解直角三角形练习题及答案经典

合集下载

解直角三角形大题及答案

解直角三角形大题及答案

解直角三角形大题及答案直角三角形是初中数学中比较基础而重要的知识点,下面给出几道解直角三角形的大题及答案。

大题一已知直角三角形的一条直角边为6cm,另一条直角边为8cm,求斜边长。

解析:根据勾股定理可以求出斜边长,即$c=\sqrt{a^2+b^2}$。

带入数据得$c=\sqrt{6^2+8^2}=10$,所以斜边长为10cm。

答案:10cm大题二如图,直角边AC长为12cm,BC长为16cm,连接AB并延长线段交CD于点D,且CE垂直于BD,求CE的长。

解析:首先要求出BD的长度。

由$AC^2+BC^2=BD^2$可得$BD=\sqrt{12^2+16^2}=20$。

然后根据相似三角形CC’E、B’BD可以列出比例$\frac{CE}{BD}=\frac{BC}{B'D}$,即$\frac{CE}{20}=\frac{16}{28}$,解之得$CE=\frac{80}{7}$。

答案:$\frac{80}{7}$cm大题三已知一艘轮船从岸边出发,航向为东北偏东,速度为20km/h,船行了300km到达目的地。

试画出向量图,并求出船行的时间。

解析:如图所示,$\vec{v}=(20\cos45\degree,20\sin45\degree)=(10\sqrt{2},10\sqrt{2})$。

由船行了300km可得船行时间为$\frac{300}{\|\vec{v}\|}=\frac{300}{20}=15$小时。

答案:15小时大题四如图,正方形ABCD中,P点在BC边上,$\anglePAD=45\degree$,PD=2,BP=4,则AP长为多少?解析:如图所示,由正方形ABCD的对称性可得$\angle PAD=\angle BCA=45\degree$,则$\triangle PAD$与$\triangle PBC$相似。

设$AP=x$,则$\frac{x}{4}=\frac{2}{x}$,解之得$x=2\sqrt{2}$。

解直角三角形练习题及答案经典

解直角三角形练习题及答案经典

28.2 解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )(A).1(B).2 (C).22 (D).22 2、如果α是锐角,且54cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513 (B )1213 (C )1013 (D )512 4、. 以下不能构成三角形三边长的数组是 ( )(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52)5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).(A )B A sin sin = (B )B A cos sin =(C )B A tan tan = (D )B A cot cot =6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为( ).(A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ).(A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元8、已知α为锐角,tan (90°-α)=3,则α的度数为( )(A )30° (B )45° (C )60° (D )75°9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )(A )135 (B )1312 (C )125 (D )512 10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). A B CDE ︒15020米30米(A )21 (B )22 (C )23 (D )1 二、填空题 11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =22, 则BC = w12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

