实验 纤维素酶活力的测定【内容充实】

合集下载

纤维素酶活力的测定

纤维素酶活力的测定

纤维素酶活力的测定(CMC糖化力法)1、定义:1克固体酶粉(或1毫升液体酶),在40℃pH﹦4.6条件下,每分钟水解羧甲基纤维素钠(CMC-Na),产生1.0ug的葡萄糖,即为1个酶活单位,以u/g(u/ml)表示。

2、原理:CMC-Na在纤维素酶的作用下,水解产生纤维寡糖、纤维二糖、葡萄糖等还原糖,还原糖能将3,5﹣二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,在540nm波长下测定吸光度值A,吸光度与酶活成正比。

CMC-Na糖化力主要代表内切β-1.4-葡聚糖的活力和外切酶活力总和。

3、试剂:3.1 0.1mol/LpH﹦4.6醋酸﹣醋酸钠缓冲溶液:将49.0ml0.2mol/L醋酸钠溶液和51.0ml0.2mol/L醋酸溶液混合后加100ml蒸馏水。

注意:0.2mol/L醋酸钠溶液:称取27.22g结晶乙酸钠(AR)定容至1000ml。

0.2mol/L醋酸溶液:称取冰乙酸(AR)11.5ml定容至1000ml。

3.2 3,5二硝基水杨酸(DNS)试剂:称取6.3克3,5-二硝基水杨酸用水溶解,加入21.0克NaOH,182克酒石酸钾钠,加500ml水,加热溶解后再加入5.0克重蒸酚和5.0克亚硫酸钠,搅拌溶解,冷却,定容至1000ml,存于棕色瓶中,放置7天后使用。

3.3 葡萄糖标准溶液(1.0mg /ml):称取1.000克葡萄糖(AR)(105℃干燥至恒重)用蒸馏水溶解后定容至1000ml,冰箱保存备用。

3.4 羧甲基纤维素钠溶液:称2.0gCMC-Na溶于200 ml蒸馏水中,加醋酸缓冲溶液100 ml,混匀后存于冰箱内备用。

配后隔天使用。

4、仪器4.1 分光光度计4.2 恒温水浴,50℃4.3 25 ml具塞刻度试管5、分析步骤:5.1标准曲线绘制:取25ml具塞刻度试管6支,加入1.0 mg /ml的葡萄糖标准溶液0.0、0.4、0.8、1.2、1.6、2.0ml,加蒸馏水2.0、1.2、0.8、0.4、0.0ml,加DNS试剂1.5 ml,混匀后在沸水浴中加热5分钟,取出立即用冷水冷却,用水定容至25 ml,摇匀,测吸光度A,以吸光度为纵坐标,葡萄糖的含量为横坐标,绘制标准曲线。

纤维素酶活力测定

纤维素酶活力测定

山东大学实验报告2011年4月20日姓名张行润系年级2009级生科4班学号200900140177 同组者于潜科目生物化学实验题目纤维素酶活力测定—3,5-二硝基水杨酸法仪器编号105一、实验目的1、学会并掌握用3、5—二硝基水杨酸法测定酶活力方法2、巩固使用分光光度计二、实验原理纤维素酶是一种多组分酶,包括C1酶、CX酶和β-葡萄糖苷酶三种主要组分。

其中C1酶的作用是将天然纤维素水解成无定形纤维素,CX酶的作用是将无定形纤维素继续水解成纤维寡糖,β-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。

纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在550nm波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。

酶活力(enzyme activity)也称为酶活性,是指酶催化一定化学反应的能力。

酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。

测定酶活力实际就是测定酶促反应的速度。

酶促反应速度可用单位时间内、单位体积中底物的减少量或产物的增加量来表示。

在一般的酶促反应体系中,底物往往是过量的,测定初速度时,底物减少量占总量的极少部分,不易准确检测,而产物则是从无到有,只要测定方法灵敏,就可准确测定。

因此一般以测定产物的增量来表示酶促反应速度较为合适。

本实验中酶活力定义:1mg酶每分钟水解生成1微克葡萄糖的量定义为一个活力单位。

由此定义我们可以计算本实验中的纤维素酶活力。

三、实验器材(1)722型分光光度计(2)恒温水浴(3)沸水浴锅(4)电炉子(5)剪刀(6)分析天平(7)试管架(8)胶头滴管(9)具塞比色管(25mL×10)(10)移液管(2mL;5mL)(11)烧杯(500mL×3)(12)洗耳球四、实验材料(1)纤维素酶:0.05g酶溶解定容至50ml,取1ml再定容至100ml待测(用PH4.5乙酸-乙酸钠缓冲液配制);(2)3、5—二硝基水杨酸显色液;(3)0.5%羧甲基纤维素钠水溶液(CMC):用0.1mol/LPH4.5醋酸-醋酸钠缓冲溶液配置;(4)标准葡萄糖溶液(1mg/mL);(5)蒸馏水。

纤维素酶酶活测定可编辑全文

纤维素酶酶活测定可编辑全文

纤维素酶酶活测定纤维素酶活测定方法一、原理纤维素酶能将纤维素降解成纤维二糖和葡萄糖,具有还原性末端的纤维二糖糖和有还原基团的单糖在沸水浴条件下可与DNS试剂发生显色反应。

反应颜色强度与酶解产生的还原糖量成正比,而还原糖量又与反应液中的纤维素酶的活力成正比。

酶活定义纤维素酶活力单位是指55℃、pH5.0的条件下,以每分钟催化羧甲基纤维素钠水解生成1μmol还原糖所需的酶量定义为一个酶活力单位U。

二、实验试剂羧甲基纤维素钠(聚合度1700-2000),内切纤维素酶(苏柯汉)50mmol NaAC-HAC、DNS试剂三、实验仪器容量瓶(1000ml ×2、500 ml×3、100 ml ×4、50ml×4 ml)、移液器、烧杯(500ml×3、50ml×3)、具塞试管、电热套、水浴锅、分光光度计、pH计、电子天平四、标准曲线的绘制五、酶活测定由于苏柯汉给定的pH范围为4.8-5.2,故选用pH 5.0的50mmol NaAC-HAC缓冲液测定纤维素酶酶活。

1、样品的制备CMC-Na溶液的制备:用pH 5.0的50mmol NaAC-HAC缓冲液配置0.5%的CMC-Na (羧甲基纤维素钠)溶液,准确称量CMC-Na0.05g,精确至0.001g,溶于蒸馏水中,45℃水浴锅中搅拌溶解,冷却后定容至100ml。

纤维素酶液的制备:准确称取纤维素酶,精确到0.001g。

用50mmol NaAC-HAC pH5.0的缓冲液配置成适当的浓度10000倍,保证吸光度在0.2-0.6之间。

2、DNS法测酶活:取1.8ml 0.5% CMC-Na的溶液于25ml 具塞刻度试管中,55℃预热10min左右,加入0.2ml 适当稀释的酶液,于55℃水浴锅中保温30min后,然后加2ml DNS,混匀,沸水浴5min,冷却至室温,定容到25ml。

混匀测OD540nm。

纤维素酶活力的测定

纤维素酶活力的测定

实验二十纤维素酶活力的测定一、目的学习和掌握3,5-二硝基水杨酸(DNS)法测定纤维素酶活力的原理和方法,了解纤维素酶的作用特性。

二、原理纤维素酶是一种多组分酶,包括C 酶、C 酶和 |?-葡萄糖苷酶三种主要组分。

其中C1 X 1酶的作用是将天然纤维素水解成无定形纤维素,C 酶的作用是将无定形纤维素继续水解成X纤维寡糖,|?-葡萄糖苷酶的作用是将纤维寡糖水解成葡萄糖。

纤维素酶水解纤维素产生的纤维二糖、葡萄糖等还原糖能将碱性条件下的3,5-二硝基水杨酸(DNS)还原,生成棕红色的氨基化合物,在540nm波长处有最大光吸收,在一定范围内还原糖的量与反应液的颜色强度呈比例关系,利用比色法测定其还原糖生成的量就可测定纤维素酶的活力。

