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010*********故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B ,求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r ,所以⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r ,所以⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X . 5.设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A ,求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫ ⎝⎛---011100101010110001~,所以⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式. 例如,⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式,10001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫ ⎝⎛---443112112013; 解⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301,矩阵的秩为3,070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B . 11.设⎪⎪⎭⎫⎝⎛----=32321321k k k A ,问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r .(1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫ ⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x xx x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .。

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --1002310021214---34)1(142101+-⨯--=143102211014-- 321132c c c c ++141717001099-(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4)4444442222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边)()()222222222222a d d a c c a a d a c ad a c ------ =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=n n n nd c d c b a b a a 0000111111--展开按第一行0000)11111111112c d c d c b a b a b nn n n n nn ----+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121n n n n a a a a a a a a +------10001001000100100010000114332展开(由下往上)按最后一列1(+n a nn n a a a a a a a ------00000000000000000000000224332 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=000100210151---= 112035122412111512-----=D 11503120270151------=313911230231115-2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--= 51100650000601000051001653=D 展开按第三列0000105165610050066100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 11051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |1-A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数课后习题答案

线性代数课后习题答案

线性代数课后题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:相信自己加油(1)381141102---; (2)ba c a cb cb a (3)222111c b a c b a ; (4)yx y x x y x y yx y x +++. 解 注意看过程解答(1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯ )1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:耐心成就大业(1)1 2 3 4; (2)4 1 3 2;(3)3 4 2 1; (4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1(4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个5 2,5 4 2个7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个5 2,5 4 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:多练习方能成大财(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-2605232112131412;(3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001解 (1)7110025102021421434327c c c c--0100142310202110214--- =34)1(143102211014+-⨯---=143102211014--321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf --- =111111111---adfbce =abcdef 4 (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+ =12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cdc ada ab=23)1)(1(+--cd adab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x x x n n n +----- n n n n a x a x a x ++++=--111 .证明 (1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((ab a a b a b +--=右边=-=3)(b a (2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边 bzay by ax x byax bx az z bxaz bz ay y b +++++++++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++ zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b aa a (4) 444444422222220001a d a c a b a a d a c a b a ad a c a b a ---------=左边 =)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c a b a d a c a b ++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b b d b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++ =))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依 副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n n nn =, 证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nnn n a a a a a aa a 331122111121)1()1(nnn nn n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0; (2)xa a ax a aa x D n =; (3) 1111)()1()()1(1111 na a a n a a a n a a a D n n n nn n n ------=---+;提示:利用范德蒙德行列式的结果. (4) nn nn n d c d c ba b a D000011112=; (5)j i a a D ij ij n -==其中),det(; (6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解 (1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n a a a )1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n n n a a a+-⋅-=--+)2)(2(1)1()1( 2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a a x x a a x x a aa a x D n ------=000000再将各列都加到第一列上,得ax a x a x aa a a n x D n ----+=0000000000)1()(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a na a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i (4) nn nn n d c d c b a b a D 00011112=nn n n n n d d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b n n n n n n n ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)( (5)j i a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111*********111111111--------------n n n n,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n (6)nn a a a D +++=11111111121,,433221c c c c c c---nn n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列 ))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------0000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=1421420005410032101111-=---=112105132412211151------=D 11210513290501115----= 1121023313090509151------=23313095112109151------=1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D 1,3,2,144332211-========∴DD x D D x D D x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=5101065100065000601000152=D 展开按第二列5100651006500061-6510065*********-365510651065⨯-=1145108065-=--=5110065000060100051001653=D 展开按第三列51006500061000516500061*********+6100510656510650061+=703114619=⨯+=5100060100005100651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=110005100065100651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即 0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛-=0926508503⎪⎪⎪⎭⎫⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ; (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫ ⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212*********x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛3000320012101313000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148 但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫⎝⎛=27151610 故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求kA A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A . 解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ001001010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ⎪⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A由此推测⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---kk kk k k kk k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121;(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫⎝⎛n a a a 0021)0(21≠a a a n解(1)⎪⎪⎭⎫ ⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A (6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk kk k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m mm a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫ ⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n A A若0=A 由(1)知0=*A 此时命题也成立故有1-*=n AA20.取⎪⎪⎭⎫ ⎝⎛==-==1001D C B A ,验证DCB A DC B A ≠检验: =D C BA =--101001011010010111001010020002--410012002== 而01111==D C B A故 DCB A DC B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020*******1)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x x x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ 初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221 原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1)⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1210232112201023. 解(1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫⎝⎛---101011001200410123~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267100010001~。

同济大学第四版线性代数习题解答

同济大学第四版线性代数习题解答

线性代数答案解答第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b cb a(3)222111c b a c b a ; (4)yxyx x y x y y x y x +++.解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=(4)yxyx x y x y y x y x+++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-260523********12; (3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c ba100110011001 解(1)7110025102021421434327c c c c --010142310202110214---=34)1(143102211014+-⨯---=143102211014--321132c c c c ++141717201099-=0(2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -0000032122130412-=0(3)efcfbfde cd bd ae ac ab---=ecbe c b e c badf ---=111111111---adfbce=abcdef 4(4)d cb a10110011001---21ar r +d cb a ab 10011011010---+=12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab=23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b aba +=3)(b a -; (2)bz ay by ax bx az by ax bx az bzay bxaz bzay byax +++++++++=yxzx z y z yxb a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c cb b b b a a a a ;(4)444422221111d c b a dcbad c b a))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x xx n n n +----- n n n n a x a x a x ++++=--111 . 证明(1)122222221312a b a b aa b a ab a c c c c ------=左边ab a b ab a ab 22)1(22213-----=+ 21))((ab a a b a b +--=右边=-=3)(b a (2)bzay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bz ay by ax x by ax bx az z bxaz bz ay y b +++++++++++++002yby ax z x bxaz y zbzay x a 分别再分bzay y x byax x zbxaz z y b +++zyxy x z x z yb y x z x z y z y x a 33+分别再分右边=-+=233)1(yxzx z yzy x b yxzx z yz y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c964496449644964422222++++++++d d dd c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423dd c cb b a ac c c c c c c c ----第二项第一项06416416416412222=+d dd c c cb b b a a a(4) 444444422222220001a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b a d a c a b --------- =)()()(111))()((222a d d a c c a b b ad ac ab a d ac a b++++++---=⨯---))()((a d a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a xD n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D :1列展开按第则n D1110010001)1(11----+=+-x x a xD D n n n n 右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得nnnn a a a a D 11111=, 11112n nnn a a a a D = ,11113a a a a D n nnn=,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nn n n a a a a a a a a 331122111121)1()1( nn n nn n a a a a111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnnn n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaa x a a a xD n=; (3); 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+提示:利用范德蒙德行列式的结果.(4) nnnnnd c d c b a b a D000011112=;(5)ji a a D ij ij n -==其中),det(;(6)nna a a D +++=11111111121,021≠n a a a 其中.解(1)aa aa aD n 00010000000001000=按最后一行展开)1()1(100000000010000)1(-⨯-+-n n n a aa)1)(1(2)1(--⋅-+n n n a aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax xa a x xa a x x a a a a xD n ------=0000000 ax a x a x a a a an x D n ----+=0000000)1(再将各列都加到第一列上,得)(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nnn n n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4)nnnnn d c d c b a b a D 0011112=nn n n n nd d c d c b a b a a 00000011111111----展开按第一行0)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i i i nD c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)ji a ij -=432140123310122210113210)det(--------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++1524232102221002210002100001---------------n n n n n=212)1()1(----n n n(6)nn a a a D +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221 ++nn n a a a a a a a a -------000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D812073503211111------=145008130032101111---=142142005410032101111-=---=112105132412211151------=D 112105132********----=1121023313090509151------=233130905112109151------= 1202300461000112109151-----=14200038100112109151----=142-=11235122412111512-----=D 81150731203271151-------=31390011230023101151-=28428401910023101151-=----=426110135232422115113-=----=D14202132132212151114=-----=D1,3,2,144332211-========∴DD x DD x DD x D D x(2)510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)5100165100065100650000611=D 展开按第一列6510065100650006+'D46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+=703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=11000051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D ,齐次线性方程组有非零解,则03=D即0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换.解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z 所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B 求.23B A A AB T及-解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112 ⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x;(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635 (2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++= (6)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗?解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B 则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫ ⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060 而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫⎝⎛7182 故22))((B A B A B A -≠-+6.举反列说明下列命题是错误的:(1)若02=A ,则0=A ; (2)若A A =2,则0=A 或E A =;(3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A(2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠(3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1301101120123λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk 由数学归纳法原理知:⎪⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫⎝⎛=λλλ001001A ,求k A .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明: 当2=k时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵.证明 已知:A A T=则 AB B B A B A B B AB B T T T T TT T T ===)()(从而 AB B T也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =.证明 由已知:A A T = B B T=充分性:BA AB =⇒A B AB TT =⇒)(AB AB T = 即AB 是对称矩阵.必要性:AB AB T =)(⇒AB A B TT =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021)0(21≠a a a n 解(1)⎪⎪⎭⎫⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A (3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A24=A 0434232413121======A A A A A A68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA11故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A(5)01≠=A 故1-A 存在而002141312111==-==A A A A005242322212===-=A A A A 320043332313-====A A A A 850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-85003200005200211A(6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311*********X ;(3)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4)⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 (1)⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2)1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=210110131142121⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111(4)11010100001021102341100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1)方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x (2) 方程组可表示为 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===305321x x x 14.设O A k =(k 为正整数),证明121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B . 解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A .解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk k k2100λλ,⎪⎪⎭⎫⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk k k k ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立. ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫⎝⎛++++++++=m m m m a a a a a a a a 2222210121211000λλλλλλ⎪⎪⎭⎫⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立,即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明:(1) 若0=A ,则0=*A ;(2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)(由此得O A E A A AA A ===-*-**11)()(O A =∴*这与0≠*A 矛盾,故当0=A 时有0=*A(2) 由于*-=A A A11, 则E A AA =*取行列式得到: nAA A =* 若0≠A 则1-*=n AA若0=A 由(1)知0=*A 此时命题也成立 故有1-*=n AA20.取⎪⎪⎭⎫⎝⎛==-==1001D C B A ,验证DC B ADC B A ≠检验: =D C BA =--10100101101001011010010100200002--410012002==而01111==D C B A故 DC B AD C B A ≠21.设⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,求8A 及4A解 ⎪⎪⎪⎪⎭⎫⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫⎝⎛----174034301320; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解(1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---02003100121)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-100001001201 3121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022*******12423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000000000221003211(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----00000410001111020201 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α 3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样?解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1)⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073*********⎪⎪⎪⎭⎫⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3)⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0230102420536307121131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x(3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x x xx故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--0000001720171910171317301~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----00007579751025341253414312311112~ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1)0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2))()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3)3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ,得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB 方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解。

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析

大学数学线性代数题库及答案解析1. 求解方程组a) 3x + 2y - z = 7-x + 3y + 2z = -112x - y + 4z = 5解析:首先,我们可以使用增广矩阵表示方程组:[ 3, 2, -1, 7;-1, 3, 2, -11;2, -1, 4, 5 ]接下来,通过行初等变换将矩阵化为阶梯形:[ 3, 2, -1, 7;0, 7/4, 3/4, -21/4;0, 0, 9/7, 4/7 ]从第三行可以得到 z = 4/7,代入第二行可得 y = -21/7,再代入第一行可以得到 x = 3。

因此,方程组的解为 x = 3, y = -3, z = 4/7。

b) 2x + 3y + 2z = 10x - y + z = 44x + 2y + z = 12解析:同样,我们使用增广矩阵表示方程组:[ 2, 3, 2, 10;1, -1, 1, 4;4, 2, 1, 12 ]通过行初等变换将矩阵化为阶梯形:[ 2, 3, 2, 10;0, -5, -1, -6;0, 0, 0, 0 ]从第二行可以得到 -5y - z = -6,即 z = -6 + 5y。

我们可以令 y = t,其中 t 为任意常数。

则得到 z = -6 + 5t。

将 z 的值代入第一行可以得到x = 4 - 3t。

因此,方程组的解可以表示为 x = 4 - 3t, y = t, z = -6 + 5t。

2. 求解线性方程组的向量空间a) 给定矩阵 A = [1, 2, -1; 2, 4, -2; 3, 6, -3],求解 A 的列空间。

解析:列空间由矩阵 A 的列向量张成。

我们可以计算矩阵 A 的列向量组的极简形式:[ 1, 2, -1;2, 4, -2;3, 6, -3 ]通过初等行变换得到:[ 1, 2, -1;0, 0, 0;0, 0, 0 ]可以看出,第一列是主列,而第二列和第三列都是自由列。