解直角三角形 测试题 与 答案

解直角三角形 测试题 与 答案

解直角三角形测试题与答案一.选择题(共12小题)1.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.C.2D.32.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.3.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°4.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()D.50米A.100米B.50米C.米5.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D.20m6.(2014•百色)从一栋二层楼的楼极点A处看对面的教授教养楼,探测器显示,看到教授教养楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的程度距离为6米,则教授教养楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米7.(2014•姑苏)如图,口岸A在不雅测站O的正东偏向,OA=4km,某船从口岸A动身,沿北偏东15°偏向航行一段距离后到达B处,此时从不雅测站O处测得该船位于北偏东60°的偏向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km 8.(2014•路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.9.(2014•长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不克不及暗示sinB的()A.B.C.D.10.(2014•工业园区一模)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°11.(2014•鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B.C.D.12.(2014•邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高级于()A.B.C.D.二.填空题(共6小题)13.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为_________ .14.(2014•徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为_________ .15.(2014•虹口区一模)盘算:cos45°+sin260°=_________ .16.(2014•武威模仿)或人沿坡度为i=3:4斜坡进步100米,则它上升的高度是_________ 米.17.(2014•海门市模仿)某中学初三年级的学生开展测量物体高度的实践运动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的极点A的仰角为30°,然后向建筑物AB进步20m到达点D处,又测得点 A的仰角为60°,则建筑物AB的高度是_________ m.18.(2013•扬州)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC= _________ .三.解答题(共6小题)19.(2014•盘锦)如图,用一根6米长的笔挺钢管弯折成如图所示的路灯杆ABC,AB 垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=,求AB长.20.(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一歇息亭,测得假山坡脚C与楼房程度距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与程度宽度的比)21.(2014•哈尔滨)如图,AB.CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的极点A点测得建筑物CD的极点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间程度距离BD的长度;(2)求建筑物CD的高度(成果保存根号).22.(2014•邵阳)一艘不雅光游船从口岸A以北偏东60°的偏向出港不雅光,航行80海里至C处时产生了侧翻沉船变乱,立刻发出了求救旌旗灯号,一艘在口岸正东偏向的海警船接到求救旌旗灯号,测得变乱船在它的北偏东37°偏向,立时以40海里每小时的速度前去救济,求海警船到大变乱船C处所需的大约时光.(温馨提醒:sin53°≈0.8,cos53°≈0.6)23.(2014•射阳县三模)小明想测量一棵树的高度,他发明树的影子正好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,统一时刻,一根长为1米.垂直于地面放置的标杆在地面上的影长为2米,求树的高度.24.(2014•崇川区一模)如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD进步1000m后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.参考答案与试题解析一.选择题(共12小题)1.(2014•义乌市)如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是()A.1B.C.2D.3考点:锐角三角函数的界说;坐标与图形性质.专题:数形联合.剖析:依据正切的界说即可求解.解答:解:∵点A(t,3)在第一象限, ∴AB=3,OB=t,又∵tanα==,∴t=2.故选:C.点评:本题考核锐角三角函数的界说及应用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.2.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.考点:互余两角三角函数的关系.专题:盘算题.剖析:依据题意作出直角△ABC,然后依据sinA=,设一条直角边BC为5x,斜边AB为13x,依据勾股定理求出另一条直角边AC的长度,然后依据三角函数的界说可求出tan∠B.解答:解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x, 故tan∠B==.故选:D.点评:本题考核了互余两角三角函数的关系,属于基本题,解题的症结是控制三角函数的界说和勾股定理的应用.3.(2014•凉山州)在△ABC中,若|cosA﹣|+(1﹣tanB)2=0,则∠C的度数是()A.45°B.60°C.75°D.105°考点:特别角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.专题:盘算题.剖析:依据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,依据三角形的内角和定理可得出∠C的度数.解答:解:由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.故选:C.点评:此题考核了特别角的三角形函数值及绝对值.偶次方的非负性,属于基本题,症结是熟记一些特别角的三角形函数值,也要留意应用三角形的内角和定理.4.(2014•随州)如图,要测量B点到河岸AD的距离,在A点测得∠BAD=30°,在C 点测得∠BCD=60°,又测得AC=100米,则B点到河岸AD的距离为()A.100米B.50米C.米D.50米考点:解直角三角形的应用.专题:几何图形问题.剖析:过B作BM⊥AD,依据三角形内角与外角的关系可得∠ABC=30°,再依据等角对等边可得BC=AC,然后再盘算出∠CBM的度数,进而得到CM长,最后应用勾股定理可得答案.解答:解:过B作BM⊥AD,∵∠BAD=30°,∠BCD=60°, ∴∠ABC=30°,∴AC=CB=100米,∵BM⊥AD,∴∠BMC=90°,∴∠CBM=30°,∴CM=BC=50米,∴BM=CM=50米, 故选:B.点评:此题重要考核懂得直角三角形的应用,症结是证实AC=BC,控制直角三角形的性质:30°角所对直角边等于斜边的一半.5.(2014•凉山州)拦水坝横断面如图所示,迎水坡AB的坡比是1:,坝高BC=10m,则坡面AB的长度是()A.15m B.20m C.10m D.20m考点:解直角三角形的应用-坡度坡角问题.专题:盘算题.剖析:在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,经由过程解直角三角形即可求出斜面AB的长.解答:解:Rt△ABC中,BC=10m,tanA=1:; ∴AC=BC÷tanA=10m,∴AB==20m.故选:D.点评:此题重要考核学生对坡度坡角的控制及三角函数的应用才能,闇练应用勾股定理是解答本题的症结.6.(2014•百色)从一栋二层楼的楼极点A处看对面的教授教养楼,探测器显示,看到教授教养楼底部点C处的俯角为45°,看到楼顶部点D处的仰角为60°,已知两栋楼之间的程度距离为6米,则教授教养楼的高CD是()A.(6+6)米B.(6+3)米C.(6+2)米D.12米考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.剖析:在Rt△ABC求出CB,在Rt△ABD中求出BD,继而可求出CD.解答:解:在Rt△ACB中,∠CAB=45°,AB⊥DC,AB=6米, ∴BC=6米,在Rt△ABD中,∵tan∠BAD=,∴BD=AB•tan∠BAD=6米,∴DC=CB+BD=6+6(米).故选:A.点评:本题考核仰角俯角的界说,要肄业生能借助仰角俯角结构直角三角形并解直角三角形,难度一般.7.(2014•姑苏)如图,口岸A在不雅测站O的正东偏向,OA=4km,某船从口岸A动身,沿北偏东15°偏向航行一段距离后到达B处,此时从不雅测站O处测得该船位于北偏东60°的偏向,则该船航行的距离(即AB的长)为()A.4km B.2km C.2km D.(+1)km考点:解直角三角形的应用-偏向角问题.专题:几何图形问题.剖析:过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=2,再由△ABD是等腰直角三角形,得出BD=AD=2,则AB=AD=2.解答:解:如图,过点A作AD⊥OB于D.在Rt△AOD中,∵∠ADO=90°,∠AOD=30°,OA=4,∴AD=OA=2.在Rt△ABD中,∵∠ADB=90°,∠B=∠CAB﹣∠AOB=75°﹣30°=45°, ∴BD=AD=2,∴AB=AD=2.即该船航行的距离(即AB的长)为2km.故选:C.点评:本题考核懂得直角三角形的应用﹣偏向角问题,难度适中,作出帮助线结构直角三角形是解题的症结.8.(2014•路北区二模)如图,△ABC的项点都在正方形网格的格点上,则cosC的值为()A.B.C.D.考点:锐角三角函数的界说;勾股定理.专题:网格型.剖析:先构建格点三角形ADC,则AD=2,CD=4,依据勾股定理可盘算出AC,然后依据余弦的界说求解.解答:解:在格点三角形ADC中,AD=2,CD=4, ∴AC===2,∴cosC===.故选B.点评:本题考核了锐角三角函数的界说:在直角三角形中,一锐角的余弦等于它的邻边与斜边的比值.也考核了勾股定理.9.(2014•长宁区一模)如图,在△ABC中,∠ACB=90°,CD⊥AB于D,下边各组边的比不克不及暗示sinB的()A.B.C.D.考点:锐角三角函数的界说.剖析:应用两角互余关系得出∠B=∠ACD,进而应用锐角三角函数关系得出即可.解答:解:∵在△ABC中,∠ACB=90°,CD⊥AB于D, ∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,∴∠B=∠ACD,∴sinB===,故不克不及暗示sinB的是.故选:B.点评:此题重要考核了锐角三角函数的界说,准确掌控锐角三角函数关系是解题症结.10.(2014•工业园区一模)若tan(α+10°)=1,则锐角α的度数是()A.20°B.30°C.40°D.50°考点:特别角的三角函数值.剖析:依据tan30°=解答即可.