眼图分析

合集下载

通信原理中眼图的应用

通信原理中眼图的应用

通信原理中眼图的应用什么是眼图眼图是通信原理中用于评估和分析数字信号质量的重要工具。

它通过对数字信号的采样和显示,以一种直观的方式展示信号的稳定性和失真情况。

眼图通常用于分析和判断数字通信系统的性能,并对其中的问题进行诊断和调试。

眼图的生成过程1.信号采样:在生成眼图之前,需要对数字信号进行采样。

采样过程中,根据信号的时钟信号来确定采样时机,通常使用快速采样仪来进行高速、精确的采样。

2.信号显示:采样后的信号会通过一个显示设备进行展示。

在传统的眼图中,信号通常会被划分为许多由采样点组成的窗口,然后通过展示这些窗口来形成眼图。

现代的眼图仪器一般都具备高分辨率的显示屏,可以直接以高质量的图像形式呈现眼图。

3.眼图优化:在生成眼图之后,可能需要对眼图进行一定的优化。

例如,可以通过调整采样时机、增加采样点数等方式来改善眼图的质量。

这样可以更清晰地观察到眼图中的细节,有助于对信号质量进行更准确的评估。

眼图的应用眼图作为一种直观的信号展示方式,在通信原理中具有广泛的应用,以下列举了一些常见的应用场景:1. 信号质量评估眼图可以直观地显示信号的稳定性和失真情况。

通过对眼图的观察可以判断信号是否存在幅度失真、时钟抖动、时序偏移等问题,评估信号的质量是否符合预期要求。

这对于设计和优化数字通信系统至关重要。

2. 噪声分析眼图可以帮助分析信号受到的噪声干扰情况。

通过观察眼图的展开,可以判断信号在传输过程中受到的各种噪声的影响程度,进而进行噪声的分析和统计。

这对于优化传输链路、提高传输性能非常有帮助。

3. 时钟同步评估眼图中的时钟信号是通过采样时机生成的,所以眼图展示的时钟信息非常直观和准确。

通过眼图可以观察时钟信号的稳定性和抖动情况,进而评估时钟同步的精度和可靠性。

对于需要精确时序的通信系统,这是一个非常有用的工具。

4. 相位偏差分析眼图中的时钟信息还可以用于分析信号的相位偏移情况。

通过观察眼图中的相位偏移,可以评估信号传输中的相位稳定性和补偿需求。

眼图的定义、原理及模型

眼图的定义、原理及模型

图1 无失真及有失真时的波形及眼图
图1中可以看出,眼图是由虚线分段的接收码元 波形叠加组成的。眼图中央的垂直线表示取样时 刻。当波形没有失真时,眼图是一只“完全张开” 的眼睛。在取样时刻,所有可能的取样值仅有两 个:+1或-1。当波形有失真时,在取样时刻信号 取值分布在小于+1或大于-1附近,“眼睛”部分 闭合。这样,保证正确判决所容许的噪声电平就 减小了。换言之,在随机噪声的功率给定时,将 使误码率增加。“眼睛”张开的大小就指明失真 的严重程度。
眼图的定义、原理及模型
在实际的通信系统中,数字信号经过非理 想的传输系统必定要产生畸变,信号通过 信道后,也会引入噪声和干扰,也就是说, 总是在不同程度上存在码间干扰的。在码 间干扰和噪声同时存在情况下,系统性能 很难进行定量的分析,常常甚至得不到近 似结果。为了便于实际评价系统的性能, 常用所谓“眼图”。眼图可以直观地估价 系统的码间干扰和噪声的影响,是一种常 用的测试手段。
END
衡量眼图质量的几个重要参数有: 1.眼图开启度(U-2∆U)/U 指在最佳抽样点处眼图幅度“张开”的程度。无畸变眼图 的开启度应为100%。 其中U=U+ + U2.“眼皮”厚度2∆U/U 指在最佳抽样点处眼图幅度的闭合部分与最大幅度之比, 无畸变眼图的“眼皮”厚度应等于0。 3.交叉点发散度∆T/T 指眼图过零点交叉线的发散程度,无畸变眼图的交叉点发 散度应为0。 4.正负极性不对称度 指在最佳抽样点处眼图正、负幅度的不对称程度。无畸变 眼图的极性不对称度应为0。
眼图定义
所谓“眼图”,就是由解调后经过低通滤 波器输出的基带信号,以码元定时作为同 步信号在示波器屏幕上显示的波形。干扰 和失真所产生的传输畸变,可以在眼图上 清楚地显示出来。因为对于二进制信号波 形,它很象一只人的眼睛。

眼图分析

眼图分析

清风醉明月 slp_art随笔- 42 文章- 1 评论- 20 博客园首页新随笔联系管理订阅眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

光眼图测试分析

光眼图测试分析

retsU6.84 dB (86105B#101) 6.23 dB (86105B#102)Page 2确定比特能量需要在比特周期内积分瞬态的功率。

ER = the ratio of:the energy used to transmit a logic level ‘1’energy used to transmit a logic level ‘0’retsPage 4retsnU执行完消光比较准后,典型残留量为2 µW ±2% (86105C)Page 6retsretsPage 11典型的激光发射机波形Page 12ü0.75 x 速率@-3dB(4阶贝塞尔汤姆逊滤波器)ü两个滤波器都符合规范ü实际情况并不完全是理想的Un Re gi st er edPage 13AB•比较相同的Scale 下,两个模块测试眼图只见的差异,可以判断是否存在AC Gain•比较存在测量差异的两个模块的平均功率,”1”,”0”电平,可以判断是否存在DC GainPage 14实际滤波器频响影响消光比测量不同的模块,不同的配置造目前的条件和标准下,我们不可能对消光比测试提出更高的要求Re gi st er edretsPage 1886105C pre-installed its typical ER CF value for each rateUn Rst erretsigePage 21Page 22参考消光比测试装置Un Rgi st er edPage 23我们的建议Un Re gi st e r edPage 25选择具有比较理想的波形的发射机(Golden Device )安捷伦提供刚送到安捷伦实验室进行过ER “校准”的GoldenDelta 的标准器件的ER模块测试结果,对每个模块计算相应过校准的模块被测模块st er ed。

