第6章受拉构件截面承载力计算

合集下载

第六章 偏心受拉构件(土木)

第六章  偏心受拉构件(土木)

2、判断构件类型:
M 120106 h 300 e0 500 m m a 35 115m m s 3 N 24010 2 2
属于大偏拉构件
3、配筋计算
h0 h as 300 35 265mm x b h0 0.518 265 137mm
As
Ne 1 f c sbbh (h0 a fy s)
2 0
★若A's<rmin ' bh0?
取A's= rmin ' bh0,按A's为已 知情况计算。
As
N 1 f cbbh0 f y As fy
(2)A's为已知时 当A's已知时,两个基本方程有二个未知数As 和 x,有唯一解。
第六章
钢筋砼受拉构件承载力计算
第一节
大小偏心受拉的界限
当纵向拉力N作用在两侧钢筋之间为小偏拉构件;
h e0 a s 2 h as 2
当纵向拉力N作用在两侧钢筋之外时为大偏拉构件。 e0
第二节
小偏心受拉构件的计算
u (h a NeN N eA A f0 h0 ue s f ys s )as ) y(
若 2a‘s x bh0,可得
e’
e0 Nu
As
N 1 f cbh0 f y As fy
s As
As f y
若x<2a‘s ?取x=2a‘s,对As '中心取矩
Ne Nu e f y As (h0 a s)
Ne As f y (h0 a s)
N e A fsy ( a ) Ne uN u e s A fh ( h 0 y 0 s as )

混凝土结构设计原理(第2版)第6 章

混凝土结构设计原理(第2版)第6 章
• 纵向受力钢筋的面积应由计算确定,但为了使纵向钢筋起到提高受压 构件截面承载力的作用,纵向钢筋应满足最小配筋率的要求.受压构件 纵向钢筋的最小配筋率应符合附表8的要求.
上一页 下一页 返回
6.1 受压构件基本构造要求
• 当偏心受压构件的截面高度h≥600mm 时,应在侧面设置直径为不 小于10mm 的纵向构造钢筋,以防止构件因温度和混凝土收缩应力 而产生裂缝,并相应地设置复合箍筋或拉筋.
• (3)纵筋.
上一页 下一页 返回
6.1 受压构件基本构造要求
• 纵向受力钢筋的作用是与混凝土共同承担由外荷载引起的内力,防止 构件脆性破坏,减小混凝土不匀质引起的影响;同时,纵向钢筋还可以承 担构件失稳破坏时凸出面出现的拉力以及由于荷载的初始偏心、混凝 土收缩、徐变、温度应变等因素引起的拉力等.
上一页 下一页 返回
6.1 受压构件基本构造要求
• 当柱中全部纵向受力钢筋的配筋率超过3%时,箍筋直径不应小于8 mm,间距不应大于10d(d 为纵向受力钢筋的最小直径),且不应大于 200mm;箍筋末端应做成135°弯钩,且弯钩末端平直段长度不 应小于纵向受力钢筋最小直径的10倍.
• 在纵向钢筋搭接长度范围内,箍筋的直径不宜小于搭接钢筋较大直径 的0.25倍.箍筋间距不应大于10d(d 为受力钢筋中最小直径),且不 应大于200mm.当搭接的受压钢筋直径大于25mm 时,应在搭接 接头两个端面外100mm 范围内各设置两根箍筋.
上一页 下一页 返回
6.2 轴心受压构件正截面承载力计算
• 构件的稳定系数φ 主要和构件的长细比l0/i 有关(l0 为构件的计算长 度,i 为截面的最小回转半径).当为矩形截面时,长细比用l0/b 表示(b 为 截面短边),«规范»中对φ 值制定了计算表,见表6.1.

