初中几何热点问题探究

合集下载

初中数学几何画图题目

初中数学几何画图题目

初中几何热点问题探究几何作图及操作探究问题这类问题是应用所学的知识对生活中可实施性、操作性问题进行讨论、归纳和动手设计的题型,它涉及日常生活中的方方面面,出现的类型有:寻找最佳点问题、测量问题、面积分配问题、 几何设计问题•这类试题是让学生通过具体的操作或借助计算机技术来获得感性认识,构建数学知 识,以达到动手动脑的目的•解决这类问题时,一般需要经历观察、操作、思考、想象、推理、交 流、反思等实践活动过程, 利用已有的感知与发现结论从而解决问题 •关键是要学生学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数 学问题,适合现有的知识水平和实践能力.(一)几何作图题1、尺规作图题例 (2007南京)已知直线I 及直线I 外一点A ,分别按下列要求写出画法,并保留作图痕迹•⑴在图1-1中,只用尺规在直线 I 上画出两点 B C,使得点A B 、C 是一个等腰三角形的三 个顶点; ⑵在图1-2中,只用圆规在在线I 外画出一点P,使得点A 、P 所在直线与直线I 平行• 解析 ⑴画法一:以A 点为圆心,大于 A 点到直线I 的距离为半径画弧,与直线 I 交于B C 两点,则点B C 即为所求•(如图1-3 )画法二:在直线I 上取一点B ,以B 为圆心,AB 的长为半径画弧,与直线I 交于点C,则点B 、 C 即为所求•(如图1-4 )图1-4评‘点 :本题利用尺规作图,作等腰三角形和平行线,方法比较新颖,既考查了学生的作图能 力,更考查了学生对原理的分析理解能力•第⑴问作等腰三角形要注意有两种情况,而第⑵问过直线外一点作已知直线的平行线则是利用两组对边分别相等的四边形是平行四边形的判定方法•熟悉 一种基本作图,并能运用规范的语言对步骤进行描述是作图题的基本技能练习:(2006锦州)在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个1直角三角形,方法是:画线段AB 分别以点A 、B 为圆心,以大于 一AB 长为半径画弧,两弧相交于2点C,连接AC;再以点C 为圆心,AC 长为半径画弧,交 AC 和延长线于点 D,连接BD,则厶ABD 就是直角三角形•⑴请你说明其中的道理;⑵请利用上述方法作一个三角形,使其中一个锐角为⑵画法: 长为半径画弧, 在直线I 上任取B 、C 两点,以A 为圆心,BC 的长为半径画弧,以 C 为圆心,AB 的 两弧交于点P ,则点P 即为所求•(如图1-5 )图1-1 图1-2图1-3图1-530° (不写作法,保留作图痕迹)解析在正方形网格中找到适当的格点,禾U 用网格中有些线段的端点在格点上,可以计算线段的长度,从而利用三边相等证明两个三角形全等,再得到角相等 •如图3-2在正方形网格中找到P , P 2, P 3这三个点,作射线 OP,射线OP 即为所求•评‘点 :本题利用格点作图,作一个角的角平分线,方法新颖,思路巧,考查了学生对角平线 原理的分析理解能力以及解题方法和技巧上的创新能力•正确利用格点作图要充分运用好网格中隐含的平行、垂直、特殊关系的角以及相等的线段和线段的长,处理好网格中计算例2如图,在一个“ 10X 10”的正方形 DEFG 网格中有一个△ ABC⑴在网格中画出厶 ABC 向下平移三个单位得到的△ A i BiC i ;⑵在网格中画出厶ABC 绕C 点逆时针方向旋转 900得到的△ A 2B 2C ;⑶若以EF 所在的直线为x 轴,ED 所在的直线为y 轴建立平面直角坐标系,写出A i ,A 2两点的坐标•解析 ⑴图形平移时,图形上的每个点都平移相同的距离 ,如图4-2中所示△ A i BC;⑵图形旋转过程中,各部分都旋转相同的角度,如图4-2中所示△ AB 2C ;⑶平面直角坐标系如图 4-2 所示,易知:A i (8,2),A 2(4,9).评点:平移、旋转的简单作图多以网格和坐标系为背景,借点的坐标的变化引起图形的变2、格点作图例1如图2-1,已知方格纸中的每个小方格都是全等的正方形,出/ AOB 勺平分线./ AOB 1在方格纸上,请作D化•因此,画平移、转后的图形时,关键是确定图形的关键点,然后根据相应顶点的平移方向、平 移距离、旋转方向、旋转角度都不变的性质作出关键点的对应点,这种“以局部代整体”的作图方 法是平移和旋转作图是最常用的方法.练习 1. ( 2007宁波)面积为1个平方单位的正三角形,称为单位正三角形.下面图中的每一个小三角形都是单位正三角形•三角形的顶点称为格点•在图 5-1,图5-2,图5-3中分别画出一个平行四边形、梯形和对边都不平行的凸四边形,要求这三个图形的顶点都在格点、面积都为1 2个平方单位.2.在如图6所示的平面直角坐标系中,已知△ ABC . (1)将厶ABC 向x 轴负半轴方向平移 4个 单位得到厶A I B I C I ,画出图形并写出点 A i 的坐标;⑵以原点O 为旋转中心,将△ ABC 顺时针旋转90°得到△ A 2B 2C 2,画出图形并写出点 A 2的坐标; ⑶ △ A 2B 2C 2可以看作是由△先向右平移4个单位,然后以原点O 为旋转中心,顺时针旋转90°得到的.除此之外,△ A 2B 2C 2还可以由厶A i B i C i 怎样变换得到?请选择一种方法,写出图形 变换的步骤.(二)操作探究题例i (2006连云港)(i )图7-i 是一块直角三角形纸片.将该纸片按如方法折叠,使点A与点C 重合,DE 为折痕.试证明厶CBE 是等腰三角形;(2) 再将图7-1中的△ CBE 沿对称轴EF 折叠(如7-2图).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个 矩形为“组合矩形”。

人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

人教版数学七年级上册第四章几何图形初步—线段的计算热点归纳【含答案】

线段的计算热点题型归纳一、直接计算例 如图,AB=40,点C 为AB 的中点,点D 为CB 上的一点,点E 是BD 的中点,且EB=5,求CD 的长。

解:因为AB=10.点C 为AB 的中点,所以CB=AB=×40=20.1212因为点E 为BD 的中点,EB=5,所以BD=2EB=10,所以CD=CB-BD=20-10=10巩固练习:1.如图,P 是线段AB 上一点,点M 、N 分别为AB 、AP 的中点,若AB=16,BP=6,求线段MN 的长2.如图,已知线段AD=6cm,线段AC=BD=4cm,E 、F 分别是线段AB 、CD 的中点,求线段EF 的长。

二、方程思想例.如图,线段AB 上有两点M 、将AB 分成2:3两部分,点N 将AB分成4:1两部分,且线段MN=8cm,则AM 、NB 的长各为多少?解:依题意,设AM=2X,那么BM=3X,AB=5X.由AN:NB=4:1,得AN=AB=4X,BN=AB=x,4515即有4x-2x=8,解得x=4,所以AM=2x=2×4=8(cm),则AM 、BN 的长分别为8cm 、4cm.变式练习:如图,线段AB 上有两点M,N,AM:MB=5:11,AN:NB=5:7,MN=1.5,求AB 的长。

巩固练习:1.如图,线段AB 被点C 、D 分成了3:4:5三部分,且AC 的中点M 和DB 的中点N 之间的距离是40cm,求AB 的长。

2.如图,已知线段AB 上有两点C 、D,AD=35,BC=44,AC=,求23BD 线段AB 的长。

三、分类讨论的思想例 已知线段AB=14cm,在直线AB 上有一点C,且BC=4cm,,M 是线段AC 的中点,求线段AM 的长。

解:(1)当点C 在线段AB 上时因为M 是线段AC 的中点,所以AM=AC,又因为C=AB-12BC,AB=14cm,BC=4cm,所以AM=(AB-AC)= (14-4)=5cm.1212(2)当点C 在线段AB 的延长线上时,如图因为M 是线段AC 的中点,所以AM=AC,又因为12AC=AB+C,AB=14cm,BC=4cm,所以AM=(AB+C)= (14+4)=9cm.1212变式练习已知线段AB 、BC 在同一直线上,AB=5,BC=2,求AC 的长。

中考热点:(一)构造三角形外接圆解四类难题;(二)圆+三角函数综合题型

中考热点:(一)构造三角形外接圆解四类难题;(二)圆+三角函数综合题型

中考热点:构造三角形外接圆解四类难题一、问题导读在解证几何题时,四点共圆已经被一些学生所了解或重视,然而作三角形的外接圆还没有被学生重视,使对许多几何题的证明难于入手.下面介绍作三角形外接圆这个辅助圆的思路和方法,以期待对你的学习有所帮助。

二、典例精析类型1 作三角形外接圆,求含有乘积式问题例1.已知AD是△ABC的角平分线,求证:ABAC=AD+BDCD.【分析】作辅助圆,根据同弧所对的圆周角相等和角平分线证明相似得出比例式,再证△BAD∽△ECD,根据相似三角形的性质得出ADED=BDDC,即可得出答案.【解答】证明:作△ABC的外接圆O,延长AD交⊙O于E,连接CE,∵AE平分∠BAC,∴∠BAD=∠EAC,∵∠B=∠E,∴△ABD∽△AEC,∴AB/AE=AD/AC,∴ABAC=ADAE=AD(AD+DE)=AD2+ADED,∵∠B=∠E,∠BAD=∠DCE,∴△BAD∽△ECD,∴AD/CD=BD/ED,∴ADED=BDDC,∴ABAC=ADAE=AD+BDDC.【点评】本题考查了相似三角形的性质和判定,圆周角定理的应用,解此题的关键是推出△ABD∽△AEC 和△BAD∽△ECD,主要考查学生的推理能力.例2.如图,ABCD是圆内接四边形,AB、DC的延长线交于E,AD、BC的延长线交于F,EP、FQ切圆于P、Q两点,求证:EP+FQ=EF.【分析】作辅助圆,构建四点共圆的四边形,利用切割线定理列式:EP2=ECED,FQ2=FCFB,得出结论.【解答】证明:作△BCE的外接圆,交EF于G,连接CG,∵A、B、C、D四点共圆,∴∠FDC=∠ABC,∵B、C、G、E四点共圆,∴∠ABC=∠CGE,∴∠FDC=∠ABC=∠CGE,∴F、D、C、G四点共圆,由切割线定理得:EP=ECED,FQ=FCFB,EF=(EG+GF)EF=EGEF+GFEF=ECED+FCFB,∴EP+FQ=EF.【点评】本题考查了切割线定理和圆内接四边形的性质,本题运用了圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角);反之也成立;在证明线段的平方和时,一方面考虑利用勾股定理来求,另一方面考虑利用切割线定理列式得出.类型2 作三角形外接圆,利用圆中的角证明线段的和差倍半问题例3.四边形ABCD内接于圆,另一圆的圆心在边AB上且与其余三边相切,求证:AD+BC=AB.【分析】先画图,设AB上的圆心为P,由等腰三角形的性质得,∠CMB=∠PDC,则M,P,C,D四点共圆,从而得出∠AMD=∠ADM,最后证得AD+BC=AB.【解答】证明:设AB上的圆心为P,在AB上取一点M,使MB=BC,连接MC,MD,PD,PC 等腰△CMB中,∠CMB=∠MCB,∴∠CMB=1/2(∠MCB+∠CMB)=1/2(180°﹣∠B),=1/2∠ADC (圆内接四边形ABCD的对角相加为180°),=∠PDC (设圆P切AD于E,切DC于F,有PE=PF,Rt△PDE和Rt△PDF中,一对儿直角边相等,且斜边是公共的,∴两Rt△全等,可得PD平分∠CDA),∴M,P,C,D四点共圆,∴∠AMD=∠DCP=1/2∠DCB (同理,可证PC平分∠DCB),=1/2(180°﹣∠A)(ABCD的另一对儿对角和为180°,=1/2(∠ADM+∠AMD),∴∠AMD=∠ADM∴AD=AM,∴AD+BC=AM+MB=AB.例4.如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED=∠A.求证:BD=2CD.【分析】首先作DO∥AB交AC于O,得出O为△EDC的外心,进而得出△ACE∽△ADF,即有AD/AC=AF/AE,即可得出△ADO∽△BAE,即可得出BD=2CD.【解答】证明:作DO∥AB交AC于O.则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,所以O为△EDC的外心,取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.所以△ACE∽△ADF,即有AD/AC=AF/AE.再由DO∥AB,∠ADO=∠BAE,∠AOD=180﹣∠DOC=180°﹣∠A=180°﹣∠BED=∠AEB,所以△ADO∽△BAE,即得OD/AE=AD/AB=AF/AE.故AF=OD=OC=1/2CF,从而AO=2OC.由DO∥AB,得:BD=2CD.类型3 作三角形的外接圆,利用圆中的角判断三角形的形状例5.已知:AD是△ABC的中线,若∠ABC+∠CAD=90.试判断△ABC的形状.分析:作△ABC的外接圆.使分散的∠ABC.∠CAD集中在一起,从而知道中线AD在外接圆的直径上.根据圆中弦的定理,可判断△ABC的形状.解:作△ABC的外接圆.延长AD交外接圆于E.连结BE.∵∠EBC=∠CAD,又∠ABC+∠CAD=90°,∴∠ABC+∠EBC=90°,即∠ABE=90°.AE是△ABC的外接圆的直径.又AD是BC边上的中线.(1)当BC不是外接圆的直径时,即BC为弦,则 AD⊥BC,AD是BC边的中垂线.△ABC为等腰三角形.(2)当BC是外接圆的直径时,∠CAB=90°,△ABC为直角三角形.例6. 设P、Q为线段BC 上两定点,且BP=CQ.A为BC外一动点.当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?分析:作△ABC的外接圆,能把角等转化为弦等,构造全等三角形.证明:作△ABC的外接圆,延长AP、AQ分别交外接圆于E、F.连结BE、CF.∵∠BAP=∠CAQ,即∠BAE=∠CAF,∴BE=FC, 弧BE=弧CF,∴弧BF=弧CE, ∴∠EBP=∠FCQ,又BP=CQ,∴△BEP≌△CFQ.∠E=∠F,在△ABE和△ACF中,∠E=∠F,∠BAE=∠CAF,BE=CF.∴△ABE≌△ACF,AB=AC, ∴△ABC是等腰三角形.类型4 作三角形的外接圆,解几何综合题例7.已知:A、B、C三点不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图①,当∠A=45°,R=1时,求∠BOC的度数和BC的长;ii)如图②,当∠A为锐角时,求证:sinA=BC/2R;(2)若定长线段BC的两个端点分别在∠MAN的两边AM、AN(B、C均与A不重合)滑动,如图③,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为P,试探索在整个滑动过程中,P、A两点间的距离是否保持不变?请说明理由.【分析】(1)i)根据圆周角定理得出∠BOC=2∠A=90°,再利用勾股定理得出BC的长;ii)作直径CE,则∠E=∠A,CE=2R,利用sinA=sinE=BC/2R,得出即可;(2)首先证明点A、B、P、C都在⊙K上,再利用sin60°=BC/AP,得出AP=2/ sin60°=4√3/3(定值).【解答】(1)i)∵A、B、C均在⊙O上,∴∠BOC=2∠A=2×45°=90°,∵OB=OC=1,∴BC=√2,注:也可延长BO或过O点作BC的垂线构造直角三角形求得BC.ii)证法一:如图②,连接EB,作直径CE,则∠E=∠A,CE=2R,∴∠EBC=90°∴sinA=sinE=BC/2R,证法二:如图③.连接OB、OC,作OH⊥BC于点H,则∠A=1/2∠BOC=∠BOH,BH=1/2BC∴sinA=sin∠BOH=BH/OB=1/2BC/R=BC/2R,(2)如图④,连接AP,取AP的中点K,连接BK、CK,在Rt△APC中,CK=1/2AP=AK=PK,同理得:BK=AK=PK,∴CK=BK=AK=PK,∴点A、B、P、C都在⊙K上,∴由(1)ii)可知sin60°=BC/AP∴AP=2/ sin60°=4√3/3(定值),故在整个滑动过程中,P、A两点间的距离不变.【点评】此题主要考查了圆周角定理以及解直角三角形和四点共圆等知识,根据已知得出点A、B、P、C 都在⊙K上以及sin60°=BC/AP是解题关键.中考热点:圆+三角函数综合题型一、问题导读“圆”这一部分知识,多年来都是中考的重点,锐角三角函数大家也不算陌生,那么当圆遇上三角函数又会出现什么呢?下面就和大家分享一下圆偶遇三角函数之后所发生的一个小片段吧!当然如果想了解具体发生了什么,首先得记住他们的暗号喔,通过下面问题的探讨,不难发现它们携手并进暗号呢。

专题四 几何测量——2023届中考数学热点题型突破(含答案)

专题四 几何测量——2023届中考数学热点题型突破(含答案)