眼图实验报告

眼图实验报告

眼图实验报告眼图实验报告引言:眼图是一种常用的电信测量工具,用于分析数字信号的质量和稳定性。

通过观察信号在示波器屏幕上的显示,我们可以获得信号的波形、噪声和时钟抖动等信息。

本实验旨在通过眼图分析方法,对数字信号进行测量和评估。

一、实验目的本实验的主要目的是通过眼图实验,了解数字信号的质量和稳定性,并掌握使用眼图进行信号分析的方法。

二、实验原理眼图是一种通过示波器观察信号波形的方法。

在示波器屏幕上,我们可以看到一系列的“眼睛”,每个“眼睛”代表了一个数据位。

通过观察这些“眼睛”的开闭程度和位置,我们可以判断信号的质量和稳定性。

在眼图中,水平轴代表时间,垂直轴代表信号的电压。

每个“眼睛”由上下两条边界线和中间的开放区域组成。

边界线的位置和开放区域的大小反映了信号的噪声和时钟抖动情况。

边界线越平整,开放区域越大,表示信号质量越好;反之,表示信号质量较差。

三、实验步骤1. 连接示波器和信号源:将信号源的输出与示波器的输入相连。

2. 设置示波器参数:根据实际情况,设置示波器的触发模式、时间基准和垂直尺度等参数。

3. 调整示波器触发:通过调整示波器的触发模式和触发电平,使信号能够稳定地显示在示波器屏幕上。

4. 观察眼图:调整示波器的水平和垂直尺度,观察眼图的显示情况。

注意观察边界线的平整程度和开放区域的大小。

5. 分析眼图:根据眼图的显示结果,分析信号的质量和稳定性。

可以通过观察边界线的位置和开放区域的大小,判断信号是否存在噪声和时钟抖动。

6. 记录实验数据:将实验中观察到的眼图结果记录下来,以备后续分析和比较。

四、实验结果与分析通过眼图实验,我们观察到了不同信号的眼图,并进行了分析。

在实验中,我们发现开放区域较大、边界线平整的眼图代表了较好的信号质量和稳定性,而开放区域较小、边界线波动较大的眼图则表示信号质量较差。

实验中,我们还观察到了一些常见的眼图特征。

例如,当信号存在噪声时,眼图的开放区域会变小,边界线会变得不规则;当信号存在时钟抖动时,眼图的边界线会出现波动。

眼图分析

眼图分析

眼图测试及其疑难问题探讨关键词:DWDM,眼图,城域网,MAN摘要:目前,在长途干线和城域网中,密集波分复用(DWDM)系统的应用越来越多,对DWDM 系统的光接口测试要求也越来越高,其中包括光发送信号的眼图测试。

在实际进行眼图测试时,经常遇到不符合标准模板的情况,在不断实践中发现,其中大部分是因为测试方法不完善造成的误判断,只有小部分真正不符合ITU-T规范。

文章介绍正确测试眼图的要点。

1、码间串扰的形成1.1光纤线路码在光纤数字传输中,一般不直接传输由电端机传送来的数字信号,而是经过码型变换,变换成适合在光纤数字传输系统中传输的光纤线路码(简称线路码)。

有多种线路码型,最常用的有mBnB分组码、插入比特码和简单扰码。

在选择线路码时,不仅要考虑光纤的传输特性,还要考虑光电器件的特性。

一般来说,由于光电器件都有一定的非线性,因此采用脉冲的“有”、“无”来表示“1”和“0”的二进制码要方便得多。

但是简单的二进制信号有三个实际问题需要解决,否则无法取得良好效果。

a)不能有长连“0”或长连“1”出现。

因为长连“0”和长连“1”会使定时信息消失,给再生中继器和终端接收机的定时提取带来困难。

b)简单的二进制码中含有直流成分,“0”、“1”码出现个数的随机变化会使直流成分的大小也随机变化。

目前,在光接收机中普遍采用交流耦合,直流成分的变化会引起信号基线浮动,给判决再生带来困难。

c)简单的二进制信号在业务状态下无法监测线路误码率。

为此,在光纤传输之前,需将简单二进制信号变换成适合光纤传输系统的光纤线路码型。

CCITT最终采用简单扰码方式(如RZ、NRZ码),目前又有基于RZ码新的编码方式,如CS-RZ、DCS-RZ、CRZ、D-RZ、DPSK-RZ码等。

1.2线性网络的无失真传输条件密集波分复用(DWDM)的工作原理是:发送端将不同波长的光信号通过光合波器合成一束光,送入光纤中进行传输;在接收端由光分波器将这些不同波长的光信号区分开来,再经过光电转换送入线路终端设备。