钢筋混凝土教学课件—第6章受压构件的截面承载力

钢筋混凝土教学课件—第6章受压构件的截面承载力
2.受压破坏形态(如下图)
N
e0
N N
e0
e0
实际重心轴
s As
f y As
s As
f y As
f y As
s As
h0
(a )
h0
( b)
h0
(c)
10
有三种情况:
(1)如上图(a)所示:相对偏心距稍大且远侧钢筋较多;
A.N较小时,远侧受拉,近侧受压;
B.破坏时,远侧钢筋受拉但不能屈服,近侧钢筋受压屈服,
B.N较小时,全截面受压(远侧和近侧钢筋均受压);
C.近侧受压程度小于远侧受压程度;
D.破坏时,近侧钢筋受压但不能屈服,远侧钢筋受压屈服,
远侧混凝土压碎; 综合(1)~(3)可知: (1)远侧钢筋均不能受拉且屈服;以混凝土受压破坏为标志,称 为“受压破坏”; (2)相对偏心距较小,称为“小偏心受压”;
1
3.本章重点:单向偏心受压构件(或简称偏心
受压构件) 二.工程应用 1.轴心受压构件:结构的中间柱(近似); 2.单向偏心受压构件:结构的边柱; 3.双向偏心受压构件:结构的角柱; 如下图所示。
2
3
围范的载恒 受承柱的应相为分部影 阴,置布面平构结架框
柱边
柱角
柱间中
§6.1 受压构件一般构造要求
17
§6.5 矩形截面偏心受压构件正截面
受压承载力基本计算公式
一.区分大、小偏心受压破坏形态的界限
由下图可知:
1.受拉破坏时,远侧钢筋先受拉屈服,然后近侧钢筋受压屈服和近
侧混凝土压坏;
2.受压破坏时,近侧钢筋受压屈服和混凝土压坏时,远侧钢筋不能 受拉屈服; 3.界限破坏时,远侧钢筋受拉屈服和近侧混凝土压坏同时发生; 4.受压区太小(如 x 2a ),远侧钢筋先屈服,然后混凝土压坏, 但近侧钢筋不能受压屈服。

第6章受拉构件

第6章受拉构件

1fc
f
' y
As'
x
e’
e0
Ne
fyAS
小偏心受拉构件
混凝土结构设计原理
第6章 受拉构件
(2)计算公式
N
f y As
f yAs
1
fcbx
Ne
1
fcbx(h0
x) 2
f yAs(h0
as )
e’
1fc
f
' y
As'
x
(3)公式条件
e0
2as’ xbh0
N
(4)最小配筋率
As应≥(0.45ft/fy)A,且≥0.002A A’S应≥0.002A
关键是消去N求出x后分三种情况:
若x>bh0,取s=fy(-1)/(b- 1)
代入基本公式重求x,并求Nu。
若2as’ xbh0,代入基本公式(一)求Nu ; 若x< 2as’ ,则对A’s取矩求解Nu ,即
Nu
f y As (h0 as ) e
混凝土结构设计原理
第6章 受拉构件
6.2.2 小偏心受拉构件
6.2 偏心受拉构件
▲分
大偏心受拉构件 小偏心受拉构件
大偏心受拉构件 N不作用在As与A’s之间
小偏心受拉构件 N作用在As与A’s之间
混凝土结构设计原理
第6章 受拉构件
6.2.1 大偏心受拉构件
(1)受力性能 a)破坏特征
As受拉屈服,
受压边缘砼达到ecu。
破坏特征类似适筋梁、 大偏压。
b)发生条件 N作用在As与A’s之外。
教学提示
▲本章应重点介绍轴心受拉构件及偏心受拉构 件的破坏机理及正截面承载力计算方法。

第六章 轴心受力构件承载力

第六章 轴心受力构件承载力

N
初始受力
试验表明,在整个加载过程中,由于钢 筋和混凝土之间存在着粘结力,两者压应变 基本一致。
变形条件:s =c = 物理关系: s Es
钢筋:
y y
fy Es
fy
Es
1
s fy
混凝土:
y
2 2 fc 0 0 fc
由平衡条件得:
Ass1—单根间接钢筋的截面面积; fy—间接钢筋的抗拉强度设计值; s——沿构件轴线方向间接钢筋的 间距; dcor—构件的核心直径; Asso——间接钢筋的换算截面面
) N 0.9( f c Acor 2f y Asso f y As
注:1.为使间接钢筋外面的混凝土保护层对抵抗脱落有足够的安 全,《规范》规定螺旋式箍筋柱的承载力不应比普通箍筋 柱的承载力大50%。 2.凡属下列情况之一者,不考虑间接钢筋的影响而按普通箍 筋柱计算承载力: (1)当l0/d >12时,因长细比较大,因纵向弯曲引起螺旋筋不 起作用; (2)当算得受压承载力小于按普通箍筋柱算得的受压承载力; (3)当间接钢筋换算截面面积小于纵筋全部截面面积的25% 时,可以认为间接钢筋配置得太少,套箍作用的效果不明 显。间接钢筋间距不应大于800mm及dcor/5,也不小于40mm。
螺旋式箍筋柱的受力特点:
轴向压力较小时,混凝土和纵筋分别受 压,螺旋箍筋受拉但对混凝土的横向作用不 明显;接近极限状态时,螺旋箍筋对核芯混 凝土产生较大的横向约束,提高混凝土强度, 从而间接提高柱的承载能力。当螺旋箍筋达 到抗拉屈服强度时,不能有效约束混凝土的 横向变形,构件破坏。在螺旋箍筋受到较大 拉应力时其外侧的混凝土保护层开裂,计算 时不考虑此部分混凝土。