专题四几何测量——2023届中考数学热点题型突破1.重庆轨道5号线正在如火如荼地建设中.如图工程队在由南向北的方向上将轨道线路铺设到A处时,测得档案馆C在A北偏西方向的600米处,再铺设一段距离到达B 处,测得档案馆C在B北偏西方向.(1)请求出A,B间铺设了多远的距离;(结果保留整数,参考数据:,)(2)档案馆C周围米内要建设文化广场,不能铺设轨道,若工程队将轨道线路铺设到B处时,沿北偏东的BE方向继续铺设,请问这是否符合建设文化广场的要求,通过计算说明理由.2.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O 距地面AC的高度为,此时观测到楼AB底部点A处的俯角为,楼CD上点E 处的俯角为,沿水平方向由点O飞行到达点F,测得点E处俯角为,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到.参考数据:,,,).3.周末,小刚和爸爸一起到某湿地公园进行数学实践活动.如图,在爸爸的协助下,小刚在河的南岸点A处观测到北岸的一棵大树P在北偏东方向上,他沿北偏东方向走了到达点B处,此时他发现这棵大树在自己的正北方向上.请你帮小刚求出点B和大树P之间的距离.(结果精确到.参考数据:,,,)4.某数学小组的同学利用两个高度相同的测角仪和一把卷尺测量路杆AB顶端巨型广告牌的高度AN,如图,他们在路杆AB两侧的点C和点D处分别放置测角仪CE和DF(点C,B,D在同一直线上,点A,N与点C,B,D在同一平面内),测角仪CE测得点N处的仰角为,测角仪DF测得点A处的仰角为.已知两个测角仪相距,测角仪CE与AB之间的距离为.(1)求广告牌的高度AN.(结果精确到.参考数据:,,,)(2)利用测角仪测角度时,有哪些注意事项?(写出两条即可)5.如图是某地铁出站口扶梯侧面设计示意图,起初工程师计划修建一段坡度为,高度为32米的扶梯AB,但这样坡度太陡容易引发安全事故.现工程师对设计图进行了修改:修建AC,DE两段扶梯,并在这两段扶梯之间修建5米的水平平台CD,其中,,扶梯AC长米,点B,E在同一水平线上.求修改后扶梯底部E与原来扶梯底部B之间的距离.(结果精确到0.1米.参考数据:,,,)6.为测量某机场东西两栋建筑物A,B之间的距离.如图,勘测无人机在点C处,测得建筑物A的俯角为,CA的距离为千米,然后沿着平行于AB的方向飞行6.4千米到点D处,测得建筑物B的俯角为.(参考数据:,,, ,,).(1)无人机距离地面的飞行高度是多少千米?(2)求该机场东西两栋建筑物A,B之间的距离.(结果精确到0.01千米)7.“一去紫台连朔漠,独留青冢向黄昏.”美丽的昭君博物院作为著名景区,现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB的高度,某数学兴趣小组在D处用测角仪测得雕像顶部A的仰角为,测得底部B的俯角为.已知测角仪CD与水平地面垂直且高度为1米,求雕像AB的高.(用非特殊角的三角函数及根式表示即可)8.中国廊桥是桥梁与房屋的珠联璧合之作.如图,某桥面建造古典楼阁和廊道,主跨顶部建造双层楼阁.数学兴趣小组的同学为测量桥面上楼阁AB的高度,从D处观测到楼阁顶部点A的仰角为,观测到A点的正下方楼阁底部点B的仰角为,已知桥面高BC为50米,则楼阁AB的高度约为多少米(参考数据:,,)9.如图,由飞行高度为2000米的飞机上的P点测得到大楼顶部A处的俯角为,到大楼底部B处的俯角为,问大楼AB的高度约为多少米?(结果保留整数.参考数据:,)答案以及解析1.答案:(1)220(2)见解析解析:(1)解:如图,过点C作,交AB的延长线于点F,根据题意可知,,,,(2)符合建设文化广场的要求,理由如下,如图,过点C作根据题意可得符合建设文化广场的要求.2.答案:AC的长约为解析:分别延长AB,CD与直线OF交于点G,点H,如图,则.又,四边形ACHG是矩形,.由题意,得,,,,.在中,,,.是的外角,,,.在中,,,,.答:楼AB与CD之间的距离AC的长约为.3.答案:解析:如图,过点B作于点F,过点P作于点E,则四边形EFBP 是矩形,,.在中,,,,.在中,,,.故点B和大树P之间的距离约为.4.答案:(1)(2)见解析解析:(1)如图,连接EF交AB于点G,则,,,.在中,,.在中,,,.答:广告牌的高度AN大约为.(2)①测量时,测角仪要与地面垂直;②需测量多次,取平均值.(答案不唯一,合理即可)5.答案:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米解析:如图,分别过点A,D作EB的垂线,垂足分别为点F,H,延长DC交AF于点M,则四边形DMFH是矩形,,,.,.在中,,,.,的坡度为,,,.在中,,,.答:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米.6.答案:(1)无人机距离地面的飞行高度约是1.54千米(2)该机场东西两建筑物AB的距离约为7.2千米解析:(1)过点A作于点E,过点B作于点F.,在中,,,(千米)答:无人机距离地面的飞行高度约是1.54千米;(2)在中,(千米),四边形AEFB是矩形,千米,,在中,,,解得(千米),(千米)(千米)答:该机场东西两建筑物AB的距离约为7.2千米.7.答案:雕像AB的高为米解析:如图,过点C作于H,则.在中,.在中,,则.答:雕像AB的高为米.8.答案:楼阁AB的高度约为9.5米解析:由题意得:,在中,米,,(米),在中,,(米),(米),楼阁AB的高度约为9.5米.9.答案:大楼AB的高度约为541米解析:解:根据题意构建数学模型,如图,过点P作AB的垂线,交BA的延长线于点D.飞机的飞行高度为2000米,米.在中,,.在中,,(米),(米).答:大楼AB的高度约为541米.。

专题41 几何问题(1)之动点问题【热点专题】

专题41 几何问题(1)之动点问题【热点专题】
第七部分 几何图形综合
专题41 几何问题(1)之动点问题
数学
题型精讲
题型一:圆背景下的动态探究题 【例 1】(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水 轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为 3m 的筒车⊙O 按逆时针方向
每分钟转 圈,筒车与水面分别交于点 A、B 筒车的轴心 O 距离水面的高度 OC 长为 2.2m,筒车上均匀分布着若干个盛水筒.若以某个盛水筒 P 刚浮出水面时开始计算时 间.
PQ PQ2.在
Rt△POQ 中,PQ2=OP2+OQ2=(8﹣t)2+t2.由四边形 OPCQ 的面积 S=S△POQ+S△PCQ
可得出答案.
题型二:四边形动点探究 【例 3】(2021·山东中考真题)如图,已知正方形 ABCD,点 E 是 BC 边上一点,将 △ABE 沿直线 AE 折叠,点 B 落在 F 处,连接 BF 并延长,与∠DAF 的平分线相交 于点 H,与 AE,CD 分别相交于点 G,M,连接 HC (1)求证:AG=GH; (2)若 AB=3,BE=1,求点 D 到直线 BH 的距离; (3)当点 E 在 BC 边上(端点除外)运动时,∠BHC 的大小是否变化?为什么?
【分析】(1)如图 1 中,连接 OA.求出∠AOC 的度数,以及旋转速度即可解决问 题. (2)如图 2 中,盛水筒 P 浮出水面 3.4 秒后,此时∠AOP=3.4×5°=17°,过点 P 作 PD⊥OC 于 D,解直角三角形求出 CD 即可. (3)如图 3 中,连接 OP,解直角三角形求出∠POM,∠COM,可得∠POH 的度 数即可解决问题.
【例 2】(2020•苏州)如图,已知∠MON=90°,OT 是∠MON 的平分线,A 是射线 OM 上一点,OA=8cm.动点 P 从点 A 出发,以 1cm/s 的速度沿 AO 水平向左作匀速 运动,与此同时,动点 Q 从点 O 出发,也以 1cm/s 的速度沿 ON 竖直向上作匀速运 动.连接 PQ,交 OT 于点 B.经过 O、P、Q 三点作圆,交 OT 于点 C,连接 PC、 QC.设运动时间为 t(s),其中 0<t<8. (1)求 OP+OQ 的值; (2)是否存在实数 t,使得线段 OB 的长度最大?若存在,求出 t 的值;若不存在, 说明理由. (3)求四边形 OPCQ 的面积.

热点难点突破-不拉分系列之(十四)解答立体几何中探索性问题

热点难点突破-不拉分系列之(十四)解答立体几何中探索性问题

立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.[典例](理)(2012·福建高考改编)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.[解]如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体P ABC六条棱的中点的距离相等?说明理由.[解](1)证明:因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP.(2)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG .所以四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG . 分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN . 与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG的中点Q ,且QM =QN =12EG , 所以Q 为满足条件的点.[题后悟道] 此类问题一般是先探求点的位置,多为线段的中点或某个三等分点,一般点的情形很少,然后给出符合要求的证明,注意书写格式要规范,一般有两种格式:第一种书写格式:探求出点的位置→证明→符合要求→写出明确答案;第二种书写格式:从结论出发“要使什么成立”,“只需使什么成立”,寻求使结论成立的充分条件,类似于分析法.针对训练(2012·黄山模拟)如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.证明:存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD 的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF∥平面AEC. 又BF⊂平面BMF,∴BF∥平面AEC.。

专题37 几何最值之费马点问题【热点专题】-【中考高分导航】备战2022年中考数学考点总复习(全国

专题37  几何最值之费马点问题【热点专题】-【中考高分导航】备战2022年中考数学考点总复习(全国

2
2
2
答:二次函数解析式为 y 3 x2 3x 3 3 .
2
2
(3)直线 AH 的解析式为 y 3x 3 3 ,直线 BK 的解析式为 y 3x 3 ,

y
3 x 3
3
解得
x
3
,即 K(3,2 3 ),则 BK=4,
y
3x
3
y 2 3
∵点 H、B 关于直线 AK 对称,K(3,2 3 ),∴HN+MN 的最小值是 MB,
模型展示:如图,在△ABC 内部找到一点 P,使得 PA+PB+PC 的值最小.
当点 P 满足∠APB=∠BPC=∠CPA=120º,则 PA+PB+PC 的值最小,P 点称为三 角形的费马点. 特别地,△ABC 中,最大的角要小于 120º,若最大的角大于或等于 120º,此时费马 点就是最大角的顶点 A(这种情况一般不考,通常三角形的最大顶角都小于 120°) 费马点的性质: 1.费马点到三角形三个顶点距离之和最小。 2.费马点连接三顶点所成的三夹角皆为 120°。
②∵四边形 ABCD 是正方形,∴BC=AB=2 2 ,∠B=90°,∠DAE=∠ADC=45°,∴AC= AB2 BC2 = 2 AB=4,
∵△ADE 绕点 D 逆时针旋转 90°得到△ DCF,∴∠DCF=∠DAE=45°,AE=CF,∴∠ECF=∠ACD+∠DCF=90°, 设 AE=CF=x,EF2=y,则 EC=4−x,∴y=(4−x)2+x2=2x2−8x+160(0<x≤4).即 y=2(x−2)2+8, ∵2>0,∴x=2 时,y 有最小值,最小值为 8, 当 x=4 时,y 最大值=16,∴8≤EF2≤16. (2)如图中,将△ ABE 绕点 A 顺时针旋转 60°得到△ AFG,连接 EG,DF.作 FH⊥AD 于 H.

专题 几何最值之将军饮马问题【热点专题】

专题   几何最值之将军饮马问题【热点专题】

专题几何最值之将军饮马问题【热点专题】“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现.【抽象模型】如图,在直线上找一点P使得PA+PB最小?【模型解析】作点A关于直线的对称点A’,连接PA’,则PA’=PA,所以PA+PB=PA’+PB当A’、P、B三点共线的时候,PA’+PB=A’B,此时为最小值(两点之间线段最短)题型一:两定一动模型当两定点【例1】1.如图,点C的坐标为(3,y),当△ABC的周长最短时,求y的值.【例2】2.如图,正方形ABCD中,AB=7,M是DC上的一点,且DM=3,N是AC上的一动点,求|DN-MN|的最小值与最大值.【例3】3.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点A(1,0),B(5,0),C(0,4).(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足PA+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由.(请在图2中探索)题型二:一定两动模型模型作法结论点P 在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得△PCD 周长最小.分别作点P 关于OA 、OB 的对称点P ′、P ″,连接P ′P ″,交OA 、OB 于点C 、D ,点C 、D 即为所求.△PCD 周长的最小值为P ′P ″点P在∠AOB 内部,在OB 边上找点D ,OA 边上找点C ,使得PD +CD 最小.作点P 关于OB 的对称点P ′,过P ′作P ′C ⊥OA 交OB 于D ,点C 、点D 即为所求.PD +CD 的最小值为P ′C【例4】4.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.【例5】5.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【例6】6.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.【例7】7.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x 轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.题型三:两定两动模型模型作法结论点P、Q在∠AOB内部,在OB边上找点D,OA边上找点C,使得四边形PQDC周长最小.分别作点P、Q关于OA、OB的对称点P′、Q′,连接P′Q′,分别交OA、OB于点C、D,点C、D即为所求.PC+CD+DQ的最小值为P′Q′,所以四边形PQDC周长的最小值为PQ+P′Q′【例8】8.如图,在矩形ABCD 中,AB =4,BC =7,E 为CD 的中点,若P 、Q 为BC 边上的两个动点,且PQ =2,若想使得四边形APQE 的周长最小,则BP 的长度应为__________.【例9】9.如图,已知直线l 1∥l 2,l 1、l 2之间的距离为8,点P 到直线l 1的距离为6,点Q 到直线l 2的距离为4,PQ =430,在直线l 1上有一动点A ,直线l 2上有一动点B ,满足AB ⊥l 2,且PA +AB +BQ 最小,此时PA +BQ =______.题型四:两定点一定长模型作法结论如图,在直线l 上找M 、N 两点(M 在左),使得AM +MN+NB 最小,且MN =d .将A 向右平移d 个单位到A ′,作A ′关于l 的对称点A ",连接A "B 与直线l 交于点N ,将点N 向左平移d 个单位即为M ,点M ,N 即为所求.AM +MN +NB 的最小值为A "B +d如图,l 1//l 2,l 1、l 2间距离为d ,在l 1、l 2分别找M 、N 两点,将A 向下平移d 个单位到A ,连接A ′B 交直线l 2于点N ,过点N 作MN ⊥l 1,连接AM .点M 、N 即为所求.AM +MN +NB 的最小值为A 'B +d .使得MN⊥l1,且AM+MN+NB最小.【例10】10.在平面直角坐标系中,矩形OABC如图所示,点A在x轴正半轴上,点C在y轴正半轴上,且OA=6,OC=4,D为OC中点,点E、F在线段OA上,点E在点F左侧,EF=2,当四边形BDEF的周长最小时,求点E的坐标【例11】11.村庄A和村庄B位于一条小河的两侧,若河岸彼此平行,要架设一座与河岸垂直的桥,桥址应如何选择,才使A与B之间的距离最短?12.如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=12,AD平分∠CAB,点F是AC的中点,点E是AD 上的动点,则CE+EF的最小值为()A.3B.4C.33D.2313.如图,在锐角三角形ABC中,BC=4,∠ABC=60°,BD平分∠ABC,交AC于点D,M、N分别是BD,BC 上的动点,则CM+MN的最小值是()A.3B.2C.23D.414.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD 的最小值是()A.310B.103C.9D.9215.如图,在正方形ABCD中,E是AB上一点,BE=2,AB=8,P是AC上一动点,则PB+PE的最小值_____.16.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M 是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.17.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为多少?18.在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,A(3,0),B(0,4),D为边OB的中点.(1)若E为边OA上的一个动点,求△CDE的周长最小值;(2)若E、F为边OA上的两个动点,且EF=1,当四边形CDEF的周长最小时,求点E、F的坐标.19.如图所示抛物线y=ax2+bx+c过点A−1,0,点C0,3,且OB=OC(1)求抛物线的解析式及其对称轴;(2)点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长的最小值;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3∶5两部分,求点P的坐标.20.如图,在平面直角坐标系中,矩形OABC的边BC交x轴于点D,AD⊥x轴,反比例函数y=k(x>0)的图x象经过点A,点D的坐标为(3,0),AB=BD.(1)求反比例函数的解析式;(2)点P为y轴上一动点,当PA+PB的值最小时,求出点P的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.。