眼图的概念

眼图的概念

眼图的概念眼图是指在频谱分析中常出现的一种信号特征,通常用来表示信号的带宽与中心频率。

它是通过对信号进行傅里叶变换后,在频域中观察信号的频谱特征得到的。

眼图主要用于对数字通信系统中的时域信号进行分析和评估,以了解信道传输性能和判断系统的可靠性。

眼图的原理是基于信号的采样和重构过程。

当信号经过采样和重新构造后,得到的信号会受到噪声和其他干扰的影响,因此在信号的波形上会出现一定的失真和扭曲。

而眼图可以通过观察信号的波形特征来判断信号的质量和误码率等性能指标。

眼图的基本形状是一串类似于“眼睛”的波形,其中包含了信号的多个周期。

在眼图中,通常可以观察到信号的上下垂直边界和左右水平边界,它们分别代表了信号的幅度和时间轴。

而眼图中的开口宽度和深度则代表了信号的峰-峰值(也即电平差)和噪声信号。

眼图的开口宽度反映了信号的峰-峰值。

如果开口很窄,代表峰-峰值很小,即信号的幅度很小。

而如果开口很宽,代表峰-峰值较大,即信号的幅度较大。

通过对眼图开口宽度的观察,可以判断信号的灵敏度和抗干扰能力。

眼图的深度则反映了信号中的噪声。

如果眼图深度很浅,代表噪声信号很小,即信号的质量很好。

而如果眼图深度很深,代表噪声信号很大,即信号的质量较差。

通过对眼图深度的观察,可以判断信号的信噪比和误码率。

眼图的另一个重要特征是眼图的跳动,即眼图上各个周期的变化。

这种跳动反应了信号在传输过程中的时钟偏移和抖动等问题。

通过对眼图跳动的观察,可以判断信号的时钟同步性和时钟失真程度。

眼图的分析主要通过眼图的偏移、闭合度和对称性等指标进行。

眼图的偏移表示了信号的直流偏移情况,可以判断信号的偏置和直流分量。

眼图的闭合度表示了信号的完整性,可以判断信号的时钟同步性和时延扩大情况。

而眼图的对称性表示了信号的对称性,可以判断信号的相位和频率稳定性。

在实际应用中,眼图常用于数字通信系统的调试和优化。

通过对眼图进行分析,可以发现系统中的时钟同步问题、噪声干扰问题和时域失真问题等,并采取相应的措施进行改进和优化。

眼图——概念与测量

眼图——概念与测量

眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

眼图--概念与测量

眼图--概念与测量

眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。

“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。

一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。

当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。

若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。

由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。

通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。

显然,最佳抽样时刻应选在眼睛张开最大的时刻。

(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。

(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。

(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。

(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。

(6)横轴对应判决门限电平。

眼图分析

眼图分析

光眼图分析(1)
激光器驱动曲线
光眼图分析(2)
现象:过冲明显,0线重 原因:偏流过低,0电平位于域值以下
光眼图分析(3)
现象:有overshoቤተ መጻሕፍቲ ባይዱt 原因:上升沿过快
光眼图分析(4)
现象:有undershoot 原因:下降沿过缓,负载电容过大
光眼图分析(5)
现象:ringing 原因:阻抗不连续,引起振铃
光眼图分析(9)
现象:全部双线 原因:可能是功率控制不稳定的原因
1 0 T
光眼图分析(10)
现象:左右双线(多线) 原因:可能是时钟问题
1 0 T
光眼图分析(11)
现象:消光比过大或过低 原因:调制电流和偏置电流的控制问题
光眼图分析(12)
现象:占空比 原因:未位于激光器特性曲线的线性区, 或激光器线性不好
光眼图分析(6)
现象:反射reflections 原因:阻抗不连续, 引起振铃
光眼图分析(7)
现象:双线 原因:PDJ(patter dependent jitter)引起 高低频响应不同
光眼图分析(8)
现象:不对称 原因:常发现在直调激光器上,对eml激 光器很少见。可能由于上升下降时间不等, 也可能是占空比问题
交流
眼图(eyediagram)
2006.7.27
目录
眼图的形成 眼图的参数 光眼图分析
眼图形成
1 0 T Trigger
眼图参数和术语
Amplitude(Pk-Pk,Mean,overshoot…) Time(Risetime, falltime,duty,Period…) Comm(Ext ratio,Q factor, Jitter(Pk-Pk), Jitter(RMS),Noise ratio…) Mask(margin,filter,hits…)

电路中eye-概述说明以及解释

电路中eye-概述说明以及解释

电路中eye-概述说明以及解释1.引言1.1 概述概述眼图(Eye diagram)是电路中一种常用的信号分析工具,它可以直观地展示出数字信号的品质和传输效果。

在现代通信系统中,眼图被广泛应用于高速串行数据传输的评估和调试。

通过观察眼图的开口大小、噪声水平和信号失真情况,工程师可以更好地了解信号的质量,并进行相应的优化和改进。

眼图的形状对于判断信号传输的可靠性至关重要。

一个完整的眼图通常由交错的开口组成,类似于人的眼睛。

开口的大小代表了信号的幅度范围,而开口的位置则表示了信号的平衡情况。

当信号失真或受到干扰时,眼图的开口会变小或者变形,这表明数字信号的质量下降。

通过分析眼图的形态特征,工程师可以判断信号传输中存在的问题,并进一步进行故障定位和改进。

在电路设计和调试中,眼图的使用非常广泛,特别是在高速数据传输和时钟恢复等领域。

通过采集信号的波形数据,然后进行采样和重新组合,就可以生成眼图。

通过眼图,工程师可以看到数字信号在不同时间点的变化情况,并对信号的时序和整体稳定性进行分析。

总之,眼图是一种重要的电路分析工具,能够帮助工程师更好地认识和评估信号的质量。

通过对眼图的观察和分析,我们可以识别出信号传输中存在的问题,并采取适当的措施来改进和优化电路的性能。

接下来,本文将重点介绍电路中眼图的关键要点,并探讨其在实际应用中的意义和挑战。

1.2 文章结构文章结构部分的内容是对整篇文章的结构进行简要介绍和概述。

它可以包括以下信息:文章的整体篇幅和章节分布:介绍文章的总字数和章节划分,使读者能够了解文章的大致结构和篇幅。

各章节内容的概述:对文章中各个章节的主要内容进行简要介绍,让读者对整篇文章的内容有一个整体的概念。

章节之间的逻辑关系:说明各章节之间的逻辑联系和顺序,以便读者能够理解文章的思路和脉络。

注重的重点和亮点:指出文章中的重点部分和亮点,以激发读者的兴趣和引导读者关注重要的内容。

通过文章结构的介绍,读者可以迅速了解整篇文章的脉络和主要内容,从而更好地理解和阅读文章。

眼图有关知识详细解释

眼图有关知识详细解释

眼图综述报告-----------李洋目录1. 眼图的形成 (2)1.1 传统的眼图生成方法 (2)1.2 实时眼图生成方法 (3)1.3 两种方法比较 (4)2. 眼图的结构与参数介绍 (4)2.1 眼图的结构图 (4)2.2 眼图的主要参数 (5)2.2.1 消光比 (5)2.2.2 交叉点 (5)2.2.3 Q因子 (6)2.2.4 信号的上升时间、下降时间 (6)2.2.5 峰—峰值抖动和均方根值抖动 (6)2.2.6 信噪比 (6)3. 眼图与系统性能的关系 (7)4. 眼图与BER的关系 (7)4. 如何获得张开的眼图 (8)5. 阻抗匹配的相关知识 (9)5.1 串联终端匹配 (9)5.2 并联终端匹配 (10)6. 眼图常见问题分析 (10)7. 总结 (17)1.眼图的形成眼图是一系列数字信号在示波器上累积而显示的图形,其形状类似于眼睛,故叫眼图。