解答:解:∵tan(α+10°)=1, ∴tan(α+10°)=.∴α+10°=30°.∴α=20°.故选A.点评:熟记特别角的三角函数值是解答此题的症结.11.(2014•鄂州四月调考)在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A.B.C.D.考点:解直角三角形.剖析:起首延伸BA过点C作CD⊥BA延伸线于点D,进而得出AD,CD,BC的长,再应用锐角三角函数关系求出即可.解答:解:延伸BA过点C作CD⊥BA延伸线于点D, ∵∠CAB=120°,∴∠DAC=60°,∴∠ACD=30°,∵AB=4,AC=2,∴AD=1,CD=,BD=5,∴BC==2,∴sinB===.故选:B.点评:此题重要考核懂得直角三角形,作出准确帮助线结构直角三角形是解题症结.12.(2014•邢台一模)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高级于()A.B.C.D.考点:解直角三角形.剖析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,依据勾股定理求出AC的长,依据面积法求出CD的长,即为斜边上的高.解答:解:依据题意画出图形,如图所示, 在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,依据勾股定理得:AC==3.2, ∵S△ABC=AC•BC=AB•CD,∴CD==.故选C.点评:此题考核懂得直角三角形,涉及的常识有:锐角三角函数界说,勾股定理,以及三角形的面积求法,闇练控制定理及轨则是解本题的症结.二.填空题(共6小题)13.(2014•济宁)如图,在△ABC中,∠A=30°,∠B=45°,AC=,则AB的长为3+.考点:解直角三角形.专题:几何图形问题.剖析:过C作CD⊥AB于D,求出∠BCD=∠B,推出BD=CD,依据含30度角的直角三角形求出CD,依据勾股定理求出AD,相加即可求出答案.解答:解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+.故答案为:3+.点评:本题考核了勾股定理,等腰三角形的性质和剖断,含30度角的直角三角形性质等常识点的应用,症结是结构直角三角形,标题具有必定的代表性,是一道比较好的标题.14.(2014•徐汇区一模)如图,已知梯形ABCD中,AB∥CD,AB⊥BC,且AD⊥BD,若CD=1,BC=3,那么∠A的正切值为.考点:锐角三角函数的界说.剖析:求出∠ABC=∠ADB=90°,依据三角形内角和定理求出∠A=∠DBC,解直角三角形求出即可.解答:解:∵AB∥CD,AB⊥BC,∴DC⊥BC,∠ABC=90°,∴∠C=90°,∵AD⊥BD,∴∠ADB=90°,∴∠DBC+∠ABD=∠A+∠ABD=90°,∴∠A=∠DBC,∵CD=1,BC=3,∴∠A的正切值为tanA=tan∠DBC==,故答案为:3.点评:本题考核了锐角三角函数的界说,三角形内角和定理的应用,症结是求出∠A=∠DBC和求出tan∠DBC=.15.(2014•虹口区一模)盘算:cos45°+sin260°=.考点:特别角的三角函数值.剖析:将cos45°=,sin60°=代入求解.解答:解:原式=×+()2=1+=.故答案为:.点评:本题考核了特别角的三角函数值,解答本题的症结是熟记几个特别角的三角函数值.16.(2014•武威模仿)或人沿坡度为i=3:4斜坡进步100米,则它上升的高度是60 米.考点:解直角三角形的应用-坡度坡角问题.剖析:依据坡度的界说可以求得AC.BC的比值,依据AC.BC的比值和AB的长度即可求得AC的值,即可解题.解答:解:由题意得,AB=100米,tanB==3:4,设AC=3x,则BC=4x,则(3x)2+(4x)2=1002,解得:x=20,则AC=3×20=60(米).故答案为:60.点评:本题考核了勾股定理在直角三角形中的应用,坡度的界说及直角三角形中三角函数值的盘算,属于基本题.17.(2014•海门市模仿)某中学初三年级的学生开展测量物体高度的实践运动,他们要测量一幢建筑物AB的高度.如图,他们先在点C处测得建筑物AB的极点A的仰角为30°,然后向建筑物AB进步20m到达点D处,又测得点 A的仰角为60°,则建筑物AB的高度是m.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.剖析:设AB=x,在Rt△ABC中暗示出BC,在Rt△ABD中暗示出BD,再由CD=20米,可得关于x的方程,解出即可得出答案.解答:解:设AB=x,在Rt△ABC中,∠C=30°,则BC==x,在Rt△ABD中,∠ADB=60°,则BD==x,由题意得,x﹣x=20,解得:x=10.即建筑物AB的高度是10m.故答案为:10.点评:本题考核懂得直角三角形的应用,解答本题的症结是闇练控制三角函数的界说,应用三角函数的常识暗示出相干线段的长度.18.(2013•扬州)在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC= 6 .考点:解直角三角形;等腰三角形的性质.剖析:依据题意做出图形,过点A作AD⊥BC于D,依据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后依据勾股定理求出BD的长度,继而可求出BC的长度.解答:解:过点A作AD⊥BC于D,∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.点评:本题考核懂得直角三角形的常识,难度一般,解答本题的症结是结构直角三角形并解直角三角形以及勾股定理的应用.三.解答题(共6小题)19.(2014•盘锦)如图,用一根6米长的笔挺钢管弯折成如图所示的路灯杆ABC,AB 垂直于地面,线段AB与线段BC所成的角∠ABC=120°,若路灯杆顶端C到地面的距离CD=,求AB长.考点:解直角三角形的应用.专题:几何图形问题.剖析:过B作BE⊥DC于E,设AB=x米,则CE=5.5﹣x,BC=6﹣x,依据30°角的正弦值即可求出x,则AB求出.解答:解:过B作BE⊥DC于E,设AB=x米,∴CE=5.5﹣x,BC=6﹣x,∵∠ABC=120°,∴∠CBE=30°,∴sin30°==,解得:x=5,答:AB的长度为5米.点评:考核懂得直角三角形,解直角三角形的一般进程是:①将现实问题抽象为数学问题(画出平面图形,结构出直角三角形转化为解直角三角形问题).②依据标题已知特色选用恰当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到现实问题的答案.20.(2014•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一歇息亭,测得假山坡脚C与楼房程度距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与程度宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.剖析:过点E作EF⊥BC的延伸线于F,EH⊥AB于点H,依据CE=20米,坡度为i=1:,分离求出EF.CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延伸线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考核懂得直角三角形的应用,涉及仰角俯角及坡度坡角的常识,结构直角三角形是解题症结.21.(2014•哈尔滨)如图,AB.CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的极点A点测得建筑物CD的极点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.(1)求两建筑物底部之间程度距离BD的长度;(2)求建筑物CD的高度(成果保存根号).考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.剖析:(1)依据题意得:BD∥AE,从而得到∠BAD=∠ADB=45°,应用BD=AB=60,求得两建筑物底部之间程度距离BD的长度为60米;(2)延伸AE.DC交于点F,依据题意得四边形ABDF为正方形,依据AF=BD=DF=60,在Rt△AFC中应用∠FAC=30°求得CF,然后即可求得CD的长.解答:解:(1)依据题意得:BD∥AE,∴∠ADB=∠EAD=45°,∵∠ABD=90°,∴∠BAD=∠ADB=45°,∴BD=AB=60,∴两建筑物底部之间程度距离BD的长度为60米;(2)延伸AE.DC交于点F,依据题意得四边形ABDF为正方形,∴AF=BD=DF=60,在Rt△AFC中,∠FAC=30°,∴CF=AF•tan∠FAC=60×=20,又∵FD=60,∴CD=60﹣20,∴建筑物CD的高度为(60﹣20)米.点评:考核解直角三角形的应用;得到以AF为公共边的2个直角三角形是解决本题的冲破点.22.(2014•邵阳)一艘不雅光游船从口岸A以北偏东60°的偏向出港不雅光,航行80海里至C处时产生了侧翻沉船变乱,立刻发出了求救旌旗灯号,一艘在口岸正东偏向的海警船接到求救旌旗灯号,测得变乱船在它的北偏东37°偏向,立时以40海里每小时的速度前去救济,求海警船到大变乱船C处所需的大约时光.(温馨提醒:sin53°≈0.8,cos53°≈0.6)考点:解直角三角形的应用-偏向角问题.专题:几何图形问题.剖析:过点C作CD⊥AB交AB延伸线于D.先解Rt△ACD得出CD=AC=40海里,再解Rt△CBD中,得出BC=≈50,然后依据时光=旅程÷速度即可求出海警船到大变乱船C处所需的时光.解答:解:如图,过点C作CD⊥AB交AB延伸线于D.在Rt△ACD中,∵∠ADC=90°,∠CAD=30°,AC=80海里,∴CD=AC=40海里.在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°,∴BC=≈=50(海里),∴海警船到大变乱船C处所需的时光大约为:50÷40=(小时).点评:本题考核懂得直角三角形的应用﹣偏向角问题,难度适中,作出帮助线结构直角三角形是解题的症结.23.(2014•射阳县三模)小明想测量一棵树的高度,他发明树的影子正好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡度为30°,统一时刻,一根长为1米.垂直于地面放置的标杆在地面上的影长为2米,求树的高度.考点:解直角三角形的应用-坡度坡角问题.剖析:延伸AC交BF延伸线于D点,则BD即为AB的影长,然后依据物长和影长的比值盘算即可.解答:解:延伸AC交BF延伸线于D点,则∠CFE=30°,作CE⊥BD于E,在Rt△CFE中,∠CFE=30°,CF=4m,∴CE=2(米),EF=4cos30°=2(米),在Rt△CED中,∵统一时刻,一根长为1米.垂直于地面放置的标杆在地面上的影长为2米,CE=2(米),CE:DE=1:2,∴DE=4(米),∴BD=BF+EF+ED=12+2(米)在Rt△ABD中,AB=BD=(12+2)=(6+)(米).答:树的高度为:(6+)(米).点评:本题考核懂得直角三角形的应用以及类似三角形的性质.解决本题的症结是作出帮助线得到AB的影长.24.(2014•崇川区一模)如图,某登山队在山脚A处测得山顶B处的仰角为45°,沿坡角30°的斜坡AD进步1000m后到达D处,又测得山顶B处的仰角为60°.求山的高度BC.考点:解直角三角形的应用-仰角俯角问题.剖析:过点D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中知足解直角三角形的前提.在直角△BDF中,依据三角函数可得BF,进一步得到BC,即可求出山高.解答:解:过D分离作DE⊥AC与E,DF⊥BC于F.∵在Rt△ADE中,AD=1000m,∠DAE=30°,∴DE=AD=500m.∵∠BAC=45°,∴∠DAB=45°﹣30°=15°,∠ABC=90°﹣45°=45°.∵在Rt△BDF中,∠BDF=60°,∴∠DBF=90°﹣60°=30°,∴∠DBA=45°﹣30°=15°,∵∠DAB=15°,∴∠DBA=∠DAB,∴BD=AD=1000m,∴在Rt△BDF中,BF=BD=500m,∴山的高度BC为(500+500)m.点评:本题考核懂得直角三角形的应用﹣仰角俯角问题的应用,依据已知得出FC,BF的长是解题症结.。