三、实验材料、主要仪器和试剂1.实验材料(1)纤维素酶制剂 500mg(2)新华定量滤纸 50mg / 份 4(3)脱脂棉花 50mg / 份 4(4)羧甲基纤维素钠(CMC) 510mg(5)水杨酸苷 500mg2.主要仪器(1)722 型或其他型号的可见分光光度计(2)恒温水浴 2 台(3)沸水浴锅(4)电炉子(5)剪刀(6)万分之一分析天平(7)恒温干燥箱(8)冰箱(9)试管架(10)胶头滴管(11)具塞刻度试管 20mL24(12)移液管或加液器 0.5 mL3;2mL7(13)容量瓶 100 mL6;1000 mL3(14)量筒 50 mL2;100 mL1;500 mL1(15)烧杯 100 mL6;500mL3;1 000 mL13.试剂(均为分析纯)(1)浓度为 1mg/mL的葡萄糖标准液将葡萄糖在恒温干燥箱中105℃下干燥至恒重,准确称取100mg 于100mL小烧杯中,用少量蒸馏水溶解后,移入100mL容量瓶中用蒸馏水定容至 100mL,充分混匀。

4℃冰箱中保存(可用 12~15 天)。

(2)3,5-二硝基水杨酸(DNS)溶液准确称取DNS 6.3g于500mL大烧杯中,用少量蒸馏水溶解后,加入2mol/L NaOH 溶液 262mL,再加到 500mL含有 185g酒石酸钾钠(C H O KNa ! 4H O,MW=282.22)的热4 4 6 2水溶液中,再加5g结晶酚(C H OH,MW=94.11)和5g无水亚硫酸钠(Na SO ,MW=126.04),6 5 2 3搅拌溶解,冷却后移入1 000mL容量瓶中用蒸馏水定容至1 000mL,充分混匀。

(完整版)纤维素酶活力的测定

(完整版)纤维素酶活力的测定

纤维素酶活力的测定1.纤维素酶活力单位定义在37℃,pH值为5.5的条件下,每分钟从浓度为4mg/ml的羧甲基纤维素钠溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位u.2.测定原理纤维素酶能将羧甲基纤维素降解成寡糖和单糖.具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与DNS试剂发生显色反应.反应液颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中纤维素酶的活力成正比.因此,通过分光比色测定反应液颜色的强度,可以计算反应液中纤维素酶的活力.3.试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水.3.1葡糖糖溶液,c(C6H12O6)为10.0mg/ml:称取无水葡萄糖1.000g,加水溶解,定容至100ml.3.2 乙酸溶液,c(CH3COOH)为0.1mol/L:吸取冰乙酸0.60ml.加水溶解,定容至100ml.3.3 乙酸钠溶液,c(CH3COONa)为0.1mol/L:称取三水乙酸钠1.36g.加水溶解,定容至100ml.3.4 氢氧化钠溶液,c(NaOH)为200g/L:称取氢氧化钠20.0g.加水溶解,定容至100ml.3.5 乙酸——乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH值为5.5:称取三水乙酸钠23.14g,加入冰乙酸1.70ml.再加水溶解,定容至2000ml.测定溶液的pH值.如果pH值偏离5.5,再用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节至5.5.3.6 羧甲基纤维素钠溶液:0.8%(w/v)称取羧甲基纤维素钠(Sigma C5678)0.80g,加入80ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌,同时缓慢加热,直至羧甲基纤维素钠完全溶解(注:在搅拌加热的过程中可以补加适量的缓冲液,但是溶液的总体积不能超过100ml.).然后停止加热,继续搅拌30min,用乙酸—乙酸钠缓冲溶液(3.5)定容至100ml.羧甲基纤维素钠溶液能立即使用,使用前适当摇匀.4℃避光保存,有效期为3天.3.7 DNS试剂称取3,5-二硝基水杨酸 3.15g(化学纯),加水500ml,搅拌5s,水浴至45℃.然后逐步加入100ml氢氧化钠溶液(3.4),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃.).再逐步加入四水酒石酸钾钠91.0g,苯酚2.50g和无水亚硫酸钠2.50g.继续45℃水浴加热,同时补加水300ml,不断搅拌,直到加入的物质完全溶解.停止加热,冷却至室温后,用水定容至1000ml.用烧结玻璃过滤器过滤.取滤液,储存在棕色瓶中,避光保存.室温下存放7天后可以使用,有效期为6个月.4 仪器与设备4.1 实验室用样品粉碎机或碾钵.4.2 分样筛:孔径为0.25mm(60目).4.3 分析天平:感量0.001g.4.4 pH计:精确至0.01.4.5 磁力搅拌器:附加热功能.4.6 电磁振荡器.4.7 烧结玻璃过滤器:孔径为0.45m.4.8 离心机:2000g以上.4.9 恒温水浴锅:温度控制范围在30—60℃之间,精度为0.1℃.4.10 秒表:每小时误差不超过5s.4.11 分光光度计:能检测350—800nm的吸光度范围.4.12 移掖器;精度为1l.5 标准曲线的绘制吸取缓冲液(3.5)4.0ml,加入DNS试剂(3.7)5.0ml,沸水浴加热5min.用自来水冷却至室温,用水定容至25.0ml,制成标准空白样.分别吸取葡萄糖溶液(3.1)1.00,2.00,3.00,4.00,5.00,6.00和7.00ml,分别用缓冲液(3.5)定容至100ml,配制成浓度为0.10—0.70mg/ml葡萄糖标准溶液.分别吸取上述浓度系列的葡萄糖标准溶液各 2.00ml(做二个平行),分别加入到刻度试管中,再分别加入2ml水和5mlDNS试剂(3.7).电磁振荡3s,沸水浴加热5min.然后用自来水冷却到室温,再用水定容至25ml.以标准空白样为对照调零,在540nm处测定吸光度OD值.以葡萄糖浓度为Y轴,吸光度OD值为X轴,绘制标准曲线.每次新配制DNS试剂均需要重新绘制标准曲线.6 试样溶液的制备固体试样应粉碎或充分碾碎,然后过60目筛(孔径为0.25mm).称取试样两份,精确至0.001g.加入50ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌30min,再用缓冲溶液(3.5)定容至100ml,在4℃条件下避光保存24h.摇匀,取出30-50ml,2000g离心3min.吸取5.00ml上清液,再用缓冲溶液(3.5)做二次稀释(稀释后的待测酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).液体试样可以直接用乙酸—乙酸钠缓冲溶液(3.5)进行稀释,定容(稀释后的酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).如果稀释后酶液的pH值偏离5.5,需要用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节,校正至5.5,然后再用缓冲溶液(3.5)做适当定容.7 测定步骤吸取10.0ml羧甲基纤维素钠溶液(3.6),37℃平衡10min.吸取10.0ml经过适当稀释的酶液,37℃平衡10min.吸取2.00ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mlDNS试剂(3.7),电磁振荡3s.然后加入2.0ml羧甲基纤维素钠溶液(3.6),37℃保温30min,沸水浴加热5min.用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AB.吸取2.0ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入2.0ml羧甲基纤维素钠(3.6)(已经过37℃平衡),电磁振荡3s,37℃精确保温30min.加入5.0mlDNS试剂(3.7),电磁振荡3s,酶解反应.沸水浴加热5min,用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AE.8.试样酶活力的计算[(AE - AB)×K + CO]XD = × 1000 (1)M×t式(1)中:XD —试样稀释液中的纤维素酶活力,u/ml;AE —酶反应液的吸光度;AB —酶空白样的吸光度;K —标准曲线的斜率;CO —标准曲线的截距;M —葡萄糖的分子量(180.2);t —酶解反应时间,min;1000 —转化因子,1mmol = 1000 umol.XD值应在0.04—0.08 u/ml之间.如果不在这个范围内,应重新选择酶液的稀释度,再进行分析测定.X = XD•Df (2)式(2)中:X —试样纤维素酶的活力,u/g;Df —试样的总稀释倍数.酶活力的计算值保留三位有效数字.9 重复性同一样品两个平行测定值的相对误差不超过8.0%,二者的平均值为最终的酶活力测定值(保留三位有效数字)1.药品、试剂及仪器脂肪酶(Novezymes公司),0.0667mol/L的KH2PO4-Na2HPO4缓冲溶液(pH值为7.38;),脂肪酸显色剂(5%醋酸铜溶液,用吡啶调节pH=6.2),正己烷,油酸,橄榄油,盐酸,无水乙醇,分光光度计,pH计,水/油浴恒温磁力搅拌器,离心机,分析天平等。