在用余辉示波器观察传输的数据信号时,使用被测系统的定时信号,通过示波器外触发或外同步对示波器的扫描进行控制,由于扫描周期此时恰为被测信号周期的整数倍,因此在示波器荧光屏上观察到的就是一个由多个随机符号波形共同形成的稳定图形。

这种图形看起来象眼睛,称为数字信号的眼图。

示波器测量的一般信号是一些位或某一段时间的波形,更多的反映的是细节信息。

而眼图则反映的是链路上传输的所有数字信号的整体特性。

如下图:1.1 传统的眼图生成方法采样示波器的CLK通常可能是用户提供的时钟,恢复时钟,或者与数据信号本身同步的码同步信号.图:采样示波器眼图形成原理1.2 实时眼图生成方法实时示波器通过一次触发完成所有数据的采样,不需附加的同步信号和触发信号.通常通过软件PLL方法恢复时钟。

图:实时示波器眼图形成原理另一种示意图:图:实时示波器眼图形成原理1.3 两种方法比较1.传统的方法比实时眼图生产方法测量的速度要慢100至1000倍。

2.传统的眼图生成方法测量精度没有实时眼图生成方法高。

眼图测量分析

眼图测量分析

眼圖之量測分析引言眼圖是一項時間分析工具,讓使用者能夠清楚看見時間和強度的誤差。

在真實生活中,諸如抖動之類的誤差非常難以量化,因為經常改變,而且非常小。

因此,眼圖非常利於尋找最大抖動以及電壓強度的誤差,如圖一所示。

圖一、眼圖檢視的抖動和電壓雜訊示意圖誤差增加時,眼圖中心的白色空間就會縮小。

那個空間由兩項特性所定義:眼寬(Eye Width)和眼高(Eye Height)。

圖二中白色空間的寬度就稱為眼寬。

因此,眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼寬就是用來度量在任何指定的時間期間內、資料線穩定的時間長度的良好工具。

這樣可以了解可允許的保存時間和建立時間有多少。

最後完成的眼圖中的白色空間的高度就稱為眼高。

如果眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼高可以指出接收器的VIH和VIL必須位於何處,才能正確地對資料取樣。

數位訊號轉換的品質越好,眼圖中的開放白色空間越大。

換言之,眼寬和眼高應該盡可能地大。

圖二、眼圖的高度及寬度示意圖實驗原理其形狀似人的眼睛,因此被稱爲眼圖。

而檢視數位傳輸器的輸出三個時間段落,即可建構出眼圖。

圖三中的眼圖是將所有可能的0與1的組合疊在一條線段上,而完成建構。

圖三、數位訊號對應之眼圖在數位系統中,時間是最重要的因素之一。

數位通訊的可靠性和準確性都是根據其時間功能的品質而定。

在真實世界的數位通訊系統中,有許多時間上的誤差,其中最重要的兩個是抖動(Jitter)和飄移(Drift)。

分別以抖動(Jitter)及飄移(Drift)敘述之:一、抖動(Jitter)抖動(Jitter)是指與事件的理想時間的誤差,通常是從參考訊號的過零點(Zero-Crossing)進行測量。

抖動通常歸因於串音(Cross-Talk)、同時切換輸出,以及其它週期性發生的干擾訊號。

由於抖動會隨著時間而變化,如圖四所示,因此對抖動的測量及量化有多種進行方式,從目測幾秒鐘內的抖動範圍,到以數據進行的測量(例如根據長時間的標準誤差)。

射频信号可视化方法

射频信号可视化方法

射频信号可视化方法
射频信号可视化是指将射频信号转换为可见的形式,以便分析、监测和理解信号的特性和行为。

有许多方法可以实现射频信号的可
视化,下面我将从多个角度介绍一些常见的方法:
1. 频谱分析,频谱分析是将射频信号转换为频谱图的过程。


可以通过使用频谱分析仪或软件定义无线电(SDR)设备来实现。


谱分析可以显示信号的频率成分和功率分布,帮助工程师了解信号
的频谱特性。

2. 时域波形显示,通过示波器或者SDR设备,可以将射频信号
转换为时域波形进行显示。

这种方法可以直观地展示信号的振幅、
频率和相位变化,有助于分析信号的时域特性。

3. 眼图分析,眼图是一种显示信号质量的方法,特别适用于高
速数字通信系统。

通过使用示波器或眼图仪,可以将射频信号转换
为眼图进行显示,以评估信号的抖动、噪声和时钟偏移等特性。

4. 空间谱分析,对于天线和无线信号传输系统,空间谱分析可
以帮助理解信号在空间中的分布和特性。

通过使用天线阵列或者天
线扫描仪,可以将射频信号转换为空间谱图进行显示,以分析信号
的波束形成和多径效应等特性。

5. 频率相位分析,通过使用矢量网络分析仪或频率相位分析仪,可以将射频信号转换为频率相位图进行显示,以分析信号的频率响
应和相位特性。

综上所述,射频信号可视化方法包括频谱分析、时域波形显示、眼图分析、空间谱分析和频率相位分析等多种手段,可以帮助工程
师全面理解和分析射频信号的特性和行为。

基于SystemView仿真下的眼图分析

基于SystemView仿真下的眼图分析

1基带传输的基本原理在实际的通信系统中,很难完全消除码之间的串扰。

这主要是由于传输过程中传输系统的信号不稳定所致,使得波形存在变形、展宽,而且之前波形会出现长的拖尾现象,到观察码元的抽样时间点上,识别器会对结果出现错误判决。

对误码率的影响现在还没有找到数学上能处理的统计规律,还无法在这方面进行针对性的计算。

码间串扰如图1所示。

为了在实验室中测量基带传输系统的性能,使用示波器观察接收信号的常用方法是将示波器连接到接收滤波器的输出端,然后调整示波器的水平扫描周期以匹配示波器的水平扫描周期,与接收的符号周期和持续效果同步。