因此,矩阵 A 的列空间可以表示为 Span{[1, 2, -1]}。

线性代数课后习题答案全解.pdf

线性代数课后习题答案全解.pdf

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102−−−;解 381141102−−−=2×(−4)×3+0×(−1)×(−1)+1×1×8 −0×1×3−2×(−1)×8−1×(−4)×(−1) =−24+8+16−4=−4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba −bbb −aaa −ccc =3abc −a 3−b 3−c 3. (3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2−ac 2−ba 2−cb =(a −b )(b −c )(c −a ). 2(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx −y 3−(x +y )3−x =3xy (x +y )−y 3 3−3x 2 y −x 3−y 3−x =−2(x 3 3+y 3 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:).(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n −1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(−n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个)(6)1 3 ⋅ ⋅ ⋅ (2n −1) (2n ) (2n −2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n −1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n −1)2, (2n −1)4, (2n −1)6, ⋅ ⋅ ⋅, (2n −1)(2n −2) (n −1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n −2) (n −1个) 3. 写出四阶行列式中含有因子a 11a 23 解 含因子a 的项. 11a 23(−1)的项的一般形式为t a 11a 23a 3r a 4s 其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. ,所以含因子a 11a 23 (−1)的项分别是t a 11a 23a 32a 44=(−1)1a 11a 23a 32a 44=−a 11a 23a 32a 44 (−1), t a 11a 23a 34a 42=(−1)2a 11a 23a 34a 42=a 11a 23a 34a 42 4. 计算下列各行列式:.(1)71100251020214214; 解 71100251020214214010014231020211021473234−−−−−======c c c c 34)1(143102211014+−×−−−= 143102211014−−=01417172001099323211=−++======c c c c .(2)2605232112131412−; 解 2605232112131412−26053212213041224−−=====c c 041203212213041224−−=====r r 0000003212213041214=−−=====r r . (3)efcf bf de cd bd aeac ab −−−;解 ef cf bf de cd bd ae ac ab −−−ec b e c b ec b adf −−−=abcdef adfbce 4111111111=−−−=.(4)dc b a 100110011001−−−. 解d c b a 100110011001−−−dc b aab ar r 10011001101021−−−++===== d c a ab 101101)1)(1(12−−+−−=+01011123−+−++=====cd c ada ab dc ccdad ab +−+−−=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a −b )3 证明;1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c −−−−−−=====ab a b a b a ab 22)1(22213−−−−−=+21))((a b a a b a b +−−==(a −b )3 (2) . y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2, c 2−c 1 得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4−c 3, c 3−c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b −−−−−−−−−=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++−−−= ))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++−++−−−−−−= )()(11))()()()((a b d d a b c c b d b c a d a c a b ++++−−−−−= =(a −b )(a −c )(a −d )(b −c )(b −d )(c −d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−− =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+−=, 命题成立. 假设对于(n −1)阶行列式命题成立, 即 D n −1=x n −1+a 1 x n −2+ ⋅ ⋅ ⋅ +a n −2x +a n −1则D , n 按第一列展开, 有 11100 100 01)1(11−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−+=+−x x a xD D n n n n =xD n −1+a n =x n +a 1x n −1+ ⋅ ⋅ ⋅ +a n −1x +a n 因此, 对于n 阶行列式命题成立. .6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90°、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n n nn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(−−==, D 3 证明 因为D =det(a =D .ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=−⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−− )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(−−+−+⋅⋅⋅++−=−=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=− )1(11112)1(2D D n n T n n 2)1(2)1()1()1(−−−=−=. D D D D D n n n n n n n n =−=−−=−=−−−−)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k (1)为k 阶行列式): aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解 aa a a a D n 010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 000 00 000 0010 000)1(−×−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=n n n aa a )1()1(2 )1(−×−⋅⋅⋅⋅−+n n n a a an n n n n a a a+⋅⋅⋅−⋅−=−−+)2)(2(1)1()1(=a n −a n −2=a n −2(a 2−1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(−1)分别加到其余各行, 得 ax x a ax x a a x x a aa a x D n −−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−+=0000 0 000 00 )1(=[x +(n −1)a ](x −a )n −1 (3). 111 1 )( )1()( )1(1111⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−−⋅⋅⋅−=−−−+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1−⋅⋅⋅−−⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=−−−++此行列式为范德蒙德行列式.∏≥>≥++++−−+−−=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++−−−=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+−++−⋅−⋅−=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+−=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn −−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−+. 再按最后一行展开得递推公式D 2n =a n d n D 2n −2−b n c n D 2n −2, 即D 2n =(a n d n −b n c n )D 2n −2于是 . ∏=−=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D −==,所以 ∏=−=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij 解 a =|i −j |; ij =|i −j |, 043214 01233 10122 21011 3210)det(⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−−⋅⋅⋅−=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213−⋅⋅⋅−−−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−−−⋅⋅⋅−−−⋅⋅⋅−−⋅⋅⋅−+⋅⋅⋅+=====n n n n n c c c c =(−1)n −1(n −1)2n −2 (6).nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 nn n n a a a a a a a a a c c c c +−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=====−−100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 −−−−−−+−⋅⋅⋅−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−⋅⋅⋅−⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=−−−−−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1) =+++−=−−−−=+−+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111−=−−−−=D , 142112105132412211151−=−−−−−−=D , 284112035122412111512−=−−−−−=D , 426110135232422115113−=−−−−=D , 14202132132212151114=−−−−−=D , 所以 111==D D x , 222==D Dx , 333==DD x , 144−==D D x .(2)=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 15075100165100065100065000611==D , 114551010651000650000601000152−==D , 703511650000601000051001653==D , 39551601000051000651010654−==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452−=x , 6657033=x , 6653954−=x , 6652124=x .9. 问λ, µ取何值时, 齐次线性方程组 =++=++=++0200321321321x x x x x x x x x µµλ有非零解?解 系数行列式为µλµµµλ−==1211111D .令D =0, 得 µ=0或λ=1.于是, 当µ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组 =−++=+−+=+−−0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ−−+−−=−−−−=101112431111132421D=(1−λ)3 =(1−λ)+(λ−3)−4(1−λ)−2(1−λ)(−3−λ) 3+2(1−λ)2 令D =0, 得+λ−3. λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3 解 由已知:的线性变换.= 221321323513122y y y x x x ,故= −3211221323513122x x x y y y−−−−=321423736947y y y ,−+=−+=+−−=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换++=++−=+=32133212311542322y y y x y y y x y y x ,+−=+=+−=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3 解 由已知的线性变换.−= 221321514232102y y y x x x−− −=321310102013514232102z z z−−−−=321161109412316z z z ,所以有 +−−=+−=++−=3213321232111610941236z z z x z z z x z z z x .3. 设 −−=111111111A ,−−=150421321B , 求3AB −2A 及A T 解 B .−−− −− −−=−1111111112150421321111111111323A AB−−−−= −−− −=2294201722213211111111120926508503,−= −− −−=092650850150421321111111111B A T.4. 计算下列乘积: (1)−127075321134;解 −127075321134 ×+×+××+×−+××+×+×=102775132)2(71112374=49635.(2)123)321(;解123)321(=(1×3+2×2+3×1)=(10).(3))21(312−;解 )21(312−×−××−××−×=23)1(321)1(122)1(2−−−=632142. (4)−−−−20413121013143110412 ; 解−−− −20413121013143110412 −−−=6520876. (5)321332313232212131211321)(x x x a a a a a a a a a x x x ;解321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3321x x x )322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设 =3121A ,=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为=6443AB ,=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2 解 (A +B )吗? 2≠A 2+2AB +B 2 因为.=+5222B A ,=+52225222)(2B A=2914148,但 + +=++43011288611483222B AB A=27151610,所以(A +B )2≠A 2+2AB +B 2 (3)(A +B )(A −B )=A . 2−B 2 解 (A +B )(A −B )≠A 吗? 2−B 2 因为.=+5222B A ,=−1020B A ,==−+906010205222))((B A B A ,而= −=−718243011148322B A ,故(A +B )(A −B )≠A 2−B 2 6. 举反列说明下列命题是错误的:.(1)若A 2 解 取=0, 则A =0;=0010A , 则A 2 (2)若A =0, 但A ≠0. 2 解 取=A , 则A =0或A =E ;=0011A , 则A 2 (3)若AX =AY , 且A ≠0, 则X =Y .=A , 但A ≠0且A ≠E . 解 取=0001A , −=1111X ,=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k 解 . ==12011011012λλλA , ===1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=101λk A k . 8. 设=λλλ001001A , 求A k 解 首先观察. =λλλλλλ0010010010012A=222002012λλλλλ,=⋅=3232323003033λλλλλλA A A ,=⋅=43423434004064λλλλλλA A A ,=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,=k A k k k k k k k k k k λλλλλλ0002)1(121−−−−. 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,−=⋅=−−−+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A+++=+−+−−+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:−=−−−k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T 证明 因为A AB 也是对称矩阵.T (B =A , 所以T AB )T =B T (B T A )T =B T A T B =B T 从而B AB ,T 10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .AB 是对称矩阵.证明 充分性: 因为A T =A , B T (AB )=B , 且AB =BA , 所以 T =(BA )T =A T B T 即AB 是对称矩阵.=AB ,必要性: 因为A T =A , B T =B , 且(AB )T AB =(AB )=AB , 所以T =B T A T 11. 求下列矩阵的逆矩阵:=BA .(1)5221; 解=5221A . |A |=1, 故A −1 存在. 因为−−= =1225*22122111A A A A A ,故 *||11A A A =−−−=1225. (2)−θθθθcos sin sin cos ; 解−=θθθθcos sin sin cos A . |A |=1≠0, 故A −1 存在. 因为−= =θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =−−=θθθθcos sin sin cos . (3)−−−145243121; 解−−−=145243121A . |A |=2≠0, 故A −1 存在. 因为−−−−−= =214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =−−−−−−=1716213213012. (4)n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解=n a a a A 0021, 由对角矩阵的性质知=−n a a a A 10011211 . 12. 解下列矩阵方程:(1) −=12643152X ; 解 −=−126431521X − −−=12642153 −=80232. (2) −=−−234311*********X ; 解 1111012112234311−−− −=X−−− −=03323210123431131 −−−=32538122. (3) −= − −101311022141X ;解 11110210132141−− − − −=X− −=210110131142121 =21010366121=04111. (4)−−−= 021102341010100001100001010X . 解 11010100001021102341100001010−−−−− =X −−− =010100001021102341100001010 −−−=201431012. 13. 利用逆矩阵解下列线性方程组:(1) =++=++=++3532522132321321321x x x x x x x x x ; 解 方程组可表示为= 321153522321321x x x , 故 = = −0013211535223211321x x x ,从而有 ===001321x x x . (2) =−+=−−=−−05231322321321321x x x x x x x x x . 解 方程组可表示为=−−−−−012523312111321x x x , 故 =−−−−−= −3050125233121111321x x x , 故有 ===305321x x x . 14. 设A k =O (k 为正整数), 证明(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1 证明 因为A . k =O , 所以E −A k E −A =E . 又因为k =(E −A )(E +A +A 2+⋅ ⋅ ⋅+A k −1所以 (E −A )(E +A +A ),2+⋅ ⋅ ⋅+A k −1由定理2推论知(E −A )可逆, 且)=E ,(E −A )−1=E +A +A 2+⋅ ⋅ ⋅+A k −1.证明 一方面, 有E =(E −A )−1 另一方面, 由A (E −A ).k E =(E −A )+(A −A =O , 有2)+A 2−⋅ ⋅ ⋅−A k −1+(A k −1−A k )=(E +A +A 2+⋅ ⋅ ⋅+A k −1故 (E −A ))(E −A ),−1(E −A )=(E +A +A 2+⋅ ⋅ ⋅+A k −1两端同时右乘(E −A ))(E −A ),−1 (E −A ), 就有−1(E −A )=E +A +A 2+⋅ ⋅ ⋅+A k −1.15. 设方阵A 满足A 2−A −2E =O , 证明A 及A +2E 都可逆, 并求A −1及(A +2E )−1 证明 由A .2 A −A −2E =O 得2或 −A =2E , 即A (A −E )=2E ,E E A A =−⋅)(21, 由定理2推论知A 可逆, 且)(211E A A −=−. 由A 2 A −A −2E =O 得2或 −A −6E =−4E , 即(A +2E )(A −3E )=−4E ,E A E E A =−⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A −=+−.证明 由A 2−A −2E =O 得A 2 |A −A =2E , 两端同时取行列式得 2即 |A ||A −E |=2,−A |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2由 A ≠0, 故A +2E 也可逆. 2 ⇒A −A −2E =O ⇒A (A −E )=2E−1A (A −E )=2A −1)(211E A A −=−E ⇒,又由 A 2 ⇒ (A +2E )(A −3E )=−4 E ,−A −2E =O ⇒(A +2E )A −3(A +2E )=−4E所以 (A +2E )−1(A +2E )(A −3E )=−4(A +2 E )−1 ,)3(41)2(1A E E A −=+−.16. 设A 为3阶矩阵, 21||=A , 求|(2A )−1 解 因为−5A *|.*||11A A A =−, 所以 |||521||*5)2(|111−−−−=−A A A A A |2521|11−−−=A A=|−2A −1|=(−2)3|A −1|=−8|A |−1 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)=−8×2=−16.−1=(A −1 证明 由)*.*||11A A A =−, 得A *=|A |A −1 |A *|=|A |, 所以当A 可逆时, 有n |A −1|=|A |n −1从而A *也可逆.≠0,因为A *=|A |A −1 (A *), 所以−1=|A |−1又A .*)(||)*(||1111−−−==A A A A A , 所以(A *)−1=|A |−1A =|A |−1|A |(A −1)*=(A −1 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:)*.(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n −1 证明.(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)−1 A =A A *(A *)=E , 由此得 −1=|A |E (A *)−1所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.=O ,(2)由于*||11A A A =−, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n 若|A |≠0, 则|A *|=|A |.n −1 若|A |=0, 由(1)知|A *|=0, 此时命题也成立.;因此|A *|=|A |n −1.19. 设−=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A −2E )B =A , 故− −−−=−=−−321011330121011332)2(11A E A B −=011321330. 20. 设 =101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2 (A −E )B =A +B 得 2即 (A −E )B =(A −E )(A +E ).−E , 因为01001010100||≠−==−E A , 所以(A −E )可逆, 从而=+=201030102E A B .21. 设A =diag(1, −2, 1), A *BA =2BA −8E , 求B . 解 由A *BA =2BA −8E 得 (A *−2E )BA =−8E , B =−8(A *−2E )−1A =−8[A (A *−2E )]−1 =−8(AA *−2A )−1 =−8(|A |E −2A )−1 =−8(−2E −2A )−1 =4(E +A )−1 =4[diag(2, −1, 2)]−1−1)21 ,1 ,21(diag 4−==2diag(1, −2, 1).22. 已知矩阵A 的伴随阵−=8030010100100001*A , 且ABA −1=BA −1+3E , 求B .解 由|A *|=|A |3 由ABA =8, 得|A |=2. −1=BA −1 AB =B +3A ,+3E 得 B =3(A −E )−1A =3[A (E −A −1)]−1 A 11*)2(6*)21(3−−−=−=A E A E−=−−=−1030060600600006603001010010000161. 23. 设P −1 −−=1141P AP =Λ, 其中,−=Λ2001, 求A 11 解 由P . −1AP =Λ, 得A =P ΛP −1, 所以A 11= A =P Λ11P −1 |P |=3, .−=1141*P ,−−=−1141311P ,而−= −=Λ11111120 012001,故−− −−−=31313431200111411111A −−=68468327322731. 24. 设AP =P Λ, 其中−−=111201111P ,−=Λ511,求ϕ(A )=A 8(5E −6A +A 2 解 ϕ(Λ)=Λ). 8(5E −6Λ+Λ2 =diag(1,1,5)8)[diag(5,5,5)−diag(−6,6,30)+diag(1,1,25)]=diag(1,1,58 ϕ(A )=P ϕ(Λ)P )diag(12,0,0)=12diag(1,0,0).−1 *)(||1P P P Λ=ϕ−−−−−− −−−=1213032220000000011112011112=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A −1+B −1 证明 因为也可逆, 并求其逆阵.A −1(A +B )B −1=B −1+A −1=A −1+B −1而A ,−1(A +B )B −1是三个可逆矩阵的乘积, 所以A −1(A +B )B −1可逆, 即A −1+B −1 (A 可逆.−1+B −1)−1=[A −1(A +B )B −1]−1=B (A +B )−1 26. 计算A .−−−30003200121013013000120010100121. 解 设 =10211A , =30122A , −=12131B ,−−=30322B ,则 2121B O B E A O E A+=222111B A O B B A A ,而 −= −−+−=+4225303212131021211B B A ,−−= −− =90343032301222B A , 所以 2121B O B E A O E A +=222111B A O B B A A−−−=9000340042102521, 即−−−30003200121013013000120010100121−−−=9000340042102521. 27. 取==−==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021010*********0021010010110100101==−−=−−=D C B A , 而 01111|||||||| ==D C B A ,故 ||||||||D C B A D C B A ≠. 28. 设 −=22023443O O A , 求|A 8|及A 4解 令. −=34431A ,=22022A , 则=21A O O A A ,故 8218=A O O A A=8281A O O A ,1682818281810||||||||||===A A A A A .= =464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1−O B A O ; 解 设 =−43211C C C C O B A O , 则O B A O 4321C C C C = =s n E O O E BC BC AC AC 2143. 由此得====s n EBC OBC O AC E AC 2143⇒ ====−−121413B C O C O C A C ,所以= −−−O A B O O B A O 111. (2)1−B C O A . 解 设 =−43211D D D D B C O A , 则 = ++= s nE O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得=+=+==s nEBD CD O BD CD O AD E AD 423121⇒ =−===−−−−14113211B D CA B D O D A D ,所以−= −−−−−11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)2500380000120025; 解 设 =1225A , =2538B , 则−−= =−−5221122511A ,−−==−−8532253811B .于是 −−−−= = =−−−−850032000052002125003800001200251111B A B A .(2)4121031200210001. 解 设 =2101A ,=4103B ,=2112C , 则−= =−−−−−−1111114121031200210001B CA B O A BC O A−−−−−=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵: (1)−−340313021201;解−−340313021201(下一步: r 2+(−2)r 1, r 3+(−3)r 1 ~. )−−−020*********(下一步: r 2÷(−1), r 3 ~÷(−2). )−−010*********(下一步: r 3−r 2 ~. )−−300031001201(下一步: r 3 ~÷3. )−−100031001201(下一步: r 2+3r 3 ~. )−100001001201(下一步: r 1+(−2)r 2, r 1+r 3 ~. )100001000001.(2)−−−−174034301320;解−−−−174034301320(下一步: r 2×2+(−3)r 1, r 3+(−2)r 1 ~. )−−−310031001320(下一步: r 3+r 2, r 1+3r 2 ~. )0000310010020(下一步: r 1 ~÷2. )000031005010.(3)−−−−−−−−−12433023221453334311;解−−−−−−−−−12433023221453334311(下一步: r 2−3r 1, r 3−2r 1, r 4−3r 1~. )−−−−−−−−1010500663008840034311(下一步: r 2÷(−4), r 3÷(−3) , r 4~÷(−5). )−−−−−22100221002210034311(下一步: r 1−3r 2, r 3−r 2, r 4−r 2~. )−−−00000000002210032011.(4)−−−−−−34732038234202173132. 解−−−−−−34732038234202173132(下一步: r 1−2r 2, r 3−3r 2, r 4−2r 2~. )−−−−−1187701298804202111110(下一步: r 2+2r 1, r 3−8r 1, r 4−7r 1 ~. )−−41000410002020111110(下一步: r 1↔r 2, r 2×(−1), r 4−r 3~. )−−−−00000410001111020201(下一步: r 2+r 3~. )−−00000410003011020201. 2. 设= 987654321100010101100001010A , 求A .解100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(−1))−=100010101.− =100010101987654321100001010A= − =287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵: (1)323513123;解 100010001323513123~−−−101011001200410123~ −−−−1012002110102/102/3023~−−−−2/102/11002110102/922/7003~−−−−2/102/11002110102/33/26/7001故逆矩阵为−−−−21021211233267.(2)−−−−−1210232112201023.解−−−−−10000100001000011210232112201023~−−−−00100301100001001220594012102321~−−−−−−−−20104301100001001200110012102321~ −−−−−−−106124301100001001000110012102321 ~−−−−−−−−−−10612631110`1022111000010000100021 ~−−−−−−−106126311101042111000010000100001故逆矩阵为−−−−−−−10612631110104211. 4. (1)设 −−=113122214A ,−−=132231B , 求X 使AX =B ;解 因为−−−−=132231 113122214) ,(B A−−412315210 100010001 ~r ,所以−−==−4123152101B A X .(2)设−−−=433312120A , −=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为−−−−=134313*********) ,(T T B A−−−411007101042001 ~r ,所以−−−==−417142)(1T T T B A X ,从而−−−==−4741121BA X . 5. 设−−−=101110011A , AX =2X +A , 求X .解 原方程化为(A −2E )X =A . 因为−−−−−−−−−=−101101110110011011) ,2(A E A−−−011100101010110001~,所以−−−=−=−011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r −1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r −1阶子式, 也可能存在等于0的r 阶子式. 例如,=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, −1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:−0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式: (1)−−−443112112013;解−−−443112112013(下一步: r 1↔r 2 ~. )−−−443120131211(下一步: r 2−3r 1, r 3−r 1 ~. )−−−−564056401211(下一步: r 3−r 2 ~. )−−−000056401211, 矩阵的2秩为, 41113−=−是一个最高阶非零子式.(2)−−−−−−−815073*********;解−−−−−−−815073*********(下一步: r 1−r 2, r 2−2r 1, r 3−7r 1 ~. )−−−−−−15273321059117014431(下一步: r 3−3r 2~. )−−−−0000059117014431, 矩阵的秩是2, 71223−=−是一个最高阶非零子式.(3)−−−02301085235703273812. 解−−−02301085235703273812(下一步: r 1−2r 4, r 2−2r 4, r 3−3r 4~. )−−−−−−023*********63071210(下一步: r 2+3r 1, r 3+2r 1~. )−0230114000016000071210(下一步: r 2÷16r 4, r 3−16r 2. )~−02301000001000071210 ~−00000100007121002301, 矩阵的秩为3, 070023085570≠=−是一个最高阶非零子式.10. 设A 、B 都是m ×n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设−−−−=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 −−−−=32321321k k k A+−−−−−)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =−2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠−2时, R (A )=3.12. 求解下列齐次线性方程组: (1) =+++=−++=−++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−212211121211~ −−−3/410013100101,于是 ==−==4443424134334x x x x x x x x ,故方程组的解为−= 1343344321k x x x x (k 为任意常数).(2) =−++=−−+=−++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A = −−−−5110531631121~−000001001021,于是 ===+−=4432242102x x x xx x x x ,故方程组的解为+−= 10010*********k k x x x x (k 1, k 2 (3)为任意常数).=−+−=+−+=−++=+−+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =−−−−−7421631472135132~1000010000100001,于是 ====0004321x x x x ,故方程组的解为 ====00004321x x x x .(4) =++−=+−+=−+−=+−+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =−−−−−3127161311423327543~−−000000001720171910171317301,于是 ==−=−=4433432431172017191713173x x x x x x x xx x ,故方程组的解为−−+= 1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1) =+=+−=−+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。