第5讲 难点探究专题:几何图形中动角问题(3类热点题型讲练)(解析版)--初中数学北师大版7年级上册

第5讲 难点探究专题:几何图形中动角问题(3类热点题型讲练)(解析版)--初中数学北师大版7年级上册

第05讲难点探究专题:几何图形中动角问题(3类热点题型讲练)目录【考点一几何图形中动角定值问题】 (1)【考点二几何图形中动角数量关系问题】 (7)【考点三几何图形中动角求运动时间问题】 (11)【考点一几何图形中动角定值问题】∠的度数.(1)求MON∠的内部线绕点(2)当射线OC在AOB∠(3)在(2)的条件下,MON【答案】(1)35︒(2)发生变化,理由见解析1.(2021春·广东深圳·七年级深圳中学校考开学考试)如图,将两块直角三角板的45︒角和一个90︒角的顶点B 叠放在一起,将三角板BDE 绕点B 旋转,旋转过程中,三角板BDE 的直角边BE 始终在ABC ∠的内部,在旋转过程中(1)若126ABD ∠=︒时,CBE =∠______°;(2)善于思考的小明发现,在旋转过程中,①CBD ABE ∠-∠和②ABD CBE ∠+∠的度数均各为一个定值,请你写出这两个定值,定值:①______;②______.(3)作ABE ∠和CBD ∠的平分线BM ,BN ,在旋转过程中MBN ∠的值是否发生变化?若不变,请求出这个定值;若变化,请求出变化的范围.【答案】(1)9(2)45CBD ABE ∠-∠=︒,135ABD CBE ∠+∠=︒;(3)67.5︒【分析】(1)由角的和差关系可得:DBE ABC CBE ABD ∠+∠-∠=∠,再代入数据可得答案;(2)由BE 在ABC ∠的内部,如图,()()CBD ABE DBE CBE ABC CBE ∠-∠=∠-∠-∠-∠,∴(CBD ABE DBE CBE ∠-∠=∠-∠9045CBE CBE=︒-∠-︒+∠45=︒;∴ABD CBE ABC CBD ∠+∠=∠+∠ABC DBE=∠+∠4590=︒+︒135=︒;(3)∵BM ,BN 分别平分ABE ∠∴12EBM APE ∠=∠,CBN ∠=∵由(1)得:CBE BDE ∠=∠+由(2)得:135ABD CBE ∠+∠=∴MBN NBC CBE MBE∠=∠+∠+∠(11352ABD CBD ABE =︒-∠+∠+∠(1135ABD ABD CBE =︒-∠+∠-∠(1)如图1,当点B在射线OC上时,直接写出AOD∠的度数是____________∠的度数;(2)①如图2,当OB为COD∠的角平分线时,求出此时AOC∠的度数;②如图3,当OB为AOD∠的角平分线时,求出此时AOC∠平分线OE交AB于点E,再作∠(3)若OB只在COD∠内部旋转,作AOC∠的值是否发生变化?若不变,请求出这个值;若变化,请说明理由.在转动过程中EOF【答案】(1)105【点睛】本题主要考查了三角板中角度的计算,角平分线的定义,熟知三角板中角度的特点是解题的关键.3.(2023秋·重庆·七年级校考期末)如图∠=︒,OM,30COD【考点二几何图形中动角数量关系问题】例题:(2023秋·河北邢台·七年级统考期末)已知O 为直线AB 上一点,射线OD 、OC 、OE 位于直线AB 上方,OD 在OE 的左侧,120AOC ∠=︒,80DOE ∠=︒.(1)如图1,当OD 平分AOC ∠时,求EOB ∠的度数;(2)点F 在射线OB 上,若射线OF 绕点O 逆时针旋转n ︒(0180n <<且60n ≠),3FOA AOD ∠=∠.当DOE ∠在AOC ∠内部(图2)和DOE ∠的两边在射线OC 的两侧(图3)时,FOE ∠和EOC ∠的数量关系是否改变,若改变,说明理由,若不变,求出其关系.【答案】(1)40︒(2)不改变,2EOF EOC ∠=∠,理由见解析1.(2023春·辽宁沈阳·七年级统考期末)在数学实践活动课上,“奋进”小组准备研究如下问题:如图,点A ,O ,B 在同一条直线上,将一直角三角尺如图1放置,使直角顶点重合于点O ,COD ∠是直角,OE 平分BOC ∠.问题发现:(1)如图1,若30AOC ∠=︒,则DOE ∠的度数为______;(2)将这一直角三角尺如图2放置,其他条件不变,探究AOC ∠和DOE ∠的度数之间的关系,写出你的结论,并证明.(1)若30AOC ∠=︒时,则DOE ∠的度数为__________;(2)将图①中的COD ∠绕顶点O 顺时针旋转至图②的位置,其它条件不变,探究间的关系,写出你的结论,并说明理由;(3)将图①中的COD ∠绕顶点O 顺时针旋转至图③的位置,其他条件不变.直接写出【考点三几何图形中动角求运动时间问题】、、依次在直线MN上,现将射线OA绕点O沿例题:(2023秋·湖北襄阳·七年级统考期末)如图1,点A O B顺时针方向以每秒4︒的速度旋转,同时射线OB绕点O沿道时针方向以每秒6︒的速度旋转,直线MN保持不动,如图2,设旋转时间为t(t的值在0到30之间,单位:秒).(1)当3t =时,求AOB ∠的度数;(2)在运动过程中,当AOB ∠第二次达到60︒时,求t 的值;(3)在旋转过程中是否存在这样的t ,使得射线OB 与射线OA 的夹角为90︒?如果存在,请直接写出t 的值:如果不存在,请说明理由.【答案】(1)150︒(2)24秒(3)存在,9秒或27秒【分析】(1)当3t =时,12AOM ∠=︒,18BON ∠=︒,根据平角减去AOM ∠,BON ∠即可求解;(2)根据题意,当AOB ∠第二次达到60︒时,则4618060t t +=+,解方程即可求解;(3)当射线OB 与射线OA 第一次夹角为90︒时,两条射线共旋转1809090︒-︒=︒,当射线OB 与射线OA 第二次夹角为90︒时,两条射线共旋转18090270︒+︒=︒,分别解方程即可求解.【详解】(1)解:当3t =时,3412AOM ∠=⨯=︒,3618BON ∠=⨯=︒,所以1801218150AOB ∠=︒-︒-︒=︒,答:AOB ∠的度数是150︒;(2)根据题意,当AOB ∠第二次达到60︒时,4618060t t +=+,解得24t =,答:当AOB ∠第二次达到60︒时,t 的值是24秒;(3)存在这样的t ,使得射线OB 与射线OA 的夹角为90︒,理由如下:当射线OB 与射线OA 第一次夹角为90︒时,两条射线共旋转1809090︒-︒=︒,所以4690t t +=,解得9t =;当射线OB 与射线OA 第二次夹角为90︒时,两条射线共旋转18090270︒+︒=︒,所以46270t t +=,解得27t =,综上所述,t 的值是9秒或27秒.【点睛】本题考查了结合图形中的角度计算,一元一次方程的应用,数形结合是解题的关键.【变式训练】1.(2023秋·甘肃兰州·七年级校考期末)如图,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒2︒的速度沿顺时针方向旋转一周,如图2,经过BOC ∠.求t 的值;并判断此时ON 是否平分AOC ∠?说明理由;(2)在(1)的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6︒的速度沿逆时针方向旋转一周,那么经过多长时间OC 平分MON ∠?请说明理由.【答案】(1)152t =;ON 平分AOC ∠,理由见解析(2)t 的值为154或315 2【分析】(1)根据AOC ∠的度数求出COM ∠的度数,根据互余得出CON ∠的度数,进而求出时间根据题意和图形得出90AON BOM ∠+∠=°,90CON COM ∠+∠=︒,再根据BOM ∠平分AOC ∠;(2)根据题意和图形得出45CON COM ∠=∠=°,再根据旋转求出结果即可.【详解】(1)解:旋转前9060MOC AOC ∠=︒-∠=︒,当OM 平分BOC ∠时,1180307522MOC BOC ︒-︒∠=∠==︒,则27560t =-,15∴3152t =,综上所述,满足条件的t 的值为【点睛】本题考查角平分线的定义、角的和差定义等知识,解题的关键是理解题意,学会构建方程解决问题.(1)如图1所示,若120AOB ∠=︒,OM 平分AOC ∠,ON 平分AOB ∠,求MON ∠的度数;(2)如图2所示,AOB ∠是直角,从点O 出发在BOC ∠内引射线OD ,满足BOC ∠-平分COD ∠,求BOM ∠的度数;(3)如图3所示,AOB x ∠=︒,射线OP ,射线OQ 分别从OC OB ,出发,并分别以每秒着点O 逆时针旋转,OP 和OQ 分别只在AOC ∠和BOC ∠内部旋转,运动时间为t ①直接写出AOP ∠和∠COQ(1)【探索新知】如图1,射线OC 在AOB ∠的内部,图中共有3个角:AOB ∠,AOC ∠是另一个角度数的两倍,则称射线OC 是AOB ∠的“巧分线”.①一个角的平分线这个角的“巧分线”.(填“是”或“不是”)②如图2,若MPN α∠=,且射线PQ 是MPN ∠的“巧分线”,则MPQ ∠1106060t=+⨯,2t=;解得9∠=∠时,如图所示:当MPN QPN1060260t =+⨯,解得18t =.∵9s 或12s 或18s 均在6t <≤()1105603t t =+,解得 2.4t =;②当12QPN MPN ∠=∠()1105602t t =+,解得4t =;③当23QPN MPN ∠=∠()2105603t t =+,解得6t =.∴当t 为2.4s 或4s 或6s。

初中数学动态几何定值问题(word版+详解答案)

初中数学动态几何定值问题(word版+详解答案)

动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。

专题35 几何图形翻折与旋转【热点专题】(含答案解析)

专题35  几何图形翻折与旋转【热点专题】(含答案解析)