第 6 章 受压构件的截面承载力

第 6 章 受压构件的截面承载力

第6 章受压构件的截面承载力思考题6.1 轴心受压普通钢筋短柱与长柱的破坏形态有何不同?轴心受压长柱的稳定系数? 如何确定?轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。

而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。

l s l s 《混凝土结构设计规范》采用稳定系数? 来表示长柱承载力的降低程度,即? =N u / N u ,N u 和N u 分别为长柱和短柱的承载力。

根据试验结果及数理统计可得? 的经验计算公式:当l0/b=8~34 时,? =1.177-0.021l0/b;当l0/b=35~50 时,? =0.87-0.012l0/b。

《混凝土结构设计规范》中,对于长细比l0/b 较大的构件,考虑到荷载初始偏心和长期荷载作用对构件承载力的不利影响较大,的? 取值比按经验公式所得到的? 值还要降低一些,以保证安全。

对于长细比l0/b 小于20 的构件,考虑到过去使用经验,? 的取值略微抬高一些,以使计算用钢量不致增加过多。

6.2 简述偏心受压短柱的破坏形态。

偏心受压构件如何分类?钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。

受拉破坏形态又称大偏心受压破坏,它发生于轴向力N 的相对偏心距较大,且受拉钢筋配置得不太多时。

随着荷载的增加,首先在受拉区产生横向裂缝;荷载再增加,拉区的裂缝随之不断地开裂,在破坏前主裂缝逐渐明显,受拉钢筋的应力达到屈服强度,进入流幅阶段,受拉变形的发展大于受压变形,中和轴上升,使混凝土压区高度迅速减小,最后压区边缘混凝土达到极限压应变值,出现纵向裂缝而混凝土被压碎,构件即告破坏,破坏时压区的纵筋也能达到受压屈服强度,这种破坏属于延性破坏类型,其特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎。

第6章-受拉构件的截面承载力

第6章-受拉构件的截面承载力

e' e0 e
α1 fc fy’As’
fyAs
大偏心受拉构件正截面的承载力计算
基本公式:
e' e0 e
Nu
f y As
f
' y
As'
fcbx
Nu
e
fcbx
h0
x 2
f
' y
As'
h0 as'
As'
Ne
1
f
cbxb
h0
f
' y
h0 as'
xb 2
Nu
As
1 fcbxb Nu
e e' e0
fy’As’ fyAs
小偏心受拉构件正截面的承载力计算
基本公式:
Nu
e
f
' y
As'
h0 as'
Nue' fy As h0 as
Nu
As'
As
fy
Nue ' h0 as'
e e' e0
fy’As’ fyAs
三、偏心受拉构件斜截面受剪承载力计算
计算公式:
V
1.75
fy
f
' y
fy
As'
α1 fc fy’As’
fyAs
相关截面设计和截面复核的计算与大偏心受压构件相似,
所不同的是轴向力为轴力。
小偏心受拉构件正截面的承载力计算
小偏心受拉构件破坏特点:
轴向拉力N在As与A’s之间,全截面均 受拉应力,但As一侧拉应力较大, 一侧拉应力较小。 随着拉力增加,As一侧首先开裂,Nu 但裂缝很快贯通整个截面, As与A’s 纵筋均受拉,最后,As与A’s均屈服 而达到极限承载力。

第六章 受构件斜截面承载力答案

第六章 受构件斜截面承载力答案

第六章 钢筋混凝土受弯构件斜截面承载力计算一、填空题:1、梁的斜截面承载力随着剪跨比的增大而 。

降低2、梁的斜截面破坏形态主要 、 、 ,其中,以 破坏的受力特征为依据建立斜截面承载力的计算公式。

斜拉破坏 斜压破坏 剪压破坏 剪压破坏3、随着混凝土强度的提高,其斜截面承载力 。

提高4、影响梁斜截面抗剪强度的主要因素是混凝土强度、配箍率、 剪跨比 和纵筋配筋率以及截面形式。

5、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。

斜拉破坏 斜压破坏6、设置弯起筋的目的是 、 。

承担剪力 承担支座负弯矩7、为了防止发生斜压破坏,梁上作用的剪力应满足 ;为了防止发生斜拉破坏,梁内配置的箍筋应满足 。

025.0bh f V c c β≤ min ρρ≥,max s s ≤, min d d ≥二、判断题:1. 钢筋混凝土梁纵筋弯起后要求弯起点到充分利用点之间距离大于0.5h 0,其主要原因是为了保证纵筋弯起后弯起点处斜截面的受剪承载力要求。

( × )2.剪跨比0/h a 愈大,无腹筋梁的抗剪强度低,但当3/0>h a 后,梁的极限抗剪强度变化不大。

(√ )3.对有腹筋梁,虽剪跨比大于1,只要超配筋,同样会斜压破坏( √ )4、剪压破坏时,与斜裂缝相交的腹筋先屈服,随后剪压区的混凝土压碎,材料得到充分利用,属于塑性破坏。