线性代数课后答案(同济版)

线性代数课后答案(同济版)

兰州交大化工学院 Bismarck 孟 11.5整理 第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b c b a ;解 ba c a cbc b a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2=(a -b )(b -c )(c -a ).(4)yx y x x y x y yx y x +++.解 y x y x x y x y yx y x +++ =x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3=3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3). 2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(6)1 3 ⋅ ⋅ ⋅ (2n -1) (2n ) (2n -2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n -1) : 3 2(1个)5 2, 5 4 (2个)⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个)3. 写出四阶行列式中含有因子a 11a 23的项.解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42.所以含因子a 11a 23的项分别是 (-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44,(-1)ta 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214; 解71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解2605232112131412-260503212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd ae ac ab ---;解 efcf bf de cd bd ae ac ab ---e c b e c b e c b adf ---=abcdef adfbce 4111111111=---=. (4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 1011001101021---++=====dc a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)yx z x z y z y x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++; 证明bzay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++bz ay by ax x by ax bx az z bx az bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++= bz ay y x by ax x z bx az z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得)5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------= )()()(111))()((222a d d a c c a b b d c b a d a c a b +++---= ())((0011))()((b d d a b c b c c b c a d a c a b -++-----=()(1))()()()((d a b c c b d b c a d a c a b ++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x x n n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1,则D n 按第一列展开, 有111 00 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n=xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得 n nnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ,11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n T n n 2)1(2)1()1()1(---=-=.D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aa D n 1 1⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解 aa a a a D n 0 0010000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 000 00 0000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n a a a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n na aan n n nn a a a +⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x a a a x D n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行,得ax x a a x x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上, 得ax a x a x a a a a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0 0)1(1111111112c d c d c b a b a b nn n n n n n ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式 D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |;解 a ij =|i -j |,43214 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 04321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2⋅ ⋅ ⋅ a n ≠0. 解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 000100 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D ,284112035122412111512-=-----=D , 42611135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x ,144-==DD x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 15075100165100065100650000611==D ,114551010651000650000601000152-==D , 70351100650000601000051001653==D ,3955100060100005100651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x ,6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解? 解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.Bismarck-孟整理编篡第一章(完) 第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知: ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10). (3))21(312-⎪⎪⎭⎫ ⎝⎛; 解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 22331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗?解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0; 解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅, ⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B TAB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121;解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+Ak -1)=E ,由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k=O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-Ak -1+(Ak -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有 (E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+Ak -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2,|A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E , 所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆. 因为A *=|A |A -1, 所以(A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而 ⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B .解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1=-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P ,⎪⎪⎭⎫⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵.证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B OB EA O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D , 所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A B C O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎝⎛---=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----0000522125003800001200251111B A B A . (2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫ ⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). ) ~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001. (2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫ ⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011. (4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2,r 4-2r 2. ) ~⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. ) ~⎪⎪⎪⎭⎫⎝⎛----000410*******20201(下一步: r 2+r 3. ) ~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A . 解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是 E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001 故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫⎝⎛----=134313*********) ,(TTB A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r , 所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为 ⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式? 解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样? 解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵: ⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量. 9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1,r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. ) ~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ). 证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有 A ~D , D ~B .由等价关系的传递性, 有A ~B . 11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值,可使 (1)R (A )=1; (2)R (A )=2; (3)R (A )=3. 解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组: (1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101, 于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x , 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1, k 2为任意常数). (3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为 ⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x . 解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组: (1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。

线性代数课后习题答案

线性代数课后习题答案

习题答案习题1(参考答案)1.程序与算法的概念及二者的区别是什么?程序:为了实现特定目标或解决特定问题而用计算机语言偏写的指令序列,它由算法和数据结构组成。

算法:(Algorithm)是在有限步骤内求解某一问题所使用的一组定义明确的规则。

通俗地讲,就是计算机解题的步骤。

算法与程序的区别:计算机程序是算法的一个实例,同一个算法可以用不同的计算机语言来表达。

2.简述程序设计语言发展的过程程序设计语言经过最初的机器代码到今天接近自然语言的表达,经过了四代的演变。

一般认为机器语言是第一代,符号语言即汇编语言为第二代,面向过程的高级语言为第三代,面对象的编程语言为第四代。

3.简述高级程序设计语言中面向过程与面向对象的概念。

“面向过程”是一种以过程为中心的编程思想。

首先分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步地实现,使用的时候依次调用函数即可。

一般的面向过程是从上往下步步求精,所以面向过程最重要的是模块化的思想方法。

“面向对象”是一种以事物为中心的编程思想。

面向对象的方法主要是将事物对象化,对象包括属性与行为。

面向过程与面向对象的区别:在面向过程的程序设计中,程序员把精力放在计算机具体执行操作的过程上,编程关注的是如何使用函数去实现既定的功能;而在面向对象的程序设计中,技术人员将注意力集中在对象上,把对象看做程序运行时的基本成分。

编程关注的是如何把相关的功能(包括函数和数据)有组织地捆绑到一个对象身上。

4.C语言程序的特点是什么?(1)C语言非常紧凑、简洁,使用方便、灵活,有32个关键字,有9种流程控制语句。

(2)C语言运算符丰富,共有45个标准运算符,具有很强的表达式功能,同一功能表达式往往可以采用多种形式来实现。

(3)数据类型丰富。

C语言的数据类型有整型、实型、字符型、数组类型、结构类型、共用类型和指针类型,而且还可以用它们来组成更复杂的数据结构,加之C语言提供了功能强大的控制结构,因而使用C语言能非常方便地进行结构化和模块化程序设计,适合于大型程序的编写、调试。

线性代数(第二版)答案

线性代数(第二版)答案

5 3 2 1
6 6 1 3
⎞−1 ⎟ ⎟ ⎟ ⎟ ⎠
⎛ ⎜ ⎜ ⎜ ⎜ ⎝
x1 x2 x3 x4
⎞ ⎟ ⎟ ⎟ ⎟ ⎠
=
⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜
7. 首先将系数矩阵化为规范阶梯矩阵,
A
=
⎛ ⎜ ⎝
2 1
1 1
−1 −1
1 0
−3⎞
1
⎟ ⎠

⎛ ⎜ ⎝
1 0
0 1
0 −1
1 −1
−4 5
⎞ ⎟ ⎠
=
B
选 x3, x4 , x5 为 自 由 未 知 量 , 分 别 取 x3 = 1, x4 = 0, x5 = 0 , x3 = 0, x4 = 1, x5 = 0 和
( ) ( ) ( ) ( ) 8.设
aij
,
2×2
bij
属于该集合,则
2×2
aij
+k
2×2
bij
也属于该集合,即该集合是 M 2×2 的子空
2×2
间;设
ε11
=
⎛ ⎜ ⎝
1 0
0⎞ −1⎟⎠
, ε12
=
⎛0
⎜ ⎝
0
1⎞ −1⎟⎠

ε 21
=
⎛ ⎜ ⎝
0 1
0⎞ −1⎠⎟
,则若有
k1ε11
+
k2ε12
为一组基. 10.因为 k1k3 ≠ 0 ,即 k1 ≠ 0 , k3 ≠ 0 ,于是由
k1α1 + k2α2 + k3α3 = O
(1)
可得
α1
=

k2 k1
α2

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

大学《线性代数》第2版(清华大学出版社、居余马)课后习题详细答案-较完整精编版

14、先将第 1 行与第 5 行对换,第 3 行与第 4 行对换(反号两次,其值不变)
3 6 5 6 2 5 4 5 3 6 3 4
4 3
1 1 1 −1 −1 2 5 4 5 3 3 6 3 4 3 6 5 6 2 4
1 1 1 −1 −1 0 3 2 7 5 0 3 0 7 0 3 2 9 5 7
1 1 1 1 1 1 b−a c−a 21、 左 = a b c = 0 b−a c − a = 1⋅ 3 3 3 3 b −a c −a a 3 b3 c 3 0 b3 − a 3 c 3 − a 3
= ( b − a )( c − a ) ( c 2 + ac + a 2 ) − ( c − a )(b − a ) (b 2 + ab + a 2 ) = ( b − a )( c − a ) ( c 2 + ac + a 2 − b 2 − ab − a 2 ) = ( b − a )( c − a ) ( c 2 + ac − b 2 − ab ) = (b − a )( c − a )( c − b )( a + b + c ) = 右
= abcd + ad + ab + cd + 1 = ab(cd + 1) + ad + cd + 1 = (ab + 1)(cd + 1) + ad
a2
25、
(a + 1)2 (b + 1) (c + 1)2
2
(a + 2) 2 (b + 2) (c + 2) 2 a2
2
(a + 3) 2