专题35几何图形翻折与旋转【热点专题】几何图形的翻折与旋转问题是历年中考的热点问题,题型问题立意新颖,变幻巧妙,对培养识图能力及灵活运用数学知识解决问题的能力非常有效.同样的翻折与旋转类题目,条件不一样,用到的知识和方法也不尽相同.(1)旋转后的图形与原图形是全等;(2)旋转前后两个图形对应点到旋转中心的距离相等;(3)对应点与旋转中心所连线段的夹角都等于旋转角;题型一:点、线旋转(2021·黑龙江牡丹江·中考真题)【例1】1.如图,△AOB中,OA=4,OB=6,AB=,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是()A.(4,2)或(﹣4,2)B.(4)或(﹣4)C .(﹣2)或(2)D .(2,﹣2,(2021·江苏扬州市·中考真题)【例2】2.如图,一次函数y x =的图像与x 轴、y 轴分别交于点A 、B ,把直线AB 绕点B 顺时针旋转30︒交x 轴于点C ,则线段AC 长为()AB .C .2D题型二:面的旋转(2021·辽宁大连·中考真题)【例3】3.如图,在ABC 中,90ACB ∠=︒,BAC α∠=,将ABC 绕点C 顺时针旋转90°得到A B C ''△,点B 的对应点B '在边AC 上(不与点A ,C 重合),则AA B ''∠的度数为()A .αB .45α-︒C .45α︒-D .90α︒-(2021·四川巴中·中考真题)【例4】4.如图,把边长为3的正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,DE 与BC 交于点P ,ED 的延长线交AB 于点Q ,交OA 的延长线于点M .若BQ :AQ =3:1,则AM =__________.题型三:三角形翻折问题(2021·四川凉山彝族自治州·中考真题)【例5】5.如图,ABC 中,90,8,6ACB AC BC ∠=︒==,将ADE V 沿DE 翻折,使点A 与点B 重合,则CE 的长为()A .198B .2C .254D .74(2021·重庆中考真题)【例6】6.如图,三角形纸片ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,BF =4,CF =6,将这张纸片沿直线DE 翻折,点A 与点F 重合.若DE ∥BC ,AF =EF ,则四边形ADFE 的面积为__________.题型四:四边形翻折问题【例7】7.如图,矩形纸片ABCD ,AB =4,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE 、DE 分别交AB 于点O 、F ,且OP =OF ,则ADDF的值为()A .1113B .1315C .1517D .1719(2021·四川自贡市·中考真题)【例8】8.如图,在正方形ABCD 中,6AB =,M 是AD 边上的一点,:1:2AM MD =.将BMA △沿BM 对折至BMN ,连接DN ,则DN 的长是()A .52B .958C .3D .655(2021·湖北黄石·中考真题)9.如图,ABC 的三个顶点都在方格纸的格点上,其中A 点的坐标是()1,0-,现将ABC 绕A 点按逆时针方向旋转90︒,则旋转后点C 的坐标是()A .()2,3-B .()2,3-C .()2,2-D .()3,2-(2021·湖南益阳·中考真题)10.如图,Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,将ABC 绕A 点顺时针方向旋转角9(0)0αα︒<<︒得到AB C ''△,连接BB ',CC ',则CAC '△与BAB ' 的面积之比等于_______.(2021·江苏苏州·中考真题)11.如图,射线OM 、ON 互相垂直,8OA =,点B 位于射线OM 的上方,且在线段OA 的垂直平分线l 上,连接AB ,5AB =.将线段AB 绕点O 按逆时针方向旋转得到对应线段A B '',若点B '恰好落在射线ON 上,则点A '到射线ON 的距离d ≈______.(2021·四川成都市·中考真题)12.如图,在矩形ABCD 中,4,8AB AD ==,点E ,F 分别在边,AD BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点'A 恰好落在对角线AC 上,点B 的对应点为B',则线段BF 的长为_______;第二步,分别在,'EF A B ¢上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为_______.(2021·新疆·中考真题)13.如图,已知正方形ABCD 边长为1,E 为AB 边上一点,以点D 为中心,将DAE 按逆时针方向旋转得DCF ,连接EF ,分别交BD ,CD 于点M ,N .若25AE DN =,则sin EDM ∠=__________.(2021·四川绵阳·中考真题)14.如图,点M 是ABC ∠的边BA 上的动点,6BC =,连接MC ,并将线段MC 绕点M 逆时针旋转90︒得到线段MN .(1)如图1,作MH BC ⊥,垂足H 在线段BC 上,当CMH B ∠=∠时,判断点N 是否在直线AB 上,并说明理由;(2)如图2,若30ABC ∠=︒,//NC AB ,求以MC 、MN 为邻边的正方形的面积S .(2021·山西·中考真题)15.综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD Y 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD Y 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C 的对应点为'C ,连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD Y 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD Y 的面积为20,边长5AB =,BC =部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.(2021·山东日照·中考真题)16.问题背景:如图1,在矩形ABCD 中,AB =30ABD ∠=︒,点E 是边AB 的中点,过点E 作EF AB ⊥交BD 于点F .实验探究:(1)在一次数学活动中,小王同学将图1中的BEF △绕点B 按逆时针方向旋转90︒,如图2所示,得到结论:①AEDF=_____;②直线AE 与DF 所夹锐角的度数为______.(2)小王同学继续将BEF △绕点B 按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.拓展延伸:在以上探究中,当BEF △旋转至D 、E 、F 三点共线时,则ADE V 的面积为______.(2021·辽宁阜新·中考真题)17.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G ,G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G .则将图形1G 绕____点顺时针旋转____度,可以得到图形2G .(2)在图2中分别画出....G 关于y 轴和直线1y x =+的对称图形1G ,2G .将图形1G 绕____点(用坐标表示)顺时针旋转______度,可以得到图形2G .(3)综上,如图3,直线1:22l y x =-+和2:l y x =所夹锐角为α,如果图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕____点(用坐标表示)顺时针旋转_____度(用α表示),可以得到图形2G .18.已知一个矩形纸片OACB ,将该纸片放置在平面直角坐标系中,点A (11,0),点B (0,6),点P 为BC 边上的动点(点P 不与点B 、C 重合),经过点O 、P 折叠该纸片,得点B′和折痕OP .设BP=t .(Ⅰ)如图①,当∠BOP=300时,求点P 的坐标;(Ⅱ)如图②,经过点P 再次折叠纸片,使点C 落在直线PB′上,得点C′和折痕PQ ,若AQ=m ,试用含有t 的式子表示m ;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA 上时,求点P 的坐标(直接写出结果即可).参考答案:1.C【分析】先求出点A 的坐标,再根据旋转变换中,坐标的变换特征求解;或根据题意画出图形旋转后的位置,根据旋转的性质确定对应点A ′的坐标.【详解】过点A 作AC OB ⊥于点C .在Rt △AOC 中,222AC OA OC =-.在Rt △ABC 中,()22222AC AB CB AB OB OC =-=--.∴()2222OA OC AB OB OC -=--.∵OA =4,OB =6,AB =,∴2OC =.∴AC =∴点A 的坐标是(2,.根据题意画出图形旋转后的位置,如图,∴将△AOB 绕原点O 顺时针旋转90°时,点A 的对应点A ′的坐标为()2-;将△AOB 绕原点O 逆时针旋转90°时,点A 的对应点A ′′的坐标为()2-.故选:C .【点睛】本题考查了解直角三角形、旋转中点的坐标变换特征及旋转的性质.(a ,b )绕原点顺时针旋转90°得到的坐标为(b ,-a ),绕原点逆时针旋转90°得到的坐标为(-b ,a ).2.A【分析】根据一次函数表达式求出点A和点B坐标,得到△OAB为等腰直角三角形和AB 的长,过点C作CD⊥AB,垂足为D,证明△ACD为等腰直角三角形,设CD=AD=x,结合旋转的度数,用两种方法表示出BD,得到关于x的方程,解之即可.【详解】解:∵一次函数y x=的图像与x轴、y轴分别交于点A、B,令x=0,则y y=0,则x=,则A(,0),B(0),则△OAB为等腰直角三角形,∠ABO=45°,∴AB,过点C作CD⊥AB,垂足为D,∵∠CAD=∠OAB=45°,∴△ACD为等腰直角三角形,设CD=AD=x,∴AC x,∵旋转,∴∠ABC=30°,∴BC=2CD=2x,∴BD,又BD=AB+AD=2+x,∴2+x,解得:x∴AC x)+故选A.【点睛】本题考查了一次函数与坐标轴的交点问题,等腰直角三角形的判定和性质,直角三角形的性质,勾股定理,二次根式的混合运算,知识点较多,解题的关键是作出辅助线,构造特殊三角形.3.C【分析】由旋转的性质可得CA B CAB α''∠=∠=,90,ACA AC A C ''∠=︒=,进而可得45AA C '∠=︒,然后问题可求解.【详解】解:由旋转的性质可得:CA B CAB α''∠=∠=,90,ACA AC A C ''∠=︒=,∴ACA ' 等腰直角三角形,∴45AA C '∠=︒,∴45AA B α''∠=︒-;故选C .【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质是解题的关键.4.25【分析】连接OQ ,OP ,利用HL 证明Rt △OAQ ≌Rt △ODQ ,得QA =DQ ,同理可证:CP =DP ,设CP =x ,则BP =3-x ,PQ =x +34,在Rt △BPQ 中,利用勾股定理列出方程求出x =95,再利用△AQM ∽△BQP 可求解.【详解】解:连接OQ ,OP ,∵将正方形OABC 绕点O 逆时针旋转n °(0<n <90)得到正方形ODEF ,∴OA =OD ,∠OAQ =∠ODQ =90°,在Rt △OAQ 和Rt △ODQ 中,OQ OQ OA OD =⎧⎨=⎩,∴Rt △OAQ ≌Rt △ODQ (HL ),∴QA =DQ ,同理可证:CP =DP ,∵BQ:AQ=3:1,AB=3,∴BQ=94,AQ=34,设CP=x,则BP=3-x,PQ=x+3 4,在Rt△BPQ中,由勾股定理得:(3-x)2+(94)2=(x+34)2,解得x=9 5,∴BP=6 5,∵∠AQM=∠BQP,∠BAM=∠B,∴△AQM∽△BQP,∴13 AM AQBP BQ==,∴1 63 5AM=,∴AM=2 5.故答案为:2 5.【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,勾股定理,相似三角形的判定与性质等知识,利用全等证明QA=DQ,CP=DP是解题的关键.5.D【分析】先在RtABC中利用勾股定理计算出AB=10,再利用折叠的性质得到AE=BE,AD=BD=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中根据勾股定理可得到x2=62+(8-x)2,解得x,可得CE.【详解】解:∵∠ACB=90°,AC=8,BC=6,∴AB,∵△ADE沿DE翻折,使点A与点B重合,∴AE=BE,AD=BD=12AB=5,设AE=x,则CE=AC-AE=8-x,BE=x,在Rt△BCE中∵BE 2=BC 2+CE 2,∴x 2=62+(8-x )2,解得x =254,∴CE =2584-=74,故选:D .【点睛】本题考查了折叠的性质:折叠前后两图象全等,即对应角相等,对应边相等.也考查了勾股定理.6.【分析】根据折叠的性质得到DE 为ABC 的中位线,利用中位线定理求出DE 的长度,再解t R ACE △求出AF 的长度,即可求解.【详解】解:∵将这张纸片沿直线DE 翻折,点A 与点F 重合,∴DE 垂直平分AF ,AD DF =,AE EF =,ADE EDF ∠=∠,∵DE ∥BC ,∴ADE B ∠=∠,EDF BFD ∠=∠,90AFC ∠=︒,∴B BFD ∠=∠,∴BD DF =,∴BD AD =,即D 为AB 的中点,∴DE 为ABC 的中位线,∴152DE BC ==,∵AF =EF ,∴AEF △是等边三角形,在t R ACE △中,60CAF ∠=︒,6CF =,∴tan 60CF AF ==︒∴AG =∴四边形ADFE 的面积为122DE AG ⋅⨯=,故答案为:.【点睛】本题考查解直角三角形、中位线定理、折叠的性质等内容,掌握上述基本性质定理是解题的关键.7.C【分析】根据折叠的性质可得出DC=DE 、CP=EP ,由∠EOF=∠BOP 、∠B=∠E 、OP=OF 可得出△OEF ≌△OBP (AAS ),根据全等三角形的性质可得出OE=OB 、EF=BP ,设EF=x ,则BP=x 、DF=4-x 、BF=PC=3-x ,进而可得出AF=1+x ,在Rt △DAF 中,利用勾股定理可求出x 的值,再利用余弦的定义即可求出cos ∠ADF 的值.【详解】根据折叠,可知:△DCP ≌△DEP ,∴DC =DE =4,CP =EP .在△OEF 和△OBP 中,∵90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE ﹣EF =4﹣x .又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC ﹣BP =3﹣x ,∴AF =AB ﹣BF =1+x .在Rt △DAF 中,AF 2+AD 2=DF 2,即(1+x )2+32=(4﹣x )2,解得:x =0.6,∴DF =4﹣x =3.4,∴1517AD DF =.故选C .【点睛】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x ,求出AF 的长度是解题的关键.8.D【分析】延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,根据折叠的正方形的性质得到NE CE =,在Rt MDE 中应用勾股定理求出DE 的长度,通过证明MDE NFE ∽,利用相似三角形的性质求出NF 和DF 的长度,利用勾股定理即可求解.【详解】解:如图,延长MN 与CD 交于点E ,连接BE ,过点N 作NF CD ⊥,∵6AB =,M 是AD 边上的一点,:1:2AM MD =,∴2AM =,4DM =,∵将BMA △沿BM 对折至BMN ,四边形ABCD 是正方形,∴90BNE C ∠=∠=︒,AB AN BC ==,∴Rt BNE Rt BCE ≌(HL),∴NE CE =,∴2EM MN NE NE =+=+,在Rt MDE 中,设DE x =,则628ME x x =-+=-,根据勾股定理可得()22248x x +=-,解得3x =,∴3NE DE ==,5ME =,∵NF CD ⊥,90MDE ∠=︒,∴MDE NFE ∽,∴25EF NF NE DE MD ME ===,∴125NF =,95EF =,∴65DF =,∴DN =,故选:D .【点睛】本题考查折叠的性质、相似三角形的判定与性质、勾股定理的应用等内容,做出合适的辅助线是解题的关键.9.B【分析】在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如图,绘制出CA 绕点A 逆时针旋转90°的图形,由图可得:点C 对应点C '的坐标为(-2,3).故选B .【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.10.9:4【分析】先根据正切三角函数的定义可得32AC AB =,再根据旋转的性质可得,,AB AB AC AC BAB CAC α''''==∠=∠=,从而可得1AC AB AC AB =='',然后根据相似三角形的判定可得CAC BAB ''~ ,最后根据相似三角形的性质即可得.【详解】解: 在Rt ABC 中,390,tan 2BAC ABC ∠=︒∠=,32AC AB ∴=,由旋转的性质得:,,AB AB AC AC BAB CAC α''''==∠=∠=,1AC AB AC AB ∴=='',在CAC '△和BAB ' 中,AC AB AC AB CAC BAB ''''⎧=⎪⎨⎪∠=∠⎩,CAC BAB ''~∴ ,294CAC BAB AC S AB S ''⎛⎫== ⎪⎝⎭∴ ,即CAC '△与BAB ' 的面积之比等于9:4,故答案为:9:4.【点睛】本题考查了正切三角函数、旋转的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题关键.11.245【分析】添加辅助线,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P .根据旋转的性质,得到''A B O ABO ≅ ,在'Rt A PO ∆和中,'B OA BOA ∠=∠,根据三角函数和已知线段的长度求出点A '到射线ON 的距离=A'P d .【详解】如图所示,连接'OA OB 、,过'A 点作'A P ON ⊥交ON 与点P.∵线段AB 绕点O 按逆时针方向旋转得到对应线段A B ''∴'8OA OA ==,''B OB A OA∠=∠∴''''B OB BOA A OA BOA ∠-∠=∠-∠即''B OA BOA∠=∠∵点B 在线段OA 的垂直平分线l 上∴118422OC OA ==⨯=,5OB AB ==3BC ===∵''B OA BOA∠=∠∴'sin ''sin 'A P BC B OA BOA A O OB ∠==∠=∴'385A P =∴24'5d A P ==【点睛】本题主要考查旋转的性质和三角函数.对应点到旋转中心的距离相等,对应点与旋转中心所连的线段的夹角等于旋转角,旋转前、后的图形全等.12.1【分析】第一步:设EF 与AA’交于点O ,连接AF ,易证明△AOE △ADC ,利用对应边成比例可得到OA =2OE ,由勾股定理可求出OE =5,从而求得OA 及OC ;由AD ∥BC ,易得△AOE ∽△COF ,由对应边成比例可得AE 、FC 的关系式,设BF =x ,则FC =8-x ,由关系式可求得x 的值;第二步:连接NE ,NF ,根据折叠的性质,得到NF =NE ,设B’N =m ,分别在Rt △NB F '和Rt △EA N '中,利用勾股定理及NF =NE 建立方程,可求得m ,最后得出结果.【详解】如图所示,连接AF ,设EF 与AA’交于点O ,由折叠的性质得到AA’⊥EF ,3A E AE '==∵四边形ABCD 是矩形∴∠ADC =90°,CD =AB =4,AD ∥BC∵∠AOE =∠ADC ,∠OAE =∠DAC∴△AOE △ADC ,∴12OE CD OA AD ==,∴OA =2OE ,在直角△AOE 中,由勾股定理得:2249OE OE +=,∴OE =5,∴OA在Rt △ADC 中,由勾股定理得到:AC =,∴OC =令BF =x ,则FC =8-x ,∵AD ∥BC ,∴△AOE ∽△COF ,∴37OA AE OC FC ==,即7AE =3FC∴3(8-x )=7×3解得:1x =,∴BF 的长为1.连接NE ,NF ,如图,根据折叠性质得:BF =B’F =1,MN ⊥EF ,NF =NE ,设B’N =m ,则22222213(4)NF m NE m =+==+-,解得:m =3,则NF ,∵EF =∴MF∴MN故答案为:1【点睛】本题主要考查了折叠的性质、勾股定理、三角形相似的判定与性质,矩形的性质等知识,熟练运用这些知识是解决本题的关键,本题还涉及到方程的运用.13【分析】过点E 作EP ⊥BD 于P ,将∠EDM 构造在直角三角形DEP 中,设法求出EP 和DE 的长,然后用三角函数的定义即可解决.【详解】解:∵四边形ABCD 是正方形,∴AB ∥DC ,∠A =∠BCD =∠ADC =90°,AB =BC =CD =DA =1,BD =.∵△DAE 绕点D 逆时针旋转得到△DCF ,∴CF =AE ,DF =DE ,∠EDF =∠ADC =90°.设AE =CF =2x ,DN =5x ,则BE =1-2x ,CN =1-5x ,BF=1+2x .∵AB ∥DC ,∴~FNC FEB ∆∆.∴NC FC EB FB =.∴1521212x x x x-=-+.整理得,26510x x +-=.解得,116x =,21x =-(不合题意,舍去).∴1221233AE x EB x ===-=,.∴DE ===过点E 作EP ⊥BD 于点P ,如图所示,设DP =y,则BP y =.∵22222EB BP EP DE DP -==-,∴)2222233y y ⎛⎛⎫-=- ⎪ ⎝⎭⎝⎭.解得,y =∴3EP ===.∴在Rt △DEP中,sin 3EP EDP ED∠==sin 5EDM ∠=.【点睛】本题考查了正方形的性质、旋转的性质、相似三角形的判定与性质、勾股定理、锐角三角函数、方程的数学思想等知识点,熟知各类图形的性质与判定是解题的基础,构造直角三角形,利用锐角三角函数的定义是解题的关键.14.(1)点N 在直线AB 上,见解析;(2)18【分析】(1)根据CMH B ∠=∠,90CMH C ∠+∠=︒,得到90B C ∠+∠=︒,可得线段CM 逆时针旋转90︒落在直线BA 上,即可得解;(2)作CD AB ⊥于D ,得出45MCN ∠=︒,再根据平行线的性质得到45BMC ∠=︒,再根据直角三角形的性质计算即可;【详解】解:(1)结论:点N 在直线AB 上;∵CMH B ∠=∠,90CMH C ∠+∠=︒,∴90B C ∠+∠=︒,∴90BMC ∠=︒,即CM AB ⊥.∴线段CM 逆时针旋转90︒落在直线BA 上,即点N 在直线AB 上.(2)作CD AB ⊥于D ,∵MC MN =,90CMN ∠=︒,∴45MCN ∠=︒,∵//NC AB ,∴45BMC ∠=︒,∵6BC =,30B ∠=︒,∴3CD =,MC =∴218S MC ==,即以MC 、MN 为邻边的正方形面积18S =.【点睛】本题主要考查了旋转综合题,结合平行线的性质计算是解题的关键.15.(1)EF BF =;见解析;(2)AG BG =,见解析;(3)223.【分析】(1)如图,分别延长AD ,BF 相交于点P ,根据平行四边形的性质可得//AD BC ,根据平行线的性质可得PDF C ∠=∠,P FBC ∠=∠,利用AAS 可证明△PDF ≌△BCF ,根据全等三角形的性质可得FP FB =,根据直角三角形斜边中线的性质可得12EF BP =,即可得EF BF =;(2)根据折叠性质可得∠CFB =∠C′FB =12∠CFC′,FC =FC′,可得FD =FC′,根据等腰三角形的性质可得∠FDC′=∠FC′D ,根据三角形外角性质可得∠CF C′=∠FDC′+∠FC′D ,即可得出∠C′FB =∠FC′D ,可得DG//FB ,即可证明四边形DGBF 是平行四边形,可得DF =BG =12AB ,可得AG =BG ;(3)如图,过点M 作MQ ⊥A ′B 于Q ,根据平行四边形的面积可求出BH 的长,根据折叠的性质可得A ′B =AB ,∠A =∠A ′,∠ABM =∠MBH ,根据'A B CD ⊥可得A ′B ⊥AB ,即可证明△MBQ 是等腰直角三角形,可得MQ =BQ ,根据平行四边形的性质可得∠A =∠C ,即可得∠A ′=∠C ,进而可证明△A ′NH ∽△CBH ,根据相似三角形的性质可得A ′H 、N H 的长,根据NH //MQ 可得△A ′NH ∽△A ′MQ ,根据相似三角形的性质可求出MQ 的长,根据S 阴=S △A′MB-S △A′NH 即可得答案.【详解】(1)EF BF =.如图,分别延长AD ,BF 相交于点P ,∵四边形ABCD 是平行四边形,∴//AD BC ,∴PDF C ∠=∠,P FBC ∠=∠,∵F 为CD 的中点,∴DF CF =,在△PDF 和△BCF 中,P FBC PDF C DF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PDF ≌△BCF ,∴FP FB =,即F 为BP 的中点,∴12BF BP =,∵BE AD ⊥,∴90BEP ∠=︒,∴12EF BP =,∴EF BF =.(2)AG BG =.∵将ABCD Y 沿着BF 所在直线折叠,点C 的对应点为'C ,∴∠CFB =∠C′FB =12∠CFC′,'FC FC =,∵F 为CD 的中点,∴12FC FD CD ==,∴'FC FD =,∴∠FDC′=∠FC′D ,∵'CFC ∠=∠FDC′+∠FC′D ,∴'1'2FC D CFC ∠=∠,∴∠FC′D =∠C′FB ,∴//DG FB ,∵四边形ABCD 为平行四边形,∴//DC AB ,DC =AB ,∴四边形DGBF 为平行四边形,∴BG DF =,∴12BG AB =,∴AG BG =.(3)如图,过点M 作MQ ⊥A ′B 于Q ,∵ABCD Y 的面积为20,边长5AB =,'A B CD ⊥于点H ,∴BH =50÷5=4,∴CH 2=,A ′H =A ′B -BH =1,∵将ABCD Y 沿过点B 的直线折叠,点A 的对应点为'A ,∴A ′B =AB ,∠A =∠A ′,∠ABM =∠MBH ,∵'A B CD ⊥于点H ,AB //CD ,∴'A B AB ⊥,∴∠MBH =45°,∴△MBQ 是等腰直角三角形,∴MQ =BQ ,∵四边形ABCD 是平行四边形,∴∠A =∠C ,∴∠A ′=∠C ,∵∠A ′HN =∠CHB ,∴△A ′NH ∽△CBH ,∴'CH BH A H NH =,即241NH=,解得:NH =2,∵'A B CD ⊥,MQ ⊥A ′B ,∴NH //MQ ,∴△A ′NH ∽△A ′MQ ,∴''A H NH AQ MQ=,即125MQ MQ =-,解得:MQ =103,∴S 阴=S △A′MB-S △A′NH =12A ′B ·MQ -12A ′H ·NH =12×5×103-12×1×2=223.【点睛】本题考查折叠的性质、平行四边形的判定与性质、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握相关性质及判定定理是解题关键.16.(1)2,30°;(2【分析】(1)通过证明FBD EBA ∆∆∽,可得AE BE DF BF ==BDF BAE ∠=∠,即可求解;(2)通过证明ABE DBF ∆∆∽,可得AE BE DF BF ==,BDF BAE ∠=∠,即可求解;拓展延伸:分两种情况讨论,先求出AE ,DG 的长,即可求解.【详解】解:(1)如图1,30ABD ∠=︒ ,90DAB ∠=︒,EF BA ⊥,cos BE AB ABD BF DB ∴∠==如图2,设AB 与DF 交于点O ,AE 与DF 交于点H ,BEF ∆ 绕点B 按逆时针方向旋转90︒,90DBF ABE ∴∠=∠=︒,FBD EBA ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠,又DOB AOF ∠=∠ ,30DBA AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒,故答案为:2,30︒;(2)结论仍然成立,理由如下:如图3,设AE 与BD 交于点O ,AE 与DF 交于点H ,将BEF ∆绕点B 按逆时针方向旋转,ABE DBF ∴∠=∠,又 BE AB BF DB ==ABE DBF ∴∆∆∽,∴AE BE DF BF ==,BDF BAE ∠=∠,又DOH AOB ∠=∠ ,30ABD AHD ∴∠=∠=︒,∴直线AE 与DF 所夹锐角的度数为30︒.拓展延伸:如图4,当点E 在AB 的上方时,过点D 作DG AE ⊥于G ,AB = 30ABD ∠=︒,点E 是边AB 的中点,90DAB ∠=︒,BE ∴=2AD =,4DB =,30EBF ∠=︒ ,EF BE ⊥,1EF ∴=,D 、E 、F 三点共线,90DEB BEF ∴∠=∠=︒,DE ∴30DEA ∠=︒ ,12DG DE ∴==由(2)可得:AE BE DF BF ==,AE ∴=ADE ∴∆的面积1122AE DG =⨯⨯=⨯;如图5,当点E 在AB 的下方时,过点D 作DG AE ⊥,交EA 的延长线于G ,同理可求:ADE ∆的面积1122228AE DG =⨯⨯=⨯⨯=;【点睛】本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.17.(1)O ,180;(2)图见解析,()0,1,90;(3)22,33⎛⎫ ⎪⎝⎭,2α【分析】(1)根据图形可以直接得到答案;(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.【详解】解:(1)由图象可得,图形1G 与图形2G 关于原点成中心对称,则将图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;故答案为:O ,180;(2)1G ,2G 如图;由图形可得,将图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,故答案为:()0,1,90;(3)∵当G 关于y 轴的对称图形为1G ,关于x 轴的对称图形为2G 时,1G 与2G 关于原点(0,0)对称,即图形1G 绕O 点顺时针旋转180度,可以得到图形2G ;当G 关于y 轴和直线1y x =+的对称图形1G ,2G 时,图形1G 绕()0,1点(用坐标表示)顺时针旋转90度,可以得到图形2G ,点(0,1)为直线1y x =+与y 轴的交点,90度角为直线1y x =+与y 轴夹角的两倍;又∵直线1:22l y x =-+和2:l y x =的交点为22,33⎛⎫ ⎪⎝⎭,夹角为α,∴当直线1:22l y x =-+和2:l y x =所夹锐角为α,图形G 关于直线1l 的对称图形为1G ,关于直线2l 的对称图形为2G ,那么将图形1G 绕22,33⎛⎫ ⎪⎝⎭点(用坐标表示)顺时针旋转2α度(用α表示),可以得到图形2G .故答案为:22,33⎛⎫ ⎪⎝⎭,2α.【点睛】本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.18.(Ⅰ)点P 的坐标为(6).(Ⅱ)2111m t t 666=-+(0<t <11).(Ⅲ)点P 6,6).【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=6,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP ,△QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案.(Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值:【详解】(Ⅰ)根据题意,∠OBP=90°,OB=6.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=62+t 2,解得:t 1=t 2=-.∴点P 的坐标为(6).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,∴△OB′P ≌△OBP ,△QC′P ≌△QCP .∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ .又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BP PC CQ =.由题意设BP=t ,AQ=m ,BC=11,AC=6,则PC=11-t ,CQ=6-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11).(Ⅲ)点P 6,6).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠EPC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q.∵PC′=PC=11-t ,PE=OB=6,AQ=m ,C′Q=CQ=6-m ,∴AC '==.∴.∵6116=--t t m ,即6116-=-t t m 6=t ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:12t t ==∴点P ,6)或(113+,6).。

例谈一类中考热点几何最值的求解策略

例谈一类中考热点几何最值的求解策略

龙源期刊网
例谈一类中考热点几何最值的求解策略
作者:蔡卫兵
来源:《理科考试研究·初中》2014年第03期
“垂线段最短”是平面几何中的一个重要的性质定理.它的应用十分广泛,尤其对于一类中考热点几何最值问题,若能在转化思想的引领下,通过细致的观察、合理的联想、缜密的推理,注重利用“垂线段最短”这一性质来解题,常会收到出奇制胜的效果.本文试举例说明,以供参考.
1.以线定点,巧解单端点动点的线段的最值问题
方法得当,事半功倍;揭本探源,深思提能.灵活的转化和巧妙的归结,是解决数学问题的重要策略,是数学中最基本的解题技巧之一.恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远.”如果我们在数学学习中重视转化,注重基本套路,突出数学思想,用好这根有力的杠杆,对培养我们同学思维的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的.。

2020年九年级数学中考几何探究型问题:线段最值问题——“费马点”问题(含答案)

2020年九年级数学中考几何探究型问题:线段最值问题——“费马点”问题(含答案)

几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧ BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离.易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。

2020年中考数学热点冲刺8 动态几何问题(含解析)

2020年中考数学热点冲刺8 动态几何问题(含解析)