( )×5、梁内设置多排弯起筋抗剪时,应使前排弯起筋在受压区的弯起点距后排弯起筋受压区的弯起点之距满足:max s s ≤( )×6、箍筋不仅可以提高斜截面抗剪承载力,还可以约束混凝土,提高混凝土的抗压强度和延性,对抗震设计尤其重要。

( )√7、为了节约钢筋,跨中和支座负纵筋均可在不需要位置处截断。

( )×8、斜拉、斜压、剪压破坏均属于脆性破坏,但剪压破坏时,材料能得到充分利用,所以斜截面承载力计算公式是依据剪压破坏的受力特征建立起来的。

双向偏心受压构件的正截面的承载力计算

双向偏心受压构件的正截面的承载力计算

(2) 长柱的受力分析和破坏形态(l0/b>8、l0/d>7) 1) 初始偏心距 → 产生附加 弯矩和侧向挠度 → 偏心距增加 → 附加弯矩和侧向挠度不断增加 →长柱在N和M共同作用下破坏 2)长柱的破坏特征 破坏时,首先在凹侧出现纵向 裂缝,随后混凝土被压碎,纵筋 被压屈向外凸出;凸侧混凝土出 现横向裂缝,侧向挠度不断增加, 柱子破坏。→ 表现为“材料破坏” 和“失稳破坏”。长细比l0/b很大 时,表现为失稳破坏; 图6-6 长柱的破坏
6.1.1 截面型式及尺寸
柱的吊装方式及简图
6.1.1 截面型式及尺寸
2. 截面尺寸: (1) 方形或矩形截面柱 截 面 不 宜 小 于 250mm×250mm ( 抗 震 不 宜 小 于 300mm×300mm) 。为了避免矩形截面轴心受压构件长细 比过大,承载力降低过多,常取 l0/b≤30, l0/h≤25 。此处 l0 为 柱的计算长度,b为矩形截面短边边长,h为长边边长。 为了施工支模方便,柱截面尺寸宜使用整数,截面尺寸 ≤ 800mm ,以 50mm 为模数;截面尺寸> 800mm ,以 100mm 为模数。 (2) 工字形截面柱 翼缘厚度≦120mm,腹板厚度≦100mm。
3. 箍筋一般采用HPB235级、HRB335级钢筋,也可采用
HRB400级钢筋。
6.1.3 纵 筋
1. 纵筋的配筋率 轴心受压构件、偏心受压构件全部纵筋的配筋率≦0.6 %;同时,一侧钢筋的配筋率≦ 0.2 %。(用全截面计算) 2. 轴心受压构件的纵向受力钢筋 (1) 沿截面四周均匀放置,根数不得少于 4 根, ( 圆柱根 数)图6-1(a); (2)直径不宜小于 12mm,通常为16~32mm。宜采用较 粗的钢筋; (3) 全部纵筋配筋率≧ 5%。

混凝土结构设计基本原理第6章讲义

混凝土结构设计基本原理第6章讲义
小偏拉:N在 As 与 As之间 时。全截面受拉,砼因 开裂不能抗拉。
h 2 as e0
大偏拉:N在 As与As一 侧时。截面部分受压, 部分受拉。
混凝土结构设计基本原理
第六章
二、小偏心受拉构件正截面承载力 e0 h 2 as
N
a's
e'
e as
e0
A' s
As
f A' ' ys
a's
h0
力设计值
•受剪计算公式
V
1.75
1
ftbh0
f yv
Asv s
h0
0.2N
(6 16)
计算截面 的剪跨比
当式(6 16)右边的计算值小于fyv
Asv s
h0时,
应取等于fyv
Asv s
h0,且f yv
Asv s
h0值不得
小于0.36 ftbh0。
混凝土结构设计基本原理
第六章
第一节 概 述
理想的轴拉构件不存在。
近似按轴拉构件计算的构件类型 偏拉构件类型
轴拉构件
1、屋架下弦杆 2、圆形水池池壁
偏拉构件
1、承受节间荷载的 悬臂桁架上弦; 2、矩形水池池壁 3、双肢柱受拉肢杆
混凝土结构设计基本原理
第二节 轴心受拉构件
1 受力过程及破坏特征
N
N
N
第六章 钢筋混凝土受拉构件 承载力计算
混凝土结构设计基本原理
本章重点
第六章
➢ 了解轴心受拉构件的受力全过程; ➢ 掌握轴心受拉构件正截面承载力的计算方法; ➢ 了解偏心受拉构件的受力工作特性; ➢ 掌握两类偏心受拉构件正截面承载力的计算方法; ➢ 掌握偏心受拉构件斜截面受剪承载力计算; ➢ 熟悉构造要求。