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx

A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。

[同济大学(第四版)] 线性代数习题解答

[同济大学(第四版)] 线性代数习题解答

线性代数答案解答第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)ba c a cbc b a (3)222111c b a c b a; (4)yxyx x y x y y x yx +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++- =4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)y x y x x y x yyx y x +++ yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n)1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-2605232112131412;(3)⎥⎥⎥⎦⎥⎢⎢⎢⎣⎢---ef cf bf de cdbd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d cb a100110011001 解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯--- =143102211014--321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -000032122130412-=0(3)ef cf bf de cdbd ae ac ab ---=ec b e c b ec b adf --- =111111111---adfbce =abcdef 4(4)d cb a 10110011001---21ar r +d cb a ab 10011011010---+=12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdad ab +-+111=1++++ad cd ab abcd5.证明:(1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yxzx z yz yx b a )(33+; (3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; (4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅; (5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b ab a b a ab 22)1(22213-----=+21))((ab a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z yb +++ zy x y x z x z y b y x z x z y z y xa 33+分别再分 右边=-+=233)1(yxz x z y zy x b y xzx z yz y x a (3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边 9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c cb b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a(4) 444444422222220001a d a c ab a ad ac ab aa d a c ab a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b)()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b)()()()(112222b d a b bd d b c a b bc c ++++++++ =))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-xx a xD D n n n n右边=+=-n n a xD 1所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依 副对角线翻转,依次得n nnn a a a a D 11111=, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(. 证明 )det(ij a D =nnn n n n nnnn a a a a a a a a a a D 2211111111111)1(--==∴=--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nn n nn n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nn n n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-=D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax a aa x D n =;(3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nnnn ------=---+; 提示:利用范德蒙德行列式的结果.(4) nnnnn d c d c b a b a D000011112=;(5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n a a a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax xa a x xa a x x a a a a x D n ------=00000再将各列都加到第一列上,得ax a x a x a a a an x D n ----+=0000000)1()(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行 交换,得nn nn n n n n n n a a a n a a a n a a a D )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-∙-∙-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnnnn d c d c b a b a D 011112=n n n n n nd d c d c b a b a a 00000011111111----展开按第一行00000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222---n n n n n n D c b D d a 都按最后一行展开 由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432140123310122210113210)det( --------==n n n n n n n n a D ij n,3221r r r r --0432111111111111111111111--------------n n n n ,,141312c c c c c c +++15242321022210022*******0001---------------n n n n n =212)1()1(----n n n(6)n n a a a D +++=11111111121,,433221c c c c c c ---nn n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------0000000000000000000000022433221n n n a a a a a a a a ----+--000000000000000001133221++nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑+==n i in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=14214205410032101111-=---=112105132412211151------=D 11210513290501115----=112123313090509151------=233130905112109151------=1202300461000112109151-----=14238100112109151----=142-=112035122412111512-----=D 811507312032701151-------=31390011230023101151-=28428401910023101151-=----=42611135232422115113-=----=D14202132132212151114=-----=D1,3,2,144332211-========∴DD x DD x DD x DD x (2)5100065100065100065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019 D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',)51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+=703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651-- 51065106565--=395-=11000051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+=665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D 即 0=-μλμ得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解? 解λλλ----=111132421D λλλλ--+--=101112431 )3)(1(2)1(4)3()1(3λλλλλ-------+-= 3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1.已知线性变换: ⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y2.已知两个线性变换 ⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换. 解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z 所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A , ,150421321⎪⎪⎪⎭⎫ ⎝⎛--=B求.23B A A AB T 及- 解A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛----=22942017222132 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算下列乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫ ⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212*********),,(x x x a a a a a a a a a x x x ;(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635(2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛321332313232212131211321x x x a a a a a a a a a x x x()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫⎝⎛⨯321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=(6) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫⎝⎛=2101B ,问:(1)BA AB =吗?(2)2222)(B AB A B A ++=+吗? (3)22))((B A B A B A -=-+吗? 解(1)⎪⎪⎭⎫ ⎝⎛=3121A , ⎪⎪⎭⎫ ⎝⎛=2101B 则⎪⎪⎭⎫ ⎝⎛=6443AB ⎪⎪⎭⎫⎝⎛=8321BA BA AB ≠∴(2) ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎪⎭⎫ ⎝⎛=2914148但=++222B AB A ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛43011288611483⎪⎪⎭⎫ ⎝⎛=27151610故2222)(B AB A B A ++≠+(3) =-+))((B A B A =⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10205222⎪⎪⎭⎫⎝⎛9060而 =-22B A =⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛430111483⎪⎪⎭⎫ ⎝⎛7182故 22))((B A B A B A -≠-+6.举反列说明下列命题是错误的: (1)若02=A ,则0=A ;(2)若A A =2,则0=A 或E A =; (3)若AY AX =,且0≠A ,则Y X =.解 (1) 取⎪⎪⎭⎫ ⎝⎛=0010A 02=A ,但0≠A (2) 取⎪⎪⎭⎫ ⎝⎛=0011A A A =2,但0≠A 且E A ≠ (3) 取⎪⎪⎭⎫ ⎝⎛=0001A ⎪⎪⎭⎫ ⎝⎛-=1111X ⎪⎪⎭⎫⎝⎛=1011YAY AX =且0≠A 但Y X ≠7.设⎪⎪⎭⎫ ⎝⎛=101λA ,求kA A A ,,,32 . 解 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==130********23λλλA A A 利用数学归纳法证明: ⎪⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A kk由数学归纳法原理知:⎪⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫ ⎝⎛=λλλ001001A ,求k A .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫ ⎝⎛=22202012λλλλλ ⎪⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明:当2=k 时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k kkk k k k k A A A⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵. 证明 已知:A A T =则 AB B B A B A B B AB B T T T T TT T T ===)()( 从而 AB B T 也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是 BA AB =.证明 由已知:A A T = B B T =充分性:BA AB =⇒A B AB T T =⇒)(AB AB T= 即AB 是对称矩阵.必要性:AB AB T=)(⇒AB A B T T =⇒AB BA =.11.求下列矩阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛5221; (2)⎪⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫ ⎝⎛---145243121; (4)⎪⎪⎪⎪⎪⎭⎫⎝⎛4121031200210001; (5)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛2500380000120025;(6)⎪⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021)0(21≠a a a n解(1)⎪⎪⎭⎫⎝⎛=5221A 1=A1),1(2),1(2,522122111=-⨯=-⨯==A A A A⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛=*122522122111A A A A A *-=A A A 11 故 ⎪⎪⎭⎫⎝⎛--=-12251A(2)01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎪⎭⎫ ⎝⎛-=-θθθθcos sin sin cos 1A(3) 2=A , 故1-A 存在024312111==-=A A A 而 1613322212-==-=A A A 21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎭⎫⎝⎛-----=1716213213012 (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4121031200210001A 24=A 0434232413121======A A A A A A 68122444332211====A A A A12411032001)1(312-=-=A 12421012021)1(413-=-=A3121312021)1(514=-=A 4421012001)1(523-=-=A5121312001)1(624-=-=A 2121021001)1(734-=-=A*-=A AA 11 故⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=-4112124581031612100212100011A (5)01≠=A 故1-A 存在而002141312111==-==A A A A 005242322212===-=A A A A 320043332313-====A A A A850044342414=-===A A A A从而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-85003200005200211A (6)⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 1001121112.解下列矩阵方程:(1) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311111012112X ;(3) ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-101311022141X ; (4) ⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解(1) ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=12642153⎪⎪⎭⎫⎝⎛-=80232 (2) 1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3) 11110210132141--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛-=210110131142121 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫⎝⎛=04111 (4) 11010100001021102341100001010--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫ ⎝⎛---=20143101213.利用逆矩阵解下列线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x 解 (1) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===305321x x x14.设O A k =(k 为正整数),证明 121)(--++++=-k A A A E A E .证明 一方面, )()(1A E A E E --=- 另一方面,由O A k =有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=- 两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及 1)2(-+E A .证明 由O E A A =--22得E A A 22=- 两端同时取行列式: 22=-A A 即 2=-E A A ,故 0≠A 所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆. 由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒-又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A ,B A AB 2+=,求B .解 由B A AB 2+=可得A B E A =-)2(故A E A B 1)2(--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---=-3210113301210113321⎪⎪⎪⎭⎫⎝⎛-=01132133017.设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=Λ2001,求11A . 解 Λ=-AP P 1故1-Λ=P P A 所以11111-Λ=P P A3=P ⎪⎪⎭⎫ ⎝⎛-=*1141P ⎪⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=Λ11111120012001故⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎪⎭⎫ ⎝⎛--=6846832732273118.设m 次多项式m m x a x a x a a x f ++++= 2210)(,记m m A a A a A a E a A f ++++= 2210)()(A f 称为方阵A 的m 次多项式.(1)设⎪⎪⎭⎫ ⎝⎛=Λ2100λλ,证明: ⎪⎪⎭⎫ ⎝⎛=Λk kk2100λλ,⎪⎪⎭⎫ ⎝⎛=Λ)(00)()(21λλf f f ; (2)设1-Λ=P P A ,证明: 1-Λ=P P A k k ,1)()(-Λ=P Pf A f .证明(1) i)利用数学归纳法.当2=k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=Λ212120000λλλλ⎪⎪⎭⎫ ⎝⎛=222100λλ命题成立,假设k 时成立,则1+k 时⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=ΛΛ=Λ+212110000λλλλk k kk ⎪⎪⎭⎫⎝⎛=++121100k k λλ 故命题成立.ii)左边m m a a a E a f Λ++Λ+Λ+=Λ= 2210)(⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛=m m m a a a 21211000001001λλλλ⎪⎪⎭⎫ ⎝⎛++++++++=m m mm a a a a a a a a 2222210121211000λλλλλλ ⎪⎪⎭⎫ ⎝⎛=)(00)(21λλf f =右边 (2) i) 利用数学归纳法.当2=k 时12112---Λ=ΛΛ=P P P P P P A 成立假设k 时成立,则1+k 时11111-+--+Λ=ΛΛ=⋅=P P P P P P A A A k k k k 成立,故命题成立, 即 1-Λ=P P A k kii) 证明 右边1)(-Λ=P Pf12210)(-Λ++Λ+Λ+=P a a a E a P m m11221110----Λ++Λ+Λ+=P P a P P a P P a PEP a m m m m A a A a A a E a ++++= 2210)(A f ==左边19.设n 阶矩阵A 的伴随矩阵为*A ,证明: (1) 若0=A ,则0=*A ; (2) 1-*=n AA .证明(1) 用反证法证明.假设0≠*A 则有E A A =-**1)( 由此得O A E A A AA A ===-*-**11)()(O A =∴* 这与0≠*A 矛盾,故当0=A 时 有0=*A (2) 由于*-=A AA 11, 则E A AA =* 取行列式得到: nA A A =*若0≠A 则1-*=n A A若0=A 由(1)知0=*A 此时命题也成立故有1-*=n A A20.取⎪⎪⎭⎫⎝⎛==-==1001D C B A ,验证DC B AD C B A ≠检验: =D C BA =--10100101101001011010*********002--410012002==而 01111==D C B A故 DCB A DCB A ≠21.设⎪⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,求8A 及4A 解 ⎪⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A ,令⎪⎪⎭⎫ ⎝⎛-=34431A ⎪⎪⎭⎫ ⎝⎛=22022A 则⎪⎪⎭⎫ ⎝⎛=21A O O A A故8218⎪⎪⎭⎫ ⎝⎛=A OO A A ⎪⎪⎭⎫⎝⎛=8281A O O A 1682818281810===A A A A A⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=464444241422025005O O A OO A A22.设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O B A O .解 将1-⎪⎪⎭⎫⎝⎛O B A O 分块为⎪⎪⎭⎫ ⎝⎛4321C C C C其中 1C 为n s ⨯矩阵, 2C 为s s ⨯矩阵3C 为n n ⨯矩阵, 4C 为s n ⨯矩阵 则⎪⎪⎭⎫ ⎝⎛⨯⨯O B A O s s n n ⎪⎪⎭⎫ ⎝⎛4321C C C C ==E ⎪⎪⎭⎫⎝⎛s n E O O E 由此得到⎪⎪⎩⎪⎪⎨⎧=⇒==⇒==⇒==⇒=----122111144133)()(B C E BC B O C O BC A O C O AC A C E AC s n 存在存在 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛---O A B O O B A O 111.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--30003100120133~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫ ⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073131223123⎪⎪⎪⎭⎫⎝⎛---------152733210591********~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000010*******00231秩为3三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x xx x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x xx x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----000007579751076717101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组 ⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解 时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~。

段正敏主编《线性代数》习题解答(重庆大学版)

段正敏主编《线性代数》习题解答(重庆大学版)