热点专题8动点几何问题考向1图形的运动与最值1. (2019 江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作⊙C与直线BD相切,点P是⊙C上一个动点,连接AP交BD于点T,则的最大值是.【解析】如图,过点P作PE⊙BD交AB的延长线于E,⊙⊙AEP=⊙ABD,⊙APE⊙⊙ATB,⊙,⊙AB=4,⊙AE=AB+BE=4+BE,⊙,⊙BE最大时,最大,⊙四边形ABCD是矩形,⊙BC=AD=3,CD=AB=4,过点C作CH⊙BD于H,交PE于M,并延长交AB于G,⊙BD是⊙C的切线,⊙⊙GME=90°,在Rt⊙BCD中,BD==5,⊙⊙BHC=⊙BCD=90°,⊙CBH=⊙DBC,⊙⊙BHC⊙⊙BCD,⊙,⊙,⊙BH=,CH=,⊙⊙BHG=⊙BAD=90°,⊙GBH=⊙DBA,⊙⊙BHG⊙⊙BAD,⊙=,⊙,⊙HG=,BG=,在Rt⊙GME中,GM=EG•sin⊙AEP=EG×=EG,而BE=GE﹣BG=GE﹣,⊙GE最大时,BE最大,⊙GM最大时,BE最大,⊙GM=HG+HM=+HM,即:HM最大时,BE最大,延长MC交⊙C于P',此时,HM最大=HP'=2CH=,⊙GP'=HP'+HG=,过点P'作P'F⊙BD交AB的延长线于F,⊙BE最大时,点E落在点F处,即:BE 最大=BF ,在Rt⊙GP 'F 中,FG ====,⊙BF =FG ﹣BG =8, ⊙最大值为1+=3,故答案为:3.2. (2019 江苏省无锡市)如图,在ABC ∆中,5AB AC ==,BC =D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则BDE ∆面积的最大值为 .【解析】过D 作DG ⊙BC 于G ,过A 作AN ⊙BC 于N ,过E 作EH ⊙HG 于H ,延长ED 交BC 于M .易证⊙EHD ⊙⊙DGC ,可设DG =HE =x ,⊙AB =AC =5,BC =AN ⊙BC ,⊙BN =12BC =,AN ⊙G ⊙BC ,AN ⊙BC , ⊙DG ⊙AN , ⊙2BG BNDG AN==,⊙BG =2x ,CG =HD =- 2x ;易证⊙HED ⊙⊙GMD ,于是HE HDGM GD =,x GM =MG 2= ,所以S ⊙BDE= 12BM ×HD =12×(2x 2)×(4- 2x )=252x -+=2582x ⎛-+ ⎝⎭,当x 时,S ⊙BDE 的最大值为8. 因此本题答案为8. 3. (2019 江苏省宿迁市)如图,⊙MAN =60°,若⊙ABC 的顶点B 在射线AM 上,且AB =2,点C 在射线AN 上运动,当⊙ABC 是锐角三角形时,BC 的取值范围是 .【解析】如图,过点B作BC1⊙AN,垂足为C1,BC2⊙AM,交AN于点C2在Rt⊙ABC1中,AB=2,⊙A=60°⊙⊙ABC1=30°⊙AC1=AB=1,由勾股定理得:BC1=,在Rt⊙ABC2中,AB=2,⊙A=60°⊙⊙AC2B=30°⊙AC2=4,由勾股定理得:BC2=2,当⊙ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.4. (2019 江苏省宿迁市)如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边⊙EFG,连接CG,则CG的最小值为.【解析】由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将⊙EFB绕点E旋转60°,使EF与EG重合,得到⊙EFB⊙⊙EHG从而可知⊙EBH为等边三角形,点G在垂直于HE的直线HN上作CM⊙HN,则CM即为CG的最小值作EP⊙CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=故答案为.5.(2019 江苏省扬州市)如图,已知等边⊙ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把⊙ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1⊙AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,⊙ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求⊙ACB′面积的最大值.【解析】(1)如图1中,⊙⊙ABC是等边三角形,⊙⊙A=60°,AB=BC=AC=8,⊙PB=4,⊙PB′=PB=P A=4,⊙⊙A=60°,⊙⊙APB′是等边三角形,⊙AB′=AP=4.故答案为4.(2)如图2中,设直线l交BC于点E.连接BB′交PE于O.⊙PE⊙AC,⊙⊙BPE=⊙A=60°,⊙BEP=⊙C=60°,⊙⊙PEB是等边三角形,⊙PB=5,⊙⊙B,B′关于PE对称,⊙BB′⊙PE,BB′=2OB⊙OB=PB•sin60°=,⊙BB′=5.故答案为5.(3)如图3中,结论:面积不变.⊙B,B′关于直线l对称,⊙BB′⊙直线l,⊙直线l ⊙AC , ⊙AC ⊙BB ′, ⊙S ⊙ACB ′=S ⊙ACB =•82=16.(4)如图4中,当B ′P ⊙AC 时,⊙ACB ′的面积最大,设直线PB ′交AC 于E ,在Rt⊙APE 中,⊙P A =2,⊙P AE =60°, ⊙PE =P A •sin60°=,⊙B ′E =6+,⊙S ⊙ACB ′的最大值=×8×(6+)=4+24.6. (2019 江苏省苏州市) 已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图⊙,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm²),S 与t 的函数关系如图⊙所示:(1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图⊙,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ⊙求动点N 运动速度()/v cm s 的取值范围;⊙试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.【解析】(1)2/cm s ;10cm(2)⊙解:⊙在边BC 上相遇,且不包含C 点 ⊙57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点⊙2/6/3cm s v cm s ≤<⊙如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊙AC,则12MH CM ==①(图)PBCDAS (cm²)t (s )②图O2.57.515-2x2x-5(N )⊙ ⊙22S x =()122152S S x x ⋅=-+⋅ =2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.7. (2019 江苏省扬州市)如图,四边形ABCD 是矩形,AB =20,BC =10,以CD 为一边向矩形外部作等腰直角⊙GDC ,⊙G =90°.点M 在线段AB 上,且AM =a ,点P 沿折线AD ﹣DG 运动,点Q 沿折线BC ﹣CG 运动(与点G 不重合),在运动过程中始终保持线段PQ ⊙A B .设PQ 与AB 之间的距离为x . (1)若a =12.⊙如图1,当点P 在线段AD 上时,若四边形AMQP 的面积为48,则x 的值为 ; ⊙在运动过程中,求四边形AMQP 的最大面积;(2)如图2,若点P 在线段DG 上时,要使四边形AMQP 的面积始终不小于50,求a 的取值范围.【解析】 ⊙P 在线段AD 上,PQ =AB =20,AP =x ,AM =12,112152S MH AP x =⋅=-+四边形AMQP的面积=(12+20)x=48,解得:x=3;故答案为:3;⊙当P,在AD上运动时,P到D点时四边形AMQP面积最大,为直角梯形,⊙0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,当P在DG上运动,10<x≤20,四边形AMQP为不规则梯形,作PH⊙AB于M,交CD于N,作GE⊙CD于E,交AB于F,如图2所示:则PM=x,PN=x﹣10,EF=BC=10,⊙⊙GDC是等腰直角三角形,⊙DE=CE,GE=CD=10,⊙GF=GE+EF=20,⊙GH=20﹣x,由题意得:PQ⊙CD,⊙⊙GPQ⊙⊙GDC,⊙=,即=,解得:PQ=40﹣2x,⊙梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,⊙当x=13时,四边形AMQP的面积最大=169;(2)解:P在DG上,则10≤x≤20,AM=a,PQ=40﹣2x,梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,⊙0≤x≤20,⊙10≤10+≤15,对称轴在10和15之间,⊙10≤x≤20,二次函数图象开口向下,⊙当x=20时,S最小,⊙﹣202+×20≥50,⊙a≥5;综上所述,a的取值范围为5≤a≤20.考向2动点与函数的结合问题1.(2019 江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分⊙PCR.若OQ⊙PR,求出点Q的坐标.【解析】(1)将x=2代入y=﹣x2﹣x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣1),C(0,﹣3)代入y=x2+bx+c,得,解得,⊙抛物线L1:y=x2﹣2x﹣3;(2)设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,⊙当点Q在点P右侧时,则点Q的坐标为(x+2,﹣2x﹣3),将Q(x+2,﹣2x﹣3)代入y=﹣x2﹣x+2,得﹣2x﹣3=﹣(x+2)2﹣(x+2)+2,解得,x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);⊙当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y=﹣x2﹣x+2,得y=﹣x2﹣x+2,得x2﹣2x﹣3=﹣(x﹣2)2﹣(x﹣2)+2,解得,x=3,或x=﹣,此时点P的坐标为(3,0)或(﹣,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y=﹣x2﹣x+2,得﹣x2+2x﹣3═﹣(2﹣x)2﹣(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(﹣,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分⊙PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊙TR于点H,则有⊙PSC=⊙RTC=90°,由CA平分⊙PCR,得⊙PCA=⊙RCA,则⊙PCS=⊙RCT,⊙⊙PSC⊙⊙RTC,⊙,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt⊙PRH中,tan⊙PRH==过点Q作QK⊙x轴于点K,设点Q坐标为(m,),若OQ⊙PR,则需⊙QOK=⊙PRH,所以tan⊙QOK=tan⊙PRH=2,所以2m=,解得,m=,所以点Q坐标为(,﹣7+)或(,﹣7﹣).2.(2019 江苏省常州市)已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:⊙半径为1的圆:;⊙如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.⊙若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);⊙若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.【解析】(1)⊙半径为1的圆的宽距离为1,故答案为1.⊙如图1,正方形ABCD的边长为2,设半圆的圆心为O,点P是⊙O上一点,连接OP,PC,OC.在Rt⊙ODC中,OC===⊙OP+OC≥PC,⊙PC≤1+,⊙这个“窗户形“的宽距为1+.故答案为1+.(2)⊙如图2﹣1中,点C所在的区域是图中正方形AEBF,面积为2.⊙如图2﹣2中,当点M在y轴的右侧时,连接AM,作MT⊙x轴于T.⊙AC≤AM+CM,又⊙5≤d≤8,⊙当d=5时.AM=4,⊙AT==2,此时M(2﹣1,2),当d=8时.AM=7,⊙AT==2,此时M(2﹣1,2),⊙满足条件的点M的横坐标的范围为2﹣1≤x≤2﹣1.当点M在y轴的左侧时,满足条件的点M的横坐标的范围为﹣2+1≤x﹣2+1.考向3运动过程中的定值问题1.(2019 江苏省宿迁市)如图⊙,在钝角⊙ABC中,⊙ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将⊙BDE绕点B逆时针方向旋转α度(0≤α≤180).(1)如图⊙,当0<α<180时,连接AD、CE.求证:⊙BDA⊙⊙BEC;(2)如图⊙,直线CE、AD交于点G.在旋转过程中,⊙AGC的大小是否发生变化?如变化,请说明理由;如不变,请求出这个角的度数;(3)将⊙BDE从图⊙位置绕点B逆时针方向旋转180°,求点G的运动路程.【解析】(1)如图⊙中,由图⊙,⊙点D为边AB中点,点E为边BC中点,⊙DE⊙AC,⊙=,⊙=,⊙⊙DBE=⊙ABC,⊙⊙DBA=⊙EBC,⊙⊙DBA⊙⊙EBC.(2)⊙AGC的大小不发生变化,⊙AGC=30°.理由:如图⊙中,设AB交CG于点O.⊙⊙DBA⊙⊙EBC,⊙⊙DAB=⊙ECB,⊙⊙DAB+⊙AOG+⊙G=180°,⊙ECB+⊙COB+⊙ABC=180°,⊙AOG=⊙COB,⊙⊙G=⊙ABC=30°.(3)如图⊙﹣1中.设AB的中点为K,连接DK,以AC为边向右作等边⊙ACO,连接OG,OB.以O为圆心,OA为半径作⊙O,⊙⊙AGC=30°,⊙AOC=60°,⊙⊙AGC=⊙AOC,⊙点G在⊙O上运动,以B 为圆心,BD 为半径作⊙B ,当直线与⊙B 相切时,BD ⊙AD , ⊙⊙ADB =90°, ⊙BK =AK , ⊙DK =BK =AK , ⊙BD =BK , ⊙BD =DK =BK , ⊙⊙BDK 是等边三角形, ⊙⊙DBK =60°, ⊙⊙DAB =30°,⊙⊙DOG =2⊙DAB =60°, ⊙的长==,观察图象可知,点G 的运动路程是的长的两倍=.2.(2019 江苏省无锡市)如图1,在矩形ABCD 中,3BC =,动点P 从B 出发,以每秒1个单位的速度,沿射线BC 方向移动,作PAB ∆关于直线PA 的对称PAB ∆',设点P 的运动时间为()t s .(1)若AB =⊙如图2,当点B '落在AC 上时,显然PAB ∆'是直角三角形,求此时t 的值;⊙是否存在异于图2的时刻,使得PCB ∆'是直角三角形?若存在,请直接写出所有符合题意的t 的值?若不存在,请说明理由.(2)当P 点不与C 点重合时,若直线PB '与直线CD 相交于点M ,且当3t <时存在某一时刻有结论45PAM ∠=︒成立,试探究:对于3t >的任意时刻,结论“45PAM ∠=︒”是否总是成立?请说明理由.【解析】(1)⊙勾股求的易证CB P CBA'V:V,故''43B P=解得⊙1°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=22°如图,当⊙PCB’=90 °时,在⊙PCB’中采用勾股得:222(3)t t+-=,解得t=6B'CB'CBA A BDPD33°当⊙CPB’=90 °时,易证四边形ABP’为正方形,解得(2)如图,⊙⊙PAM=45°⊙⊙2+⊙3=45°,⊙1+⊙4=45°又⊙翻折⊙⊙1=⊙2,⊙3=⊙4又⊙⊙ADM=⊙AB’M(AAS)⊙AD=AB’=AB即四边形ABCD是正方形如图,设⊙APB=xB'CA BDA⊙⊙PAB=90°-x ⊙⊙DAP=x易证⊙MDA⊙⊙B’AM (HL ) ⊙⊙BAM=⊙DAM ⊙翻折⊙⊙PAB=⊙PAB’=90°-x⊙⊙DAB’=⊙PAB’-⊙DAP=90°-2x ⊙⊙DAM=21⊙DAB’=45°-x ⊙⊙MAP=⊙DAM+⊙PAD=45°4321MB'BCB'A D PP。

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)

中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形所有问题的老祖宗只有两个:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。

由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

余不赘述,下面仅举一例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。

证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP≤d+r,AP最小时点P在B处,最大时点P在C处。

即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。

(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。

上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。

二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。

类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。

(一)直接包含基本图形例 1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。

(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B 重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。

(三)动线(定点)位置需变换线段变换的方法:(1)等值变换:翻折、平移;(2)比例变换:三角、相似。

2020年九年级数学中考几何探究型问题:线段最值问题——“费马点”问题(包含答案)

2020年九年级数学中考几何探究型问题:线段最值问题——“费马点”问题(包含答案)