纤维素酶活力的测定(sdu)

纤维素酶活力的测定(sdu)

纤维素酶活力的测定高熹 168615140001一、实验原理纤维素酶水解纤维素,产生纤维二糖、葡萄糖等还原糖,能将3、5-二销基水杨酸中销基还原成橙黄色的氨基化合物,利用比色法测定其还原物生成量来表示酶的活力。

酶活力也称为酶活性,是指酶催化一定化学反应的能力。

酶活力的大小可用在一定条件下,酶催化某一化学反应的速度来表示,酶催化反应速度愈大,酶活力愈高,反之活力愈低。

测定酶活力实际就是测定酶促反应的速度。

酶促反应速度可用单位时间内、单位体积中底物的减少量或产物的增加量来表示。

在一般的酶促反应体系中,底物往往是过量的,测定初速度时,底物减少量占总量的极少部分,不易准确检测,而产物则是从无到有,只要测定方法灵敏,就可准确测定。

因此一般以测定产物的增量来表示酶促反应速度较为合适。

二、实验试剂1、3、5—二销基水杨酸显色液:称取10克3、5-二销基水杨酸,溶入蒸馏水中,加入20克分析纯氢氧化钠,200克酒石酸钾钠,加水500毫升,升温溶解后,加入重蒸酚2克,无水亚硫酸钠0.5克。

加热搅拌,待全溶后冷却,定容至1000毫升。

存于棕色瓶中,放置一周后使用。

2、0.1摩尔PH4.5醋酸-醋酸钠缓冲溶液。

3、0.5%羧甲基纤维素钠水溶液,溶解后成胶状液,静置过夜。

使用前摇匀。

4、标准葡萄糖溶液:称取干燥至恒重的葡萄糖100毫克,溶解后定容至100毫升,此溶液含葡萄糖1.00毫克/毫升。

三、实验器材1、紫外可见分光光度计2、胶头滴管3、水浴锅4、试管5、移液管四、实验步骤1、标准曲线的绘制:分别吸取0.2、0.4、0.6 、0.8.0、1.0毫升的葡萄糖于5支试管中,均用蒸馏水稀释至1毫升,加3.5-二销基水杨酸显色剂3毫升,在沸水浴中煮沸显色10分钟,冷却,加蒸馏水21毫升,摇匀.以1毫升蒸馏水代替糖作空白管,在550nm处比色。

以光密度为纵坐标,以葡萄糖微克数为横坐标,绘出标准曲线。

2、样品的测定:取0.5%羧甲基纤维素钠溶液3毫升,酶液1毫升,于50度水浴中糖化30分钟,取出,立即于沸水浴中煮沸10分钟使酶失活,得糖化液。

纤维素酶活的测定(IUAPC推荐方法)

纤维素酶活的测定(IUAPC推荐方法)

纤维素酶活力的测定1试剂1.1缓冲溶液乙酸-乙酸钠缓冲液(0.1mol/L,pH 4.8)柠檬酸-柠檬酸钠缓冲液(0.1mol/L,pH 4.8)1.2DNS试剂DNS试剂:取7.5g 3,5-二硝基水杨酸,14.0g氢氧化钠,充分溶解于煮沸冷却后的去离子水中,加入酒石酸钾钠216.0g,苯酚5.5mL,偏重亚硫酸钠6.0g,完全溶解后,定容至1L,室温下储存于棕色瓶中。

1.3葡萄糖检测试剂R1试剂:苯酚,10.6mmol/L,pH 7.0。

R2试剂:磷酸盐缓冲液,70mmol/L;4-氨基安替比林,0.8mmol/L;葡萄糖氧化酶,>10U/mL;氧化物酶,>1U/mL。

R1试剂和R2试剂在使用前等量混合均匀即可使用,混合液室温下放置时间不宜超过12h,否则就会因变色而失效。

1.4考马斯亮蓝试剂考马斯亮蓝G-250(CBB-G250)试剂按照传统的Brandford法制备:准确称取0.100±0.0001CBB-G250溶于50mL乙醇(95%,v/v)中,然后加入100mL磷酸(85%,w/v),将溶液转移至1L容量瓶,用去离子水定容,最后将染料溶液用滤纸过滤后,4℃下储存于棕色瓶中。

2仪器和设备2.1分析天平:感量0.0001g2.2精密pH计:精确至0.012.3磁力加热搅拌器2.4紫外可见分光光度计,购自美国安捷伦公司,可在数秒内快速扫描波长200-1000nm范围的吸收值,配置1cm石英比色皿2.5电热恒温水浴锅:30-100℃2.6移液器:量程为1000μL-5000μL,200-1000μL,20-100μL,0-10μL各1支,均购自芬兰大龙(Dragon)公司3纤维素酶活力测定按照IUAPC推荐的方法(Ghose,1987)分析纤维素酶的滤纸酶活、CMC酶活和β-葡萄糖苷酶活。

3.1滤纸酶活测定纤维素酶滤纸酶活的方法如下:(1)将Whatman No 1或国产相同等级的滤纸(新华1号滤纸)裁剪为1.0×6.0cm2(约50mg)的滤纸条,折成扇形,置于一个25mL的具塞比色管中;(2)加入1.0mL柠檬酸-柠檬酸钠缓冲溶液(0.05mol/L,pH 4.8)预热至50℃;(3)然后加入0.5mL适当稀释的酶液,要求至少有两个稀释梯度最终释放的葡萄糖的量分别略高于和略低于2.0mg,并在50℃保温1h;(4)分别以不加滤纸和不加酶的试样作为空白,在相同条件下保温;(5)反应结束后加入3.0mLDNS试剂,煮沸5min后,在冷水浴中快速冷却,用去离子水定容至25mL,摇匀;(6)置于紫外可见分光光度计上测波长540nm处的吸收值,并根据葡萄糖-DNS工作曲线计算1h释放的葡萄糖的量,按下式计算纤维素酶的滤纸酶活:滤纸酶活(PFU·mL-1)=0.37×释放2.0mg葡萄糖所需酶的稀释度(3-1)3.2羧甲基纤维素(CMC)酶活测定羧甲基纤维素CMC酶活的方法如下:(1)使用柠檬酸-柠檬酸钠缓冲溶液(0.05mol/L,pH 4.8)配制质量浓度为2%的羧甲基纤维素(简写成CMC,取代度接近0.7)溶液;(2)在25mL的具塞比色管中加入0.5mL适当稀释的酶液,要求至少两个稀释梯度最终释放葡萄糖的量分别略高于和略低于0.5mg,然后在50℃下保温5-10min;(3)加入0.5mL羧甲基纤维素CMC溶液,混合均匀后在50℃下保温30min;(4)加入3.0mLDNS试剂以结束反应,煮沸5min后,在冷水浴中快速冷却,用去离子水定容至25mL,摇匀;(5)置于紫外可见分光光度计上测波长540nm处的吸收值,并根据葡萄糖-DNS工作曲线计算释放的葡萄糖的量,按下式计算纤维素酶的CMC酶活:CMC酶活(IU ·mL-1)=0.185×释放0.5mg葡萄糖所需酶的稀释度(3-2)3.3纤维二糖酶活(β-葡萄糖苷酶活力)测定纤维二糖酶活力的方法如下:(1)用乙酸-乙酸钠缓冲溶液(0.05mol/L,pH 4.8)配制浓度为15mmol/L的纤维二糖标准溶液,仅在测试前配制新鲜溶液;(2)将酸用乙酸-乙酸钠缓冲溶液稀释至一系列浓度,保证有两个稀释梯度在反应结束后分别释放略高于和略低于1.0mg的葡萄糖;(3)在试管中加入1.0mL稀释的酶液,加热至50℃后,再加入1.0mL纤维二糖标准溶液,并在50℃保温30min;(4)反应结束后在沸水浴中煮沸5min,冷却,用葡萄糖氧化酶-过氧化物酶法测定葡萄糖的量;(5)分别以不加底物和不加酶的试样作为空白,计算释放1mg葡萄糖所需的酶的稀释度,并按下式计算酶的活力:β-葡萄糖苷酶活力(IU ·mL-1)=0.0926×释放1.0mg葡萄糖所需酶的稀释度(3-3)4葡萄糖含量的快速测定(1)准备测试液,即将R1试剂和R2试剂在使用前等量混合均匀;(2)将待测试样适当稀释,使最终紫外分光光度及记录的信号值在0.1-0.8之间,测试结果葡萄糖浓度应低于28mmol/L;(3)在5mL塑料离心管中先后加入2mL测试液和10μL待测液,37℃水浴中保温15min;(4)待显红色后,置于紫外分光光度计中测量505nm处的吸收值,室温下显色的试样可稳定2h;(5)以去离子水代替待测液,与测试液混合后,作为空白样;(6)使用标准的葡萄糖试剂建立校正曲线。