混凝土构件受拉

混凝土构件受拉

γ 0 N d e′
【例题】 如图 所示渡槽(3级建 筑物),试计算槽身底板的钢筋。 采用C25混凝土,Ⅰ级钢筋。 • 【解】 ⑴ 材料强度:C25混凝土 fc=11.5 N/mm2 • Ⅰ级钢筋 fy=195 N/mm2 ⑵ 内力计算: 取单宽1m考虑。渡槽底板属于偏心受拉构件,其危险 截面为:① 端部截面处:最大内力发生在满槽水深时。 ② 跨中截面:最大内力发生在半槽水深时。 端部截面处:(满槽水,水深H=2.5m)
h e = e0 − + as 2
则对A 若x<2as’ ,则对 ’s作用点取矩, 则对 作用点取矩,
适用条件: 适用条件:
ξ ≤ξ b
' s
γ 0 N d e′ ≤ N u e′ = f sd As (h0 − a )
h e′ = e0 + − as' 2
x≥2as'
截面设计时,取x=xb或者ξ=ξb,由基本公式可得到 截面设计时, 由基本公式可得到
解: Ⅰ级钢筋: fsd=195N/mm2 1.求拉力设计值: 取单宽b=1.0m
N = γ 0γ Q pk rb
=1.0×1.4×0.25×900×1000 =315000N 2.求钢筋截面积As: As = γ 0 N d = 1.0 × 315000 = 1615mm 2
f sd 195
水管中的受力钢筋按内外环双层布置。 内外环钢筋均为 12@140( As=808×2=1616mm2)
− 40 = 110 mm
该截面属于大偏心受拉,内侧(迎水面)受拉。
跨中截面:(半槽水深 H=2.5/2=1.25m)
1 N = γ 0ψγ Q γH 2 b 2 1 = 1 .0 × 1 .0 × 1 .1 × × 10 × 1 .25 2 × 1 = 8 .59 kN 2 H h 1 M = N ( + ) − pl 02 3 2 8 1 .25 0 .3 1 = 8 .59 × ( + ) − × (1 .1 × 10 × 1 .25 × 1 .0 + 1 .05 × 25 × 0 .3 × 1 .0 ) × 3 .3 2 3 2 8 = − 24 .57 kN .m

钢筋混凝土受拉构件计算

钢筋混凝土受拉构件计算

f y As
全截面受拉,N很小时,混凝土和钢筋共同 承担拉力。 随着N的增大,拉力较大侧混凝土先开裂, 裂缝迅速贯通,混凝土退出工作。拉力由As 和As’共同承受。 当配筋适量时最后As先屈服,As’后屈服。截 面破坏。
e0
N
偏心距e0较大,但N仍在As和As’之间时
a
a'
As’ As
fyAs’
N作用在As和As’之间
破坏时,轴向拉力由As和As’共同承受,配筋适量时均达到屈服。
N作用在As和As’之外
大偏心受拉构件的破坏特点
e0 N
a'
As’ x fy’As’ f cbx As
a
f y As
N很小时,靠近轴向力一侧受拉,远离轴向力 一侧受压。 随着N的增大,拉力较大侧混凝土先开裂。 根据力的平衡,裂缝虽能开展,但不全截面 裂通,始终保持一定受压区。 当配筋适量时先As先拉屈服,最后受压区混 凝土达到极限压应变。截面破坏。
KNe As f y ( h0 a) KNe As f y ( h0 a)
小偏心受拉计算图
将e' ,e,M=Ne0代入:
As As KNe f y ( h0 a) KNe f y ( h0 a)
KN (h 2a) KM As 2 f y (h0 a) f y (h0 a) As KN (h 2a) KM 2 f y (h0 a) f y (h0 a)
公式右边不小于: 1.25 f yv
Asv h0 f y Asb sin s s
同时,保证箍筋占有一定数量的受剪承载力:
1.25 f yv
Asv h0 0.36 f t bh0 s

第六章轴向受力构件-受拉构件承载力计算3

第六章轴向受力构件-受拉构件承载力计算3
在工程中,有不少构件同时承受轴向拉力、弯矩和 剪力的作用。轴向力N不仅对正截面承载力有影响,也 对斜截面受剪承载力有影响。在偏心受拉构件的受剪承 载力计算中,必须考虑轴向力的作用。
6.5.3 偏心受拉构件斜截面承载力计算
轴向拉力使斜裂缝裂得更宽,加大了斜裂缝剪承载力降低。
6.5.1 轴心受拉构件
6.5.1.3 算例
[ 例 1] 已 知 某 钢 筋 混 凝 土 屋 架 下 弦 , 截 面 尺 寸
b×h=200mm×150mm , 承 受 的 轴 心 拉 力 设 计 值
N=234kN,混凝土强度等级 C30,钢筋为 HRB335。
求截面配筋。
[解]查表可知: f y 300 N mm 2 ,代入轴心受拉计算公式 得
时,仍应按 300
N mm 2
取用”的要求,取
f
' y

fy
300
N
mm 2
h
400
e 2 e0 as 2 114 40 46mm ;
e'

h 2

e0
as'

