磁的基本知识:磁场磁路磁性材料
磁路和磁性材料
![磁路和磁性材料](https://img.taocdn.com/s3/m/72bcfe4d15791711cc7931b765ce050877327558.png)
直流磁化曲线
铁磁材料分类
01 软磁材料
磁滞回线窄,剩磁Br和矫顽力Hc小 铸铁、钢、硅钢片等 软磁材料的磁导率较高
02 硬磁(永磁)材料
磁滞回线宽、Br和Hc都大的铁磁材料 永磁材料的性能用剩磁Br、矫顽力Hc和最大
磁能积(BH)max三项指标表征
位 降 Um Rm阻
03 磁路欧姆定理为
磁路基尔霍夫第一定律
B•dS00 穿过任意闭曲面的总磁通恒等于零
S
磁路基尔霍夫第二定律
cHdlsJda
沿任意闭合磁路的中磁动势恒等于各段磁 路F 磁 位降的H 代数i和li R m im i U m i
i
i
i
F N iH iliR m m i i U m i
系
○ 由 材 料 特 性 决 定
○ μ称为材料的磁导
r
相 料 空/0对 的 磁 0磁 磁 导4导 导 率 率 率 的1: 与 比 0 材 真 值7(H/m )电 磁 对 2 0机材磁0 0中料导-使的率8用典范0 0的型围0
铁 相 : 0
率
○ 真空磁导率
安培环路定理
安培环路 cH定 dl理 sJ: da 仅考虑导体 cH电 dl流 Ni: F
○ 解的精度,能满足工程应用要求
磁路
磁路:磁通所通过的路径
磁路是以高导磁性材料构成的使磁通被限制在 结构所确定的路径之中的一种结构 和电流在电路中被导体所限制是极为相似
简单磁路
铁心导磁率 远大于空气
磁力线几乎 被限定在铁 心规定的路 径中
铁心外部的 磁力线很少
带气隙简单磁路
简单同步电机磁路
H 分段相 H ili等 Ni: F
第5个教案:磁场及磁路、电流的磁效应
![第5个教案:磁场及磁路、电流的磁效应](https://img.taocdn.com/s3/m/e69c3199e53a580216fcfe9f.png)
磁场及磁路磁的基础知识1、磁2、磁铁的主要性能(1)、磁铁具有极性(2)、磁极之间有相互作用力(3)、铁磁性物质具有被磁化现象磁场及其性质1、磁场的定义2、磁场的性质3、磁场的方向4、磁力线5、磁场的应用磁场基本物理量1、磁感应强度B:(1)、大小:单位正电荷q以单位速度v沿垂直方向运动时所受到的电磁力F,磁感应强度B是描述空间某点磁场强弱与方向的物理量。
即B=F/qv(2)、方向:该点的磁场方向,与产生该磁场的电流之间的方向关系符合右手螺旋法则(3)、单位:特[斯拉](T)2、磁通量Ф:(1)、大小:穿过某一截面S的磁感应强度矢量B的通量,也可理解为穿过该截面的磁力线总数。
在均匀磁场中,如果S与B垂直,则有Ф=BS(2)、SI单位:Ф—韦[伯] (Wb)。
3、磁场强度H(1)、大小:等于该点的磁感应强度B与介质导磁率μ的比值,即H=B/μ(2)、方向:该点的磁场方向(3)、SI单位:安/米(A/m)。
4、磁导率μ磁导率μ是表示物质导磁性能的物理量。
其SI单位是亨/米(H/m)。
由实验测出,真空中的磁导率μ0=4π×10-7H/m。
μ≈μ0的物质称为非磁性材料;μ》μ0 的物质称为铁磁性材料。
铁磁物质的性质一、概念1.磁畴:铁心自身有的自然磁性小区域。
2.磁化:铁心中的磁畴沿外磁场作定向排列,产生附加磁场的现象,如图4.1(b)所示。
3.铁磁材料:能被磁化的材料(例如:铁、钴、镍以及它们的合金和氧化物)。
二、铁心的磁化过程可以用图4.2描述。
(a)(b)图 4.1 磁畴和铁心的磁化图4.2 磁化过程OA段:大部分磁畴的磁场沿外磁场方向排列, 与I成正比且增加率较大。