解直角三角形 试题及答案

解直角三角形  试题及答案

向东航行 30 分钟后到达 C处,发现灯塔 B在它的南偏东 15°方向,则此时货轮与灯塔 B的距离为
km.
图 K23-8
10、 如图 K23-9,在一笔直的沿湖道路上有 A,B两个游船码头,观光岛屿 C在码头 A北偏东 60°的方向,在码头 B北偏 西
45°的方向,AC=4 km.游客小张准备从观光岛屿 C乘船沿 CA回到码头 A或沿 CB回到码头 B,设开往码头 A,B的游船
∵∠CNP=46°,∴∠PNA=44°,
∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里).
6【答案】25
如图,过点 B作 BE⊥AE于点 E,
∵坡度 i=1∶ 3,
∴tanA=1∶ 3= 3,∴3∠A=30°,
∵AB=50 m,∴BE=1AB=25(m)
.
2
∴他升高了 25 m.
∴BD=CD·tan37°≈27.2×0.75=20.4(海里).
�� 3
答:还需航行的距离 BD的长为 20.4 海里.
12【答案】解:如图,过点 C作 CD⊥AB于点 D,
设 BD为 x海里,
在 Rt△ACD中,∠DAC=45°,
∴AD=DC=(x+5)海里,
4
在 Rt△BCD中,由 tan53°=����
126
米.
5【答案】B
如图,过点 P作 PA⊥MN于点 A,
MN=30×2=60(海里),
∵∠MNC=90°,∠CNP=46°,
∴∠MNP=∠MNC+∠CNP=136°,
∵∠BMP=68°,
∴∠PMN=90°-∠BMP=22°,
∴∠MPN=180°-∠PMN-∠PNM=22°,

解直角三角形练习附答案

解直角三角形练习附答案

1、如图,在直角△ABC中,∠C=90°,BC=1,tanA=,下列判断正确的是(D)A.∠A=30°B.AC=C.AB=2 D.AC=22、等腰三角形底边与底边上的高的比是2:,则顶角为(A)A.60°B.90°C.120°D.150°3、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是(D)A.B.C.D.4、△ABC中,∠B=90°,AC=,tan∠C=,则BC边的长为(B)A.B.2 C.D.45、如图,在△ABC中,∠C=90°,AB=15,sinB=,则AC等于(B)A.3 B.9 C.4 D.126、△ABC中,∠C=90°,斜边上的中线CD=6,sinA=,则S△ABC=.7、如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.8、如图,在菱形ABCD中,DE⊥AB,垂足是E,DE=6,sinA=,则菱形ABCD的周长是40.9、在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.10、如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阴影部分)的面积为.11、如图,已知AC=4,求AB和BC的长.∴BC=2,∴AB=AD+BD=2+2.12、已知:如图,在△ABC中,∠BAC=120°,AB=10,AC=5.求:sin∠ACB的值.sin∠ACB===13、如图,△ABC中,AB=5,cosB=,AB•AC=.(1)求∠C的度数;(2)求△ABC的面积.△ABC的面积=BC•AD=××4=∴∠ACD≈62°,∴∠C=180°﹣62°=118°;练习1.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是(D)A.BC= B.CD=AD•tanαC.BD=ABcosαD.AC=ADcosα2.如图,在Rt△ABC中,∠B=90°,∠BAC=40°,AB=7,则AC的长为(D)A.B.C.7cos40°D.3.如图:∠C=90°,∠DBC=30°,AB=BD,利用此图可求得tan75°的值是(B)A.2﹣B.2+C.﹣2 D.+14.等腰三角形的底边长10m,周长为36cm,则底角的正弦值为(D)A.B.C.D.5.如图,已知Rt△ABC中,∠B=60°,斜边长AB=1,那么此直角三角形的周长是(D)A.B.3 C.+2 D.6.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.7.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为2.8.如图,第一象限内一点A,已知OA=s,OA与x轴正半轴所成的夹角为α,且tanα=2,那么点A的坐标是(,).9.将一副三角尺如图所示叠放在一起,若BC=6cm,则阴影部分的面积是18cm2.10.如图,在△ABC中,点D是BC的中点,DA⊥AC,tan∠BAD=,AB=2,则BC的长度为4.11.如图,在Rt△ABC中,∠C=90°,AC=4,tanB=,点D在BC上,且BD=AD,求BC的长和sin∠DAC的值.sin∠DAC==12.已知:如图,在Rt△ABC中,∠C=90°,AB=10,sinA=,求BC的长和∠B的正切值.∴∠B的正切值是==。

解直角三角形试题(含答案))

解直角三角形试题(含答案))

初二数学试题实验学校 宋宏伟一、一、 填空题填空题 (3分╳7=21分)1、在△ABC 中,∠C =90°,若tanA =21,则sinA = 2、B 、C 是河岸边两点,A 是对岸岸边一点,测得Ð=°ABC 45,Ð=°ACB 45,BC=60米,则点A 到岸边BC 的距离是________米。

3、如图,在矩形ABCD 中,E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点,若34tan =ÐAEH ,四边形EFGH 的周长为40cm ,则矩形ABCD 的面积为_______cm 2。

4、如图,在坡度为1:2 的山坡上种树,要求株距(相邻两树间的水平距离)(相邻两树间的水平距离)是是6米,斜坡上相邻两树间的坡面距离是坡上相邻两树间的坡面距离是 米5.在△ABC 中,∠ACB =900,BC=4, ,BC=4, AC=5, AC=5, CD ⊥AB, 则sin ∠ACD 的值是______,tan ∠BCD 的值是________。

6、若、若 tan(α+200)=1 ,则锐角α=________ 7、等腰三角形两边长分别为10和12,则底角的正切值是______.二、选择题(3分╳10=30分)分) 1、如果α是锐角,且54cos =a ,那么sin α的值是(的值是( )。