用于扫描的示波器的波形重叠,并且示波器屏幕上显示的结果看起来像人眼,这就是将其称为“眼图”的原因。

分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

基带信号与眼图如图2所示。

眼图是通过在示波器上叠加特定的数字信号而显示的图,它包含很多信息。

噪声的影响以及符号之间的对话在眼图中可见。

这些效果反映了数字信号的一般属性,因此,评估了整个系统的优缺点。

所以眼图分析是高速互连系统信号完整性分析的核心。

此外,眼图还可以用于调整接收滤波器的属性,以减少符号之间的串扰效应,并改善整个通信系统的传输性能。

眼图张开的大小反映了码间串扰的强弱。

眼睛越大,眼图越正确,符号之间的距离越小,反之符号之间的距离越大。

如果发生噪声,则噪声会叠加在信号上,眼图的轨迹会变得模糊。

如果有拦截码,“眼睛”或多或少会张开。

与代码之间没有交集相比,原始的细轨道明显平滑且变成模糊的条纹,并且标准化程度不高。

噪声越大,轨道越宽、越深,代码之间的交点越大,眼图的校正越少。

眼睛中的图像包含大量有价值的信息,可用于衡量数字信号传输系统性能的好坏,它可以显示接收过滤器的设置,以减少代码之间的间隔。

眼图如图3所示。

①最佳采样时刻是眼睛张开最大的时间。

②对时间误差的敏感度可以通过图表的斜边斜率来确定。

③在采样期间,【作者简介】赵瑄(1983-),女,吉林磐石人,实验师,从事通信工程、电子信息工程研究。

眼图的名词解释

眼图的名词解释

眼图的名词解释眼图(Eye diagram)是一种用于电信领域信号质量评估的图形分析工具。

它利用实际信号的采样数据绘制而成,通常呈现为上方为信号波形,下方为相关的信号参数。

眼图通过将连续波形的多个周期叠加在一起,形成多个瞬态过程的重叠,从而提供了信号的稳态和瞬态特征的直观展示。

它能够有效地反映信号的时域和频域特征,以及信号的抗干扰能力、传输质量和时钟恢复性能。

眼图的形状和特征对于信号的质量评估至关重要。

通过观察眼图,我们可以判断信号的完整性和稳定性。

一个清晰、稳定的眼图表示信号传输良好,存在较高的抗噪声和干扰能力。

相反,如果眼图模糊或变形,可能意味着信号存在时钟偏移、抖动、畸变或其他噪声问题。

眼图常用于高速数字通信系统的设计、调试和故障排除中。

它可以帮助工程师确定信号失真的原因,并调整系统参数以提高传输质量。

通过观察眼图,工程师可以识别出信号的主要问题,例如噪声、时钟偏移、串扰、 ISI(Inter-Symbol Interference,符号间干扰)等。

在信号调试中,工程师通常会根据眼图上的特征,对发送和接收端的设备进行相应的调整和优化。

眼图在不同应用领域具有广泛的应用。

在电信领域,眼图可以用于评估数字通信系统的性能,例如以太网、光纤通信、无线通信等。

在光学领域,眼图可以帮助工程师分析光信号的传输质量,以便改善光通信系统的性能。

在高频电路设计中,眼图可以用于评估高速信号的时钟恢复和数据传输能力。

综上所述,眼图是一种用于信号质量评估的重要工具,具有直观、全面的特点。

通过观察眼图,我们可以深入了解信号的稳态和瞬态特征,从而改进通信系统的性能。

眼图的应用范围广泛,对于电信、光学和电路设计等领域都具有重要意义。

随着通信技术的发展,眼图将继续发挥其重要的作用,帮助我们理解和优化信号传输的质量和性能。

眼图详解分析

眼图详解分析

眼图详解关于眼图的基本知识1、眼图的作用数字信号的眼图可以体现数字信号的整体特征,能够很好地评估数字信号的质量,因而眼图的分析是数字系统信号完整性分析的关键之一。

2、眼图的形成串行数据的传输由于通讯技术发展的需要,特别是以太网技术的爆炸式应用和发展,使得电子系统从传统的并行总线转为串行总线。

串行信号种类繁多,如PCI Express、SPI、USB 等,其传输信号类型时刻在增加。

相比并行数据传输,串行数据传输的整体特点如下:1)信号线的数量减少,成本降低2)消除了并行数据之间传输的延迟问题3)时钟是嵌入到数据中的,数据和时钟之间的传输延迟也同样消除了4)传输线的PCB 设计也更容易些5)信号完整性测试也更容易实际中,描述串行数据的常用单位是波特率和UI,串行数据传输示例如下:串行数据传输示例例如,比特率为 3.125Gb/s 的信号表示为每秒传送的数据比特位是3.125G 比特,对应的一个单位间隔即为1UI。

1UI表示一个比特位的宽度,它是波特率的倒数,即1UI=1/(3.125Gb/s)=320ps。

现在比较常见的串行信号码形是NRZ 码,因此在一般的情况下对于串行数据信号,我们的工作均是针对NRZ 码进行的。

由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。

眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。

另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰,改善系统的传输性能。

眼图实际上就是数字信号的一系列不同二进制码按一定的规律在示波器屏幕上累积后的显示,简单地说,由于示波器具有余辉功能,只要将捕获的所有波形按每三个比特分别地叠加累积(如上图所示),从而就形成了眼图。

目前,一般均可以用示波器观测到信号的眼图,其具体的操作方法为:将示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形就称为眼图。

最常用的就是眼图的测量方法,眼图测试分析

最常用的就是眼图的测量方法,眼图测试分析

最常用的就是眼图的测量方法,眼图测试分析
 波形参数测试是数字信号质量评估最常用的测量方法,但是随着数字信号速率的提高,仅仅靠幅度、上升时间等的波形参数的测量方法越来越不适用了。