几何探究型问题(针对第25题)线段最值问题“费马点”问题【问题背景】“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.【模型分析】对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.例题1.如图,已知点P为等边三角形ABC外接圆的劣弧BC上任意一点,求证:PB+PC=PA.证明:如答图,在P A上截取PM=PC,连接CM.∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,BC =AC .∵∠ABC =∠APC ,∴∠MPC =60°,∴△MPC 是等边三角形,∴∠MCP =60°,MC =PC ,∴∠ACM =∠BCP .在△BPC 和△AMC 中,⎩⎪⎨⎪⎧BC =AC ,∠BCP =∠ACM ,PC =MC ,∴△BPC ≌△AMC (SAS),∴BP =AM ,∴PB +PC =AM +PM =P A .2.已知三个村庄A ,B ,C 构成了如图所示的△ABC(其中∠A ,∠B ,∠C 均小于120°),现选取一点P 作为打水井,使水井P 到三个村庄A ,B ,C 所铺设的输水管总长度最小.求输水管总长度的最小值.解:如答图,以BC 为边在△ABC 的外部作等边三角形BCD ,连接AD .∴AD 的长就是△ABC 的费马距离. 易得∠ABD =90°,∴AD =AB 2+BD 2=5(km).答:输水管总长度的最小值为5 km.练习(2019·陕师大附中六模)问题提出(1)如图1,在△ABC 中,BC =2,将△ABC 绕点B 顺时针旋转60°得到△A ′BC ′,则CC ′=______.【解答】由旋转的性质可知∠CBC ′=60°,BC ′=BC ,则∠△BCC ′是等边三角形,故CC ′=BC =2.问题探究(2)如图2,在△ABC中,AB=BC=3,∠ABC=30°,点P为△ABC内一点,连接PA,PB,PC,求PA+PB+PC的最小值,并说明理由.解题思路将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.易证PA+PB+PC=EF+PF+PC;由PC+PF+EF≥EC,推出当点P,F在直线EC上时,PA+PB+PC的值最小,即为EC的长,求出EC的长即可解决问题.【解答】如答图1,将△ABP绕点B逆时针旋转60°得到△EBF,连接PF,EC.由旋转的性质可知△PBF是等边三角形,∴PB=PF.∵P A=EF,∴P A+PB+PC=EF+PF+PC.∵PC+PF+EF≥EC,∴当点P,F在直线EC上时,P A+PB+PC的值最小,易得BC=BE=BA=3,∠CBE=90°,∴EC=2BC=32,∴P A+PB+PC的最小值为3 2.问题解决(3)如图3,在四边形ABCD中,AD∥BC,AB=6,AD=4,∠ABC=∠BCD=60°.在四边形ABCD内部有一点P,满足∠APD=120°,连接BP,CP,点Q为△BPC内的任意一点,是否存在一点P和一点Q,使得PQ+BQ+CQ有最小值?若存在,请求出这个最小值;若不存在,请说明理由.解题思路将△PBQ绕点B逆时针旋转60°得到△EBG,则PQ=EG,△BQG是等边三角形,易知PQ+BQ+CQ=EG+GQ+QC≥EC,推出当EC取得最小值时,PQ +BQ +CQ 的值最小.延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OB ,OP .易证△BEO ′≌△BPO(SAS),推出EO ′=OP =433,故点E 在以点O ′为圆心,433为半径的圆上,则当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长.【解答】如答图2,将△PBQ 绕点B 逆时针旋转60°得到△EBG ,连接GQ ,EC ,则PQ =EG ,△BQG 是等边三角形,∴BQ =QG ,∴PQ +BQ +CQ =EG +GQ +QC ≥EC ,∴当EC 取得最小值时,PQ +BQ +CQ 的值最小.如答图3,延长BA 交CD 的延长线于点S ,作△ADS 的外接圆⊙O ,连接OB .将线段BO ,BP 绕点B 逆时针旋转60°得到线段BO ′,BE ,连接EO ′,OP.易证△BEO ′≌△BPO (SAS),∴EO ′=PO .∵∠APD +∠ASD =180°,∴A ,P ,D ,S 四点共圆,∴OP =433,∴EO ′=433, ∴点E 在以点O ′为圆心,433为半径的圆上, ∴当点E 在线段CO ′上时,EC 的值最小,最小值为CO ′-EO ′的长,连接OO ′,延长OO ′到点R ,使得O ′R =OO ′,连接BR ,则∠OBR =90°,作RH ⊥CB 交CB 的延长线于点H ,O ′T ⊥CH 于点T ,OM ⊥BC 于点M .易知在Rt △OBM 中,BM =5,OM =1133, ∴OB =OM 2+BM 2=1433, ∴BR =3OB =14.易知△BHR ∽△OMB ,∴RH BM =BR OB,∴RH =5 3.∵HR ∥O ′T ∥OM ,OO ′=RO ′,∴TM =TH ,∴O ′T =RH +OM 2=1333,∴BT =O ′B 2-O ′T 2=3, ∴CO ′=CT 2+O ′T 2=2633, ∴CE =CO ′-EO ′=2633-433=2233, ∴PQ +BQ +CQ 的最小值为2233.类型三 “阿氏圆”问题【问题背景】“PA +k ·PB ”型的最值问题是近几年中考考查的热点,更是一个难点.当k 的值为1时,即可转化为“PA +PB ”之和最短问题,就可用我们常见的“将军饮马”问题模型来处理,即可以转化为轴对称问题来处理.当k 取任意不为1的正数时,此类问题的处理通常以动点P 的运动轨迹不同来分类,一般分为两类研究,即点P 在直线上运动和点P 在圆上运动.其中点P 在圆周上运动的类型称之为“阿氏圆”问题.【模型分析】如图1,⊙O 的半径为r ,点A ,B 都在⊙O 外,P 为⊙O 上一动点,已知r =k ·OB ,连接PA ,PB ,则当PA +k ·PB 的值最小时,点P 的位置如何确定?如图2,在线段OB 上截取OC ,使OC =k ·r ,则可证明△BPO 与△PCO 相似,即k ·PB =PC .故求PA +k ·PB 的最小值可以转化为PA +PC 的最小值,其中A ,C 为定点,P 为动点,当点P ,A ,C 共线时,PA +PC 的值最小,如图3.“阿氏圆”模型解题策略:第一步:连接动点与圆心O(一般将含有k 的线段两端点分别与圆心O 相连),即连接OB ,OP ;第二步:计算线段OP 与OB 及OP 与OA 的线段比,找到线段比为k 的情况,如例子中的OP OB =k ; 第三步:在OB 上取点C ,使得OC OP =OP OB ;第四步:连接AC ,与⊙O 的交点即为点P .例题如图,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 的半径为2,P 为圆上一动点,连接AP ,BP ,求AP +12BP 的最小值. 解:如答图,连接CP ,在CB 上取点D ,使CD =1,连接AD ,PD .∵CD CP =CP BC =12,∠PCD =∠BCD , ∴△PCD ∽△BCP ,∴PD BP =12, ∴PD =12BP ,∴AP +12BP =AP +PD , ∴要使AP +12BP 最小,则AP +PD 最小, 当点A ,P ,D 在同一条直线时,AP +PD 最小,即AP +12BP 的最小值为AD 的长. 在Rt △ACD 中,∵CD =1,AC =6,∴AD =AC 2+CD 2=37,∴AP +12BP 的最小值为37. 练习问题提出(1)如图1,已知线段AB 和BC ,AB =2,BC =5,则线段AC 的最小值为______.解题思路当点A 在线段BC 上时,线段AC 有最小值.【解答】∵当点A 在线段BC 上时,线段AC 有最小值,∴线段AC 的最小值为5-2=3.问题探究(2)如图2,已知在扇形COD 中,∠COD =90°,DO =CO =6,A 是OC的中点,延长OC 到点F ,使CF =OC ,P 是CD ︵上的动点,点B 是OD 上的一点,BD =1.①求证:△OAP ∽△OPF .解题思路由题意可得OA OP =OP OF =12,由相似三角形的判定可得△OAP ∽△OPF . 【解答】∵A 是OC 的中点,DO =CO =6=OP ,∴OA OP =12. ∵CF =OC ,∴OF =2OC =2OP ,∴OP OF =12, ∴OA OP =OP OF,且∠AOP =∠POF ,∴△OAP ∽△OPF .②求BP +2AP 的最小值.解题思路由相似三角形的性质可得PF =2AP ,可得BP +2AP =BP +PF ,即当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长,由勾股定理即可求解.【解答】∵△OAP ∽△OPF ,∴AP PF =OP OF =12, ∴PF =2AP .∵BP +2AP =BP +PF ,∴当F ,P ,B 三点共线时,BP +2AP 有最小值,最小值为BF 的长.∵DO =CO =6,BD =1,∴BO =5,OF =12,∴BF =OB 2+OF 2=13.问题解决(3)如图3,有一个形状为四边形ABCD 的人工湖,BC =9千米,CD =4千米,∠BCD =150°,现计划在湖中选取一处建造一座假山P ,且BP =3千米,为方便游客观光,从C ,D 分别建小桥PD ,PC .已知建桥PD 每千米的造价是3万元,建桥PC 每千米的造价是1万元,建桥PD 和PC 的总造价是否存在最小值?若存在,请确定点P 的位置,并求出总造价的最小值,若不存在,请说明理由.(桥的宽度忽略不计)解题思路以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,点P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥CB ,可证△BPM ∽△BCP ,可得PC =3PM ,当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值,由勾股定理可求MD 的值,即可求出建桥PD 和PC 的总造价的最小值.【解答】存在.如答图,以点B 为圆心,3为半径作圆交AB 于点E ,交BC 于点F ,P 为EF ︵上一点,连接BP ,PC ,PD ,在BC 上截取BM =1,连接MD ,PM ,过点D 作DG ⊥BC 交BC 的延长线于点G .∵BM BP =13=BP BC,且∠PBM =∠CBP , ∴△BPM ∽△BCP ,∴PM CP =BM BP =13,∴PC =3PM . ∵建桥PD 和PC 的总造价为3PD +PC =3PD +3PM =3(PD +PM ),∴当点P 在线段MD 上时,建桥PD 和PC 的总造价有最小值.∵∠BCD =150°,∴∠DCG =30°.∵DG ⊥BC ,∴DG =12DC =23(千米),CG =3DG =6(千米), ∴MG =BC +CG -BM =9+6-1=14(千米),∴MD =DG 2+MG 2=413(千米),∴建桥PD 和PC 的总造价的最小值为3×413=1213万元.作业5.(2019·交大附中三模)问题提出(1)如图1,点M ,N 是直线l 外两点,在直线l 上找一点K ,使得MK +NK 最小. 问题探究(2)如图2,在等边三角形ABC 内有一点P ,且P A =3,PB =4,PC =5,求∠APB 的度数.问题解决(3)如图3,矩形ABCD是某公园的平面图,AB=30 3 米,BC=60米,现需要在对角线BD上修一凉亭E,使得到公园出口A,B,C的距离之和最小.问:是否存在这样的点E?若存在,请画出点E的位置,并求出EA+EB+EC的最小值;若不存在,请说明理由.解:(1)如答图1,连接MN,与直线l交于点K,点K即为所求.(2)如答图2,把△APB绕点A逆时针旋转60°得到△AP′C,连接PP′.由旋转的性质,得P′A=P A=3,P′C=PB=4,∠P AP′=60°,∠AP′C=∠APB,∴△APP′是等边三角形,∴PP′=P A=3,∠AP′P=60°.∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴△PP′C为直角三角形,且∠PP′C=90°,∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°,∴∠APB=∠AP′C=150°.(3)存在.如答图3,把△ABE绕点B逆时针旋转60°得到△A′BE′,连接EE′.答图由旋转的性质,得A′B=AB=30 3 米,BE′=BE,A′E′=AE,∠E′BE=60°,∠A′BA=60°,∴△E′BE是等边三角形,∴BE=EE′,∴EA +EB +EC =A ′E ′+EE ′+EC .根据两点之间线段最短,可知当EA +EB +EC =A ′C 时最短,连接A ′C ,与BD 的交点E 2即为所求,此时EA +EB +EC 最短,最短距离为A ′C 的长度.过点A ′作A ′G ⊥CB 交CB 的延长线于点G . ∵∠A ′BG =90°-∠A ′BA =90°-60°=30°, A ′G =12A ′B =12AB =12×303=153(米),∴GB =3A ′G =3×153=45(米), ∴GC =GB +BC =45+60=105(米).在Rt △A ′GC 中,A ′C =A ′G 2+GC 2=(153)2+1052=3013(米), 因此EA +EB +EC 的最小值为3013 米. 6.问题提出(1)如图1,已知△OAB 中,OB =3,将△OAB 绕点O 逆时针旋转90°得△OA ′B ′,连接BB ′,则BB ′=问题探究(2)如图2,已知△ABC 是边长为43的等边三角形,以BC 为边向外作等边三角形BCD ,P 为△ABC 内一点,将线段CP 绕点C 逆时针旋转60°,点P 的对应点为点Q .①求证:△DCQ ≌△BCP . ②求P A +PB +PC 的最小值. 问题解决(3)如图3,某货运场为一个矩形场地ABCD ,其中AB =500米,AD =800米,顶点A ,D 为两个出口,现在想在货运广场内建一个货物堆放平台P ,在BC 边上(含B ,C 两点)开一个货物入口M ,并修建三条专用车道P A ,PD ,PM .若修建每米专用车道的费用为10 000元,当M ,P 建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)解:(1)由旋转的性质,得∠BOB ′=90°,OB =OB ′=3, 根据勾股定理,得BB ′=3 2. (2)①证明:∵△BDC 是等边三角形, ∴CD =CB ,∠DCB =60°.由旋转的性质,得∠PCQ =60°,PC =QC , ∴∠DCQ =∠BCP .在△DCQ 和△BCP 中,⎩⎪⎨⎪⎧CD =CB ,∠DCQ =∠BCP ,CQ =CP ,∴△DCQ ≌△BCP (SAS). ②如答图1,连接AD ,PQ . ∵PC =CQ ,∠PCQ =60°,∴△CPQ 是等边三角形,∴PQ =PC , 由①知DQ =PB ,∴P A +PB +PC =P A +QD +PQ ,由两点之间线段最短,得P A +QD +PQ ≥AD , ∴P A +PB +PC ≥AD ,∴当点A ,P ,Q ,D 在同一条直线上时,P A +PB +PC 取得最小值,即为AD 的长,过点D 作DE ⊥AC ,交AC 的延长线于点E . ∵△ABC 是边长为43的等边三角形, ∴CB =AC =43,∠BCA =60°, ∴CD =CB =43,∠DCE =60°, ∴DE =6,∠DAE =∠ADC =30°, ∴AD =12,即P A +PB +PC 的最小值为12.答图(3)如答图2,将△ADP 绕点A 逆时针旋转60°,得△AD ′P ′.由(2)知,当点M ,P ,P ′,D ′在同一条直线上时,P A +PM +PD 最小,最小值为D ′M 的长.∵M 在BC 上,∴当D ′M ⊥BC 时,D ′M 取得最小值. 设D ′M 交AD 于点E ,连接DD ′,AM ,DM . 易知△ADD ′是等边三角形,∴EM =AB =500米, ∴BM =400米,PM =EM -PE =(500-40033)米,∴D ′E =32AD =4003(米),∴D ′M =(4003+500)米, ∴最少费用为10 000×(4003+500)= 1 000 000(43+5)元.∴当M 建在BC 的中点(BM =400米)处,点P 在过M 且垂直于BC 的直线上,且在M上方(500-40033)米处时,修建专用车道的费用最少,最少费用为1 000 000(43+5)元.类型三 “阿氏圆”问题7.(2018·西工大附中三模) 问题提出(1)如图1,在△ABC 中,AB =AC ,BD 是AC 边的中线,请用尺规作图作出AB 边的中线CE ,并证明BD =CE ;问题探究(2)如图2,已知点P 是边长为6的正方形ABCD 内部一动点,P A =3,求PC +12PD 的最小值;问题解决(3)如图3,在矩形ABCD 中,AB =18,BC =25,点M 是矩形内部一动点,MA =15,当MC +35MD 最小时,画出点M 的位置,并求出MC +35MD 的最小值.解:(1)如答图1,线段EC 即为所求.证明:∵AB =AC ,AE =EB ,AD =CD ,∴AE =AD , 在△BAD 和△CAE 中,⎩⎪⎨⎪⎧AB =AC ,∠A =∠A ,AD =AE ,答图1∴△BAD ≌△CAE (SAS),∴BD =CE . (2)如答图2,在AD 上截取AE ,使得AE =32.∵P A 2=9,AE ·AD =32×6=9,∴P A 2=AE ·AD ,∴P A AD =AEP A.∵∠P AE =∠DAP ,∴△P AE ∽△DAP , ∴PE DP =P A DA =12,∴PE =12PD , ∴PC +12PD =PC +PE .∵PC +PE ≥EC ,∴PC +12PD 的最小值即为EC 的长,在Rt △CDE 中,∵∠CDE =90°,CD =6,DE =92,∴EC =62+(92)2=152,∴PC +12PD 的最小值为152.答图(3)如答图3,在AD 上截取AE ,使得AE =9. ∵MA 2=225,AE ·AD =9×25=225,∴MA 2=AE ·AD ,∴MA AD =AEMA.∵∠MAE =∠DAM ,∴△MAE ∽△DAM , ∴EM MD =MA DA =1525=35,∴ME =35MD , ∴MC +35MD =MC +ME .∵MC +ME ≥EC ,∴MC +35MD 的最小值即为EC 的长.如答图3,以点A 为圆心,AM 长为半径画弧,交EC 于点M ′,点M ′即为所求. 在Rt △CDE 中,∵∠CDE =90°,CD =18,DE =16, ∴EC =162+182=2145, ∴MC +35MD 的最小值为2145.8.(1)如图1,已知正方形ABCD 的边长为4,⊙B 的半径为2,P 是⊙B 上的一个动点,求PD +12PC 的最小值和PD -12PC 的最大值;(2)如图2,已知正方形ABCD 的边长为9,⊙B 的半径为6,P 是⊙B 上的一个动点,那么PD +23PC 的最小值为,PD -23PC 的最大值为(3)如图3,已知菱形ABCD 的边长为4,∠B =60°,⊙B 的半径为2,P 是⊙B 上的一个动点,那么PD +12PC 的最小值为,PD -12PC 的最大值为解:(1)如答图1,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG .∵PB BG =CBPB=2,∠PBG =∠CBP , ∴△PBG ∽△CBP , ∴PG CP =BG BP =12,∴PG =12PC , ∴PD +12PC =PD +PG .∵PD +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG =42+32=5.∵PD -12PC =PD -PG ≤DG ,∴如答图2,当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为5.答图(2)106,106.【解法提示】如答图3,在BC 上取一点G ,使BG =4,连接PG ,PB ,DG . ∵PB BG =64=32,CB PB =96=32,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =23, ∴PG =23PC ,∴PD +23PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +23PC 的值最小,最小值为DG =52+92=106.∵PD -23PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为106.答图(3)37,37.【解法提示】如答图4,在BC 上取一点G ,使得BG =1,连接PB ,PG ,DG ,作DF ⊥BC 交BC 的延长线于点F .∵PB BG =21=2,BC PB =42=2,∴PB BG =CB BP. ∵∠PBG =∠CBP ,∴△PBG ∽△CBP , ∴PG CP =BG BP =12, ∴PG =12PC ,∴PD +12PC =DP +PG .∵DP +PG ≥DG ,∴当D ,P ,G 三点共线时,PD +12PC 的值最小,最小值为DG 的长.在Rt △CDF 中,∵∠DCF =60°,CD =4, ∴DF =CD ·sin60°=23,CF =2,∴在Rt △GDF 中,DG =(23)2+52=37. ∴PD +12PC 的最小值为37.∵PD -12PC =PD -PG ≤DG ,∴当点P 在DG 的延长线上时,PD -12PC 的值最大,最大值为37.。

初中数学专题07几何图形动点运动问题(解析版)

初中数学专题07几何图形动点运动问题(解析版)