(A )259(B )54(C )53(D )2516 2、在D ABC 中,Ð=°C 90,如果tan A =512, 那么sin B 的值等于(的值等于( )A. 513 B. 1213 C. 512D. 125 3、 在D ABC 中,Ð=°Ð=ÐC B A 902,,则cosA 等于(等于( )A. 32 B. 12 C . 3 D. 33 4、实数722,sin30º,2+1,2π,(3)2.,|-3|中,有理数的个数A B C D 是(是( )A 、2个 B 、3个 C 、4个 D 、5个5、计算:°×°°-°60tan 30cos 60cos 45cot 的结果是(的结果是( ) A 、1 B 、31 C 、23-3 D 、1332- 6、身高相同的甲,身高相同的甲,乙,乙,乙,丙三人放风筝,丙三人放风筝,丙三人放风筝,各放出线长分别是各放出线长分别是300米,250米,200米,线与地面所成的角为300,450,600,(假设风筝的线是拉直的),则三人所放的风筝(,则三人所放的风筝( )(A )甲最高)甲最高 (B )乙最高)乙最高 (C )丙最高丙最高 (D )丙最低)丙最低7、如图,在Rt △ABC 中,∠C =900, ∠A=Q, AC=m, CD ⊥AB 于D ,则DB =(=( )(A) m •sinQ •tanQ (B) m •sinQ •cotQ (C) m •cosQ •tanQ (D) m •cosQ •cotQ8、如图2,在菱形ABCD 中,∠ABC =60°.AC =4.则BD 的长为(的长为( )(A )38 (B )34 (C )32 (D )8 9、夏季中午,当太阳移到屋顶上方偏南时,光线与地面成700角,角,房屋朝南的窗子高房屋朝南的窗子高AB=1AB=1..8m ,为了使平行光线不直接射入室内,为了使平行光线不直接射入室内,要在窗子要在窗子上方安装一个水平挡板AC AC,如图那么挡板,如图那么挡板AC的宽度应为的宽度应为( )( )( )..A .1.8tan 700B B..1.8cos 700c .1.8/sin700 D 1.8tan 2001010、两条宽度均为、两条宽度均为l 的矩形纸条,交叉重磕放在的矩形纸条,交叉重磕放在一起,且它们的交角为θ,则它们重叠部分的面积为积为( )( )( )..A .1/sin θB 1/cos θC C..sin θD 1三、解答题三、解答题 每小题7分1、计算:tan 2300+2 sin600-tan450-tan600+cos 23002、.如图,在梯形ABCD 中,已知AD ∥BC ,BC=BD ,AD =AB =4cm ,∠A =120°,求梯形 ABCD 的面积.的面积.3、以0点为位似中心.把△点为位似中心.把△OAB OAB 放大2倍,倍,(1)(1)(1)在图中画出相应的在图中画出相应的图形;(2)(2)指出各顶点的坐标所发生的变化.指出各顶点的坐标所发生的变化.四、应用题四、应用题 每小题14分1、如图,有一位同学用一个有30°角的直角三角板估测他们学校的旗杆AB 的高度.他将30°角的直角边水平放在1.3米高的支架CD 上,三角板的斜边与旗杆的顶点在同一直线上,他又量得D 、B 的距离为15米.米.(l )试求旗杆AB 的高度(精确到0.l 米); (2)请你设计出一种更简便的估测方法.)请你设计出一种更简便的估测方法.2、某居民小区有一朝向为正南方向的居民楼,如图该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为3232°时.°时.°时.(1)(1)(1)问对超市以上的居民住房采光是否有影响,为什问对超市以上的居民住房采光是否有影响,为什么?(2)?(2)若要使超市采光不受影响,两楼应相距多少米若要使超市采光不受影响,两楼应相距多少米若要使超市采光不受影响,两楼应相距多少米?(?(?(结果保留结果保留整数整数30° E DCBAA B C DBE4倍OA=2OA=2;;33+´ 30° E D C BAE 。

解直角三角形练习题(带答案)

解直角三角形练习题(带答案)

解直角三角形—题集1.如图,在地面上的点处测得树顶的仰角为度,米,则树高为( ).A.米B.米C.米D.米【答案】A【解析】米.【标注】【知识点】仰角与俯角2.如图,斜坡,坡顶到水平地面的距离为米,坡底为米,在处,处分别测得顶部点的仰角为,,求的长度.(结果保留根号).【答案】的长度为米.【解析】设米,则米,由题意得,四边形为矩形,∴,在中,∴ ,在中,,∴,∴,解得,,∴.答:的长度为米.【标注】【知识点】仰角与俯角A.的值越小,梯子越陡B.的值越小,梯子越陡C.的值越小,梯子越陡D.陡缓程度与的函数值无关3.如图,梯子跟地面的夹角为,关于的三角函数值与梯子的倾斜程度之间,叙述正确的是().【答案】B【标注】【知识点】坡度4.某地的一座人行天桥如图所示,天桥高为米,坡面的坡度为,文化墙在天桥底部正前方米处(的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为.(1)(2)若新坡面坡角为,求坡角度数.有关部门规定,文化墙距天桥底部小于米时应拆除,天桥改造后,该文化墙是否需要拆除?请说明理由.(参考数据:,)【答案】(1)(2).该文化墙需要拆除,证明见解析.【解析】(1)(2)∵新坡面坡角为,新坡面的坡度为,∴,∴.作于点,则米,∵新坡面的坡度为,∴,解得,米,∵坡面的坡度为,米,∴米,∴米,又∵米,∴米米,故该文化墙需要拆除.【标注】【知识点】坡度游船港口海警船北(1)(2)5.一艘观光游船从港口以北偏东的方向出港观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援.求点到直线的距离.求海警船到达事故船处所需的大约时间.(温馨提示:,)【答案】(1)(2)海里.小时.【解析】游船港口海警船北(1)(2)如图,过点作交延长线于.在中,∵,,海里,∴点到直线距离海里.在中,∵,,∴(海里),∴海警船到达事故船处所需的时间大约为:(小时).【标注】【知识点】方位角在锐角三角函数中的应用6.一副直角三角板按如图所示放置,点在的延长线上,,,,,,则的长为 .【答案】【解析】过点作于点,在中,,,,∴.∵,∴.,在中,,,∴,∴,∴.【标注】【知识点】三角板拼接问题7.如图,是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧与墙平行且距离为米,一辆小汽车车门宽为米,当车门打开角度为时,车门是否会碰到墙? .(填“是”或“否”)请简述你的理由 .(参考数据:,,).【答案】否 ; 点到的距离小于与墙的距离【解析】过点作,垂足为点,如图.在中,∵,米,∴米,∵汽车靠墙一侧与墙平行且距离为米,∴车门不会碰到墙(点到的距离小于与墙的距离).故答案为:否;点到的距离小于与墙的距离.【标注】【知识点】测量物体之间的距离8.小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上;如图,此时测得地面上的影长为米,坡面上的影长为米.已知斜坡的坡角为,同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,求树的高度.【答案】米.【解析】延长交延长线于点,则,作于,在中,,,∴(米),(米),在中,∵同一时刻,一根长为米、垂直于地面放置的标杆在地面上的影长为米,(米),,∴(米),∴(米),在中,(米),故答案为:米.【标注】【知识点】影子问题(1)(2)9.如图,在中,,点是边的中点,,.求和的长.求的值.【答案】(1)(2),..【解析】(1)(2)∵点是边的中点,且∴.∵,∴.∵在中,,,∴.在中,,,∴.故,.如图,作交于点.∵在中,,,∴设,,由勾股定理可得,解得,∴.在中,∵,,∴.即.【标注】【知识点】解直角三角形的综合应用10.如图,在四边形中,,于点,已知,,,求的长.【答案】.【解析】过点作于.∵在中,,,∴,.∵,,∴,∵,∴.∴在中,,,∴,.又∵在中,,,.∴.【标注】【知识点】解直角三角形的综合应用11.如图,在中,,,=, ,求.【答案】.【解析】 在中,,,,,,由勾股定理得:,∵,∴,∵∴,,∴.【标注】【知识点】解直角三角形的综合应用。