 比如下图的一个5Gbps的信号来说,由于受到传输通道的损耗的影响,不同位置的信号的幅度、上升时间、脉冲宽度等都是不一样的。

不同的操作人员在波形的不同位置测量得到的结果也是不一样的。

 因此我们必须采用别的方法对于信号的质量进行评估,对于高速数字信号来说最常用的就是眼图的测量方法。

 所谓眼图,实际上就是高速数字信号不同位置的数据比特按照时钟的间隔叠加在一起自然形成的一个统计分布图。

 下面几张图显示了眼图的形成过程。

我们可以看到,随着叠加的波形数量的增加,数字信号逐渐形成了一个个类似眼睛一样的形状,我们就把这种图形叫做眼图。

眼图分析仪使用说明

眼图分析仪使用说明

眼图分析仪使用说明
1.眼图分析仪的基本操作步骤
1)检查眼图分析仪的地线是否连接完好。

2)用电源线将眼图分析仪与合适的电源相连,将电源开关置为ON。

3)将眼图分析仪后部的开关置为ON(无此开关可省略此步,HP83480A有此开关)。

4)将眼图分析仪前面的开关置为ON。

5)进入操作界面后,根据测试项目,用光纤或合适的电缆线将被测设备与相应的端口相连,并将相应的通道置为ON,不用的通道置为OFF。

6)适当调整时间横轴和幅度轴的大小,使测试结果以适当的比例显示在屏幕上。

7)测量消光比,首先关闭仪表的输入光,对仪表进行校准,然后进行消光比测试。

8)测量眼图是否满足模板要求,首先调出标准模板,然后将眼图与标准进行对准(MASK ALIGN),观察是否满足要求。

9)测量结束,将眼图分析仪前面的开关置为OFF。

10)将眼图分析仪后部的开关置为OFF(无此开关可省略此步,HP83480A 有此开关)。

2.使用注意事项
1)注意仪表说明书和仪表光口提示的最大输入光功率,输入合适的光功率。

2)需对被测设备进行焊接时,请断开被测设备与仪表的连接。

3)测试完毕,请将光口戴好防尘帽。

(仅供参考)抖动和眼图的视觉分析

(仅供参考)抖动和眼图的视觉分析

抖动和眼图的视觉化分析抖动为实际数据与其理想位置的时间偏差TIE 为信号相对于标准时钟或者标准信号的定时误差TIE 在高速数字系统中即为抖动…0.0ns0.990ns 2.000ns 2.980ns 4.000nsP2P3P4P1TIE0.000ns-0.010ns0.000ns-0.020ns眼图是怎么形成的?Random Jitter(随机抖动)•随机抖动符合高斯型分布•直方图(估计) ↔ pdf(数学模型)•抖动峰峰值=无穷大…无界!1-sigma or RMS 7-sigma•内部热能现象•Flicker Noise, Shot Noise •热能的原子与分子振动•分子的解体•外部的宇宙射线Deterministic Jitter(确定性抖动)•确定性抖动是非高斯分布并且有界Peak-to-PeakPeriodic Jitter(周期性抖动)•TIE 随时间的变化是重复的、周期性的•Periodic jitter 和相位调制(PM)是等效的Peak-to-Peak•系统时钟(抖动频率在MHz 量级)•开关电源(抖动频率在KHz 量级)Duty Cycle distortion(占空比失真)•上升时间和下降时间不对称•或者测试时参考电平选择不当0.0v-0.1vInter-Symbol Interference(码间干扰抖动)•DDJ 或PDJ –数据相关性抖动或码型相关性抖动,和ISI的术语是等价的.•码型是如何影响随后的比特位的?◦由于传输链路的效应、反射等换个角度看抖动,时域看看我们有了什么视角?抖动视觉化–时间趋势图▪直方图告诉了我们分布,但是只有统计特性,缺少了时间信息▪时间趋势图可以直观告诉我们波形里是否有特定频率的调制▪下图为5个周期SSC @ 30khz抖动视觉化Gaussian Random Noise Sinusoidal Jitter抖动视觉化–频谱图▪从频域上观测抖动▪抖动中决定性的频率成分会在谱线上明显超出噪底哪个眼图好?哪个直方图好?视觉化眼图和抖动的问题?浴盆曲线误码率是关键vs. UI 张开程度•For a given position in the time there’s a given probability of error –“BER ”, Bit Error Ratio•For a given position in the time there’s a given probability of signal crossing –PDF , probability density function1 UIP r o b a b i l i t y o f ‘h i t ’P r o b a b i l i t y o f E r r o r –B E R基于示波器分析的浴盆曲线Rj δδ/Dj δδ与Tj @ BERAssume bi-modal distribution (dual-Dirac), measure Tj at two BER Fit curve to points, slope is Rj, Intercept is DjMeasuredTj @ 10-7MeasuredTj @ 10-4½Dj δδ½xRj δδEstimatedTj @ 10-12x≈7.4σx≈10.4σx≈14.1σ双狄拉克模型Conditions: only where Gaussian.抖动类型分析•抖动分离为误码产生的根本原因提供了更精确的定位和分析方法•抖动分析方法,参照T11 MJSQ ,已经被工业界广泛接受Constituent Components of Jitter= Unbounded= Bounded Total Jitter(TJ)Duty-Cycle Jitter (DCD)Data Dependent Jitter (DDJ)Periodic Jitter(PJ)Deterministic Jitter (DJ)Random Jitter(RJ)Jitter Visualization –Bathtub Plot▪Shows the Eye Opening at a Specified BER Level▪Note the eye closure of System I vs. System II due to the RJ-RJ is unbounded so the closure increases as BER level increases▪System I has .053UI of RJ with no PJ▪System II has .018UI of RJ and .14UI of PJ @ 5 and 10MhzSystem I System ISystem II System IITektronix -Innovators of Jitter Analysis •1998First Real-Time Scope Based Jitter Analysis Software•2002 Invented SW Based PLL Clock Recovery and the Spectral Approach for Jitter Separation•2004–Invented RT Eye rendering on a Real Time Scope•2004-First vendor to support both modeled (Dual-Dirac) and measured (Spectral) jitter methods •2005-Invented measurements with Jitter and Noise reconciliation•2011-First scope vendor with BUJ support•2015–RT Noise Analysis and Sampling BER and PDF Mask Testing抖动和眼图的视觉化眼图怎么切割的?时钟决定!TIE 抖动需要参考时钟•参考时钟提取的过程就是时钟恢复•参考时钟有几种确定的方式:◦Constant Clock with Minimum Mean Squared ErrorThis is the mathematically “ideal” clockBut, only applicable when post-processing a finite-length waveformBest for showing very-low-frequency effectsAlso shows very-low-frequency effects of scope’s timebase◦Phase Locked Loop (e.g. Golden PLL)Tracks low-frequency jitter (e.g. clock drift)Models “real world” clock recovery circuits very well◦Explicit ClockThe clock is not recovered, but is directly probed◦Explicit Clock (Subrate)The clock is directly probed, but must be multiplied up by some integral factorImportance of Clock Recovery•From spec, “The jitter measurement device shall comply with the JTF”.•How do I verify JTF?◦JTF is difference between input clock (ref) and input clock(unfiltered)◦Use 1100b or 0011b pattern (proper 50% transition density)◦Check 1) LF attenuation, 2) -3 dB corner frequency, and 3) slope23JTF vs PLL Loop Bandwidth•Configuring the correct PLL settings is key to correctmeasurements•Most standards have a reference/defined CR setup◦For example, USB 3.0 uses a Type II with JTF of 4.9Mhz•Type I PLL◦Type I PLL has 20dB of roll off per decade◦JTF and PLL Loop Bandwidth are Equal•Type 2 PLL◦Type II PLL has 40dB of roll off per decade◦JTF and PLL Loop Bandwidth are not Equal▪For example, USB 3.0 uses a Type 2 PLL with a JTF of 4.9Mhz.The corresponding loop bandwidth is 10.126 Mhz▪Setting the Loop Bandwidth as opposed to JTF will lead to24PLL Loop Bandwidth vs. Jitter Transfer Function(JTF)JTF Filtering Effects based on different PLL bandwidthsf3dB= 30 kHz f3dB= 300 kHz f3dB= 3 MHzJitter for Busy People Hints, Tips and Common ErrorsUsing the Jitter Analysis Tools•Issues manifested in different layers of theprotocol stack◦Crosstalk, jitter, reflections, skew◦Disparity, encoding or CRC errors•Where do I start debugging?•Jitter and Eye Diagram Tools◦Oscilloscope-based for quick results▪Fast jitter measurements with▫‘One Button’ Jitter Wizard▪Compare timing, jitter, eye, amplitude measurements▪User-definable clock recovery, filters, pass/fail limits, andreference levelsMore Hints for Successful Jitter Analysis•Clock Recovery has a great deal of influence on jitter results. Think about what you’re trying to accomplish.◦Constant-Clock is the most “unbiased”Often best if you’re trying to see very-low-frequency effectsBut it can also show wander in the scope’s timebase◦PLL recovery can model what a real data receiver will seeIt can track and remove low-frequency effects, allowing you to “see through” to the jitter that really contributes to eye closur e ◦Explicit-Clock is appropriate if your design uses a forwarded clockMake sure your probes are deskewedHints for looking at Spread-Spectrum Clock•If you don’t want to see the SSC effects, use TIE and PLL clock recovery with a bandwidth of at least 1 MHz. A Type-II (2nd-order) PLL will track out the SSC more effectively than a Type-I PLL.•If you do want to observe the SSC profile:◦Use a Period measurement and turn on a 3rd-order low-pass filter(in DPOJET) with abandwidth of 200 kHzBecause Period trends accentuate high frequency noise, the low-frequency SSC trend will be obscured if you don’t use a filter You can’t use a Frequency measurement directly. The combination of filtering and the reciprocal operation (Freq = 1/Per) cau se distortion in the resulting waveshape. (This is a mathematical fact, not a DPOJET defect.)◦If you use a TIE measurement, you’ll see modulation that looks like a sine wave. This is normal. It’s because TIE measures phase modulation, which is the integral of frequency. It turns out that the integral of a triangle wave looks very much like a sine wave.