线性代数习题解答I目录第一章行列式 (1)第二章矩阵 (22)第三章向量组的线性相关性 (50)第四章线性方程组 (69)第五章矩阵的相似对角化 (91)第六章二次型 (114)附录:习题参考答案 (129)I教材:段正敏,颜军,阴文革:《线性代数》,高等教育出版社,2010第一章行列式1.填空题:比较系数可得:x1 x2 x3 0 ,x1x2 x3q2(1)3421 的逆序数为 5 ;解:该排列的逆序数为 t 0 0 2 3 5.2) 517924 的逆序数为 7 0 1 0 0 3 3 7.25 1 3 0 1 1 2 0 46 5 4 3 2= (a ) 1 0 0 7 81 1 1 3 2解:该排列的逆序数为 t3)设有行列式D含因子a 12a 31a45 的项为 -1440, 0 解: ( 1)t(23154)a 12a 23a 31a 45a 54 ( 1)35 2 t(24153) 4( 1) a 12a 24a 31a 45a 53 ( 1) 5 0 6 8(4)若 n阶行列式 D(aij )a,则D 解: Q 行列式 D中每一 行可提出一 个公因子 D ( a ij ) n 1 (a ij) n1 a. 1 1 11 1 22x(5)设 f2,则 f 1 4 4 x 21 8 8 x 3解: f (x ) 是一个 Vandermonde 行列式, f(x) (x 2)(x 2)( 2 1)( 2所以 D 含因子 a 12a 31a45 的项为 -1440 和 0. 6)设 x 1,x 2,x 3是方程x 36 8 3 144010 ( a ij )1 a ;1,0 的根为1,2,-22)(2 1) 0的根为 1,2, -2.px q 0 的三个根,则行列式x 1 x 3 x2x 2 x 1 x3x 3 x 2 x1解:根据条件有 x 3px q (x x 1)(x x 2)(x x 3)x 2 x 3)x 2ax x 1 x 2x 3比较系数可得:x1 x2 x3 0 ,x1x2 x3q1,2.1234 6543002x 0033x 2.3 x 1 px 1q3x 2 px 2 q3x 3px 3q再根据条件得:3 x33x 1x 2x33含有 x 3的项只可能是 xA 41xA 41 x( 1)4 1xa33x x a12a 34a13a 24 a 22a 33a13a 22a 34a12a 24a 331 2 3 49)如果 6 5 4 3=0 ,则 x = 20 0 2 x0 0 3 3Q xA 41 不含 x 3项,原行列式 =x 12 3x 32p(x 1 x 2 x 3) 3q 3 ( q) 0.7) 设有行列式=0, x =1,2解:x 23x 2 (x 1)(x 2) 08) a11 a12 a13a 21 a22xa31xa33xa42a43f (x) a11 A11,则多项式 f(x) 中x 3的系数为 f(x) 中 x 3的系数为 0.122x6533解:设f(x)a21 A 21 a 31 A 31 xA 41 ,解:按第一列展a34a24 a44(5 12)(6 3x) 081 2212 38 0 A 160 0 0 a10) b 0 0 0 = -abcd0 c 0 00 0 d 0解:将行列式按第一行展开: 000a b000 0c00 00d0b00 a ( 1)140 c0 00d abcd.11)如果 解: b3 c33r 3b3 c3r22r 3a11 a12 a132a112a12 2a12 2a1312)如 a21 a 22 a23 =2,则 2a 212a 22 2a22 2a23a31 a 32a332a 312a 322a 322a332a 11 a21 3a11 a21 a31 2a 12 a 22 3a 12 a 22 a32 2a 13 a233a13a23a33a11 a12解: Aa21 a22a 31a322a 11 2a122a122a21 2a 22 2a222a312322a32a23 a 332a332a23 a132a13 1.-160 00 2-4 ,a11 a21 a31 1a12 a 22 a32 2a 13a 23a333a11A Ta12 a 1322a22 a 2323a32 a33-42a11 a 21 3a11 a21 a312a12 a22 3a12 a22 a322a13 a23 3a13 a23 a33代数余子式之和为 = ab按第二行展开b A21 A22 L A2n a 0 b 0,且A21 A22 L A2n 0A21 A22L A2 a n b实际上,由上述证明过程可知任意行代数余子式之和a11 a12 a13 a14如果0a22 a23 a24(14=1,则0 a32 a33 a340 a42 a43 a44 a11 a22 a32 a421a23 a33 a43a11 ;a24 a34 a44A i1 A i 2L aA in ,i a22 a23 a24a32 a33 a34 -1 ,a42 a43 a44a12 a23 a24a22 a23 a24a32 a33 a34 ,则31 2 AT0 0 0 2 a11 a21 a311 a12 a22 a322 a13 a23 a333(13)设n 阶行列式按第一行展开2(-1)1 4A T4.D =a 0 ,且D 中的每列的元素之和为则行列式D 中的第二行的a11 a12L解:a21 a22 LM Ma n1 a n2 La12 LbL Ma n2 La1nbMa nn1=bMa n1a121Ma n2a1n1Ma nn解:令Ba11 b M a n1解:方法一: A 14 2A 24 3A 34 4A 44 可看成 D 中第一列各元素与第四列对应元素代数余子式乘积之和,故其值为 0.1 2 31方法二: A142 3 42 推论12A 24 3A 34 4A443 4 13 0.4 11234a bcd(17 )设 D c b d a =(a ij ) ,d bcaA ij 表示元素 a ij 的代数余子a b d cA14 A 24 A 34A44;a11a12 a13 a140 a 22 a23 a24 0 a 32 a 33 a34 0 a 42 a 43 a44 0 a 22 a 23 a24 0 a 32 a 33 a34 0a 42 a 43 a44 a11a 12a 23a24a 11 ( 1)1 1B 1a 11 0,且 Ba 11 ( 1)4 1B a 11 B 11a11a 22 a32 a42 a 23a 33 a43 a 24a 34a441a1115)设有行列式则元素 1的余子式 M 21=232x 31 ,元素2 的代数余子011 2 3 416 )设 D 2 3 4 13 4 1 24 1 2 3(a ij ) , A ij 表示元素 a ij 的代数余子式,则B T式A 12 =A14 2A 24 3A 34 4A44解: A14 A 24 abc1c bd 1 推论 40.dbc1 54 3 2 x 04 3 2 x 0 018)设 f (x) 32 x 0 0 05 20 0 0 0 ,则 x 5的系x x 0 0 0 0 0 00 0 0 0 6abd1解:方法 5 4 3 2 x 05 4 3 2 x 4 3 2 x 0 0 4 3 2 x 0 3 2 x 0 0 06 3 2 x 0 0 2 x 0 0 0 0 2 x 0 0 0 x 0 0 0 0 0 x 0 00 0 0 0 0 6f(x )6 Q f(x) 只有一项非541)2( 1)6x55 44 3 f(x) 3 22 xx 0 0 0方法二: 3 2 x 02 x 0 0x 0 0 00 0 0 00 0 0 0 0 0 0 6 t 543216a15a 24a 33a 42a 51a 6610 2 5 5 ( 1)10 ( 1)2 x 5 6 6x 5综上所述: x 5的系数为 6.19) 设 Da 11a12K a1ma21 a 22 K a2mM M LMa11a12Ka m1 am2K a mm ,且 a 21 a22K b1n c 11c 12 Kc1mM M L b2n c 21c 22 Kc2ma m1 am2 K M M M LMb nnc n1 c n2 K cnmb 11 b 12 K b 21 b 22 KM M L b n1 b n2 K a1mMamm1 b12Knb21 Mb22 Mb2nMb ,mn1 ab ;a11 a12 L a1mb11 b12 L b1n 解:方法一:令 A a 21a 22La2ma , Bb 21b22Lb2nMMM M MMam1 am2L ammbn1bn2Lbnnbnnbn1bn2则D1 证明: ab , D 2mnA B1mnab根据行列式性质 2和 5,将行列式 A变成下三角行列式,得到:a 11 a 12 La 21 a 22 L M Ma m1 a m2 LAa 1m a2m Mamm a 1 a 21 a 2 M MOa m1 a m2 L a m a 1a 2 L a行列式 D 1 、 D2的变换和行列式 A的变换完全相同,得到: a 1 a21 a2 D1MOam1 am2 L amc11 c 12 L c1m b11c 21c 22Lc 2mb21MMMM cn1cn2Lcnmbn1b12bn2b1n b2nMbnn1a1a21Ma2MOD2 a m1 a m2L a m b11 b12L b1n c11 c12 L c1m b21 b22L b2n c21 c22 L c2mMMb n1 b n2 b nnc n2 c nm分别将D1、D2第一次按第一行展开(a2 变成第一行)第二次按第二行展开(a3变成第行),总共进行m 次第一行展开,得到:D1 a1a2L a m ab;D2 a1 1a2n1L a mn1 mnAB mn ab证毕.方法二:设其中:d ijaijm m, B b pq nnDACOd ijBijm n m na ij ,i 1: m, j 1 :mb pq,i m 1: m n, j m1:m n,p i m,q j mc pj ,i m 1: m n, j 1: m,p imA那么:t p1L p m p m 1Lpmp1 ,L ,p m1,L,m nd1p1L d mpmd m 1,pm 1Ld m n,p m nt p1L p m l1Lmla1p1 a mp m b1l 1L b nl np1,L ,pml1,L ,lm1,L ,m1,L ,np1Lpna1 p1 a mp ml1Ll b1l1L b nl n,mp1,L ,p m 1,Ll 1 ,L ,lm1,L ,np1L pnp 1,L ,pm1,L ,ma1p1L a mpm1t l1Ll nAB ab l1,L ,lm1,L,nb1l1 L b nl n2.选择题总共进行了 mn 次对换。

线性代数习题及答案解析

线性代数习题及答案解析

1. 三阶行列式()100420563= 。

A. 6B. 1C. 2 答:A 。

2. n 阶行列式()00100200n=。

A.!nB. 2!- C. 1(1)!--n nn答:C 。

二、讨论题1. n 阶行列式怎样定义的?答:n 阶行列式是这样定义的:(1)位于不同行,不同列n 个元素的乘积;(2)共有!n 项,每一项确定:行标为自然数排列,列标为1,,n m m ,当列标为偶数排列时取正号,为奇数排列时取负号;(3)一般项为11(1),-n N m nm a a 即11(1)=-∑n N m nm D a a 。

2.从左上角到右下角,对角线称为什么? 答:主对角线。

一、选择题1、将行列式转置,行列式值( )。

A. 变B. 不变C. 不确定 答:B 。

2、把行列式某一行的倍数加到另一行,行列式( )。

A. 不变B. 变C. 不确定 答:A 。

二、填空题1. 行列式123456789D =中12a 的代数余子式为 。

答 : 12(1)(6)+--。

三、讨论题1、按第一列展开行列式的定理指的是什么? 答:111111n n a A a A D ++=。

2.、按第一列展开行列式与第二列代数余子式乘积之和的定理指的是什么?答:1121120n n a A a A ++=。

一、选择题1、行列式100302540=( )。

A. 6B.(-8)C. 8答:B 。

2、行列式1000520067389104=( )。

A. 2!B. 3!C. 4!答:C 。

二、填空题1、行列式12345006D == 。

答:用上三角行列式24。

2、行列式127158169D =-=- 。

答:-8(其解题过程为:2131127715071588160816+==-+r r D r r )。

三、讨论题1、用化零降阶法计算行列式111111a D a a=等于什么?答:213222301111011(1)(1)(2)1111---+--=-=-+--a a r ar a Da a a a a r r a。