专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。

利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。

解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【答案】(1)=,见解析;(2)AB≠AC时,CF⊥BD的结论成立,见解析;(3)线段CP的长为1或3 【解析】【分析】(1)证出∠BAC=∠DAF=90°,得出∠BAD=∠CAF;可证△DAB≌△F AC(SAS),得∠ACF=∠ABD=45°,得出∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证△GAD≌△CAF(SAS),得出∠ACF=∠AGD =45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3)分两种情况去解答.①点D在线段BC上运动,求出AQ=CQ=4.即DQ=4﹣2=2,易证△AQD∽△DCP,得出对应边成比例,即可得出CP=1;②点D在线段BC延长线上运动时,同理得出CP=3.【详解】(1)①解:∠BAD=∠CAF,理由如下:∵四边形ADEF是正方形∴∠DAF=90°,AD=AF∵AB=AC,∠BAC=90°∴∠BAD+∠DAC=∠CAF+∠DAC=90°∴∠BAD=∠CAF故答案为:=②在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAF(SAS)∴CF=BD∴∠B=∠ACF∴∠B+∠BCA=90°∴∠BCA+∠ACF=90°∴∠BCF=90°∴CF⊥BD(2)如图2所示:AB≠AC时,CF⊥BD的结论成立.理由如下:过点A作GA⊥AC交BC于点G则∠GAD=∠CAF=90°+∠CAD∵∠ACB=45°∴∠AGD=45°∴AC=AG在△GAD和△CAF中,AG ACGAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠BCF=∠ACB+∠ACF=90°∴CF⊥BD.(3)过点A作AQ⊥BC交CB的延长线于点Q,①点D在线段BC上运动时,如图3所示:∵∠BCA=45°∴△ACQ是等腰直角三角形∴AQ=CQ=22AC=4∴DQ=CQ﹣CD=4﹣2=2∵AQ⊥BC,∠ADE=90°∴∠DAQ+∠ADQ=∠ADQ+∠PDC=90°∴∠DAQ=∠PDC∵∠AQD=∠DCP=90°∴△DCP∽△AQD∴CPDQ=CDAQ,即CP2=24解得:CP=1②点D在线段BC延长线上运动时,如图4所示:∵∠BCA=45°∴AQ=CQ=4∴DQ=AQ+CD=4+2=6∵AQ⊥BC于Q∴∠Q=∠F AD=90°∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D ∴∠ADQ=∠AFC′则△AQD∽△AC′F∴CF⊥BD∴△AQD∽△DCP∴CPDQ=CDAQ,即CP6=24解得:CP=3综上所述,线段CP的长为1或3.【名师点睛】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及直角三角形的性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________【答案】(1)AE=BD.∠APC=60°;(2)成立,见详解;(3)AE=BD【解析】【分析】(1)观察猜想:①证明△ACE≌△DCB(SAS),可得AE=BD,∠CAE=∠BDC;②过点C向AE,BD作垂线,由三角形全等可得高相等,再根据角分线判定定理,推出PC平分∠APB,即可求出∠APC的度数;(2)数学思考:结论成立,证明方法类似;(3)拓展应用:证明△ACE≌△DCB(SAS),即可得AE=BD.【详解】解:(1)观察猜想:结论:AE=BD.∠APC=60°.理由:①∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD;②由①得∠EAC=∠BDC,∵∠AOC=∠DOP,∴∠APB=∠AOC+∠EAC=180°-60°= 120°.过过点C向AE,BD作垂线交于点F与G∵由①知△ACE≌△DCB∴CF=CG∴CP为∠APB的角平分线∴∠APC=12APB∠=60°;(2)数学思考:结论仍然成立.①∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD;②由①得∠AEC=∠DBC,∴∠CEA+∠PEB=∠CBD+∠PEB=60°,∴∠APB=∠CBD+∠CBE+∠PEB=120°.过过点P向AC,BC作垂线交于点H与I∵由①知△ACE≌△DCB∴PH=PI∴CP为∠APB的角平分线∴∠APC=12APB∠=60°;(3)∵△ADC,△ECB都是等腰直角三角形,∴CA=CD,∠ACD=∠ECB=90°,CE=CB,∴∠ACB+∠BCE=∠ACB+∠ACD∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD.【点睛】本题属于四边形综合题,考查了等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1P m,且四边形OADP的面积是ABC∆面积的2倍,求满足条件的点P的坐标;(3)如图,动点M 从点C 出发,以每钞1个单位的速度沿线段CB 运动,同时动点N 从点A 出发.以每秒2个单位的連度沿线段AO 运动,当N 到达O 点时,M ,N 同时停止运动,运动时间是t 秒()0t >,在M ,N 运动过程中.当5MN =时,直接写出时间t 的值.【答案】(1)()6,0A ,()0,4C (2)()18,1P -(3)1或3 【解析】 【分析】(1)根据矩形的性质和直角坐标系中点的确定,即可求出A 点坐标和C 点坐标;(2)根据四边形OADP 的面积是ABC ∆面积的2倍,列出关于m 的方程,解方程即可求出点P 的坐标; (3)由题意表示出ON =6-2t ,MC =t ,过点M 作ON 得垂线ME 交OA 于点E , 根据勾股定理列出关于t 的方程,求解即可. 【详解】(1)∵长方形OABC 的项点B 的坐标是(6,4), ∴BC =6,AB =4, ∴OA =6,OC =4, ∴A (6,0)C (0,4);(2)连接PD ,PO ,过点P 作PE ⊥OD ,交OD 于点E ,∵BC =6,AB =4; ∴11==64=1222ABC S AB BC ⋅⨯⨯△, ∵四边形OADP 的面积是ABC ∆面积的2倍, ∴四边形OADP 的面积是24, ∴==OADP S S S △OAD △ODP 四边形+11=2422OA OD PE OD ⋅⋅+ ∵D 为OC 中点, ∴OD =2;∵(),1P m 是第二象限的点, ∴PE =﹣m , ∴可列方程为1162+2m =22⨯⨯⨯⨯(﹣)24;解得m =﹣18, ∴()18,1P -(3)如图,过点M 作ON 的垂线ME 交OA 于点E ,由题意得ON =6-2t ,MC =t ()3t ≤0<; ∴ME =4,EN =6-3t 又∵5MN =,∴根据勾股定理可列方程为()22246t =5+-3,解方程得t =1或t =3 ∴当t =1或t =3时,5MN =. 【名师点睛】本题考查了矩形的性质和直角坐标系中点的确定,勾股定理等,利用方程思想解决问题是解题的关键【举一反三】如图,▱ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长,(用含t的代数式表示)(2)当四边形ABQP是平行四边形时,求t的值(3)当点O在线段AP的垂直平分线上时,直接写出t的值.【答案】(1)BQ=5﹣t;(2)52秒;(3)t=165.【解析】【分析】(1)利用平行四边形的性质可证△APO≌△CQO,则AP=CQ,再利用BQ BC CQ=-即可得出答案;(2)由平行四边形性质可知AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,建立一个关于t的方程,解方程即可求出t的值;(3)在Rt△ABC中,由勾股定理求出AC的长度,进而求出AO的长度,然后利用ABC的面积求出EF 的长度,进而求出OE的长度,而AE可以用含t的代数式表示出来,最后在Rt AOE中利用勾股定理即可求值.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠P AO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=BC-CQ=5﹣t;(2)∵AP ∥BQ ,当AP =BQ 时,四边形ABQP 是平行四边形, 即t =5﹣t ,t =52, ∴当t 为52秒时,四边形ABQP 是平行四边形;(3)t =165,如图,在Rt △ABC 中, ∵AB =3,BC =5,∴AC 2222534BC AC -=-= ∴AO =CO =12AC =2, 1122ABCSAB AC BC EF == AB AC BC EF ∴=∴3×4=5×EF , ∴125EF =, ∴65OE =,∵OE 是AP 的垂直平分线, ∴AE =12AP =12t ,∠AEO =90°, 由勾股定理得:AE 2+OE 2=AO 2,22216()()225t ∴+=165t ∴=或165t =-(舍去)∴当165t =秒时,点O 在线段AP 的垂直平分线上. 【点睛】本题主要考查了平行四边形的判定及性质以及动点问题,掌握平行四边形的判定及性质,以及勾股定理是解题的关键.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒? (2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行? 【答案】(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行103秒;(2)P 、Q 两只蚂蚁最快爬行20秒后,直线PQ ∥AB 【解析】 【分析】(1)首先设蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行t 秒,可得方程:10-t =2t ,解此方程即可求得答案;(2)首先设P 、Q 两只蚂蚁最快爬行x 秒后,直线PQ ∥AB ,可得方程:x -10=50-2x ,解此方程即可求得答案. 【详解】(1)设蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行t 秒, ∵四边形ABCD 是长方形, ∴∠B =90∘, ∴BP =BQ ,∵AP =tcm ,BQ =2tcm ,则PB =AB −AP =10−t (cm ), ∴10−t =2t ,解得:t=103,∴蚂蚁出发后△PBQ第一次是等腰三角形需要爬行103秒;(2)设P、Q两只蚂蚁最快爬行x秒后,直线PQ∥AB,∵AD∥BC,∴四边形ABPQ是平行四边形,∴AQ=BP,∴x−10=50−2x,解得:x=20,∴P、Q两只蚂蚁最快爬行20秒后,直线PQ∥AB;【名师点睛】此题考查了矩形的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.【举一反三】如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.【答案】(1)A(1,0),C(-3,0);(2)23(023)33S t tS t t⎧=≤<⎪⎨=-⎪⎩(>)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(123).【解析】【分析】(1)根据方程求出AO 、AB 的长,再由AB :AC =1:2求出OC 的长,即可得到答案; (2)分点M 在CB 上时,点M 在CB 延长线上时,两种情况讨论S 与t 的函数关系式; (3)分AQ =AB ,BQ =BA ,BQ =AQ 三种情况讨论可求点Q 的坐标. 【详解】 (1)x 2-3x +2=0, (x -1)(x -2)=0, ∴x 1=1,x 2=2, ∴AO =1,AB =2, ∴A (1,0),OB ===,∵AB :AC =1:2, ∴AC =2AB =4, ∴OC =AC -OA =4-1=3, ∴C (-3,0).(2)∵3OB OC ==,∴22222312BC OB OC =+=+=, ∵2222416,24AC AB ====, ∴222AC AB BC =+,∴△ABC 是直角三角形,且∠ABC =90︒, 由题意得:CM =t ,BC=当点M 在CB 上时,1)2S t t =⨯=(0t ≤<, ②当点M 在CB 延长线上时,12(2S t t =⨯-=-t>.综上,(0 S t t S t t ⎧=≤<⎪⎨=-⎪⎩>. (3)存在,①当AB 是菱形的边时,如图所示,在菱形AP 1Q 1B 中,Q 1O =AO =1,∴ Q 1(-1,0),在菱形ABP 2Q 2中,AQ 2=AB =2,∴Q 2(1,2), 在菱形ABP 3Q 3中,AQ 3=AB =2,∴Q 3(1,-2); ②当AB 为菱形的对角线时,如图所示, 设菱形的边长为x ,则在Rt △AP 4O 中,22244AO P O AP += 2221(3)x x =+-,解得x =233, ∴Q 4(1,233). 综上,平面内满足条件的点Q 的坐标为(-1,0),(1,2),(1,-2),(1,233).【点睛】此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.类型四 【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y =ax 2﹣34x +c 与x 轴相交于点A (﹣2,0)、B (4,0),与y 轴相交于点C ,连接AC ,BC ,以线段BC 为直径作⊙M ,过点C 作直线CE ∥AB ,与抛物线和⊙M 分别交于点D ,E ,点P 在BC 下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.【答案】(1)y=38x2﹣34x﹣3;(2)P(3,﹣138);(3)点P(2,﹣3),最大值为12【解析】【分析】(1)用交点式设出抛物线的表达式,化为一般形式,根据系数之间的对应关系即可求解;(2)根据(1)中的表达式求出点C(0,-3),函数对称轴为:x=1,则点D(2,-3),点E(4,-3),当△PDE 是以DE为底边的等腰三角形时,点P在线段DE的中垂线上,据此即可求解;(3)求出直线BC的表达式,设出P、H点的坐标,根据四边形ACPB的面积=S△ABC+S△BHP+S△CHP进行计算,化为顶点式即可求解.【详解】(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣34,解得:a=38,故抛物线的表达式为:y=38x2﹣34x﹣3;(2)当x=0时,y=-3,故点C的坐标为(0,﹣3),函数对称轴为:x=242-+=1,∵CE∥AB∴点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x=242=3,当x=3时,y=38x2﹣34x﹣3=﹣138,故点P(3,﹣138);(3)设直线BC的解析式为y=kx+b,把B(4,0)C(0,﹣3)代入得:403k bb+=⎧⎨=-⎩解得:343 kb⎧=⎪⎨⎪=-⎩∴直线BC的表达式为:y=34x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,38x2﹣34x﹣3),则点H(x,34x﹣3);四边形ACPB的面积=S△ABC+S△BHP+S△CHP=12⨯3×6+12⨯HP×OB=9+12×4×(34x﹣3﹣38x2+34x+3)=﹣3 4x2+3x+9=()23-2124x-+,∵﹣34<0,故四边形ACPB的面积有最大值为12,此时,点P(2,﹣3).【名师点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,掌握中点坐标公式及作辅助线的方法是关键.【举一反三】已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)当t为32s时,点M是AB中点;(2)y与t的函数关系式是y28675t=-+;(3)t的值为52s;(4)不存在,理由见解析. 【解析】【分析】(1)求出BD=3,根据BM BPAB BD=,即可求出时间t;(2)先判断出△MBP∽△ABD,进而得出MP,同理表示出QN和CN,然后利用梯形面积公式进行计算即可得出结论;(3)根据(2)中所求,结合面积之间的关系建立方程即可得出结论;(4)假设存在,先利用PM=QN求出t,进而求出PM,PN,判断出PM≠PN即可得出结论.【详解】解:(1)过点A作AD⊥BC于点D,∵PM⊥BC,∴PM∥AD,∴BM BP AB BD=,∵点M 是AB 中点 ∴12BM AB =, ∴12BP BD =, ∵AB = AC , ∴132BD CD BC ===, ∵BP =t , ∴132t =,解得:32t =, 即当t 为32s 时,点M 是AB 中点; (2)过点A 作AD ⊥BC 于点D , ∵PM ∥AD , ∴△MBP ∽△ABD , ∴MP BPAD BD=,∵4AD ==, ∴43MP t=, ∴43MP t =,同理,△QCN ∽△ACD , ∴CQ QN CNAC AD CD==, ∵5CQ t =-, ∴5543t QN CN-==, ∴()445=455QN t t =--,()335=355CN t t =--, ∴32=63355PN t t t --+=-,∴y =S 四边形PNQM =()21144284362235575MP QN PN t t t t ⎛⎫⎛⎫+⋅=+-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭, 即y 与t 的函数关系式是y 28675t =-+; (3)若S 四边形PNQM :S △ABC =4:9,则y =49S △ABC ,∵S △ABC =11641222BC AD ⋅=⨯⨯=,∴2846=12759t -+⨯, 解得152t =,252t =-(不合题意,舍去), ∴t 的值为52s ; (3)若四边形PNQM 为正方形,则需满足PM = QN ,PM = PN ,当PM = QN 时,44=435t t -,解得:158t =, 当158t =时,PM =44155==3382t ⨯,PN =221593=3=5584t --⨯,∴PM ≠PN , ∴不存在. 【点睛】此题是四边形综合题,主要考查了相似三角形的判定和性质、等腰三角形的性质、勾股定理、梯形和三角形的面积公式、解一元二次方程以及正方形的性质等知识点,解本题的关键是用方程的思想解决问题.【新题训练】1.如图①,△ABC 是等边三角形,点P 是BC 上一动点(点P 与点B 、C 不重合),过点P 作PM ∥AC 交AB 于M ,PN ∥AB 交AC 于N ,连接BN 、CM .(1)求证:PM +PN =BC ;(2)在点P 的位置变化过程中,BN =CM 是否成立?试证明你的结论;(3)如图②,作ND ∥BC 交AB 于D ,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).【答案】(1)见解析;(2)结论成立,理由见解析;(3)见解析【解析】【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN =BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC 于H,同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,∴D与N,M与E,B与C关于AH对称.∴BM=CE,∴BM=CF,∴P与F关于AH对称,∴所做图形是轴对称图形.【点睛】本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.【答案】(1)证明见解析;(2) EF 1213;(3)S四边形CEFG最小=52.【解析】【分析】(1)利用矩形的性质及平行线的性质,可证得∠DCG=∠MAG,,∠CDG=∠AMG,△AGM∽△CGD,再利用相似三角形的对应边相等,可得比例线段,然后证明DC=AB=2AM,即可证得CG与AG的数量关系. (2)利用勾股定理,分别求出AC、DG的长,再分情况讨论:①当∠DEF=∠DCG时,△DEF∽△DCG;②当∠DEF=∠DGC时,△DEF∽△DGC,分别利用相似三角形的性质,得出对应边成比例,即可求出EF的长.(3)作GH⊥DC,FN⊥DC,易证△DNF∽△MAD,可证对应边成比例,求出NF的长,再根据S四边形CEFG=S△DCG-S△DEF,可得到S与t的函数解析式,再利用二次函数的性质,可求出四边形CEFG的面积的最小值.【详解】证明:(1)在矩形ABCD中,AB∥DC,∴∠DCG=∠MAG,∠CDG=∠AMG,∴△AGM∽△CGD,∴CG DC AG AM=∵点M是边AB的中点, ∴DC=AB=2AM,∴CGAG=2,CG即CG=2AG(2)在Rt△ADC中,由勾股定理得AC=2222AD CD1218613+=+=,由(1)得CG=2AG,CG=23AC=413,同理可得DG=10①当∠DEF=∠DCG时,△DEF∽△DCG∴EF DECG DC=即EF618413=,解得EF=4133②当∠DEF=∠DGC时,△DEF∽△DGC∴EF DECG DG=,即EF610413=,解得EF=12135(3)作GH⊥DC,FN⊥DC,设运动时间为t,则DF=DG-FG=10-t,DE=2t,∵∠DNF=∠DAM,∠NDF=∠AMD,∴△DNF∽△MAD∴DF FN DM DA = 即 10t FN 1512-= ,解得NF = 404t5- ∵S 四边形CEFG =S △DCG -S △DEF ()22211404t 4404=18122t t t 72=5523225555-⨯⨯⨯-⨯⨯=-+-+t ∴当t =5时,S 四边形CEFG 最小=52 【点睛】本题考查了矩形的性质,相似三角形的动点问题,以及二次函数的实际应用,熟练掌握矩形的性质判定相似三角形,然后利用相似三角形的性质求出边长并建立二次函数模型是解题的关键.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC 的边长为4cm ,点D 从点C 出发沿CA 向A 运动,点E 从B 出发沿AB 的延长线BF 向右运动,已知点D 、E 都以每秒0.5cm 的速度同时开始运动,运动过程中DE 与BC 相交于点P ,设运动时间为x 秒.(1)请直接写出AD 长.(用x 的代数式表示) (2)当△ADE 为直角三角形时,运动时间为几秒? (3)求证:在运动过程中,点P 始终为线段DE 的中点.【答案】(1)AD =4-0.5x ;(2)83;(3)证明见解析.【解析】 【详解】试题分析:(1)直接根据AD =AC -CD 求解;(2)设x 秒时,△ADE 为直角三角形,分别用含x 的式子表示出AD 和AE ,再根据Rt △ADE 中30°角所对的直角边等于斜边的一半得出x 的方程,求解即可;(3)作DG ∥AB 交BC 于点G ,证△DGP ≌△EBP 便可得. 解:(1)由AC =4,CD =0.5x ,得AD =AC -CD =4-0.5x ; (2)∵△ABC 是等边三角形,∴AB =BC =AC =4cm ,∠A =∠ABC =∠C =60°.设x 秒时,△ADE 为直角三角形,∴∠ADE =90°,CD =0.5x ,BE =0.5x ,AD =4-0.5x ,AE =4+0.5x , ∴∠AED =30°,∴AE =2AD , ∴4+0.5x =2(4-0.5x ),∴x =83.答:运动83秒后,△ADE 为直角三角形;(3)作DG ∥AB 交BC 于点G ,∴∠GDP =∠BEP ,∠CDG =∠A =60°,∠CGD =∠ABC =60°, ∴∠C =∠CDG =∠CGD ,∴△CDG 是等边三角形,∴DG =DC , ∵DC =BE ,∴DG =BE .在△DEP 和△EBP 中,∠GDP =BEP ,∠DPG =∠EPB ,DG =EB , ∴△DGP ≌△EBP ,∴DP =PE .∴在运动过程中,点P 始终为线段DE 的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?【答案】(1)1k =-,2b =-,1a =-;(2)22(12)L m m m =-++-<<;(3)当12m =时,S 取最大值,最大值为278【解析】 【分析】(1)把A 、B 坐标分别代入抛物线和一次函数解析式即可求出a 、b 、k 的值;(2)根据a 、b 、k 的值可得抛物线和直线AB 的解析式,根据P 点横坐标为m 可用m 表示P 、C 两点坐标,根据两点间距离公式即可得L 与m 的关系式;(3)如图,作AD ⊥PC 于D ,BE ⊥PC 于E ,根据PAB PAC PBC S S S ∆∆∆=+,可用m 表示出S ,配方求出二次函数的最值即可得答案. 【详解】(1)∵点A (-1,-1)在抛物线2(0)y ax a =≠图象上, ∴2(1)1a -=-, 解得:1a =-,∵点A (-1,-1)、B (2,-4)在一次函数y kx b =+的图象上,∴124k b k b -+=-⎧⎨+=-⎩, 解得12k b =-⎧⎨=-⎩,∴1k =-,2b =-,(2)∵1k =-,2b =-,a =-1,∴直线AB 的解析式为2y x =--,抛物线的解析式为2y x =-,∵点P 在抛物线上,点C 在直线AB 上,点P 横坐标为m ,PC //y 轴, ∴()2,P m m-,(,2)C m m --,∴L 关于m 的解析式:22(12)L m m m =-++-<<,(3)如图,作AD ⊥PC 于D ,BE ⊥PC 于E , ∴AD =m +1,BE =2-m , ∵PAB PAC PBC S S S ∆∆∆=+, ∴S =12PC ·AD +12PC ·BE ()()()()2211122222m m m m m m =+-+++--++ ()2322m m =-++ 233322m m =-++配方得:23127228S m ⎛⎫=--+ ⎪⎝⎭,∴当12m =时,S 取最大值,最大值为278【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练运用配方法求二次函数的最值是解题关键. 5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°; (2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上. 【答案】(1)t =125s 时,∠CPM =90°;(2)t =3s 时,S 四边形MQCP =ABCD 1532S 矩形;(3)当t =83s 时,点P在∠CAD 的平分线上. 【解析】 【分析】(1)首先证明QM =PC ,利用平行线分线段成比例定理构建方程即可解决问题. (2)根据S 四边形MQCP =ABCD1532S 矩形,构建方程即可解决问题. (3)如图1中,作PH ⊥AC 于H .证明△P AD ≌△P AH (AAS ),推出AD =AH =8,DP =PH ,设DP =PH =x ,在Rt △PCH 中,构建方程即可解决问题. 【详解】解:(1)∵四边形ABCD 是矩形, ∴AB =CD =6,BC =AD =8,∠D =90°,∴AC 10,∵∠CPM =∠D =90°, ∴PM ∥AD , ∵QM ∥AB ∥CD ,∴四边形PCQM 是平行四边形, ∴PC =QM =6﹣t ,∵QM AB =CQCB , ∴66t -=28t ,解得t =125,∴t =125s 时,∠CPM =90°.(2)∵S 四边形MQCP =ABCD15S 32矩形, ∴12•(6﹣t )•2t +12•2t •34×2t =1532×6×8,解得t =3或﹣15(舍弃), 答:t =3s 时,S 四边形MQCP =ABCD 15S 32矩形. (3)如图1中,作PH ⊥AC 于H .∵∠D =∠AHP =90°,AP =AP ,∠P AD =∠P AH , ∴△P AD ≌△P AH (AAS ),∴AD =AH =8,DP =PH ,设DP =PH =x , ∵AC =10, ∴CH =2,在Rt △PCH 中,∵PH 2+CH 2=PC 2, ∴t 2+22=(6﹣t )2, 解得t =83,答:当t =83s 时,点P 在∠CAD 的平分线上.【点睛】本题属于四边形综合题,考查了矩形的性质,平行线分线段成比例定理,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.6.在等边三角形ABC 中,点D 是BC 的中点,点E 、F 分别是边AB 、AC (含线段AB 、AC 的端点)上的动点,且∠EDF =120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB =90°时,BE +CF =nAB ,则n 的值为 ;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?【答案】(1)12;(2)①见解析;②见解析;(3)周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.【解析】【分析】(1)先利用等边三角形判断出BD=CD=12AB,进而判断出BE=12BD,再判断出∠DFC=90°,得出CF=12CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=12AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+12,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=12BC=12AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=12 BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=12 CD,∴BE +CF =12BD +12CD =12BC =12AB , ∵BE +CF =nAB , ∴n =12, 故答案为:12; (2)如图,①过点D 作DG ⊥AB 于G ,DH ⊥AC 于H , ∴∠DGB =∠AGD =∠CHD =∠AHD =90°, ∵△ABC 是等边三角形, ∴∠A =60°,∴∠GDH =360°-∠AGD -∠AHD -∠A =120°, ∵∠EDF =120°, ∴∠EDG =∠FDH ,∵△ABC 是等边三角形,且D 是BC 的中点, ∴∠BAD =∠CAD , ∵DG ⊥AB ,DH ⊥AC , ∴DG =DH ,在△EDG 和△FDH 中,90DGE DHF DG DHEDG FDH ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△EDG ≌△FDH (ASA ), ∴DE =DF ,即:DE 始终等于DF ;②同(1)的方法得,BG+CH=12 AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=12 AB,∴BE与CF的和始终不变;(3)由(2)知,DE=DF,BE+CF=12 AB,∵AB=8,∴BE+CF=4,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB-CF+DE=2DE+2AB-(BE+CF)=2DE+2×8-4=2DE+12,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,L最小,此时∠BDE=90°-60°=30°,BE=12BD=2,当点F和点C重合或点E和点B重合时,DE最大,点F和点C重合时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴BE=DE=BD=12AB=4,当点E和点B重合时,DE=BD=4,周长L有最大值,即周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.【点睛】本题是四边形综合题,考查等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,构造出全等三角形是解题的关键.7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【答案】(1)8;(2)6;(3),40cm,80cm2.【解析】【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4t,面积=矩形的面积-2个直角三角形的面积.【详解】(1)当四边形ABQP是矩形时,BQ=AP,即:t=16-t,解得t=8.答:当t=8时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形8t t时,四边形AQCP为菱形.当AQ=CQ22解得:t=6.答:当t=6时,四边形AQCP是菱形;(3)当t=6时,CQ=10,则周长为:4CQ=40cm,面积为:10×8=80(cm2).8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.。