误码率与噪声分析Anatomy of a Serial Data LinkComplete LinkReceiverChannel+-+-+-+-+-+-+-+-E q u a l i z e rP r e -E m p h a s i sTransmitterAspirational goal: 0 errorsPractical Goal: Bit Error Rate < Target BER•Since BER is the ultimate goal, why not measure it directly?Serial Data Link Integrity = Bit Error Rate•Bit Error Ratio Testers (BERTs) are the tools for measuring BER directly •Why not use ONLY BERTs for Serial Data Link Analysis?◦Difficult to model/emulate equalizer◦Measurements could take a very long time◦Instruments are very expensive and not all that flexible◦Does not analyze the root causes of the impairments of the links•Alternative approach: use a scope and advanced analysis tools ◦Easily move from Compliance to Debug◦Better equipped to identify root causes of eye closure◦Equalizer can easily be modeled◦More cost effective◦Faster throughputWhy Measure Jitter and Noise?▪Link Model: Transmitter + Channel + Receiver▪Transmitter generates a stream of symbols▪Receiver uses a slicer to make a decision on the transmitted symbol▪The Bit Decision is made at a certain time (t) of the symbol interval and a comparison of the sliced data to a threshold (v) is performed ▪Jitter impairs the time slicing position▪Noise impairs the decision threshold?Jitter combined with Noise Analysis is a better predictor of BER performance!A Quick Look at Jitter and Noise Duality•Jitter analysis evaluates a waveform in the horizontal dimension based on when the waveform crosses a horizontal reference line.•Jitter decomposition is based on spectral analysis of Time Interval Error vs. time◦Individual jitter componentscan be separated (i.e.PJ, RJ, DDJ, etc.)◦TJ can then be estimated at atarget BER level ▪Noise evaluates along a vertical dimension on the basis ofcrossings of a vertical referenceline at some percentage of the unit interval (usually 50%).▪Noise decomposition is based on spectral analysis of voltage error vs. time–Individual noise components canbe separated (i.e. PN,RN, DDN, etc.)–TN can then be estimated at atarget BER level抖动和噪声的解析•Jitter and Noise Decomposition provide deep insight into BERFull Jitter Analysis vs. Mask Testing•Jitter separation analysis is able to extrapolate total jitter or eye closure at various Bit Error Rates at a specific voltage threshold but it doesn’t reveal the statistical eye closure at any other voltage.•Conventional mask testing considers both time and voltage , but cannot extrapolate eye closure at low BER.Can we combine the best of both?41Statistical Jitter + Noise Analysis•By jointly analyzing Jitter and Noise, behavior at all points in the eye can be extrapolated at low BER•The methodology is analogous to current jitter analysis, but is performed across both dimensions of the eye◦Jitter and noise are separated into components (Random, Periodic, Data-Dependent,…)◦The components are reassembled into a model that allows accurate extrapolation.42Timing-Induced Jitter•Since jitter is defined as a shift in an edge’s time relative to its expected position, it is easy to think of jitter as being caused by horizontal (chronological) displacement.•Note that the displaced edge (green) has not moved vertically in this example.43Noise-Induced Jitter•Consider a burst of voltage noise (right) that displaces a waveform vertically.◦In this case, the displaced edge (green) has not moved horizontally.•The jitter as measured at the chosen reference voltage is identical in these cases!◦So, why should we care?44Noise-to-Jitter (AM-to-PM) Conversion•Since waveform transitions are never instantaneous, the slope (slew rate) of the edge acts as a gain constant that controls how effectively noise is converted to “observed jitter”.•We can think of RJ as being composed of two components.◦Horizontally induced: RJ(h)◦Vertically induced: RJ(v)•Since these two components are uncorrelated with each other, they add in the RSS sense:RJ=RJ(h)2+RJ(v)2•Similarly, PJ can be decomposed into PJ(h) and PJ(v) based on root cause•We measure noise at a reference point in the bit interval (usually 50%)•If slew rate isn’t zero, jitter (horizontal displacement) causes observed noise•So as with RJ, RN can be decomposed into components:◦Horizontally induced: RN(h)◦Vertically induced: RN(v)•Similarly, PN can be decomposed into PN(h) and PN(v) based on root causeNoise to Jitter and Jitter to Noise ConversionConsider: an “ideal” edge in a patternactually has two impairments:◦Jitter(h) (see the blue trace)INTROD UCTION –and Noise(note that both of Jitter and Noise result in jitter on edge)The Combined response (bottomright) includes the jittercaused by noiseNon-impaired bit edgeWe can separate the noisecontribution of jitter for diagnosticpurposes by breaking RJ intoRJ(v) and RJ(h)DPOJET and 80SJNB are the only tool that will show you this separation, and thus give youan important troubleshooting hint: e.g. is it crosstalk causing trouble, or the clocks?48Theory: Construction of the BER Eye •Consider a very simple pattern: 7 bit repeating•Overlay multiple segments of the 7-bit pattern. Each one has noise and jitter, so although the bit pattern is clear, they follow many slightly different paths:•Average many pattern repeats together. Everything that is uncorrelated with the pattern averages out. What remains is called the ‘correlated waveform’.◦This waveform fully characterizes DDJ, DCD, DDN, ISI –all data dependent effects•The correlated waveform can be snipped into individual bits and overlaid to form an eye diagram, using the recovered clock as the alignment reference. This forms the ‘correlated eye’:•Spectral jitter separation is used to find PDFs of the random and periodic jitter.•The RJ and PJ PDFs are convolved to find the uncorrelated jitter PDF (red)• A similar analysis of the noise yields the uncorrelated noise PDF (blue)◦Care must be taken to properly account for AM-to-PM and PM-to-AM conversion in these steps; otherwise some noise or jitter would be ‘double-counted’.•Two-dimensional convolution is used to create a joint PDF of uncorrelated jitter + noise. (We can call this the ‘jitter/noise set’)•The jitter/noise set is convolved (two-dimensionally) with the correlated eye for the ‘1’ bits to get the overall(correlated + uncorrelated) PDF for ‘1’ bits•The ‘1’ bit PDF is integrated vertically (from bottom to top) to get the ‘1’ bit CDF (Cumulative Distribution Function)◦In this color-graded view, each color represents a particular BER level•A similar treatment for ‘0’ bits yields the ‘0’ bit CDF54Theory: Construction of the BER Eye –Conclusion•The ‘1’ bit and ‘0’ bit CDFs are added to get the overall “BER Eye”◦ A particular BER contour can be found in the 3D version of this plot by slicing it horizontally, or by extracting a specific color on either version◦Since this ‘eye’ looks rather unconventional, DPOJET extracts the3D ViewColor-Graded View。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Βιβλιοθήκη 光眼图分析(9)
现象:全部双线 原因:可能是功率控制不稳定的原因
1
0
T
光眼图分析(10)