王晓峰著《线性代数》习题解答

王晓峰著《线性代数》习题解答

王晓峰著《线性代数》习题解答第一章1. 解下列方程组, 并在直角坐标系中作出图示.1)⎩⎨⎧=-=+21y x y x ;2)⎩⎨⎧=+=+5331y x y x ; 3)⎩⎨⎧=-=-2221y x y x .解: 1) 将第一个方程减去第二个方程, 得2y =-1, y =-1/2, 再代入第个方程解得x =1+1/2=3/2,⎪⎭⎫ ⎝⎛-21,23方程有唯一解.2) 将第二个方程除以3得35=+y x , 与第一个方程相比较知此方程组为矛盾方程组, 无解,3) 将第2个方程除以2, 可以得到第一个方程, 令y =t 为任意实数, 则x =1+t , 方程组的解集.2. 用Gauss 消元法解下列线性方程组.1)⎪⎩⎪⎨⎧-=-+=++-=-+333693132472321321321x x x x x x x x x2)⎩⎨⎧-=-+=+-223252321321x x x x x x3)⎪⎪⎩⎪⎪⎨⎧=+-=-=--=+54212302433214243241x x x x x x x x x x4)⎪⎩⎪⎨⎧=++=-+=+033803403232132121x x x x x x x x解: 1) 对增广矩阵进行变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000751010301)2(000075104721)3/1(12115302115304721)3()2(333693131124721123323121r r r r r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=10-3t , x 2=5t -7, 方程有无穷多解, 解集为(10-3t , 5t -7, t ).2) 对增广矩阵进行变换:⎥⎦⎤⎢⎣⎡--−−−→−+⨯⎥⎦⎤⎢⎣⎡---−−−→−⨯⎥⎦⎤⎢⎣⎡---−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---121001012121025218/1816802521)3(2123252112221r r r r r则x 3为自由变量, 令x 3=t 为任意实数, 则x 1=-t , x 2=2t -1,解集为(-t , 2t -1, t ).3) 对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−→−+-⨯+⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----−−−−→−+-⨯+⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----−−−−→−⨯-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−→−+⨯+⨯↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----11000101001001010001)3()32()35()43(34340003235100313201043001)7(461370032351003641043001)12/1()1(613700820120036410430012336410120300112043001)2(50412120300112043001142434443233242324241r r r r r r r r r r r r r r r r r r r r r方程有唯一解x 1=x 2=x 3=x 4=1.4) 此为齐次方程, 对系数矩阵进行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−+⨯+⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10003000211)6/1(6001301021)3(390130032)4()2(3381340321323312323121r r r r r r r r r r r r r可知方程有唯一零解x 1=x 2=x 3=0.3. 确定下列线性方程组中k 的值满足所要求的解的个数. 1) 无解: 2) 有唯一解:⎩⎨⎧=++=++;486362z y x kz y x⎩⎨⎧-=-=+123214y x y kx3) 有无穷多解:⎪⎩⎪⎨⎧=+-=++=++12524z y x z y x kz y x解:1) 对增广矩阵作变换:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡143800621)3(486362121k k r r k因此, 要使方程组无解, 须使8-3k =0, 解得k =8/3, 即当k 取值为8/3时, 方程无解. 2) 对增广矩阵作变换:⎥⎥⎦⎤⎢⎢⎣⎡++--−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡--−−−→−↔⎥⎦⎤⎢⎣⎡--14612301232)2(141123212321412121k k r kr k r r k因此, 如要方程组有唯一解, 必须有0123≠+k , 即32-≠k . 3) 对增广矩阵作变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-0440*******1331301110411)1()1(11215121411323121kkk r r k k k r r r r k因此, 如要方程组有无穷多解, 必须4-4k =0, 即当k =1时, 方程组才有无穷多解.4. 证明: 如果对所有的实数x 均有ax 2+bx +c =0, 那么a =b =c =0.证: 既然对所有的实数x 都有ax 2+bx +c =0成立, 那么具体地分别取x =0, x =1, x =2代入上式也成立, 则有⎪⎩⎪⎨⎧=++=++=02400c b a c b a c , 这是关于a ,b ,c 的齐次线性方程组, 对其系数矩阵作变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→−↔↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100320111)4(100124111124111100213221r r r r r r看出此方程只有唯一零解, 因此有a =b =c =0.5. 讨论以下述阶梯矩阵为增广矩阵的线性方程组是否有解; 如有解区分是唯一解还是无穷多解.1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---0000320003212)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--410030201231 3)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--00004000320040214)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--0000010013201021 解: 1) 方程组有一个自由变元x 2, 因此方程组有无穷多解. 2) 方程组的三个变元均为首项变元, 因此方程组有唯一解. 3) 第三个方程0=4说明此方程无解.4) 方程组的三个变元均为首项变元, 因此方程组有唯一解.6. 对给定方程组的增广矩阵施行行初等变换求解线性方程组..1)⎪⎩⎪⎨⎧=-=+-=+-3284432253y x y x y x 2)⎩⎨⎧=--+=--+302859322207124w z y x w z y x 3)⎪⎩⎪⎨⎧=+-+=--+=+-+222242*********w z y x w z y x w z y x 解: 1) 对增广矩阵进行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---781007231032811974190723103281)28/1(74190922803281)3()3(2253443328132814432253322312113r r r r r r r r r方程组无解.2) 对增广矩阵进行变换⎥⎦⎤⎢⎣⎡--−−−−→−+⨯⎥⎥⎦⎤⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎦⎤⎢⎢⎣⎡----−−−→−⨯⎥⎦⎤⎢⎣⎡----5452100100960317/4545210021154731422713410021154731)3(302859321154731)4/1(302859322207124122211r r r r r r可以看出y 和w 为自由变元, 则令y =s , w =t , s 与t 为任意常数, 则x =100-3s +96t , z =54+52t . 方程的解集表示为(100-3s +96t , s , 54+52t , t ). 3) 对增广矩阵进行变换()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-−−−−−→−+⨯⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0000100021021211)2/1(2/1)2(04002000212121211)4()2(2222411112212121211222242121212111111212232312121r r r r r r r r r r r 可知y 与z 为自由变元, 令y =s , z =t , s 与t 均为任意实数, 则,212121=+-=w t s x , 方程组的解集为⎪⎭⎫ ⎝⎛+-0,,,212121t s t s7. 对给定齐次线性方程组的系数矩阵施行行初等变换求解下列方程组.1) ⎪⎩⎪⎨⎧=-+=+=+-02020z y x yx z y x 2)⎪⎩⎪⎨⎧=+-=+-=+++0202202w z y w y x w z y x解: 1) 对系数矩阵作初等变换.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−→−+-⨯+⨯-⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−→−⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001)3/1()3/2()5/3(350032103101)2(320321011131320230111)1()2(21101211113233321223121r r r r r r r r r r r r r r方程只有零解, x =y =z =0.2) 对系数矩阵作初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110000102001)2()2/1(11002/12/1100201)3/1()2/1(3300112002012)1(114011201121112011401121)1(11202021112113233232123221r r r r r r r r r r r r r r因此, w 为自由变元, 令w =t 为任意实数, 则x =-2t , y =0, z =t , 方程组的解集为 (2t , 0, t , t ).8. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--32223411121α求α的值使得此方程组有唯一解.解: 对增方矩阵求初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+−−→−+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+-⨯+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--420034601121126034601121)2(32223411121323121αααr r r r r r因此, 此方程组要有唯一解, 就必须满足α+2≠0, 即α≠-2.9. 设一线性方程组的增广矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0410*******β1) 此方程有可能无解吗? 说明你的理由. 2) β取何值时方程组有无穷多解?解: 1) 此方程一定有解, 因为此方程是齐次方程, 至少有零解. 2) 对此增广矩阵做初等变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−++⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----0500011001216016001100121204103520121323121βββr r r r r r因此, 只有当β+5=0, 即β=-5时,方程才有无穷多解.10. 求λ的值使得下述方程组有非零解.⎩⎨⎧=-+-=+-0)2(0)2(y x y x λλ 解: 对系数矩阵作初等行变换:⎥⎦⎤⎢⎣⎡+---−−−−−→−+-⨯⎥⎦⎤⎢⎣⎡---−−−→−↔⎥⎦⎤⎢⎣⎡---1)2(021)2(1221211222121λλλλλλλr r r r因此, 要使方程有非零解, 必须有(λ-2)2+1=0, 但(λ-2)2+1≥0对λ取任何实数值总是成立, 因此必有(λ-2)2+1≠0, 因此, 无论λ取什么值此方程组都不会有非零解.11. 求出下列电路网络中电流I 1,I 2,I 3的值.解: 根据基尔霍夫定律可得如下方程组:⎪⎩⎪⎨⎧=+=+=+-52384202132321I I I I I I I 对增广矩阵做初等行变换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−→−-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-13/1510013/2201013/7001)3()2(13/1510042104301)13/1(151300421043011)5(535042100111)2/1()3(502384200111132331232231r r r r r r r rr r r r最后得I 1=7/13, I 2=22/13, I 3=15/1312. 一城市局部交通流如图所示.(单位: 辆/小时)51) 建立数学模型2) 要控制x 2至多200辆/小时, 并且x 3至多50辆小时是可行的吗? 解: 1} 将上图的四个结点命名为A , B , C , D , 如下图所示:5则每一个结点流入的车流总和与流出的车流总和应当一样, 这样这四个结点可列出四个方程如下:⎪⎪⎩⎪⎪⎨⎧=+=++-=-+=+D x x C x x x Bx x x A x x 3502001503005453243121对增广矩阵进行变换:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---−−−−→−++-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--−−−−→−+-⨯+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----−−−−→−+-⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--000000350110002001011050010101)1()1(35011000350110001500111015001101)1()1(35011000200101101500111030000011)1(350110002001011015001101300000111323431232221r r r r r r r r r r r r r可见x 3和x 5为自由变量, 因此令x 3=s , x 5=t , 其中s ,t 为任意正整数(车流量不可能为负值), 则可得x 1=500-s -t , x 2=s +t -200, x 4=350-t .2) 令x 2=200, x 3=s =50, 代入上面的x 2的表达式, 得200=50+t -200, 求出t =350, 则x 1=500-s -t =100, x 4=0, 是可行的.13. 在应用三的货物交换经济模型中, 如果交换系统由下表给出, 试确定农作物的价值x 1, 农具及工具的价值x 2, 织物的价值x 3的比值.313131313131313131CM F C M F解: 根据上表可得关于x 1, x 2,x 3的三个齐次方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=+-=++-032313103132310313132321321321x x x x x x x x x对系数矩阵做行初等变换:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−→−-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯+⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−↔⨯⨯⨯⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---0001101012000110121)3/1(1330330121)1(221111212133332313131323131313212232312121321r r r r r r r r r r r r r r可见方程有非零解, x 3为自由变量, 令x 3=t 为任意正实数, 则有x 1=x 2=x 3=t , 即三种价值的比值为1:1:1.第二章1. 1. 写出下列方程组的矩阵形式:1) x 1-2x 2+5x 3=-1;2) ⎩⎨⎧=+=-1223231x x x x 3) ⎪⎩⎪⎨⎧=-=+=++002045z x z y z y x 解:1) []15,2,1321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-x x x ; 2)⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡12110102321x x x ;3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-000101120415z y x2. 设⎥⎦⎤⎢⎣⎡=212121A , ⎥⎦⎤⎢⎣⎡--=212234B求: 1) 3A -2B ;2) 若X 满足A T +X T =B T , 求X .. 解: 1)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡=-10110105)4(623)4(64366834244686363632122342212121323B A2)因X 满足A T +X T =B T , 等号两边同时转置, 有 A +X =B ,等号两边同时减去A , 得 X =B -A , 因此有⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--------=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--=-=404113221122122314212121212234A B X3. 计算下列矩阵的乘积:1)[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-213121; 2) []214321-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡; 3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-103110021212321; 4)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡011011120101130213 解:1)[]1211231213121=⨯+⨯+⨯-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2)[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯-⨯⨯-⨯⨯-⨯⨯-⨯=-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡8463422124)1(423)1(322)1(221)1(12143213)⎥⎦⎤⎢⎣⎡---==⎥⎦⎤⎢⎣⎡-⨯+⨯+⨯-⨯+⨯+⨯-⨯+⨯+⨯--⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡-1341410)1(21102021122320112)1(312010312213302111031100212123214)⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-⨯+-⨯+⨯-⨯+-⨯+⨯=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⨯+-⨯+⨯-⨯--⨯+⨯⨯+-⨯+⨯⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡83)2(1)2(310)2(2)2(11322113021300)1(11101)1(21001)1(011130213011011120101130213 4. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=201210003,310120101B A求: 1) (A +B )(A -B );2) A 2-B 2.比较1)和2)的结果, 可得出什么结论? 解: 1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+567063519111110102511330104)201210003310120101)(201210003310120101())((B A B A2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-655142418405612009105055041120121000320121000331012010131012010122B A 可得出的结论: 大家知道, 在代数公式上有a 2-b 2=(a +b )(a -b ), 而将此公式中的a 和b 换成矩阵A 与B , 就不一定成立了, 这是因为矩阵乘法一般不满足交换律, 即一般AB ≠BA , 当然也就有A 2-B 2≠(A +B )(A -B ).5. 已知矩阵A ,B ,C , 求矩阵X ,Y 使其满足下列方程:⎩⎨⎧+=+=-T B A Y X CY X )(2解: 将此方程编上号, 用类似解线性方程组一样的办法来解,⎩⎨⎧+=+=-)2()()1(2T B A Y X C Y X将方程(1)的左边和(2)的左边和左边相加, 右边和右边相加, 等号还是成立, 得: 3X =C +(A +B )T 两边同乘1/3, 得TB AC X )(3131++=(3)(2)式等号两边都加上X , 得 Y =(A +B )T -X (4) 将(3)式代入到(4)式, 得CB A B AC B A Y T T T 31)(32)(3131)(-+=+--+=因此⎪⎩⎪⎨⎧-+=++=CB A YC B A X T T T T 3132323131316. 如矩阵AB =BA , 则称A 与B 可交换, 试证:1) 如果B 1, B 2都与A 可交换, 那么B 1+B 2, B 1B 2, 也与A 可交换; 2) 如果B 与A 可交换, 那么B 的k (k >0)次幂B k 也与A 可交换. 证: 1) 因B 1, B 2都与A 可交换, 即AB 1=B 1A , AB 2=B 2A , 则 (B 1+B 2)A =B 1A +B 2A =AB 1+AB 2=A (B 1+B 2) 即B 1+B 2与A 可交换. 而且(B 1B 2)A =B 1(B 2A )=B 1(AB 2)=(B 1A )B 2=(AB 1)B 2=A (B 1B 2), 因此B 1B 2与A 可交换.2)因B 与A 可交换, 即AB =BA , 则用归纳法, 当k =1时, 有B 1=B , 结论显然成立. 假设当k =m 时假设成立, 即AB m =B m A , 则当k =m +1时, 有AB m +1=AB m B =B m AB =B m BA =B m +1A , 结论也成立.7. 如矩阵A =A T , 则称A 为对称矩阵.设A ,B 都是n 阶对称矩阵, 证明AB 是对称矩阵的充分必要条件是AB =BA . 证: 已知A =A T , B =B T ,充分性: 假设AB =BA , 则(AB )T =B T A T =BA =AB , 因此AB 为对称矩阵. 必要性: 如果AB 为对称矩阵, 即(AB )T =AB , 则因 (AB )T =B T A T =BA , 可得BA =AB . 8. 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a A21其中a i ≠a j , 当i ≠j (i , j = 1,2, …, n ). 试证: 与A 可交换的矩阵一定是对角矩阵. 证:假设矩阵B ={b ij }n 与A 可交换, 即有BA =AB , 而BA 相乘得到的矩阵为B 的第j 列所有元素都乘上a j 得到的矩阵, AB 相乘得到的矩阵为B 的第i 行元素都乘上a i 得到的矩阵. 即BA ={a j b ij }n , AB ={a i b ij }n , 但对于任给的i ,j ,i ≠j , 因AB =BA , 因此有a j b ij =a i b ij , 因a i ≠a j , 所以必有b ij =0, 即B 只能是对角矩阵.9. 检验以下两个矩阵是否互为可逆矩阵?⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000210012100121,1000210032104321B A解: 计算AB 和BA 如下:410000100001000011100012)2(1110013)2(21112)2(111014)2(31213)2(21112)2(11110002100121001211000210032104321I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯⨯⨯+-⨯+⨯⨯+-⨯+⨯⨯+-⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=41000010000100001110001)2(211100112)2(311)2(21110213)2(41112)2(311)2(21111000210032104321100021********21I AB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯-+⨯⨯⨯+⨯-+⨯⨯-+⨯⨯⨯+⨯-+⨯⨯+⨯-+⨯⨯-+⨯⨯==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=因此A 与B 确实互为逆矩阵.10. 设A ,B ,C 为n 阶方阵, 且C 非奇异, 满足C -1AC =B , 求证B m =C -1A m C (m 为正整数). 证: 用归纳法, 当m =1时条件已经成立为C -1AC =B , 假设当m =k 时, 命题成立, 即有 B k =C -1A k C , 则当m =k +1时, 有B k +1= B k B =C -1A k CC -1AC = C -1A k (CC -1)AC = C -1A k IAC = C -1A k AC = C -1A k +1C , 命题得证.11. 若n 阶矩阵A 满足A 2-2A -4I =0, 试证A +I 可逆, 并求(A +I )-1. 证: 将A 2-2A -4I =0改写为A 2-2A -3I =I ,先解一元二次方程组x 2-2x -3=0, 根据公式a acb b x 2422,1-±-=其中a =1, b =-2, c =-3, 则⎩⎨⎧-=+±=13212422,1x , 因此可将多项式x 2-2x -3因式分解为x 2-2x -3=(x -3)(x +1), 那么, 根据矩阵相乘相加的性质也就能将A 2-2A -3I 因式分解为 A 2-2A -3I =(A -3I )(A +I )=(A +I )(A -3I ), 因此我们有(A -3I )(A +I )=(A +I )(A -3I )=I , 即A +I 与A -3I 互为逆矩阵, (A +I )-1=A -3I .12. 证明: 如果A =AB , 但B 不是单位矩阵, 则A 必为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则对于A =AB 两边同时左乘A -1, 得 A -1A =A -1AB , 即I =B , 这与B 不是单位矩阵相矛盾, 因此A 必为奇异矩阵.13. 判别下列矩阵是否初等矩阵?1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100020001, 2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100 3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010100201, 4) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100410001 解: 1) 是初等矩阵P (2(-2)),2) 是初等矩阵P (1,3), 3) 不是初等矩阵,4) 是初等矩阵P (3(-4), 2).14. 求3阶方阵A 满足⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡333231232221331332123111333231232221131211555a a a a a a a a a a a a a a a a a a a a a A解: 从等式看出A 左乘一矩阵相当于对此矩阵作初等行变换r 3×(-5)+r 1, 因此A 为一相应的初等矩阵, 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-=100010501)1),5(3(P A15. 设A ,B ,C 均为n 阶可逆矩阵, 且ABC =I , 证明BCA =I证: 因B ,C 为可逆矩阵, 则BC 也是可逆矩阵, 且(BC )-1=C -1B -1, 因ABC =I , 对此等式两边右乘(BC )-1, 即ABC (BC )-1=I (BC )-1, 因为BC (BC )-1=I , 因此上式化简为A =(BC )-1, 因此当然有 BCA =BC (BC )-1=I .16. 设A ,B 均为n 阶方阵, 且)(21I B A +=, 证明: A 2=A 的充分必要条件是B 2=I .证: 充分性: 假设B 2=I , 则A IB I B I B B I B A =+=+=++=+=)(21)22(41)2(41)(41222必要性: 如果A 2=A , 则有)2(41)(41)(2122I B B I B I B ++=+=+等式两边乘4得I B B I B ++=+2222,等式两边同时减去2B +I 得 B 2=I 证毕.17. 如果n 阶矩阵A 满足A 2=A , 且A ≠I , 则A 为奇异矩阵.证: 用反证法, 假设A 为可逆, 其逆为A -1, 则上式两边左乘(或者右乘)A -1, 得 AAA -1=AA -1, 即A =I , 但这与A ≠I 相矛盾, 因此A 的逆不存在, 即A 为奇异矩阵.18. 求下列矩阵的逆矩阵:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=285421122A ; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=1111111111111111A 3)),,2,1,0(000000000000121n i a a a a a A i n n=≠⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-解: 用对[A |I ]进行行初等变换为[I |A -1]的办法来求:1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100285001122010421100285010421001122]|[21r r I A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−−→−+⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯11390002196003/13/111)3/1()3(15018180021960010421)5()2(12323121r r r r r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−→−⨯⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+9/19/13/11006/16/13/10109/19/23/20019/16/11139001120609/19/23/2001)9/1(321323r r r r r r 因此, 最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-9/19/13/16/16/13/19/19/23/21A 2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=10001111010011110010111100011111]|[I A⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+-⨯+-⨯+-⨯10010220010120200011220000011111)1()1()1(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−→−↔1001022000112200010120200001111123r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−−→−+⨯+-⨯11002200001122000101202002/102/10101)2/1()1(1242r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------−−−−→−+⨯+-⨯11114000001122000101202002/12/1010012/1)1(1343r r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------−−−−→−+⨯+⨯+⨯111140002/12/12/12/102002/12/12/12/100204/14/14/14/100012/12/14/1342414r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−⨯-⨯-⨯4/14/14/14/110004/14/14/14/101004/14/14/14/100104/14/14/14/100014/1)2/1()2/1(432r r r 因此有A A 414/14/14/14/14/14/14/14/14/14/14/14/14/14/14/14/11=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-3)⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-10000000000010000001000]|[121n n a a aa I A⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−↔↔↔----01000000100000001000100000012121211n n n n n n a a a a r r r r r r ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−→−⨯⨯⨯--0/1010000/100100000/10010/1000001/1/1/11211121n n n n n a a a a a r a r a r因此, 最后得⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--0/10000/10000/1/10001211n n a a a a A19. 解下列矩阵方程, 求出未知矩阵X .1) ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡12643152X 2) ⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--132321433312120X解: 令⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=12643152B A , 则要解的方程为AX =B将方程两边左乘上A 的逆A -1, 可得A -1AX =A -1B , 即 X =A -1B 下面求A -1:⎥⎦⎤⎢⎣⎡--−−−−→−+-⨯⎥⎦⎤⎢⎣⎡−−−→−↔⎥⎦⎤⎢⎣⎡=21101031)2(0152103110310152]|[2121r r r r I A⎥⎦⎤⎢⎣⎡--−−−→−-⨯+⨯21105301)1(3212r r r 因此有⎥⎦⎤⎢⎣⎡--=-21531A 因此⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡--==-80232126421531B A X 2) 令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=132321433312120B A 则矩阵方程为XA =B设A 的逆存在为A -1, 则方程两边右乘A -1, 得XAA -1=BA -1,即X =BA -1 下面求A -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯↔⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=10043300112002/102/32/112/1100433010312001120|121r r r I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−−→−⨯+⨯12/302/12/30002/12/11002/102/32/112/13231r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−−−→−+-⨯+⨯12/34/34/100002/12/11002/14/14/701)2/3(2/13212r r r r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯463100002/12/11002/14/14/701)4(3r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−−→−+-⨯+-⨯4631002310107115001)4/7()2/1(1323r r r r因此,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-46323171151A 最后得⎥⎦⎤⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎦⎤⎢⎣⎡-==-47411246323171151323211BA X20. 求矩阵X 满足AX =A +2X , 其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=410011103A解: 将方程两边减去2X , 得AX -2X =A因2X =2IX , 因此上面的方程可以从右边提取公因子X , 得 (A -2I )X =A假设A -2I 可逆, 则方程两边同时左乘(A -2I )-1, 得(A -2I )-1(A -2I )X =(A -2I )-1A , 即X =(A -2I )-1A设B =A -2I , 则X =B -1A , 而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210011101200020002410011103B 下面用行初等变换求B 的逆B -1:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100210011110001101)1(100210010011001101|21r r I B⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−−→−-⨯+⨯111100122010112001)1()1(111100011110001101)1(11323232r r r r r r r则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-1111221121B最后得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----==-3222342254100111031111221121A B X 验算:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+1054459341364446844104100111032X A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=10544593413322234225410011103AX21. 利用分块的方法, 求下列矩阵的乘积:1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100110201110021; 2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d d c c b b a a00000010001010001000000解:1) 将乘积分块为[]⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-2|100110201110021I C B A其中[]10,201102,101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=C B A[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡30111220110210001020110210101|22BI AC I C B A2) 将乘积分块为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡22222220000001000110001000000dI O cI I bI I O aI d d c c b b a a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+=bd c bd c ac a ac a I bd c I acI aI 010*******)(2222第三章1. 计算下列行列式:1) 4321; 2) 22b b a a ; 3) 7040-解: 1) 26432414321-=-=⨯-⨯=;2) )(2222a b ab b a ab b b a a -=-=;3) 0)4(0707040=-⨯-⨯=-.2. 计算下列三阶行列式:1)241130421--; 2) 320001753-; 3) b a c a c b cb a 解: 1) 将行列式按第一列展开81021342124131241130421=+-=⨯-⨯-=-- 2) 将行列式按第二行展开172353275320001753=⨯-⨯==- 3)3333333c b a abc c b a abc abc abc b a c a c b cb a ---=---++=3. 计算下列行列式:1)000000005544332222211111b a b a b a e d c b a e d c b a ;2)x yy x y x y x D n 0000000000=;3) f e d c b a 0000000000解: 1) 将行列式按第一列展开后, 得到的各子式再按第二列展开, 这样展开后的后三列构成的任何三阶子式都至少包括一行0, 因此后三列任何三阶子式均为0, 整个行列式的值D =0. 2) 将行列式按第一列展开得nn n n n y x y x y x y y x y x y x x D 11)1(0000000)1(0000000++-+=-+=3) 先对第一列展开, 然后对第二列展开, 得abdfbadf fe dbafe dab D -=-=-=-=000004. 利用行列式的性质计算下列行列式1) 2605232112131412-; 2)ef cf bf de cd bd ae ac ab ---;3) 2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a解: 下面都将所求行列式的值设为D .1) 因为第1行加到第2行以后, 第2行将和第4行相等, 因此行列式的值D =0; 2) 首先从第1,2,3行分别提取公因子a ,d ,f , 再从第1,2,3列提取公因子b ,c ,e , 得abcdef abcdef adfbce ef cfbfde cd bd ae ac ab 4020200111111111111=-=---=---3) 将第2,3,4列都展开, 并统统减去第1列, 得9644129644129644129644122222++++++++++++=d d d d c c c cb b b b a a a a D 再将第3列减去2倍的第2列, 第4列减去3倍的第2列, 得62126212621262122222=++++=d d c cb b a a D5. 把下列行列式化为上三角形行列式, 并计算其值1) 1502321353140422-----; 2) 2164729541732152-----解:1)121034805350024211203840553004221)2/3(2150232135314042232413121------↔=-----+⨯+⨯+⨯=-----c c r r r r r r 131002050021102042101300520001210024258535034801210024243423242---↔=--+⨯+⨯=-----↔=c c r r r r r r270)27(512270002050021102042)2(43-=-⨯⨯⨯=----+-⨯=r r2)0210311061202251)1()2(12461759243712251216472954173215241312113----+-⨯+-⨯+⨯=------↔=-----r r r r r r c c93000030031102251133000300311022511)2(021061203110225143423232-=--+⨯=--+⨯+-⨯=---↔=r r r r r r r r6. 计算下列n 阶行列式1) 12125431432321-n n n2) a bbba b a解: 1) 设此行列式的值为D , 将第2,3,…,n 列均加于第一列, 则第一列的所有元素均为)1(21321+=++++n n n , 将此公因式提出, 因此有121125411431321)1(21-+=n nn n D再令第n 行减去第n -1行, 第n -1行减去第n -2行, …, 第2行减去第1行, 可得11111111111111111)1(21111011101110321)1(21-----+=--+=n n n n n n n n n n n n D 1)1(21)()1)(1(21)000000111111111)(1(21----+=---++=n n n n n n n n nn n2) 此题和第3题的2)一样, 因此有n n nb a D 1)1(+-+=7. 证明下列行列式1) ))()((111a c c b b a ab ca bc c b a ---=2) nb a n ab a ba b b a b a ba )(222-=证: 1)=----=----+-⨯+-⨯=)()()()(001)1()1(1113221c a b b a c ac a b c a b b a c bc a c a b a c c cc ab ca bc c b a))()(())()((11))((a c c b b a b c c a b a b c c a b a ---=---=----=2) 用归纳法, 设D n 为所求行列式值, 当n =1时,221b a a b ba D -==, 等式成立. 假设当n =k 时假设成立, 即有kk b a k aba b a b b a ba ba D )(222-==当n =k +1时,按第一列展开=+=+221k aba b ab b a b a ba D k=+++=1212k aba b b a ba b bk aa bab ba ba a12222222222)()()()(+-=--=-=-=k kk k k b a b a b a b a D D b D a证毕.8. 求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=210111302A 的伴随矩阵A *, 并求A -1. 解:31130,32130,12111312111=-==--==--=A A A 11132,42032,22011322212=-=-=-==--=A A A 2112,21002,11011332313-=-=-=-==-=A A A因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221142331332313322212312111*A A A A A A A A A A A 的行列式为5132012||131312121111=⨯+⨯+⨯=++=A a A a A a A 因此有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==-22114233151||1*1A A A9. 设A 为三阶方阵, A *是A 的伴随矩阵, 且|A |=1/2, 求行列式|(3A )-1-2A *|的值.解: 因11**121||,||1---===A A A A A A A , 以及1131)3(--=A A , 还有2||1||1==-A A ,则27162278||32|32||31||2)3(|13111*1-=⨯-=⎪⎭⎫⎝⎛-=-=-=------A A A A A A10. 设A 为n 阶可逆阵, A 2=|A |I , 证明: A 的伴随矩阵A *=A . 证: 因A 可逆, 则在等式A 2=|A |I 两边乘A -1, 得A =|A |A -1, 即A A A ||11=-, 而因为*1||1A A A =-, 所以有A =A *, 证毕.11. 用克莱姆法则解下列方程组.(1) ⎪⎩⎪⎨⎧=+-=++=++10329253142321321321x x x x x x x x x(2) ⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++=+++24324322256511322121432143214321x x x x x x x x x x x x x x x x解: (1) 方程的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=113215421A , 常数向量T ]102931[=β, 则求A 的逆矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10311700151890001421)3()5(1001130102150014213121r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−-⨯103117009/19/5210001421)9/1(2r ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−−→−+⨯+-⨯19/79/830009/19/521009/29/10017)2(3212r r r r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---−−−→−⨯3/127/727/810009/19/521009/29/10013/13r⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----−−−−→−+-⨯3/127/727/81003/227/1127/101009/29/1001)2(23r r 因此得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-3/127/727/83/227/1127/109/29/11A则方程的解X 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-5431029313/127/727/83/227/1127/109/29/11321βA x x x X即x 1=3,x 2=4,x 3=5.(2) 方程的系数矩阵A 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=43114312251151132A , 常数向量[]T 2226=β先求A 的逆A -1:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−→−↔⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡10004311010043120001511320010251110004311010043120010251100015113221r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+-⨯+-⨯+-⨯10102200012007100021111000102511)1()2()2(413121r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−+⨯+-⨯101022000141160000211110003114011)1(3212r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯↔014116002/102/1011000021111000311401)2/1(343r r r⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯311150002/102/1011002/102/512010201150016)1()4(332313r r r r r r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------−−−−→−-⨯5/35/15/15/110002/102/1011002/102/51201020115001)5/1(4r ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------−−−−→−+⨯+-⨯+-⨯5/35/15/15/1100010/15/110/75/1010010/75/210/295/70010110000011)2()5(342414r r r r r r 因此有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=-5/35/15/15/110/15/110/75/110/75/210/295/711001A则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------==⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-002022265/35/15/15/110/15/110/75/110/75/210/295/7110014321βA x x x x X 即x 1=0, x 2=2, x 3=0, x 4=0.12. 如果齐次线性方程组有非零解, k 应取什么值?⎪⎩⎪⎨⎧=-+=-+=++-0)4(20)6(2022)5(z k x y k x z y x k解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=k kk A 402062225要使方程组有非零解, 必须有det(A )=0.而k k k k kr r rr k kk A ---+--+⨯+-⨯=---=402242242252)2(402062225)det(2321k kk k r r rr k kk --+---+⨯+-⨯=-----=4022121005)2(2)2(402212225)2(1213)8)(5)(2(80061020122402212201)5)(2(3121----=---+⨯+⨯=-----=k k k kr r rr k k k因此, 只有当k =5或者k =2或者k =8时, 此方程组才有非零解.13. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ 有非零解?解: 此方程组的系数矩阵A 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1211111μμλA , 要使方程组有非零解, 必须det(A )=0,而012101111)1()1(1211111)det(3121----+-⨯+-⨯==μλμλλμμλr r rr Aμλμμλμλμλ)1(12111)1(121113-=---=----=列展开按第因此, 只有当λ=1或者μ=0时, 方程组才有非零解.第四章1. 设α1=(1,1,1), α2=(-1,2,1), α3=(2,3,4), 求β=3α1+2α2-α3解: β=3α1+2α2-α3=3(1,1,1)+2(-1,2,1)-(2,3,4)=(3,3,3)+(-2,4,2)-(2,3,4) =(3-2-2, 3+4-3, 3+2-4)=(-1, 4, 1)2. 设3(α1-α)+2(α2+α)=5(α3+α), 求α, 其中α1=(2,5,1,3), α2=(10,1,5,10), α3=(4,1,-1,1) 解: 将上述方程整理: 3α1-3α+2α2+2α=5α3+5α -3α+2α-5α=-3α1-2α2+5α3 (-3+2-5)α=-3α1-2α2+5α3 -6α=-3α1-2α2+5α3 最后得)4,3,2,1()6531023,653521,653125,3103101()65,65,65,310()310,35,31,310()23,21,25,1()1,1,1,4(65)10,5,1,10(31)3,1,5,2(21653121321=-+++-+-+=--+=--+=-+=αααα3. 设R 为全体实数的集合, 并且设}0,,,|),,,({11211=++∈==n n n x x R x x x x x X V 满足, }1,,,|),,,({11212=++∈==n n n x x R x x x x x X V 满足.问V 1,V 2是否向量空间? 为什么?解: (一般的技巧: 凡是对R n 作一个齐次线性方程的约束的集合都是向量子空间, 而作非齐次线性方程的约束的集合则因为它不穿过原点, 就不是向量子空间).V 1是向量空间, 且是R n 的向量子空间, 因为nR V ⊂1, 而任给R k V Y X ∈∈,,1, 设0),,,,(0),,,,(121121=+==++=n n n n y y y y y Y x x x x x X则令),,,(2211n n y x y x y x Y X Z +++=+= ,则因=++++++=+++n n n y x y x y x z z z 221121011=+++++=n n y y x x , 则1V Y X ∈+,因为),,,(21n kx kx kx kX =, 而0)(11=++=++n n x x k kx kx 则1V kX ∈,因此, V 1是R n 的向量子空间.而V 2不是向量空间, 是因为1000≠+++ , 零向量O 不属于V 2, 2V O ∉.4. 试证: 由)1,1,1(),1,1,0(),1,0,0(321===ααα所生成的向量空间就是R 3证: 因为3321),,(R Span ⊂ααα, 只须证),,(3213αααSpan R ⊂, 任给3321),,(R d d d D ∈=, 试求实数x 1,x 2,x 3使。