中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题1、如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米) 解:延长CD 交AB 于G ,则CG=12(千米)依题意:PC=300×10=3000(米)=3(千米) 在Rt △PCD 中: PC=3,∠P=60° CD=PC ·tan ∠P =3×tan60°=33∴12-CD=12-33≈6.8(千米) 答:这座山的高约为6.8千米.2、如图,水坝的横断面是梯形,背水坡AB 的坡 角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈).答案:(10分)解:过B作BE ⊥AD 于E在Rt △ABE 中,∠BAE= 60, ∴∠ABE= 30 ∴AE =21AB31032021=⨯=∴BE ()()303103202222=-=-=AE AB∴在Rt △BEF 中, ∠F= 45, ∴EF =BE =30 ∴AF=EF-AE=30-310∵732.13=, ∴AF =12.68≈133、施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千米P C D G60°(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解:(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, …………………………………3分 ∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分4、在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图, 若 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.解:过A 点作AD ⊥BC 于点D , …………1分在Rt △ABD 中,∵∠ABC=60°,∴∠BAD=30°. …………2分 ∵AB=4,∴BD=2, ∴AD=23. …………4分 在Rt △ADC 中,AC=10,∴CD=22AD AC -=12100-=222 . …………5分 ∴BC=2+222 . …………6分 答:B 、C 两点间的距离为2+222. …………7分5、在东西方向的海岸线l 上有一长为1km 的码头MN(如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东NM 东北BCAlCBA17cm(第19题) A BCF60°,且与A相距83的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.答案解:(1)由题意,得∠BAC=90°,………………(1分)∴2240(83)167BC=+=.…………(2分)∴轮船航行的速度为41671273÷=时.……(3分)(2)能.……(4分)作BD⊥l于D,CE⊥l于E,设直线BC交l于F,则BD=AB·cos∠BAD=20,CE=AC·sin∠CAE=43,AE=AC·cos∠CAE=12.∵BD⊥l,CE⊥l,∴∠BDF=∠CEF=90°.又∠BFD=∠CFE,∴△BDF∽△CEF,……(6分)∴,DF BDEF CE=∴3220343EFEF+=,∴EF=8.……(7分)∴AF=AE+EF=20.∵AM<AF<AN,∴轮船不改变航向继续航行,正好能行至码头MN靠岸.6、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)答案(1)如图,作AD⊥BC于点D……………………………………1分Rt△ABD中,AD=AB sin45°=42222=⨯……2分在Rt△ACD中,∵∠ACD=30°FEDlAC北东M NABE FQ P ∴AC =2AD =24≈6.5………………………3分即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分 解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………7分 ∴货物MNQP 应挪走. …………………………………………………………8分7、如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)答案 (1)相等30,6030BEQ BFQ EBF EF BF ∠=∠=∴∠=∴=....................................2分 又6060AF P BFA ∠∠=∴∠=在AEF 与△ABF 中,,EF BF AFE AFB AF AFAFE AFB AE AB=∠=∠=∴≅∴=...........................................................................5分 (2)法一:作AH PQ ⊥,垂足为H 设 AE=x 则AH=xsin74°HE= xcos74° HF=xcos74°+1 ...............................................................................................7分tan60Rt AHF AH HF=中,所以xsin74°=(xcos74°+1)tan60°即0.96x=(0.28x+1)×1.73所以 3.6x≈即AB 3.6km≈法二:设AF与BE的交点为G,在Rt△EGF中,因为EF=1, 所以 EG=3在Rt△AEG中376,cos760.24 3.6 AEG AE EG∠==÷=÷≈答: 两个岛屿A与B之间的距离约为3.6km8、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,AB45°60°C E D∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ……………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………3分9、为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分 在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD∴CA =33 …………4分 ∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分10、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,第19题图A45°60°结果保留整数).解:根据题意,可知45ACB ∠=︒,60ADB ∠=︒,50DC =.在Rt △ABC 中,由45BAC BCA ∠=∠=︒,得BC AB =. 在Rt △ABD 中,由tan ABADB BD∠=, 得3tan tan 60AB AB BD AB ADB ===∠︒. ..............................6分 又 ∵ BC BD DC -=,∴ 350AB AB -=,即(33)150AB -=. ∴ 11833AB =≈-.答:该兴趣小组测得的摩天轮的高度约为118 m. .....................8分11、小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.25.连结AN 、BQ∵点A 在点N 的正北方向,点B 在点Q 的正北方向 ∴l AN ⊥ l BQ ⊥--------------------------1分 在Rt △AMN 中:tan ∠AMN=MNAN∴AN=360-----------------------------------------3分 在Rt △BMQ 中:tan ∠BMQ=MQBQ∴BQ=330----------------------------------------5分 过B 作BE ⊥AN 于点E 则:BE=NQ=30∴AE= AN -BQ -----------------------------------8分 在Rt △ABE 中,由勾股定理得:222BE AE AB +=22230)330(+=AB∴AB=60(米)12、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD 垂直.已知装饰画的高度AD 为0.66米, 求:⑴ 装饰画与墙壁的夹角∠CAD 的度数(精确到1°);⑵ 装饰画顶部到墙壁的距离DC (精确到0.01米).解:⑴ ∵AD =0.66,∴AE =21CD =0.33. 在Rt △ABE 中,………………1分 ∵sin ∠ABE =AB AE =6.133.0, ∴∠ABE ≈12°. ………………4分∵∠CAD +∠DAB =90°,∠ABE +∠DAB =90°, ∴∠CAD =∠ABE =12°.∴镜框与墙壁的夹角∠CAD 的度数约为12°. ………………5分 ⑵ 解法一:在Rt △∠ABE 中, ∵sin ∠CAD =ADCD, ∴CD =AD ·sin ∠CAD =0.66×sin12°≈0.14. ………………7分ACD EBABCD第19题图解法二: ∵∠CAD =∠ABE , ∠ACD =∠AEB =90°,∴△ACD ∽△BEA. ………………6分 ∴AB ADAE CD =. ∴6.166.033.0=CD . ∴CD ≈0.14. ………………7分∴镜框顶部到墙壁的距离CD 约是0.14米.………………8分13、如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第23题图解:过M 作MN ⊥AC ,此时MN 最小,AN =1500米1、(2010山东济南)图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 3求线段AD 的长.解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ··················· 1分 ∴在Rt △ADC 中,cos30ACAD =︒············· 2分=3×3··········· 3分=2 . ·············· 4分14、热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A 处与高楼的水平距离为60m ,这栋高楼有多高?(结果精确到0.1m ,参考数据:2 1.414,3 1.732≈≈)答案: 解:过点A 作BC 的垂线,垂足为D 点 ……………1分由题意知:∠CAD = 45°, ∠BAD =60°, AD = 60m在Rt △ACD 中,∠CAD = 45°, AD ⊥BC∴ CD = AD = 60 ……………………3分 在Rt △ABD 中,∵BDtan BAD AD∠=……………………4分 ∴ BD = AD ·tan ∠BAD= 603 ……………………5分∴BC = CD+BD= 60+603 ……………………6分≈ 163.9 (m) …………………7分答:这栋高楼约有163.9m . …………………8分 (本题其它解法参照此标准给分)15、如图,直角ABC ∆中,90C ∠=︒,25AB =,5sin B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP . (1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并PD CBA求出最大值.22.(1)在Rt ABC ∆中,5sin B =,25AB =, 得5AC AB =,∴2AC =,根据勾股定理得:4BC =. …… 3分(2)∵PD ∥AB ,∴ABC ∆∽DPC ∆,∴12DC AC PC BC == 设PC x =,则12DC x =,122AD x =- ∴2211111(2)(2)122244ADP S AD PC x x x x x ∆=⋅=-⋅=-+=--+ ∴当2x =时,y 的最大值是1. ……… 8分16、小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)答案:解:设CD = x .在Rt △ACD 中,tan37AD CD︒=, 则34AD x=, ∴34AD x =. 在Rt △BCD 中,tan48° = BD CD, 则1110BD x=, ∴1110BD x =. ∵AD +BD = AB , B37° 48° D CA 第19题图∴31180 410x x+=.解得:x≈43.17、在市政府广场进行了热气球飞行表演,如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan,80.037cos,60.037sin≈︒≈︒≈︒73.13≈)解:过A作AD⊥CB,垂足为点D.………………………1分在Rt△ADC中,∵CD=36,∠CAD=60°.∴AD=31233660tan==︒CD≈20.76.……5分在Rt△ADB中,∵AD≈20.76,∠BAD=37°.∴BD=37tan⨯AD≈20.76×0.75=15.57≈15.6(米).………8分答:气球应至少再上升15.6米.…………………………9分18、图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.【答案】解:根据题意得:DE=3.5×16=56,AB=EF=16∵∠ACB=∠CBG-∠CAB=15°,∴∠ACB =∠ CAB∴CB=AB=16.∴CG=BCsin30°=8CH=CG+HG=CG+DE+AD=8+56+5=69.∴塔吊的高CH的长为69m.BACD。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 5 分,共 25 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:D解析:因为 sinA =,设 BC = 4x,AB = 5x,则 AC = 3x,所以tanB =。