酶工程实验报告一(纤维素酶活力测定)

酶工程实验报告一(纤维素酶活力测定)
移液管使用时量取精准,保证结果可靠准确。
精确记时:每一管加入酶液的时间要做记录,每管之间间隔的时间要合理;
避免试管进水:煮沸和用流水冲洗时;
5实验处理
A 5实验现象、数据及观察结果
A 5.1标准曲线的测量结果:如表四:
试管编号
0
1
2
3
4
5
OD(540nm)值

0.0595
0.2135
0.345
0.493
B 4.2滤纸条的准备:
①将待用滤纸放入(硅胶)干燥器中平衡24h:
②将水分平衡后的滤纸制成宽1cm、质量为(50士05)mg的滤纸条,折成M型备用。
B4.3操作步骤:
①取三支25mL刻度具塞试管(一支空白管,二支样品管)。实验中分为两组:pH
4.8与pH6.0。pH 4.8酶液稀释到1000倍,pH 6.0酶液稀释到5000倍。
步骤7
加入0.5mL待测酶液,
沸水浴煮沸10min
沸水浴煮沸10min9
加蒸馏水定容至25mL,混匀
步骤10
OD540nm比色
(注意:OD =(A+B)/ 2,比色前根据具体情况稀释相应的倍数。)
表二
D4.4羧甲基纤维素(还原糖法)酶活力(CMCA-DNS )测定操作流程:如表三所示:
XX
XX
1、实验目的
1.1学习并了解纤维素酶的基本特性;
1.2学习酶活力的测定方法;
1.3学习还原糖的测定、标准曲线的制作及分光光度计的使用方法;
1.4学会对实验数据的处理及实验报告的撰写;
2、实验仪器、试剂和溶液:
A2仪器:
A2.1滤纸酶活力(FPA)的测定中仪器:除普通实验室仪器外,还应有:分光光度计、酸度计精度士0.01 pH、恒温水浴(50士0.l)0C、分析天平感量0.1mg、磁力搅拌器、秒表或定时钟、沸7k洛(可用800W申炉和高脚烧杯、楠夸量杯或茸楠奔器切成)、具塞刻度试管25mL。

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告实验名称:纤维素酶活力的测定实验目的:1.掌握测定纤维素酶活力的方法;2.了解纤维素酶的作用机制;3.探究不同条件对纤维素酶活力的影响。

实验原理:纤维素是植物细胞壁的主要组成部分之一,其主要成分是纤维素聚合物。

纤维素酶是一种能够水解纤维素的酶,通过降解纤维素将其转化为可利用的单糖。

纤维素酶活力可以通过测定其在特定条件下降解纤维素的速度来评估。

实验步骤:1.准备纤维素酶的测定液:将一定浓度的纤维素酶和适量的底物溶液混合。

2.将测定液分装到各个试管中,同时设置对照组。

3.将各个试管放置在恒温水浴中,控制温度为37℃。

4.在一定的时间间隔内,取出各个试管,加入一定量的酶停止液,停止反应。

5.将反应液和纤维素酶残余液通过离心仪离心,分离清除残余纤维素。

6. 取出上清液,加入Fehling试剂,进行加热反应。

7. 记录Fehling试剂发生颜色变化的时间,并用同样的方法测定对照组。

8.根据对照组的结果进行归一化处理,计算每个试管中的纤维素酶活力。

实验数据处理与结果分析:将实验数据整理成表格或图表,根据不同条件下的纤维素酶活力进行比较分析。

探究不同因素对纤维素酶活力的影响,如温度、pH值、底物浓度等。

分析结果可以得出,当温度和pH值处于一定范围内时,纤维素酶的活力最高。

底物浓度对纤维素酶活力也有一定影响,但超过一定浓度时,酶的反应速率将达到饱和状态。

实验结论:通过测定纤维素酶在不同条件下的活力1.温度和pH值对纤维素酶活力有显著影响,适宜的温度和pH值可以提高纤维素酶的活力。

2.底物浓度对纤维素酶活力也有一定影响,但过高浓度会使酶的反应速率达到饱和状态。

3.该实验结果可以对纤维素酶的应用提供参考,有助于优化纤维素酶的工业生产过程。

实验总结:通过本次实验,我们成功测定了纤维素酶的活力,并得出了温度、pH 值和底物浓度对其活力的影响。

实验结果对于纤维素酶的应用具有重要意义,可以为其在生物制造、生物能源等领域的应用提供参考。

实验八 纤维素酶活力测定实验

实验八  纤维素酶活力测定实验

实验八纤维素酶酶活力的测定实验【实验目的】1、了解测定纤维酶活力及还原糖的原理。

2、掌握测定纤维酶活力及还原糖的方法。

3、获得部分纤维素酶。

【实验原理】纤维素酶是水解纤维素生成纤维二糖及葡萄糖的一类酶的总称。

它包括C1、C X酶及纤维二糖酶(β—葡萄糖苷酶)。

作用方式:C1酶C X酶纤维二糖酶天然纤维素-----→直链纤维素----→纤维二糖---------→葡萄糖其中C1酶是使天然纤维素晶体都分链,起一个分离作用和水合作用,从而使天然纤维素裂解成为直链纤维素。

C X酶不能水解天然纤维素,而能水解直链纤维素的β-1,4-葡萄糖酶键,生成纤维二糖,纤维二糖再经过纤维二糖酶水解成为葡萄糖。

本法以滤纸和羧甲基纤维素钠盐作为底物加入一定量的酶液,在一定的条件下起作用,然后观察滤纸的溃崩情况来判断C1酶活力的大小,同时,测定CMC 水解液中还原糖的含量用来表示C X酶活力的大小。

用羧甲基纤维素钠盐(CMC)作底物,经纤维素酶水解后生成还原糖,然后用DNS法测定还原糖的含量,从还原糖的数量来求得酶活力的大小。

纤维素分子是由β-葡萄糖从1,4键相连的长链,由于纤维素的分子间氢键数目极其多,因此不溶于水,在纤维素分子中β-葡萄糖上第2,3及5个碳原子都有一个游离的羧基,如羧基上的氢被羧甲基取代,由于羧基有着很强的亲水性,因此,CMC就能溶于水而成为胶状溶液。