线性代数课后题答案

线性代数课后题答案

⎛ 1 1⎞ A 2 = A ,但 A ≠ 0 且 A ≠ E 取A= ⎜ ⎜ 0 0⎟ ⎟ ⎝ ⎠ ⎛ 1 0⎞ ⎛ 1 1⎞ ⎛ 1 1⎞ ⎟ ⎜ ⎟ ⎜ X = (3) 取 A = ⎜ Y = ⎜ 0 0⎟ ⎜ − 1 1⎟ ⎜ 0 1⎟ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ AX = AY 且 A ≠ 0 但 X ≠ Y
(2) ⎛ 1 0⎞ 2 3 k 7.设 A = ⎜ ⎜ λ 1⎟ ⎟ ,求 A , A ,L, A . ⎝ ⎠ ⎛ 1 0 ⎞⎛ 1 0 ⎞ ⎛ 1 0 ⎞ ⎟ ⎟ 解 A2 = ⎜ ⎜ λ 1⎟ ⎟⎜ ⎜ ⎟=⎜ ⎜ ⎟ ⎝ ⎠ ⎝ λ 1 ⎠ ⎝ 2λ 1 ⎠
4
⎛ 1 A3 = A2 A = ⎜ ⎜ 2λ ⎝

( A + B )( A − B ) ≠ A 2 − B 2
6.举反列说明下列命题是错误的: (1)若 A 2 = 0 ,则 A = 0 ; (2)若 A 2 = A ,则 A = 0 或 A = E ; (3)若 AX = AY ,且 A ≠ 0 ,则 X = Y . ⎛ 0 1⎞ 解 (1) 取 A = ⎜ A 2 = 0 ,但 A ≠ 0 ⎜ 0 0⎟ ⎟ ⎝ ⎠
0 ⎞⎛ 1 ⎟⎜ ⎜ 1⎟ ⎠⎝ λ
0⎞ ⎛ 1 ⎟=⎜ ⎜ 1⎟ ⎠ ⎝ 3λ
0⎞ ⎟ 1⎟ ⎠
⎛ 1 0⎞ 利用数学归纳法证明: A k = ⎜ ⎜ kλ 1 ⎟ ⎟ ⎝ ⎠ 当 k = 1 时,显然成立,假设 k 时成立,则 k + 1 时 1 0⎞ ⎛ 1 0 ⎞⎛ 1 0 ⎞ ⎛ Ak = Ak A = ⎜ ⎜ kλ 1 ⎟ ⎟⎜ ⎜ λ 1⎟ ⎟=⎜ ⎜ ( k + 1)λ 1 ⎟ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎛ 1 由数学归纳法原理知: A k = ⎜ ⎜ kλ ⎝ ⎛λ ⎜ 8.设 A = ⎜ 0 ⎜0 ⎝