3、如图,在△ABC 中,∠C = 90°,AC = 8,∠A 的平分线 AD =,则 BC 的长为()A 12B 10C 8D 6答案:B解析:因为 AD 是∠A 的平分线,所以∠CAD =∠BAC。

在Rt△ACD 中,cos∠CAD =,即,解得 CD = 6。

在 Rt△ABC 中,BC =。

4、已知在 Rt△ABC 中,∠C = 90°,tanA =,则 sinA 的值为()A B C D答案:B解析:设 BC = 3x,AC = 4x,则 AB = 5x,所以 sinA =。

5、如图,在菱形 ABCD 中,DE⊥AB,cosA =,BE = 2,则tan∠DBE 的值是()A B 2C D答案:C解析:因为 cosA =,设 AD = 5x,AE = 3x,则 DE = 4x。

因为BE = 2,所以 5x 3x = 2,解得 x = 1,所以 DE = 4。

在 Rt△BDE 中,tan∠DBE =。

二、填空题(每小题 5 分,共 25 分)1、在 Rt△ABC 中,∠C = 90°,若 sinA =,AB = 10,则 BC=________。

答案:6解析:因为 sinA =,所以,设 BC = 3x,AB = 5x,因为 AB =10,所以 5x = 10,解得 x = 2,所以 BC = 6。

解直角三角形测试题与答案

解直角三角形测试题与答案

解直角三角形测试题与答案一、选择题(每小题 3 分,共 30 分)1、在直角三角形中,若一个锐角为 30°,斜边与较小直角边的和为 12,则斜边的长为()A 4B 6C 8D 10答案:C解析:在直角三角形中,30°角所对的直角边等于斜边的一半。

设较小直角边为 x,则斜边为 2x,由题意得 2x + x = 12,解得 x = 4,所以斜边为 8。

2、已知在 Rt△ABC 中,∠C = 90°,sinA =,则 tanB 的值为()A B C D答案:A解析:因为 sinA =,所以设 BC = 3x,AB = 5x,则 AC = 4x。

所以 tanB =。

3、在△ABC 中,∠C = 90°,AB = 15,sinA =,则 BC 等于()A 9B 12C 10D 6答案:B解析:因为 sinA =,所以 BC = AB×sinA = 15×= 9。

4、如图,在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,则cosB 的值是()A B C D答案:A解析:因为在 Rt△ABC 中,∠C = 90°,AC = 4,AB = 5,所以BC = 3。

所以 cosB =。

5、一个直角三角形的两条直角边分别为 6 和 8,则其斜边上的高为()A 48B 5C 3D 10答案:A解析:根据勾股定理可得斜边为 10,设斜边上的高为 h,根据面积相等可得 ×6×8 = ×10×h,解得 h = 48。

6、在 Rt△ABC 中,∠C = 90°,若 sinA =,则 cosA 的值为()A B C D答案:B解析:因为 sin²A + cos²A = 1,sinA =,所以 cosA =。

7、如图,在 Rt△ABC 中,∠ACB = 90°,CD⊥AB 于点 D,若AC =,BC = 2,则 sin∠ACD 的值为()A B C D答案:A解析:因为∠ACB = 90°,AC =,BC = 2,所以 AB = 3。

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析

初三数学解直角三角形试题答案及解析1.周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)]【答案】10.1【解析】根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出试题解析:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,【考点】解直角三角形的应用-仰角俯角问题2.在平面直角坐标系中,设点P到原点O的距离为,OP与x轴正方向的夹角为,则用[,]表示点P的极坐标;显然,点P的极坐标与它的坐标存在一一对应的关系.例如,点P的坐标(1,1),则极坐标为[,45°].若点Q的极坐标为[4,60°],则点Q的坐标为()A.B.C.D.(2,2)【答案】A.【解析】:作QA⊥x轴于点A,则OQ=4,∠QOA=60°,故OA=OQ×cos60°=2,AQ=OQ×sin60°=2,∴点Q的坐标为(2,2).故选A.【考点】点的坐标.3.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为.【答案】6或2或4【解析】如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB=;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.【考点】解直角三角形4.如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).【答案】CE的长为(4+)米【解析】根据题意过点A作AH⊥CD于H,由三角函数可求出CH的长,从而可求出CD的长,在Rt△CED中,由∠CED=60°,利用三角函数可求出CE的长.试题解析:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE=(米),答:拉线CE的长为(4+)米.【考点】1、三角函数;2、解直角三角形5.某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A、B两个探测点探测到C处有生命迹象.已知A、B两点相距6米,探测线与地面的夹角分别是30°和45°,试确定生命所在点C的深度.(精确到0.1米,参考数据:)【答案】8.2米.【解析】过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=6米,即可得出关于x的方程,解出即可.试题解析:过点C作CD⊥AB于点D,设CD=x,在Rt△ACD中,∠CAD=30°,则AD=CD=x,在Rt△BCD中,∠CBD=45°,则BD=CD=x,由题意得x-x=6,解得:x=3(+1)≈8.2.答:生命所在点C的深度为8.2米.【考点】解直角三角形的应用.6.如图1是一张折叠椅子,图2是其侧面示意图,已知椅子折叠时长1.2米,椅子展开后最大张角∠CBD=37°,且BD=BC,AB:BG:GC=1:2:3,座面EF与地面平行,当展开角最大时,请解答下列问题:(1)求∠CGF的度数;(2)求座面EF与地面之间的距离。