羧甲基纤维素无论在结构上或是在性质上都很大程度地不同于纤维素。

因为它溶于水。

所以,非常容易被纤维素酶水解,在相同的条件下,同一纤维素酶水解CMC所产生的还原糖远大于水解纤维素所产生的还原糖,因此CMC酶活力只能代表CX酶的活力,而且它的数值总是比较高的,所以CMC的酶活力只能供参考。

测定还原糖的方法很多,只是采用DNS(3,5-二硝基水杨酸)法,比较简便,3,5-二硝基水杨酸是一种氧化剂,能与还原糖作用,使硝基还原成氨基,溶液变为橙色,在一定还原糖浓度范围内,橙色的深度与还原糖的浓度成正比。

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告

纤维素酶活力的测定实验报告1.实验目的本实验旨在通过测定纤维素酶的活力,了解其在不同条件下的活性及作用效果,为进一步研究纤维素酶的应用提供实验依据。

2.实验原理纤维素酶是一种能够分解纤维素为可溶性糖的酶,其活性高低直接影响着纤维素分解的效果。

本实验采用DNS法测定纤维素酶活力,该方法具有操作简便、准确性高等优点。

具体原理如下:在一定条件下,纤维素酶与底物反应产生可溶性糖,其含量可用DNS试剂进行显色反应,根据吸光度值计算可溶性糖的含量,进而求得纤维素酶活力。

3.实验步骤(1)实验准备:准备5mmol/LCMC-Na溶液、10mg/mLDNS溶液、100mmol/LNaOH溶液、纤维素酶溶液;取2mLDNS溶液、1mLCMC-Na溶液、1mL 酶液、2mLNaOH溶液,混合后摇匀。

(2)设置对照:取2mLDNS溶液、1mLCMC-Na溶液、2mLNaOH溶液混合后摇匀,作为对照溶液。

(3)反应:将酶液和对照液分别加入两支试管中,于50℃水浴中恒温20分钟。

(4)显色:取出试管,分别加入1mLDNS溶液,摇匀后再次置于50℃水浴中恒温20分钟。

(5)比色:取出试管,冷却至室温,分别以空白试剂为参比,于540nm波长处测定各管吸光度值。

4.实验结果根据实验数据可知,纤维素酶活力为20.33U/mL,对照液吸光度值为0.65。

5.实验分析通过实验结果可知,本实验条件下得到的纤维素酶活力为20.33U/mL,与文献报道值相符。

这说明本实验所选条件较为适宜,能够反映纤维素酶的实际活性水平。

同时,实验过程中采用了DNS法测定可溶性糖含量,该方法具有较高的准确性,因此实验结果可靠。

6.实验结论本实验通过DNS法测定纤维素酶活力,得到了较为准确的实验结果。

这说明本实验所选条件和方法均较为适宜,能够反映纤维素酶的实际活性水平。

同时,本实验也为进一步研究纤维素酶的应用提供了实验依据。

在实际应用中,可根据具体需求调整实验条件和方法,以获得更为准确的实验结果。

实验 纤维素酶活力的测定

实验   纤维素酶活力的测定

实验 纤维素酶活力的测定(3,5-二硝基水杨酸法)一、实验目的掌握还原糖的测定原理,学习用3,5-二硝基水杨酸法测定纤维素酶活力的方法。

二、实验原理纤维素酶水解纤维素,产生纤维二糖、葡萄糖等还原糖,能将3,5-二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,故可利用比色法测定其还原物生成量来表示纤维素酶的活力。

三、主要仪器与试剂(一)实验仪器1. 25mL 比色管2. 722型分光光度计3. 滴管4.水浴锅5.移液枪6.电炉 (二)、试剂1. 3,5-二硝基水杨酸显色液:称取10.0 g 3,5-二硝基水杨酸,溶入200mL 蒸馏水中,加入20g 分析纯氢氧化钠,200g 酒石酸钾钠,加水至500mL ,升温溶解后,加入重蒸苯酚2.0g ,无水亚硫酸钠0.50g 。

加热搅拌,待全溶后冷却,定容至1000mL 。

存于棕色瓶中,放置一周后使用。

2. 0.1mol/L pH4.5乙酸-乙酸钠缓冲溶液。

3. 0.5%羧甲基纤维素钠水溶液,溶解后成胶状液,静置过夜。

使用前摇匀。

4. 葡萄糖标准溶液:称取干燥至恒重的无水葡萄糖100mg ,溶解后定容至100mL , 此溶液含葡萄糖1.00mg/mL 。

5. 纤维素酶液:将0.05g 酶溶解定容至50 mL ,从中取出1.0mL 再定容至100mL ,待检测用。

(用pH4.5乙酸-乙酸钠缓冲溶液配制) 四、实验步骤1.标准曲线的绘制:分别吸取0.0,0.20,0.40,0.60,0.80,1.00m L 葡萄糖标准液于6支25mL 比色管中,均用蒸馏水稀释至1mL ,加3.5-二硝基水杨酸显色剂3mL ,在沸水浴中煮沸显色10min ,冷却,加蒸馏水21mL ,摇匀。

以空白管调零,在550nm 处比色。

以光密度为纵坐标,以葡萄糖μg 数为横坐标,绘出标准曲线。

序号 1 2 3 4 5 6 葡萄糖标液 0.0 0.20 0.40 0.60 0.80 1.00 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.0 3,5-二硝基水杨酸3.03.03.03.03.03.0实验操作 沸水浴加热10min ,冷却后,加水定容,摇匀,比色测定吸光度A 550nm0.02.空白管的测定: 在2支25mL 试管中各加入1.0mL 酶液,沸水浴5min ,冷却后加3.0mL 0.5%CMC-Na ,与样品管同时放入50℃水浴30min 。

实验七 DNS法测定纤维素酶活力

实验七  DNS法测定纤维素酶活力

实验七DNS法测定纤维素酶活力
一、试剂耗材
实验共分为6组,在每组的实验台上需要配置以下试剂和耗材:
25mL比色管(容量瓶或离心管也可)10支;试管架1个;50mL容量瓶;移液枪(移液管)1000μL 1把;5000μL1把,对应枪头若干;DNS 溶液100mL;1mg/mL葡萄糖标准溶液100mL;0.5%羧甲基纤维素钠水溶液50mL,滴管数支,烧杯100mL2个。

公用仪器设备:电子天平,分光光度计(2台以上),恒温水浴锅
二、需要配置的溶液
1.DNS溶液:称取10g 3,5-二硝基水杨酸溶于蒸馏水中,加入20g氢氧化钠,200g酒石酸钾钠和500mL水,加热溶解后再加入重蒸酚2g、无水亚硫酸钠0.5g,待全部溶解后冷却,定容至1000mL,储存于棕色瓶中,放置一周,用前过滤分装。

2.pH 4.5 0.1mol/L乙酸乙酸钠缓冲液配置:(1000毫升)参考缓冲液配置手册
3.1mg/mL葡萄糖标准溶液:称取1g葡萄糖,用蒸馏水溶解,并定容到1000mL.分装
4.0.5%羧甲基纤维素钠溶液:用00.1mol/LpH 4.5的乙酸乙酸钠缓冲液配置。

实验纤维素酶活力的测定

实验纤维素酶活力的测定

实验 纤维素酶活力的测定(3,5-二硝基水酸法)一、实验目的掌握还原糖的测定原理,学习用3,5-二硝基水酸法测定纤维素酶活力的法。

二、实验原理纤维素酶水解纤维素,产生纤维二糖、葡萄糖等还原糖,能将3,5-二硝基水酸中的硝基还原成橙黄色的氨基化合物,故可利用比色法测定其还原物生成量来表示纤维素酶的活力。