400 2
114 40

274mm
6.5.4 算例
代入计算公式得:
As'

Ne f y (h0 as' )
6.5.2 偏心受拉构件正截面承载力计算
6.5.2.3 矩形截面偏心受拉构件正截面承载力计算公式 对小偏拉,应验算: As minbh , As minbh 应注意,对钢筋混凝土小偏心受拉构件,当 fy 大于 300N/mm2 时,取 300N/mm2。
6.5.2 偏心受拉构件正截面承载力计算

第6章-轴向受力构件承载力

第6章-轴向受力构件承载力

式中 N—轴向力设计值;
As/—全部纵向受压钢筋的截面面积; A—构件截面面积,当纵向受压钢筋的
配筋率大于3%时,A应该用(A-As/)代替; —钢筋混凝土轴心受压构件的稳定系
A
数,表6-1;
s
f
c
f y As
b
为保持与偏心受压构件承载力计算公
h
式具有相近的可靠度,乘以系数0.9。
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算
纵向受力钢筋的接头宜设置在受力较小处。钢筋接头 宜优先采用机械连接接头,也可以采用焊接接头和搭接接 头。对于直径大于28mm的受拉钢筋和直径大于32mm的受 压钢筋,不宜采用绑扎的搭接接头。
6.2.1 柱的构造要求
箍筋的构造要求
为了增大钢筋骨架的刚度,防止纵筋压曲,柱中箍筋应 做成封闭式。箍筋间距不应大于400mm,且不应大于构件横 截面的短边尺寸;在绑扎骨架中,间距不应大于15d,在焊 接骨架中不应大于20d(d为纵向钢筋最小直径)。
图 复杂截面的箍筋形式
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算
纵筋的作用:协助混凝土承担轴向压力;防止构件突然 破坏的脆性性质;承受构件失稳破坏时凸出面出现的拉力以 及由于荷载的初偏心或其它偶然因素引起的附加弯矩在构件 中产生的拉力;减少混凝土的徐变变形。
箍筋的作用:普通箍筋与纵 筋形成骨架,承受剪力,防止 纵筋在混凝土压碎前向外压屈 (凸出),保证纵筋与混凝土 共同受力,直到构件破坏;约 束核心混凝土,并与纵向钢筋 一起在一定程度上改善构件的 脆性破坏性质,提高极限压应 变。见图。
6.2.2 配有普通箍筋的轴心受压构件正截面承载力计算
(2) 轴心受压长柱的破坏形态
试验表明,长柱的承载力<短柱的承载力(相同材料、截 面和配筋),长细比越大,承载力降低越多。其原因在于, 长柱受轴力和弯矩(二次弯矩)的共同作用。当长细比超过 一定数值后,轴心受压构件可能转材料破坏为“失稳破坏”, 设计中应避免(细长柱,矩形截面,l0/b>35)。

轴心受拉构件正截面承载力计算公式

轴心受拉构件正截面承载力计算公式

轴心受拉构件正截面承载力计算公式
轴心受拉构件的正截面受拉承载力的计算公式为:
N≤fyAs+fpyAp(7.4.1)式中N--轴向拉力设计值;As、Ap--纵向普通钢筋、预应力钢筋的全部截面面积。