线性代数习题参考答案

线性代数习题参考答案

第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i= ,j= 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数答案解答第一章 行列式1.利用对角线法则计算下列三阶行列式:.解(2)=ba ca cbc b a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---=(4)yxyx x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+--33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=4.计算下列各行列式:解 (2)2605232112131412-24c c -260532122130412-24r r -0412032122130412-14r r -0000032122130412-=0(4)d c ba 10110011001---21ar r +d cb a ab 10011011010---+ =12)1)(1(+--d c a ab 101101--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd7.计算下列各行列式(阶行列式为k D k ):解(2)将第一行乘)1(-分别加到其余各行,得ax x a a x xa a x x a a a a x D n ------=0000000ΛΛΛΛΛΛΛΛ 再将各列都加到第一列上,得ax a x a x a a a an x D n ----+=0000000000)1(ΛΛΛΛΛΛΛΛ )(])1([1a x a n x n --+=-(3)从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n Λ次行交换,得nn nn n n n n n n a a a n a a a na a a D )()1()()1(1111)1(1112)1(1-------=---++ΛΛΛΛΛΛΛΛ此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=1121)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i Λ∏≥>≥+-=11)(j i n j i(4) nnnnn d c d c b a b a D 011112ONNO=n n n n n nd d c d c b a b a a 000000011111111----ΛONM NO展开按第一行000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+ON NO2222---n n n n n n D c b D d a 都按最后一行展开 由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((6)nn a a a D +++=11111111121ΛΛΛΛΛΛΛΛ,,433221c c c c c c ---nnn n a a a a a a a a a a +-------10000100010000100010001000011433221ΛΛΛΛΛΛΛΛΛΛΛΛΛ展开(由下往上)按最后一列))(1(121-+n n a a a a Λnn n a a a a a a a a a --------00000000000000000000000022433221ΛΛΛΛΛΛΛΛΛΛΛΛΛ n n n a a a a a a a a ----+--000000000000000001133221ΛΛΛΛΛΛΛΛΛΛΛ++Λ nn n a a a a a a a a -------0000000000000001143322ΛΛΛΛΛΛΛΛΛΛΛn n n n n n a a a a a a a a a a a a ΛΛΛΛ322321121))(1(++++=---)11)((121∑+==n i in a a a a Λ第二章 矩阵及其运算4.计算下列乘积: 解(2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫⎝⎛---=652087613.利用逆矩阵解下列线性方程组:解 (1) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:解3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得 到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫ ⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------15273321059117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r . 二阶子式71223-=-. (3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~rr r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛------02301024205363071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(2) ⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x解(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R <⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛323513123;解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫⎝⎛---101011001200410123~ ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121123326712.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;解(1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X第四章 向量组的线性相关性1.设T T T v v v )0,4,3(,)1,1,0(,)0,1,1(321===, 求21v v -及32123v v v -+.解 21v v -T T )1,1,0()0,1,1(-=T )10,11,01(---=T )1,0,1(-=32123v v v -+T T T )0,4,3()1,1,0(2)0,1,1(3-+=T )01203,41213,30213(-⨯+⨯-⨯+⨯-⨯+⨯= T )2,1,0(=2.设)(5)(2)(3321a a a a a a +=++-其中T a )3,1,5,2(1=, T a )10,5,1,10(2=,T a )1,1,1,4(3-=,求a解 由)(5)(2)(3321a a a a a a +=++-整理得)523(61321a a a a -+=])1,1,1,4(5)10,5,1,10(2)3,1,5,2(3[61T T T --+=T )4,3,2,1(=3.举例说明下列各命题是错误的:(1)若向量组m a a a ,,,21Λ是线性相关的,则1a 可由,,2m a a Λ线性表示.(2)若有不全为0的数m λλλ,,,21Λ使01111=+++++m m m m b b a a λλλλΛΛ成立,则m a a ,,1Λ线性相关, m b b ,,1Λ亦线性相关. (3)若只有当m λλλ,,,21Λ全为0时,等式 01111=+++++m m m m b b a a λλλλΛΛ才能成立,则m a a ,,1Λ线性无关, m b b ,,1Λ亦线性无关.(4)若m a a ,,1Λ线性相关, m b b ,,1Λ亦线性相关,则有不全为0的数, m λλλ,,,21Λ使0,01111=++=++m m m m b b a a λλλλΛΛ 同时成立.解 (1) 设)0,,0,0,1(11Λ==e a 032====m a a a Λ满足m a a a ,,,21Λ线性相关,但1a 不能由,,,2m a a Λ线性表示.(2) 有不全为零的数m λλλ,,,21Λ使01111=+++++m m m m b b a a λλλλΛΛ 原式可化为0)()(111=++++m m m b a b a λλΛ取m m m b e a b e a b e a -==-==-==,,,222111Λ 其中m e e ,,1Λ为单位向量,则上式成立,而m a a ,,1Λ,m b b ,,1Λ均线性相关(3) 由01111=+++++m m m m b b a a λλλλΛΛ (仅当01===m λλΛ) m m b a b a b a +++⇒,,,2211Λ线性无关 取021====m a a a Λ 取m b b ,,1Λ为线性无关组满足以上条件,但不能说是m a a a ,,,21Λ线性无关的.(4) T a )0,1(1= T a )0,2(2= T b )3,0(1= T b )4,0(2= ⎪⎭⎪⎬⎫-=⇒=+-=⇒=+21221121221143020λλλλλλλλb b a a 021==⇒λλ与题设矛盾.4.设144433322211,,,a a b a a b a a b a a b +=+=+=+=,证明向量组 4321,,,b b b b 线性相关.证明 设有4321,,,x x x x 使得 044332211=+++b x b x b x b x 则0)()()()(144433322211=+++++++a a x a a x a a x a a x 0)()()()(443332221141=+++++++a x x a x x a x x a x x(1) 若4321,,,a a a a 线性相关,则存在不全为零的数4321,,,k k k k , 411x x k +=;212x x k +=;323x x k +=;434x x k +=;由4321,,,k k k k 不全为零,知4321,,,x x x x 不全为零,即4321,,,b b b b 线性相 关.(2) 若4321,,,a a a a 线性无关,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+000043322141x x x x x x x x 011000110001110014321=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛⇒x x x x 由01100011000111001=知此齐次方程存在非零解 则4321,,,b b b b 线性相关. 综合得证.5.设r r a a a b a a b a b +++=+==ΛΛ2121211,,,,且向量组 r a a a ,,,21Λ线性无关,证明向量组r b b b ,,,21Λ线性无关. 证明 设02211=+++r r b k b k b k Λ则++++++++++p r p r r a k k a k k a k k )()()(2211ΛΛΛΛ0=+r r a k Λ 因向量组r a a a ,,,21Λ线性无关,故⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k ΛΛΛΛΛΛΛΛ⇔⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0001001101121M M ΛM ΛΛM ΛΛΛr k k k 因为0110011011≠=ΛM ΛΛM ΛΛΛ故方程组只有零解 则021====r k k k Λ所以r b b b ,,,21Λ线性无关6.利用初等行变换求下列矩阵的列向量组的一个最大无关组:(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4820322513454947513253947543173125; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---140113130********211.解 (1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛482032251345494751325394754317312514131233~r r r r r r --- ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛531053103210431731252334~r r r r --⎪⎪⎪⎪⎪⎭⎫⎝⎛00003100321043173125 所以第1、2、3列构成一个最大无关组.(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1401131302151201221114132~r r r r --⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------222001512015120122114323~r r r r ↔+⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000222001512012211, 所以第1、2、3列构成一个最大无关组.7.求下列向量组的秩,并求一个最大无关组:(1) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=41211a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41010092a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=82423a ; (2) )3,1,2,1(1=T a ,)6,5,1,4(2---=T a ,)7,4,3,1(3---=Ta . 解 (1) 3131,2a a a a ⇒=-线性相关.由⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛824241010094121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛--000032198204121~ 秩为2,一组最大线性无关组为21,a a .(2) ⎪⎪⎪⎭⎫ ⎝⎛------=⎪⎪⎪⎭⎫ ⎝⎛743165143121321T T T a a a ⎪⎪⎪⎭⎫⎝⎛------10550189903121~ ⎪⎪⎪⎭⎫ ⎝⎛---0000189903121~ 秩为2,最大线性无关组为TT a a 21,.8.设n a a a ,,,21Λ是一组n 维向量,已知n 维单位坐标向量n e e e ,,,21Λ能 由它们线性表示,证明n a a a ,,,21Λ线性无关.证明 n 维单位向量n e e e ,,,21Λ线性无关 不妨设:nnn n n n nn nn a k a k a k e a k a k a k e a k a k a k e +++=+++=+++=ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222121212121111所以 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T n T T nn n n n n T n T T a a a k k k k k k k k k e e e M ΛΛΛΛΛΛΛM 2121222211121121 两边取行列式,得T n T T nn n n n n T n T T a a a k k k k k k k k k e e e M ΛΛΛΛΛΛΛM 2121222211121121=由002121≠⇒≠T nT TTnTTa a a e e e MM即n 维向量组n a a a ,,,21Λ所构成矩阵的秩为n 故n a a a ,,,21Λ线性无关.9.设n a a a ,,,21Λ是一组n 维向量,证明它们线性无关的充分必要条件 是:任一n 维向量都可由它们线性表示.证明 设n εεε,,,21Λ为一组n 维单位向量,对于任意n 维向量 T n k k k a ),,,(21Λ=则有n n k k k a εεε+++=Λ2211即任一n 维向量都 可由单位向量线性表示. 必要性⇒n a a a ,,,21Λ线性无关,且n a a a ,,,21Λ能由单位向量线性表示,即 nnn n n n nn nn k k k k k k k k k εεεαεεεαεεεα+++=+++=+++=ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112222121212121111故⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n T T T nn n n n n T n T T k k k k k k k k k a a a εεεM ΛΛΛΛΛΛΛM 2121222211121121 两边取行列式,得Tn TTnn n n n n T nT T k k k k k k k k k a a a εεεM ΛΛΛΛΛΛΛM 212122*********1=由0021222211121121≠⇒≠nnn n n n T nT T k k k k k k k k k a a a ΛΛΛΛΛΛΛM令⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯nn n n n n n n k k k k k k k k k A ΛΛΛΛΛΛΛ212222111211则 由⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-T n T T T n T T T n T T T n T T a a a A A a a a εεεεεεM M M M 212112121 即n εεε,,,21Λ都能由n a a a ,,,21Λ线性表示,因为任一n 维向量能由单 位向量线性表示,故任一n 维向量都可以由n a a a ,,,21Λ线性表示. 充分性⇐已知任一n 维向量都可由n a a a ,,,21Λ线性表示,则单位向量组: n εεε,,,21Λ可由n a a a ,,,21Λ线性表示,由8题知n a a a ,,,21Λ线性无关. TsT T βββ,,,21Λ 显然,存在矩阵B A '',,使得 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T s T T T n T T A a a a αααM M 2121,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛T s T T T n T T B b b b βββM M 2121 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+∴T n T n T T T T b a b a b a B A M 2211⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛'=T s T T T s T T B A βββαααM M 2121 因此 ()()()B R A R B A R +≤+由于0212221212111≠rrr r r r k k k k k k k k k ΛMMMΛΛ所以方程组只有零解021====r x x x Λ.所以r b b b ,,,21Λ线性无关, 证毕.13.设}0,,),,,({211211=+++∈==n n T n x x x R x x x x x x V ΛΛΛ满足 }1,,),,,({211212=+++∈==n n T n x x x R x x x x x x V ΛΛΛ满足 问21,V V 是不是向量空间?为什么?证明 集合V 成为向量空间只需满足条件: 若V V ∈∈βα,,则V ∈+βα 若R V ∈∈λα,,则V ∈λα 1V 是向量空间,因为:0),,,(2121=+++=n T n αααααααΛΛ 0),,,(2121=+++=n T n βββββββΛΛ T n n ),,,(2211βαβαβαβα+++=+Λ 且)()()(2211n n βαβαβα++++++Λ 0)()(2121=+++++++=n n αααβββΛΛ 故1V ∈+βα ),,,(,21n R αααλαλΛ=∈00)(2121=⋅=+++=+++λαααλλαλαλαn n ΛΛ故1V ∈λα 2V 不是向量空间,因为:)()()(2211n n βαβαβα++++++Λ211)()(2121=+=+++++++=n n αααβββΛΛ故2V ∉+βα ),,,(,21n R λαλαλαλαλΛ=∈λλαααλλαλαλα=⋅=+++=+++1)(2121n n ΛΛ 故当1≠λ时,2V ∉λα14.试证:由T T T a a a )0,1,1(,)1,0,1(,)1,1,0(321===所生成的向量空间就 是3R .证明 设),,(321a a a A =11101110,,321a a a A =02110101011)1(1≠-=-=-于是3)(=A R 故线性无关.由于321,,a a a 均为三维,且秩为3,所以321,,a a a 为此三维空间的一组基,故由321,,a a a 所生成的向量空间就是3R .15.由,)1,1,0,1(,)0,0,1,1(21T T a a ==所生成的向量空间记作1V ,由 ,)1,1,1,0(,)3,3,1,2(21T T a b --=-=所生成的向量空间记作2V ,试证 21V V =.证明 设{}R k k a k a k x V ∈+==1122111,{}R x V ∈+==1122112,λλβλβλ 任取1V 中一向量,可写成2211a k a k +, 要证22211V a k a k ∈+,从而得21V V ⊆由22112211βλβλ+=+a k a k 得 ⎩⎨⎧=+-+=⇔⎪⎪⎩⎪⎪⎨⎧-=-=-==+1212112122121211212332k k k k k k k k λλλλλλλλλλ 上式中,把21,k k 看成已知数,把21,λλ看成未知数0211021≠=-=D 21,λλ⇒有唯一解21V V ⊆∴同理可证: 12V V ⊆ (001112≠=D Θ)故21V V =16.验证T T T a a a )2,1,3(,)3,1,2(,)0,1,1(321==-=为3R 的一个基,并把 T T v v )13,8,9(,)7,0,5(21---==用这个基线性表示.解 由于06230111321,,321≠-=-=a a a即矩阵),,(321a a a 的秩为3故321,,a a a 线性无关,则为3R 的一个基. 设3322111a k a k a k v ++=,则 ⎪⎩⎪⎨⎧=+=++-=++723053232321321k k k k k k k k ⎪⎩⎪⎨⎧-===⇒132321k k k 故321132a a a v -+=设3322112a a a v λλλ++=,则 ⎪⎩⎪⎨⎧-=+-=++--=++1323893232321321λλλλλλλλ⎪⎩⎪⎨⎧-=-==⇒233321k k k 故线性表示为3212233a a a v --=17.求下列齐次线性方程组的基础解系:(1)⎪⎩⎪⎨⎧=-++=-++=++-02683054202108432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=-++=+--03678024530232432143214321x x x x x x x x x x x x(3)02)1(121=++-+-n n x x x n nx Λ.解 (1)⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫⎝⎛---=000041431004012683154221081~初等行变换A 所以原方程组等价于⎪⎩⎪⎨⎧+=-=4323141434x x x x x取3,143-==x x 得0,421=-=x x 取4,043==x x 得1,021==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=4010,310421ξξ (2) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛----=000019719141019119201~367824531232初等行变换A所以原方程组等价于⎪⎪⎩⎪⎪⎨⎧+-=+-=4324311971914191192x x x x x x取2,143==x x 得0,021==x x 取19,043==x x 得7,121==x x因此基础解系为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=19071,210021ξξ(3)原方程组即为1212)1(------=n n x x n nx x Λ取0,11321=====-n x x x x Λ得n x n -=取0,114312======-n x x x x x Λ得1)1(+-=--=n n x n ΛΛ取0,12211=====--n n x x x x Λ得2-=n x所以基础解系为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+--=-21100010001),,,(121ΛΛM M M ΛΛΛn n n ξξξn E R A E A R A E R A R E A R A R ==-+≥-+=-+)()()()()()( 由此n E A R A R =-+)()(.23.求下列非齐次方程组的一个解及对应的齐次线性方程组的基础解 系:(1) ⎪⎩⎪⎨⎧=+++=+++=+;32235,122,54321432121x x x x x x x x x x (2)⎪⎩⎪⎨⎧-=+++-=-++=-+-.6242,1635,11325432143214321x x x x x x x x x x x x解 (1)⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=2100013011080101322351211250011~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴0111,20138ξη(2) ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-----=00000221711012179016124211635113251~初等行变换B⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴2011,0719,002121ξξη24.设*η是非齐次线性方程组b Ax =的一个解,r n -ξξ,,1Λ是对应的齐 次线性方程组的一个基础解系,证明: (1)r n -*ξξη,,,1Λ线性无关;(2) r n -***++ξηξηη,,,1Λ线性无关。

相关文档
最新文档