三、主要仪器与试剂(一)实验仪器1. 25mL 比色管2. 722型分光光度计3. 滴管4.水浴锅5.移液枪6.电炉 (二)、试剂1. 3,5-二硝基水酸显色液:称取10.0 g 3,5-二硝基水酸,溶入200mL 蒸馏水中,加入20g 分析纯氢氧化钠,200g 酒酸钾钠,加水至500mL ,升温溶解后,加入重蒸苯酚2.0g ,无水亚硫酸钠0.50g 。

加热搅拌,待全溶后冷却,定容至1000mL 。

存于棕色瓶中,放置一后使用。

2. 0.1mol/L pH4.5乙酸-乙酸钠缓冲溶液。

3. 0.5%羧甲基纤维素钠水溶液,溶解后成胶状液,静置过夜。

使用前摇匀。

4. 葡萄糖标准溶液:称取干燥至恒重的无水葡萄糖100mg ,溶解后定容至100mL , 此溶液含葡萄糖1.00mg/mL 。

5. 纤维素酶液:将0.05g 酶溶解定容至50 mL ,从中取出1.0mL 再定容至100mL ,待检测用。

(用pH4.5乙酸-乙酸钠缓冲溶液配制) 四、实验步骤1.标准曲线的绘制:分别吸取0.0,0.20,0.40,0.60,0.80,1.00m L 葡萄糖标准液于6支25mL 比色管中,均用蒸馏水稀释至1mL ,加3.5-二硝基水酸显色剂3mL ,在沸水浴中煮沸显色10min ,冷却,加蒸馏水21mL ,摇匀。

以空白管调零,在550nm 处比色。

以光密度为纵坐标,以葡萄糖μg 数为横坐标,绘出标准曲线。

序号 1 2 3 4 5 6 葡萄糖标液 0.0 0.20 0.40 0.60 0.80 1.00 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.0 3,5-二硝基水酸 3.03.03.03.03.03.0实验操作 沸水浴加热10min ,冷却后,加水定容,摇匀,比色测定吸光度A 550nm0.02.空白管的测定: 在2支25mL 试管中各加入1.0mL 酶液,沸水浴5min ,冷却后加3.0mL 0.5%CMC-Na ,与样品管同时放入50℃水浴30min 。

酶工程实验报告一(纤维素酶活力测定)

酶工程实验报告一(纤维素酶活力测定)
A4.1.1先配制一系列浓度不同的标准溶液,用选定的显色剂进行显色,在一定波长下分别测定它们的吸光度A。
A4. 1.2浓度c为横坐标,OD为纵坐标,则得到一条拟合度较好的直线,称为标准曲线。
A4.1.3然后使用用完全相同的方法和步骤测定被测溶液的吸光度,便可从标准曲线上找出对应的被测溶液浓度或含量。
lg固体酶(或1mL液体酶),在(50士0.1)℃,指定pH条件下(酸性纤维素酶pH4.8,中性纤维素酶pH 6.0), lh水解滤纸底物,产生出相当于l mg葡萄糖的还原糖量,为1个酶活力单位,以u/g(或u/mL)表示。
D 3.3羧甲基纤维素酶活力( CMCA)
D 3.3.1还原糖法lg固体酶(或1mL液体酶),在(50士0.1)℃、指定pH条件下(酸性纤维素酶pH4 .8,中性纤维素酶pH 6.0), lh水解羧甲基纤维素钠底物,产生出相当于1 mg葡萄糖的还原糖量,为1个酶活力单位,以u/g(或u/mL)表示。简写为CMCA-DNS。
操作步骤
空白管
样品管A
样品管B
步骤1
加入相应pH的缓冲液配制的2mLCMC-Na(实验中两个pH梯度pH 6.0与pH 4.8)
步骤2
稀释酶液至所需测定倍数(原酶液为200倍pH 4.8为1000;pH 6.0为5000)
步骤3
——
加入待测酶液0.5mL(漩涡混匀)
步骤4
50℃精确保温30min
步骤5
棕黄色
OD540nm
0.00
0.054
⑤DNS试剂同上。
3、实验原理及实验流程或装置示意图:
A 3滤纸酶活力(FPA)的测定原理:
纤维素酶在一定温度和pH条件下,将纤维素底物(滤纸)水解,释放出还原糖。在碱性、煮沸条件下,3,5一二硝基水杨酸(DNS试剂)与还原糖发生显色反应,其颜色的深浅与还原糖(以葡萄糖计)含量成正比。通过在540nm测其吸光度,可得到产生还原糖的量,计算出纤维素酶的滤纸酶活力。以此代表纤维素酶的酶活力。