需要注意的是,上述公式适用于轴心受拉构件,即假设构件在受力时,其轴向方向受力的作用线与截面法线方向重合。

如果构件受力时,作用线与截面法线方向不重合,就需要考虑构件的弯曲和剪切应力等因素对承载力的影响,需要使用更加复杂的公式进行计算。

除了轴向受拉外,轴向压缩、弯曲、扭曲等应力状态下的构件承载力计算也需要使用相应的公式进行计算。

在实际工程中,通常需要根据具体情况进行选择和使用。

《混凝土结构设计原理》第六章-课堂笔记

《混凝土结构设计原理》第六章-课堂笔记

《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。

2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。

3.深入理解偏心受压构件的Nu-Mu关系曲线。

4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。

5.掌握受压构件的主要构造要求和规定。

♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。

6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。

6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。

6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。

单层工业厂房的预制柱常采用工字形截面。

圆形截面主要用于桥墩、桩和公共建筑中的柱。

柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。

6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。

同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。

混凝土结构设计原理 第六章 钢筋混凝土受压构件承载力计算

混凝土结构设计原理  第六章  钢筋混凝土受压构件承载力计算
螺旋箍筋对承载力的影响系数α,当fcu,k≤50N/mm2时,取α = 1.0;当fcu,k=80N/mm2时,取α =0.85,其间直线插值。 ; ,其间直线插值。
6.1 轴心受压构件的承载力计算
第六章 受压构件的截面承载力
采用螺旋箍筋可有效提高柱的轴心受压承载力。 采用螺旋箍筋可有效提高柱的轴心受压承载力。 如螺旋箍筋配置过多,极限承载力提高过大, ◆ 如螺旋箍筋配置过多,极限承载力提高过大,则会在远未 达到极限承载力之前保护层产生剥落,从而影响正常使用。 达到极限承载力之前保护层产生剥落,从而影响正常使用。 规范》规定: 《规范》规定: ● 按螺旋箍筋计算的承载力不应大于按普通箍筋柱受压承载 力的50%。 力的 。 对长细比过大柱,由于纵向弯曲变形较大, ◆ 对长细比过大柱,由于纵向弯曲变形较大,截面不是全部 受压,螺旋箍筋的约束作用得不到有效发挥。 规范》规定: 受压,螺旋箍筋的约束作用得不到有效发挥。《规范》规定: 对长细比l 大于 的柱不考虑螺旋箍筋的约束作用。 大于12的柱不考虑螺旋箍筋的约束作用 ● 对长细比 0/d大于 的柱不考虑螺旋箍筋的约束作用。 螺旋箍筋的约束效果与其截面面积A 和间距s有关 有关, ◆ 螺旋箍筋的约束效果与其截面面积 ss1和间距 有关,为保证 有一定约束效果, 规范》规定: 有一定约束效果,《规范》规定: 螺旋箍筋的换算面积A 不得小于全部纵筋A' 面积的25% ● 螺旋箍筋的换算面积 ss0不得小于全部纵筋 s 面积的 螺旋箍筋的间距s不应大于 不应大于d ● 螺旋箍筋的间距 不应大于 cor/5,且不大于 ,且不大于80mm,同时 , 为方便施工, 也不应小于 也不应小于40mm。 为方便施工,s也不应小于 。
普通钢箍柱 螺旋钢箍柱
6.1 轴心受压构件的承载力计算

受拉构件的承载力计算—轴心受拉构件

受拉构件的承载力计算—轴心受拉构件

E'c=0.5Ec
c= ftk,
又 s E c
s = 2Eftk
故开裂轴力:
Ncr = Ac ftk + 2Eftk As
(3)混凝土开裂后: 混凝土退出工作,应力全部由钢筋承担,钢筋应力急剧增加。 配筋率增大,裂缝间距减小,最大裂缝宽度减小,反之亦然, 当然裂缝间距及裂缝宽度也和钢筋直径有关。
(4)破坏阶段: 受拉钢筋屈服,整个截面裂缝全部裂通。
Nu= fyAs
2.轴心受拉构件承载力计算
N Nu= fyAs
N ––– 轴向拉力的设计值; N u ––– 轴向受拉构件的极限承载力; As ––– 纵向受拉钢筋截面面积; fy ––– 钢筋抗拉设计强度值. 注意 : 轴心受拉构件的钢筋用量并不是由强度要求确定的, 裂缝宽度验算对纵筋用量起决定作用。
轴心受拉构件正截面承载力计算 (建筑规范)
1.轴心受拉构件受力特点
(1)混凝土开裂前:
N Ncr
•钢筋与混凝土共同承担拉力
cftk
s = c c = Ec c s = Es s
sAs
2Eftk
s
Es Ec
c
E c
其时: •混凝土应力等于其开裂强度,并且进入了塑性发展阶段, 其变形模量降低为:

第6章-受压构件的截面承载力-自学笔记

第6章-受压构件的截面承载力-自学笔记

第6章受压构件的截面承载力概述钢筋混凝土柱是典型的受压构件,不论是排架柱,还是框架柱(图6-1)在荷载作用下其截面上一般作用有轴力、弯矩和剪力。

图6-1 钢筋混凝土结构框架柱内力受压构件可分为两种:轴心受压构件与偏心受压构件,如图6-2所示。

(a) 轴心受压(b) 单向偏心受压(c) 双向偏心受压图6-2 轴心受压与偏心受压图实际工程中有没有真正的轴心受压构件?实际工程中真正的轴心受压构件是不存在的,因为在施工中很难保证轴向压力正好作用在柱截面的形心上,构件本身还可能存在尺寸偏差。