第50讲 圆锥曲线热点问题 第2课时 定点、定值、探索性问题

第50讲 圆锥曲线热点问题 第2课时 定点、定值、探索性问题
课堂考点探究
解:(1)依题意,当点A与上顶点重合时,A(0,b),因为==(1,-b),所以B(4,-b),又点B在椭圆E上,所以+=1,解得a2=18,则b2=a2-32=9,所以椭圆E的标准方程为+=1.
课堂考点探究
(2)证明:当直线l不垂直于y轴时,设其方程为x=my+3,设A(x1,y1),B(x2,y2).由消去x并整理得,(m2+2)y2+6my-9=0,易知Δ>0,则y1+y2=-,y1y2=-.因为k1=,k2=,所以k1+k2=+===0.当直线l垂直于y轴时,k1=k2=0,所以k1+k2=0.综上,k1+k2为定值0.
练习3 已知椭圆+=1(a>b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离为.(1)求椭圆的标准方程.(2)已知定点E(-1,0),直线y=kx+2(k≠0)与椭圆交于C,D两点,则是否存在实数k,使以CD为直径的圆过点E?若存在,求出k的值;若不存在,请说明理由.
课堂考点探究
课堂考点探究
方法二:当直线MN的斜率存在时,设其方程为y=kx+m,由得(3+4k2)x2+8kmx+4m2-12=0,由Δ>0,得m2<3+4k2.设M(x1,y1),N(x2,y2),则x1+x2=-,x1·x2=.由题意可知A1(-2,0),A2(2,0),则直线A1M:y=(x+2),令x=4,得y=.直线A2N:y=(x-2),令x=4,得y=,所以=.由+=1,得=-,即=-,所以(x1+2)·(x2+2)+4(kx1+m)·(kx2+m)=0,即(4k2+1)x1x2+(2+4km)(x1+x2)+4m2+4=0,化简得(m-2k)(m+k)=0,解得m=2k或m=-k.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何热点问题探究推荐教师:林桂一 几何作图及操作探究问题这类问题是应用所学的知识对生活中可实施性、操作性问题进行讨论、归纳和动手设计的题型,它涉及日常生活中的方方面面,出现的类型有:寻找最佳点问题、测量问题、面积分配问题、几何设计问题.这类试题是让学生通过具体的操作或借助计算机技术来获得感性认识,构建数学知识,以达到动手动脑的目的.解决这类问题时,一般需要经历观察、操作、思考、想象、推理、交流、反思等实践活动过程,利用已有的感知与发现结论从而解决问题.关键是要学生学会自觉地运用数学知识去观察、分析、抽象、概括所给的实际问题,揭示其数学本质,并转化为我们所熟悉的数学问题,适合现有的知识水平和实践能力.(一)几何作图题1、尺规作图题(2006锦州)在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是:画线段AB ,分别以点A 、B 为圆心,以大于21AB 长为半径画弧,两弧相交于点C ,连接AC ;再以点C 为圆心,AC 长为半径画弧,交AC 和延长线于点D ,连接BD ,则△ABD 就是直角三角形.⑴请你说明其中的道理;⑵请利用上述方法作一个三角形,使其中一个锐角为300(不写作法,保留作图痕迹).图2-12、格点作图例1 如图,在一个“10×10”的正方形DEFG 网格中有一个△ABC . ⑴在网格中画出△ABC 向下平移三个单位得到的△A 1B 1C 1;⑵在网格中画出△ABC 绕C 点逆时针方向旋转900得到的△A 2B 2C ;⑶若以EF 所在的直线为x 轴,ED 所在的直线为y 轴建立平面直角坐标系,写出A 1,A 2两点的坐标.图4-1 图4-2解析 ⑴图形平移时,图形上的每个点都平移相同的距离,如图4-2中所示△A 1B 1C 1;⑵图形旋转过程中,各部分都旋转相同的角度,如图4-2中所示△A 2B 2C;⑶平面直角坐标系如图4-2所示,易知:A 1(8,2),A 2(4,9).评点:平移、旋转的简单作图多以网格和坐标系为背景,借点的坐标的变化引起图形的变化.因此,画平移、转后的图形时,关键是确定图形的关键点,然后根据相应顶点的平移方向、平移距离、旋转方向、旋转角度都不变的性质作出关键点的对应点,这种“以局部代整体”的作图方法是平移和旋转作图是最常用的方法.(二)操作探究题例1 (2006连云港)(1)图7-1是一块直角三角形纸片.将该纸片按如方法折叠,使点A 与点C 重合,DE 为折痕.试证明△CBE 是等腰三角形;(2)再将图7-1中的△CBE 沿对称轴EF 折叠(如7-2图).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”。

你能将图7-3中的△ABC 折叠成一个组合矩形吗?如果能折成,请在图7-3中画出折痕;(3)请你在图7-4中的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点上;(4)有些特殊的四边形,如菱形,能过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究:一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形?图7-4图7-3图7-2图7-1解析 (1)由对称性可知∠A=∠ACE,所以∠ECB=∠B,所以△CEB 为等腰三角形;(2)任意三角形都能折成“组合矩形”,其具体做法可以参照图7-3的折法,将其分成两个直角三角形,有三种不同的折法;(3)首先要体现出一条边与该边上的高相等,这样折出来的矩形才是正方形,再者要满足正方形的顶点都在格点上;(4)当一个四边形的两条对角线互相垂直时,可以折成一个“组合矩形”.评点:此题阅读量大,对学生研究问题、分析问题的能力提出了挑战,作为一道操作题学生在可能的情况下可以动手操作,但更多的是要对操作认真的观察和分析,找出问题的实质所在,同时要借助给出的操作示例运用类比的思想,启示(2)问的解题思路,而第(3)、(4)问学生可以先画图分析再得出结论.二 几何应用问题几何应用问题是近几年来中考的一大考点,它是把几何知识与实际问题相结合的一类题型, 几何应用问题的命题内容和形式趋向多样化,但其主要内容仍以全等的应用、相似的应用、解直角三角考查有关几何知识之外,更注重考查学生抽象、转化的思维能力.解决这类问题时,应形的应用为主.题目材料新颖,有很强的实用价值.此类问题的表现形式是:由几何图形的性质通过计算、推理来说明某种几何设计是否最优,或是设计出符合要求的几何方案,除能有效地结合实际问题的背景,抽象出几何模型,利用几何知识加以解决,然后再回到实际问题,进行检验、解释、反思,解题时应特别注意数形结合、分类讨论等数学思想.一般有这样几类:(一)三角形在实际问题中的应用;(二)几何设计问题;(三)几何综合应用问题.(一)三角形在实际问题中的应用例 一块直角三角形木板的一条直角边AB 长为1.5米,面积为1.5平方米,要把它加工成一个面积最大的正方形桌面,甲乙两位同学的加工方法分别如图11-1,图11-2所示,请你用学过的知识说明哪位同学的加工方法符合要求。

(加工损耗忽略不计,计算结果中的分数可保留)。

图11-2图11-3图11-1解析 由AB=1.5米,S △ABC =1.5平方米,得BC=2米.设甲加工的桌面边长为x米,∵DE//AB ,Rt △CDE ∽Rt △CBA ,∴AB DE CB CD =,即5.122x x =-,解得76=x 。

如图11-3,过点B 作Rt △ABC 斜边AC 的高BH ,交DE 于P ,并AC 于H 。

由AB =1.5米,BC =2米,5 .1ABC =△S 平方米,C =2.5米,BH=1.2米。

设乙加工的桌面边长为y 米,∵DE//AC ,Rt △BDE ∽Rt △BAC ,∴AC DEBH BP =,即5.22.12.1y y =-,解得3730=y 。

因为373076>,即y x >,22y x >,所以甲同学的加工方法符合要求。

点评:本题是一道利用相似三角形性质来解决的几何应用问题。

解决这类问题主要是灵活运用好相似找出线段间的相等关系,正确列方程求解,在计算过程中要注意计算的准确性各技巧性.此题可先设出正方形边长,利用对应边成比例,列方程求解边长,边长大则面积大.(二)有关方案设计问题应用例1 (2007福建龙岩)拼图与设计:(1)如图13-1,四边形ABCD 是一位师傅用地板砖铺设地板尚未完工的地板图形为了节省材料,他准备在剩余的六块砖中(如图13-2所示)挑选若干块进行铺设,请你在图13-3所示的网格纸上帮他设计3种不同的示意图.(2)师傅想用(1)中的④号砖四块铺设一个中心对称图形,请你把设计的图形画在图13-4所示的10×10的方格中.(要求以O 点为对称中心)图13-1C图13-3解析 (1)首先要确定六块砖的图形特点,然后根据地板的图形特点进行铺设.也可以逆向操作,将地板图形进行适当的分割,正确作图如图所示.(2)根据中心对称的特征,绕中心O 作适当的旋转.此题答案不唯一.点评:图形的拼剪问题,目的是通过对图形剪拼的操作,考察学生的动手实践能力、画能力以及计算能力,培养学生思维的慎密性.解这类问题的要领是:针对给出的实际问题,结合数学中的分类讨论思想,画出符合要求的图形.(三)综合类几何应用例 如图1,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30o,点A 处有一所中学,AP=160米。

假设拖拉机行驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由;如果受影响,已知拖拉机的速度为18千米/时,那么学校受影响的时间为多少秒?解析:过点A 作AB ⊥MN ,垂足为B ,在Rt △ABP 中:∠APB=∠QPN=30°,AP=160米 则AB=21AP=80米,所以学校会受到噪声影响。

以A 为圆心,100米为半径作☉A,交MN 于C 、D 两点,在Rt △ABC 中:AC=100米,AB=80米,则:BC=60801002222=-=-AB AC (米),∴CD=2BC=120(米);∵18千米/小时=5米/秒.∴受影响时间为:120米÷5米/秒=24(秒)点评:解几何应用问题要求我们必须具备扎实的几何基础知识,较强的阅读理解能力,以及对数学思想方法的掌握.本题是一道关于解直角三角形和圆的几何综合应用问题,要判断是否受到噪声的影响,只需求出A 点到直线MN 的距离AB ,当此AB ≤100米时就要受到噪声影响;第二个问题只需要噪声影响路段的长度,就能求出受影响的时间.三动态几何探究问题动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性;就其运动对象而言有点动、线动、面动;就其运动形式而言有平动、旋转、翻折、滚动等.动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,全面考查学生的综合分析和解决问题的能力,是近几年中考命题的热点,常常在中考中起到甄选的作用.解决动态几何问题需要树立联系发展的动态观,用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程.一方面要注意将运动过程中的各个时刻的图形分类画图,由“动”变“静”;另一方面还要善于抓住在运动过程中某一特殊位置的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系以及特定的限制条件.在求有关图形的变量之间关系时,通常建立函数模型或不等式模型来求解;求图形之间的特殊数量关系和一些特殊值时,通常建立方程模型求解.(一)单动点问题例(2007连云港)如图19-1,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C在坐标轴上,OA=60cm,OC=80cm,动点P从点O出发,以5cm/s的速度沿x轴匀速向点C运动,到达C点即停止.设点P运动的时间为ts.(1)过P作对角线OB的垂线,垂足为点T.求PT的长y与时间t之间的函数关系式,并写出自变量t的取值范围;(2)在点P运动过程中,当点O关于直线AP的对称点O/恰好落在对角线OB上时,求此时直线AP的函数解析式;(3)探索:以A,P,T三点为顶点的△APT的面积能否达到矩形OABC的面积的41?请说明理由.图19-3图19-2解析(1)在矩形OABC中,∵OA=60,OC=80,∴OB=AC=100.又Rt△OPT∽Rt△OBC,∴100560,tPTOBOPBCPT==即,y=PT=3t.当P运动到C点时,t达到最大值为16580=,故t的取值范围为0≤t≤16.(2)当点O关于直线AP的对称点O/恰好在对角线OB上时,A,T,P三点应在一条直线上(如图19-2).∴AP⊥OB,∠1=∠2∴Rt△AOP∽Rt△OCB,∴COAOCBOP=,∴OP=45,∴点P的坐标为(45,0).设直线AP的函数关系式为y=kx+b.将A(0,60),P(45,0)两点代入解析式要求直线AP的解析式为y=6034+-x.(3)由(2)知,当t=545=9时,A,T,P三点在一条直线上,此时,点A,T,P构不成三角形.故分两种情况:图19-3,当0<t<9时,T点位于△AOP的内部,此时△APT和面积达不到矩形OABC面积的41.图19-4,当9<t≤16时,点T位于△AOP的外部, 此时△APT和面积也达不到矩形OABC面积的41.点评:第(1)问的关键是能利用相似知识得到对应线段成比例;第(2)问需要明白点O关于直线AP 的对称点O /恰好落在对角线OB 上的实质是告诉AP 与OB 垂直的关系;第(3)问探索以A,P,T 三点为顶点的△APT 的面积是否能到矩形OABC 面积的41,则要分两种情况进行讨论分析. (二) 双点运动问题例 (2007温州)如图21-1,在△ABC 中,∠C=900,AC=4cm,BC=5cm,点D 在BC 上,且CD=3cm .现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以1cm/s 的速度沿AC 向终点C 运动;点Q 以1.25cm/s 的速度沿BC 向终点C 运动.过P 作PE ∥BC 交AD 于E,连接EQ .设动点运动的时间为xs .(1)用含x 的代数式表示AE 、DE 的长度.(2)当点Q 在BD(不包括点B 、D)上移动时,设△EDQ 的面积为y(cm 2),求y 与时间x 的函数关系式,并写出自变量x 的取值范围;(3)当x 为何值时, △EDQ 为直角三角形?图21-3图21-2图21-1ACCP P解析 (1)在Rt △ADC 中,AC=4,CD=3,∴AD=5.又EP ∥DC,∴△AEP ∽△ADC,∴AE=x 45,DE=5-x 45.(2)∵BC=5,CD=3, ∴BD=2.当点Q 在BD 上运动x 秒后,DQ=2-x 45,则y=21DQ ×CP=427852+-x x .即y 与x 之间的函数关系式是: y=427852+-x x (0<x <1.6).(3)分两种情况讨论:①如图21-2,当∠EQD=900时,EQ=PC=4-x,又EQ ∥AC,∴△EDQ ∽△ADC,,即324544-=-x x ,∴x=2.5.②如图21-3,当∠QED=900,∵∠CDA=∠EDQ, ∠EDQ=∠C=900, △EDQ ∽△CDA,即52453455-=-x x ,∴x=3.1.综上所述,当x 为2.5s 或3.1s 时,△EDQ 为直角三角形. 点评: 本题第(2)问求面积时注意以DQ 为底,高则可以用CP 来代表,这样处理比较简单,而第(3)问的解答关键在于要分两种情况来分析.(三) 图形运动问题例 (2007怀化)两个直角边为6的全等的等腰直角形(Rt △AOB 和Rt △CED )按如图23-1的位置放置,A 与C 重合,O 与E 重合.(1)求图中的A,B,D 的坐标;(2) Rt △AOB 固定不动, Rt △CED 沿x 轴以每秒2个单位长的速度向右运动,当D 点运动到与B 点重合时停止.设运动x 秒后Rt △CED 和Rt △AOB 重叠部分的面积为y,求y 与x 之间的函数关系式;(3)当Rt △CDE 以(2)中的速度和方向运动,运动时间为4秒时, Rt △CDE 运动到如图23-2所示的位置,求经过A,G,C 三点的抛物线的解析式;(4)现有一半径为2,圆心在(3)中的抛物线上运动的动圆,试问⊙P 在运动过程中是否存在⊙P 与x 轴或y 轴相切的情况?若存在请求出P 点的坐标;若不存在请说明理由.图23-2解析 (1)A(0,6),B(6,0),D(-6,0).(2)当0≤x ≤3时,位置如图23-3所示,作G H ⊥DB 于H,可知:OE=2x,EH=x,OD=6-2x,DH=6-x,∴y=2S 梯形IOHG =2(S △GHD -S △IOD )=-3x 2+12x.当3≤x ≤6时,位置如图23-2所示,可知:DB=12-2x. ∴y=S △DGB =x 2-12x+36.(3)在图中作GH ⊥OE 于H,当x=4时,OE=2x=8,DB=12-2x=4,可知:A(0,6),G(4,2),C(8,6),∴过A,G,C 三点的抛物线的解析式为:y=62412+-x x .(4)若⊙P 在运动过程中存在与坐标轴相切的情况,设P 点的坐标为(x 0,y 0),当⊙P 与y 轴相切时,有∣x 0∣=2, x 0=±2,∴P 1(-2,11),P 2(2,3).当⊙P 与x 轴相切时有∣y 0∣=2.∴P 3(4,2).综上所述,符合条件的圆心P 有三个,其坐标分别是: P 1(-2,11),P 2(2,3) ,P 3(4,2).点评:本例在解题时,应搞清楚图形的变化过程,探索动点运动的特点和规律,作出几个符合条件的草图,并抓住图形在变化过程中不变的量是关键,然后根据重叠部分的面积的不同的形状来确定它的面积的求法.。

相关文档
最新文档