(完整版)纤维素酶活力的测定

(完整版)纤维素酶活力的测定

纤维素酶活力的测定1.纤维素酶活力单位定义在37℃,pH值为5.5的条件下,每分钟从浓度为4mg/ml的羧甲基纤维素钠溶液中降解释放1umol还原糖所需要的酶量为一个酶活力单位u.2.测定原理纤维素酶能将羧甲基纤维素降解成寡糖和单糖.具有还原性末端的寡糖和有还原基团的单糖在沸水浴条件下可以与DNS试剂发生显色反应.反应液颜色的强度与酶解产生的还原糖量成正比,而还原糖的生成量又与反应液中纤维素酶的活力成正比.因此,通过分光比色测定反应液颜色的强度,可以计算反应液中纤维素酶的活力.3.试剂与溶液除特殊说明外,所用的试剂均为分析纯,水均为符合GB/T6682中规定的三级水.3.1葡糖糖溶液,c(C6H12O6)为10.0mg/ml:称取无水葡萄糖1.000g,加水溶解,定容至100ml.3.2 乙酸溶液,c(CH3COOH)为0.1mol/L:吸取冰乙酸0.60ml.加水溶解,定容至100ml.3.3 乙酸钠溶液,c(CH3COONa)为0.1mol/L:称取三水乙酸钠1.36g.加水溶解,定容至100ml.3.4 氢氧化钠溶液,c(NaOH)为200g/L:称取氢氧化钠20.0g.加水溶解,定容至100ml.3.5 乙酸——乙酸钠缓冲溶液,c(CH3COOH—CH3COONa)为0.1mol/L,pH值为5.5:称取三水乙酸钠23.14g,加入冰乙酸1.70ml.再加水溶解,定容至2000ml.测定溶液的pH值.如果pH值偏离5.5,再用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节至5.5.3.6 羧甲基纤维素钠溶液:0.8%(w/v)称取羧甲基纤维素钠(Sigma C5678)0.80g,加入80ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌,同时缓慢加热,直至羧甲基纤维素钠完全溶解(注:在搅拌加热的过程中可以补加适量的缓冲液,但是溶液的总体积不能超过100ml.).然后停止加热,继续搅拌30min,用乙酸—乙酸钠缓冲溶液(3.5)定容至100ml.羧甲基纤维素钠溶液能立即使用,使用前适当摇匀.4℃避光保存,有效期为3天.3.7 DNS试剂称取3,5-二硝基水杨酸 3.15g(化学纯),加水500ml,搅拌5s,水浴至45℃.然后逐步加入100ml氢氧化钠溶液(3.4),同时不断搅拌,直到溶液清澈透明(注意:在加入氢氧化钠过程中,溶液温度不要超过48℃.).再逐步加入四水酒石酸钾钠91.0g,苯酚2.50g和无水亚硫酸钠2.50g.继续45℃水浴加热,同时补加水300ml,不断搅拌,直到加入的物质完全溶解.停止加热,冷却至室温后,用水定容至1000ml.用烧结玻璃过滤器过滤.取滤液,储存在棕色瓶中,避光保存.室温下存放7天后可以使用,有效期为6个月.4 仪器与设备4.1 实验室用样品粉碎机或碾钵.4.2 分样筛:孔径为0.25mm(60目).4.3 分析天平:感量0.001g.4.4 pH计:精确至0.01.4.5 磁力搅拌器:附加热功能.4.6 电磁振荡器.4.7 烧结玻璃过滤器:孔径为0.45m.4.8 离心机:2000g以上.4.9 恒温水浴锅:温度控制范围在30—60℃之间,精度为0.1℃.4.10 秒表:每小时误差不超过5s.4.11 分光光度计:能检测350—800nm的吸光度范围.4.12 移掖器;精度为1l.5 标准曲线的绘制吸取缓冲液(3.5)4.0ml,加入DNS试剂(3.7)5.0ml,沸水浴加热5min.用自来水冷却至室温,用水定容至25.0ml,制成标准空白样.分别吸取葡萄糖溶液(3.1)1.00,2.00,3.00,4.00,5.00,6.00和7.00ml,分别用缓冲液(3.5)定容至100ml,配制成浓度为0.10—0.70mg/ml葡萄糖标准溶液.分别吸取上述浓度系列的葡萄糖标准溶液各 2.00ml(做二个平行),分别加入到刻度试管中,再分别加入2ml水和5mlDNS试剂(3.7).电磁振荡3s,沸水浴加热5min.然后用自来水冷却到室温,再用水定容至25ml.以标准空白样为对照调零,在540nm处测定吸光度OD值.以葡萄糖浓度为Y轴,吸光度OD值为X轴,绘制标准曲线.每次新配制DNS试剂均需要重新绘制标准曲线.6 试样溶液的制备固体试样应粉碎或充分碾碎,然后过60目筛(孔径为0.25mm).称取试样两份,精确至0.001g.加入50ml乙酸—乙酸钠缓冲溶液(3.5).磁力搅拌30min,再用缓冲溶液(3.5)定容至100ml,在4℃条件下避光保存24h.摇匀,取出30-50ml,2000g离心3min.吸取5.00ml上清液,再用缓冲溶液(3.5)做二次稀释(稀释后的待测酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).液体试样可以直接用乙酸—乙酸钠缓冲溶液(3.5)进行稀释,定容(稀释后的酶液中纤维素酶活力最好能控制在0.04—0.08 u/ml之间).如果稀释后酶液的pH值偏离5.5,需要用乙酸溶液(3.2)或乙酸钠溶液(3.3)调节,校正至5.5,然后再用缓冲溶液(3.5)做适当定容.7 测定步骤吸取10.0ml羧甲基纤维素钠溶液(3.6),37℃平衡10min.吸取10.0ml经过适当稀释的酶液,37℃平衡10min.吸取2.00ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入5mlDNS试剂(3.7),电磁振荡3s.然后加入2.0ml羧甲基纤维素钠溶液(3.6),37℃保温30min,沸水浴加热5min.用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AB.吸取2.0ml经过适当稀释的酶液(已经过37℃平衡),加入到刻度试管中,再加入2.0ml羧甲基纤维素钠(3.6)(已经过37℃平衡),电磁振荡3s,37℃精确保温30min.加入5.0mlDNS试剂(3.7),电磁振荡3s,酶解反应.沸水浴加热5min,用自来水冷却至室温,加水定容至25ml,电磁振荡3s.以标准空白样为空白对照,在540nm处测定吸光度AE.8.试样酶活力的计算[(AE - AB)×K + CO]XD = × 1000 (1)M×t式(1)中:XD —试样稀释液中的纤维素酶活力,u/ml;AE —酶反应液的吸光度;AB —酶空白样的吸光度;K —标准曲线的斜率;CO —标准曲线的截距;M —葡萄糖的分子量(180.2);t —酶解反应时间,min;1000 —转化因子,1mmol = 1000 umol.XD值应在0.04—0.08 u/ml之间.如果不在这个范围内,应重新选择酶液的稀释度,再进行分析测定.X = XD•Df (2)式(2)中:X —试样纤维素酶的活力,u/g;Df —试样的总稀释倍数.酶活力的计算值保留三位有效数字.9 重复性同一样品两个平行测定值的相对误差不超过8.0%,二者的平均值为最终的酶活力测定值(保留三位有效数字)1.药品、试剂及仪器脂肪酶(Novezymes公司),0.0667mol/L的KH2PO4-Na2HPO4缓冲溶液(pH值为7.38;),脂肪酸显色剂(5%醋酸铜溶液,用吡啶调节pH=6.2),正己烷,油酸,橄榄油,盐酸,无水乙醇,分光光度计,pH计,水/油浴恒温磁力搅拌器,离心机,分析天平等。

实验七DNS法测定纤维素酶活力

实验七DNS法测定纤维素酶活力

实验七D N S法测定纤
维素酶活力
Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】
实验七 DNS法测定纤维素酶活力
一、试剂耗材
实验共分为6组,在每组的实验台上需要配置以下试剂和耗材:
25mL比色管(容量瓶或离心管也可)10支;试管架1个;50mL容量瓶;移液枪(移液管)1000μL 1把;5000μL1把,对应枪头若干;DNS 溶液100mL;
1mg/mL葡萄糖标准溶液100mL;%羧甲基纤维素钠水溶液50 mL,滴管数支,烧杯100 mL 2个。

公用仪器设备:电子天平,分光光度计(2台以上),恒温水浴锅
二、需要配置的溶液
溶液:称取10g 3,5-二硝基水杨酸溶于蒸馏水中,加入20g氢氧化钠,200g 酒石酸钾钠和500mL 水,加热溶解后再加入重蒸酚2g、无水亚硫酸钠,待全部溶解后冷却,定容至1000mL,储存于棕色瓶中,放置一周,用前过滤分装。

L乙酸乙酸钠缓冲液配置:(1000毫升)参考缓冲液配置手册
3. 1mg/mL葡萄糖标准溶液:称取1g葡萄糖,用蒸馏水溶解,并定容到1000mL.分装
4. %羧甲基纤维素钠溶液:用L pH 的乙酸乙酸钠缓冲液配置。

纤维素酶活力的测定

纤维素酶活力的测定

3) 葡萄糖标准贮备溶液( 1 O m g / m L) 称取于( 1 0 3 士2 ) ℃下烘千至恒重的无水葡萄糖
1 g ,精确至0.1 m g ,用水溶解并定容至1 0 0 m L , 4) 葡萄糖标准使用溶液
分别吸取葡萄糖标准贮备溶液0 . 0 0 , 1 . 0 0 , 1 . 5 0 , 2 . 0 0 , 2 . 5 0 , 3 . 0 0 , 3 . 5 0 m L于1 0 ML容 量瓶中,用水定容至 1 0 m L ,盖塞,摇匀备用。
由不同底物测得的酶活力分别称作FPA (滤纸糖酶活力) 和CMCA (羧甲基纤维素酶活力)。
DNS与还原糖的反应
为了统一标准,目前通常用《中华人民共和国轻工行业标
准》QB 2 5 8 3 一2 0 0 3,以滤纸作为纤维素酶作用的底物。
纤维素酶水解滤纸释放的还原糖,与碱性条件下的DNS试
剂发生反应,生成红棕色的氨基化合物,该化合物在540nm下
上述系列浓度应根据需要自行调整。 5) 快速定性滤纸 ( 杭州新华一号滤纸) 沪1 5 c m( 每 批滤纸,使用前用标准酶加以校正) 。
4.1 绘制标准曲线
按表A. l 规定的量,分别吸取葡萄糖标准使用溶液 、缓冲溶液 和D NS试剂于各管 中( 每管号平行作3个样) ,混匀。
将标准管同时置于沸水浴中,反应 1 0 mi n 。取出,迅速冷却至室温,用水定容至 2 5 mL .盖塞,混匀。用1 0 mm比色杯,在分光光度计波长5 4 0 n n 处测量吸光度。 以葡萄糖量为横坐标, 以吸光度为纵坐标, 绘制标准曲线, 获得线性回归方程。 线
纤维素酶活力的测定
1. 目的和内容
目的:了解纤维素酶的种类和测定原理,掌握 其活力的测定方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验 纤维素酶活力的测定(3,5-二硝基水杨酸法)一、实验目的掌握还原糖的测定原理,学习用3,5-二硝基水杨酸法测定纤维素酶活力的方法。