即使压力作用在截面的几何重心上,由于混凝土材料的不均匀性和钢筋位置的偏差也很难保证几何中心和物理中心相重合。

尽管如此,我国现行《混凝土规范》仍保留了轴心受压构件正截面承载力计算公式,对于框架的中柱、桁架的压杆,当其承受的弯矩很小时,可以略去不计,近似简化为轴心受压构件来计算。

偏心受压构件的三种情况:当弯矩和轴力共同作用于构件上,可看成具有偏心距e0 = M / N的轴向压力的作用,或当轴向力作用线与构件截面重心轴不重合时,称为偏心受压构件。

当轴向力作用线与截面的重心轴平行且沿某一主轴偏离重心时,称为单向偏心受压构件。

就是图6-2b这种情况。

当轴向力作用线与截面的重心轴平行且偏离两个主轴时,称为双向偏心受压构件。

就是图6-2c 这种情况。

§6.1受压构件的一般构造要求6.1.1截面形式及尺寸6.1.2材料强度要求6.1.3纵筋的构造要求6.1.4箍筋的构造要求本节内容较容易,主要是混凝土结构设计规范的一些相关规定,请同学自学掌握。

§6.2轴心受压构件的正截面承载力计算为了减小构件截面尺寸,防止柱子突然断裂破坏,增强柱截面的延性和减小混凝土的变形,柱截面配有纵筋和箍筋,当纵筋和箍筋形成骨架后,还可以防止纵筋受压失稳外凸,当采用密排箍筋时还可以约束核心混凝土,提高混凝土的延性、强度和抗压变形能力。

轴心受压构件根据配筋方式的不同,可分为两种基本形式:①配有纵向钢筋和普通箍筋的柱,简称普通箍筋柱,如图6-5(a)所示;②配有纵向钢筋和间接钢筋的柱,简称螺旋式箍筋柱,如图6-5(b)所示(或焊接环式箍筋柱),如图6-5(c)所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以到达正截面承载力极限状态时,截面上是否存在有受压 区来划分大、小偏心受拉构件。
6.2.1大偏心受拉构件正截面受拉承载力计算
大偏心受拉破坏: N作用在As合力点和A`s合力点范围以外时
当轴力处于纵向钢筋之外时发生此种破坏。破坏时距纵向拉力近的一侧混凝 土开裂,混凝土开裂后不会形成贯通整个截面的裂缝,最后,与大偏心受 压情况类似,钢筋屈服,而离轴力较远一侧的混凝土被压碎 。
s
f yv
Asv h0 s
为防止斜拉破坏,此时的
f yv
Asv h0 s
不得小于0.36ftbh0。
Байду номын сангаас
第 6 章 受拉构件的截面承载力
§6.1 轴心受拉构件正截面受拉承载力计算
受力过程的三个阶段: 第I阶段:从加载到砼开裂前 第Ⅱ阶段:砼开裂至钢筋即将屈服 第Ⅲ阶段:钢筋开始屈服至全部钢筋屈服 轴心受拉构件正截面受拉承载力计算公式如下
Nu f y As
§6.2 偏心受拉构件正截面受拉承载力计算
基本公式
Nu e f y A (h0 a )
' s ' s
Nu e f y As (h0 as )
'
h e e0 as 2 h ' ' e e0 as 2
对称配筋时
Nu e A As ' f y (h0 as )
' s
'
h ' e e0 as 2
h e e0 as 2
适用条件: 设计时,取
对称配筋时会出现x<2a`情况,可按偏心受压相应情 况类似处理。
6.2.2小偏心受拉构件正截面受拉承载力计算
小偏心受拉:N作用在As合力点和A`s合力点范围以内时 当轴力处于纵向钢筋之间时发生此种破坏。全截面均受拉应力, 但As一侧拉应力较大,As一侧拉应力较小。随着拉力增加,As一 侧首先开裂,但裂缝很快贯通整个截面,破坏时混凝土裂缝贯通, 全部纵向钢筋受拉屈。
基本公式
Nu f y As f y' As' 1 fcbx x ' ' ' N u e 1 f cbx h0 f y As (h0 as ) 2
x 2as' x xb x xb N e f bx (h xb ) u 1 c b 0 ' 2 As ' ' f y (h0 as ) ' 1 f cbxb N u f y ' As As fy fy
'
§6.3 偏心受拉构件斜截面受剪承载力计算
可按下式计算
Asv 1.75 Vu f t bh0 1.0 f yv h0 0.2 N 1.0 s Asv 1.0 f yv h0 0.36 f t bh0 s
当右边计算值小于 时,即斜裂缝贯通全截面, Asv f yv 。 h0 剪力全部由箍筋承担,受剪承载力应取
相关文档
最新文档