解直角三角形练习题1(含答案)

解直角三角形练习题1(含答案)

解直角三角形练习题1一. 选择题:(每小题2分,共20分)1. 在厶EFG 中,/ G=90° EG=6 , EF=10,贝U cotE=()A. B. C. D.2. 在厶ABC 中,/ A=105° / B=45° tanC 的值是()A. B. C. 1 D.3. 在厶ABC中,若,,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4. 如图18,在厶EFG中,/ EFG=90°, FH丄EG,下面等式中,错误的是()A. B.C. D.5. sin65与cos26之间的关系为()A. sin65 <Cos26 °B. sin65 >Cos26 °C. sin65 =Cos26 °D. sin65 +Cos26 =16. 已知30° <a <60下列各式正确的是()A. B. C. D.7. 在厶ABC中,/ C=90° ,,贝U sinB的值是()A. B. C. D.8. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60 °则平行四边形的面积是()米2A. 150B.C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i=2 : 3,顶宽是3米,路基高是4米,则路基的下底宽是()A. 7 米B. 9 米C. 12 米D. 15 米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为a,则它们重叠部分(图中阻影部分)的面积为()A. B. C. D. 1二. 填空题:(每小题2分,共10分)11. 已知0° <a <90 当a = _________ ,,当a = ____________ 时,Cota=.12. 若,则锐角a = __________13. 在Rt△ ABC 中,/ C=90°,,贝U a= ____________ , b= _________ , c= __________ , cotA= ________ 。

九年级数学下册《解直角三角形》典型例题(含答案)

九年级数学下册《解直角三角形》典型例题(含答案)

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形.分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决.解 (1); (2)由ab B =tan ,知 ; (3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵∴设,则由勾股定理,得 ∴ .∴. 解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题.例 3 设中, 于D ,若 ,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DCAC在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.。

(附答案)《解直角三角形》典型例题

(附答案)《解直角三角形》典型例题

《解直角三角形》典型例题例1 在Rt △ABC 中,∠C=90°,∠B=60°,a=4,解这个三角形. 分析 本题实际上是要求∠A 、b 、c 的值.可根据直角三角形中各元素间的关系解决. 解 (1) ;(2)由abB =tan ,知 ;(3)由c a B =cos ,知860cos 4cos =︒==B a c . 说明 此题还可用其他方法求b 和c .例 2 在Rt △ABC 中, ∠C=90°,∠A=30°,3=b ,解这个三角形.解法一 ∵ ∴设 ,则由勾股定理,得∴ .∴.解法二 133330tan =⨯=︒=b a说明 本题考查含特殊角的直角三角形的解法,它可以用目前所学的解直角三角形的方法,也可以用以前学的性质解题. 例 3 设 中,于D ,若,解三角形ABC .分析“解三角形ABC”就是求出的全部未知元素.本题CD不是的边,所以应先从Rt入手.解在Rt中,有:∴在Rt中,有说明(1)应熟练使用三角函数基本关系式的变形,如:(2)平面几何中有关直角三角形的定理也可以结合使用,本例中“”就是利用“对30°角的直角边等于斜边的一半”这一定理.事实上,还可以用面积公式求出AB的值:所以解直角三角形问题,应开阔思路,运用多种工具.例4在中,,求.分析(1)求三角形的面积一方面可以根据面积公式求出底和底上的高的长,也可以根据其中规则面积的和或差;(2)不是直角三角形,可构造直角三角形求解.解如图所示,作交CB的延长线于H,于是在Rt△ACH中,有,且有;在中,,且,∴;于是,有,则有说明还可以这样求:例5 如图,在电线杆上离地面高度5m 的C 点处引两根拉线固定电线杆,一根拉线AC 和地面成60°角,另一根拉线BC 和地面成45°角.求两根拉线的总长度(结果用带根号的数的形式表示).分析 分别在两个直角三角形ADC 和BDC 中,利用正弦函数的定义,求出AC 和BC .解: 在Rt △ADC 中,331023560sin ==︒=DC AC 在Rt △BDC 中,221022545sin ==︒=DC BC说明 本题考查正弦的定义,对于锐角三角函数的定义,要熟练掌握.学习要有三心:一信心;二决心;三恒心.知识+方法=能力,能力+勤奋=效率,效率×时间=成绩. 宝剑锋从磨砺出,梅花香自苦寒来.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.2 解直角三角形 一、选择题 1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( )
(A).1
(B).2 (C).2
2 (D).22 2、如果α是锐角,且5
4cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )25
16 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )
513 (B )1213 (C )1013 (D )512 4、. 以下不能构成三角形三边长的数组是 ( )
(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52)
5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ).
(A )B A sin sin = (B )B A cos sin =
(C )B A tan tan = (D )B A cot cot =
6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α, AB = 4, 则AD 的长为( ).
(A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一
块如图所示的三角形空地上种植某种草皮以美 化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ).
(A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元
8、已知α为锐角,tan (90°-α)=3,则α的度数为( )
(A )30° (B )45° (C )60° (D )75°
9、在△ABC 中,∠C =90°,BC =5,AB =13,则sin A 的值是( )
(A )135 (B )1312 (C )125 (D )5
12 10、如果∠a 是等边三角形的一个内角,那么cos a 的值等于( ). A B C
D
E ︒15020米
30米
(A )21 (B )22 (C )23 (D )1 二、填空题 11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =22, 则BC = w
12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水
平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。

(精确到0.1m)
13、离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α, 如果测角
仪高为1.5米.那么旗杆的高为 米(用含α的三角函数
表示).
14、校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米。

一只小鸟从一
棵树的顶端飞到另一棵树的顶端,小鸟至少要飞__________米。

15、某校自行车棚的人字架棚顶为等腰三角形, D 是AB 的中点,中柱CD = 1米,∠A=27°,
则跨度AB 的长为 (精确到0.01米)。

三、解答题 16、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.
17、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).
18、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆
形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点
的仰角为60°,树的底部B 点的俯角为30°.
问:距离B 点8米远的保护物是否在危险区内?
C
B A
C
A D B
A
M E
N C A
19、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16
米,坝高 6米,斜坡BC 的坡度3:1 i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .
20. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):
(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ;
(2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。

根据上述测量数据,即可求出旗杆的高度MN 。

如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)
1) 在图2中,画出你测量小山高度MN 的示意图 (标上适当的字母) 2)写出你的设计方案。

((图2)
D C B A
参考答案
一、选择题
1、B
2、C
3、A
4、D
5、B
6、B
7、C
8、A
9、A 10、A
二、填空题
11、2
1 12、2.3 13、1.5 +20tan α 14、13 15、3.93米 三、解答题
16、83 17、18.1米
18、可求出AB= 43米
∵8>43
∴距离B 点8米远的保护物不在危险区内
19、 ∠A =22 01′ AB=37.8米
20、1)
2)方案如下:
(1) 测点A 处安置测倾器,测得旗杆顶部
M 的仰角∠MCE =α ;
(2) 测点B 处安置测倾器,测得旗杆顶部
M 的仰角∠MDE =β;
(3) 量出测点A 到测点B 的水平距离AB =m;
(4) 量出测倾器的高度AC =h 。

根据上述测量数据可以求出小山MN 的高度。

相关文档
最新文档