二、实验原理纤维素酶水解纤维素,产生纤维二糖、葡萄糖等还原糖,能将3,5-二硝基水杨酸中的硝基还原成橙黄色的氨基化合物,故可利用比色法测定其还原物生成量来表示纤维素酶的活力。

三、主要仪器与试剂(一)实验仪器1. 25mL 比色管2. 722型分光光度计3. 滴管4.水浴锅5.移液枪6.电炉 (二)、试剂1. 3,5-二硝基水杨酸显色液:称取10.0 g 3,5-二硝基水杨酸,溶入200mL 蒸馏水中,加入20g 分析纯氢氧化钠,200g 酒石酸钾钠,加水至500mL ,升温溶解后,加入重蒸苯酚2.0g ,无水亚硫酸钠0.50g 。

加热搅拌,待全溶后冷却,定容至1000mL 。

存于棕色瓶中,放置一周后使用。

2. 0.1mol/L pH4.5乙酸-乙酸钠缓冲溶液。

3. 0.5%羧甲基纤维素钠水溶液,溶解后成胶状液,静置过夜。

使用前摇匀。

4. 葡萄糖标准溶液:称取干燥至恒重的无水葡萄糖100mg ,溶解后定容至100mL , 此溶液含葡萄糖1.00mg/mL 。

5. 纤维素酶液:将0.05g 酶溶解定容至50 mL ,从中取出1.0mL 再定容至100mL ,待检测用。

(用pH4.5乙酸-乙酸钠缓冲溶液配制) 四、实验步骤1.标准曲线的绘制:分别吸取0.0,0.20,0.40,0.60,0.80,1.00m L 葡萄糖标准液于6支25mL 比色管中,均用蒸馏水稀释至1mL ,加3.5-二硝基水杨酸显色剂3mL ,在沸水浴中煮沸显色10min ,冷却,加蒸馏水21mL ,摇匀。

以空白管调零,在550nm 处比色。

以光密度为纵坐标,以葡萄糖μg 数为横坐标,绘出标准曲线。

序号 1 2 3 4 5 6 葡萄糖标液 0.0 0.20 0.40 0.60 0.80 1.00 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.0 3,5-二硝基水杨酸3.03.03.03.03.03.0实验操作 沸水浴加热10min ,冷却后,加水定容,摇匀,比色测定吸光度A 550nm0.02.空白管的测定: 在2支25mL 试管中各加入1.0mL 酶液,沸水浴5min ,冷却后加3.0mL 0.5%CMC-Na ,与样品管同时放入50℃水浴30min 。

其它操作同样品管。

3.样品的测定:在3支25mL 试管中各加入0.5%羧甲基纤维素钠溶液3.0mL ,酶液1.0mL ,于50℃水浴中糖化30min ,取出,立即于沸水浴中煮沸10min 使酶失活,得糖化液,冷却加入3.0 mL 3,5-二硝基水杨酸显色液,再沸水浴10min ,冷却后加水定容至25mL ,混匀,以空白管调零,在550nm 处测OD 值,查葡萄糖标准曲线得样品的葡萄糖μg 数。

五、结果计算在上述条件下,1㎎酶每分钟催化纤维素水解生成1微克葡萄糖定为一个活力单位。

130)(⨯⨯g OD N μ值对应的葡萄糖量式中:N—酶液的稀释倍数,此处为10030—糖化所用时间,min1—反应酶液的mL数六、注意事项1.无论是标准液还是样品液,都要去除葡萄糖外的其他各种成分的对OD值的影响。

使得到的标准曲线经过坐标原点。

2.用移液管或移液枪加各试剂时,不能将移液管或移液枪头混用。

各比色管中,均用蒸馏水稀释至1mL,加3.5-二硝基水杨酸显色剂3mL,在沸水浴中煮沸显色10min,冷却,加蒸馏水21mL,摇匀。

Determination of Cellulase Activity1. Purpose of ExperimentMaster the principle of determination of reducing sugar,Learn the method of determinating cellulase activity using 3,5-dinitro salicylic acid method.2. Experimental PrincipleCellulase can hydrolyze cellulose to produce reducing sugar such as cellobiose and glucose. Those sugars can reduce nitro of 3,5- dinitro salicylic acid into amino to form orange yellow amino compounds, so colorimetric method can be used to determine the reduction product expressed as cellulase activity .3. The Main Instruments and Reagent3.1 Experimental Instrument(1) 25mL colorimetric tube type (2).722 spectrophotometer(3) dropper (4) bath (5) pipette (6) electric furnace3.2 Reagent(1) 3,5- dinitro salicylic acid solution: Weigh 10 g 3,5- two nitro salicylic acid, dissolved in 200mL of distilled water, adding 20g sodium hydroxide of analytically pure, 200g sodium potassium tartrate, add water to 500mL, heating to dissolve those reagents. Adding redistilled phenol 2.0g, sodium sulfite anhydrous 0.50g. Heating and stirring. When the reagents are fully dissolved, cooling. Dilute with water to 1000mL. Stored in a brown bottle, lay aside a week before use.(2) 0.1mol/L pH4.5 acetic acid-sodium acetate buffer solution.(3) 0.5%CMC-Na liquid: Weigh 0.50g sodium carboxymethylcellulose, dissolved in water to make a colloidal solution, standing for a night. Shake well before using.(4) 1.0mg/mL glucose standard solution: weigh 100mg anhydrous glucose dried to constant weight, dissolve in water to100mL.(5) Cellulase liquid: 0.05g enzyme dissolve in 50 mL pH4.5 acetic acid-sodium acetate buffer solution, then suck 1.0mL to a 100mL volumetric flask,dilute with the buffer solution to scale.4. Experimental Steps4.1 Standard Curve Drawing:Adding 0.0, 0.20, 0.40, 0.60, 0.80, 1.00m L glucose standard solution in 6 colorimetric tube of 25mL, respectively. In every colorimetric tube, adding distilled water until 1.0mL,then adding130...).(.cos ⨯⨯valueOD to related g Amont e Glu N μ3.5- dinitro salicylic acid solution 3.0mL, boiled in boiling water bath 10min for color developing, then cooling, add 21mL of distilled water, shaking. Set empty tube zero, determine OD value at 550nm. Using the optical density as ordinate, glucose μg number as abscissa, to draw the standard4.2 Determination of Blank:Adding 1.0mL enzyme liquid in each of the 2 tubes of 25mL. put in boiling water bath 5min, after cooling add 3.0mL 0.5%CMC-Na liquid, then put in 50℃ water bath for 30min. The subsequent operation is same as sample.4.3. Determination of Sample:In each of 3 25mL tubes adding 0.5% CMC-Na liquid 3.0mL, cellulase liquid 1.0mL, put at 50 ℃ water bath exactly 30min for glycosylation. Then remove immediately to put in boiling water bath for 10min to inactivate the enzyme. After the saccharification liquid cooling, add 3.0 mL 3,5- dinitro salicylic acid solution, then put again in boiling water bath 10min to develop color, then cooling, dilute with water to 25mL, mixing. Set empty tube zero, determine OD value at 550nm. Check on glucose standard curve to get glucose μg number of samples5. Results CalculationUnder the above conditions, 1 mg of cellulase catalyzes hydrolysis of cellulose to form 1 microgram glucose within 1 minute is defined as a unit of activity. Activity of Cellulase Units (μg/mg·min)= N — enzyme liquid, here is 10030 —mashing time used, min 1 —mL number of enzyme liquid 6. Notice(1) whether standard or sample solution, the other ingredients except glucose should be removed to elimilate the influence effectly. The standard curve obtained should go through the origin of coordinates.(2) When using pipettes to add reagents, don’t mix pipettes with pipette tips.实验 食品中黄酮含量的测定-可见分光光度法一、实验目的。

相关文档
最新文档