现象:左右双线(多线) 原因:可能是时钟问题
1
0
T
光眼图分析(11)

现象:消光比过大或过低 原因:调制电流和偏置电流的控制问题
光眼图分析(12)

现象:占空比 原因:未位于激光器特性曲线的线性区, 或激光器线性不好
光眼图分析(1)

激光器驱动曲线
光眼图分析(2)

现象:过冲明显,0线重 原因:偏流过低,0电平位于域值以下
光眼图分析(3)

现象:有overshoot过冲 原因:上升沿过快
光眼图分析(4)

现象:有undershoot下冲 原因:下降沿过缓,负载电容过大
光眼图分析(5)

现象:ringing 原因:阻抗不连续,引起振铃
光眼图分析(6)

现象:反射reflections 原因:阻抗不连续, 引起振铃
光眼图分析(7)

现象:双线 原因:PDJ(patter dependent jitter)引起 高低频响应不同
光眼图分析(8)

现象:不对称 原因:常发现在直调激光器上,对eml激 光器很少见。可能由于上升下降时间不等, 也可能是占空比问题
交流
眼图(eyes diagram)
目录


眼图的形成 眼图的参数 光眼图分析
眼图形成
1 0 T Trigger
眼图参数和术语


Amplitude(Pk-Pk,Mean,overshoot…) Time(Risetime, falltime,duty,Period…) Comm(Ext ratio,Q factor, Jitter(Pk-Pk), Jitter(RMS),Noise ratio…) Mask(margin,filter,hits…)
相关文档
最新文档