AB段:所有磁畴的磁场最终都沿外磁场方向排列,铁心磁场从未饱和状态过渡到饱和状态。
B点以后:称饱和状态,铁心的增磁作用已达到极限,同直线1。
三、铁磁物质的性质1、高导磁性2、磁饱和性3、磁滞性铁磁材料的分类和用途一、磁滞现象1.磁滞:当铁心线圈通入交流电时,铁心会随交流电的变化而被反复磁化。
第五章 磁场知识概括
![第五章 磁场知识概括](https://img.taocdn.com/s3/m/cd090a75302b3169a45177232f60ddccdb38e658.png)
第五章《磁场与磁路》知识要点概括一、磁场的产生1、磁场:是一种特殊的物质,它看不见、摸不着,但是又真实存在、具有一般物质所固有的一些属性(如力和能的特性)。
2、磁感线:是用来形象描述磁场强弱和方向的一系列曲线,这些曲线叫磁感线。
磁感线是一系列互不交叉的闭合曲线,在磁体外部由N 极指向S 极,在磁体内部由S 极指向N 极。
磁感线的疏密表示磁场的强弱,磁感线上某点的切线方向就表示该点磁场的方向。
3、磁体的周围有磁场:磁铁、地球等磁体的周围存在磁场。
任何磁体都有两个磁极,一个叫北极(N),另一个叫南极(S)。
4、电流的周围有磁场。
一根导体通电后周围会产生磁场,这种现象称为电流的磁效应。
电流产生的磁场方向判断:用右手螺旋定则(安培定则)来判断。
5、磁极间的相互作用:同名磁极相斥,异名磁极相吸。
二、描述磁场的物理量1、磁感应强度B:描述了磁场强弱和方向。
定义:IL F B =。
单位:特斯拉(T)。
2、磁通φ:描述了穿过某个面磁感线条数的多少。
φ=B S 。
单位:韦伯(Wb)。
3、磁导率μ:用来表示介质导磁性能的好坏。
不同介质磁导率一般不同,单位:亨/米(H /m)。
真空的磁导率μ0=4π×10-7H/m,且为一常数。
相对磁导率——某介质的磁导率与真空磁导率的比值,用μr 表示,即:0μμμ=r 4、磁场强度H:磁场强度是把电与磁联系起来的一个辅助量。
μB H =。
单位:安/米(A/m)。
三、物质的磁化:1、磁化:使原来没有磁性的物质具有磁性的过程称为磁化。
磁化的本质:铁磁材料内部存在大量的“小磁畴”,每个小磁畴就是一个小磁体。
磁化前,这些小磁畴排列杂乱无章,它N SI地理北极地理南极们产生的磁场互相抵消,对外不呈现磁场。
但当有外磁场作用时,小磁畴会发生翻转,取向排列变得一致,它们的磁场互相加强,对外呈现出磁场。
2、磁化曲线与磁滞回线如图,横坐标H——表示外磁场的磁场强度。
纵坐标B——表示物质磁化后的磁感应强度。
常用基本电磁定律
![常用基本电磁定律](https://img.taocdn.com/s3/m/7aef3dce80eb6294dc886c1f.png)
垂直穿过某截面积的磁力线总和。单位:Wb
F SΒ dA
对于均匀磁场,若B与S垂直,则 F BA
磁场强度H
计算磁场时引用的物理量(实际也在存在的)。单位:A/m B=μH
μ:导磁材料的磁导率。
注意:B的大小与磁场环境有关,H的大小与磁场内在因素有关.
3
电磁学的基本定律
1.3.2 法拉第电磁感应定律—— 磁生电
14
1.4.2 软磁材料与硬磁材料
1、软磁材料——磁滞回线较窄。 硅钢片、铸铁、铸钢、铁氧体等。 用于制作电器设备的铁心。
2、硬磁材料——磁滞回线较宽。 铷铁硼、铁钴钐。 用于制作永久磁铁。
B H(i)
B H(i)
15
1.4.3 铁心损耗
铁耗
磁滞损耗 :由磁畴相互摩擦发热造成
Ñ ph fV HdB Ch fBmnV
11
二、磁化曲线和磁滞回线
1、起始磁化曲线
Φ i
物体从无磁性开始,磁
场强度H(i)由零逐渐增
加时,磁通密度B将随 B μ= B/H
பைடு நூலகம்
之增加。用B=f (H)描述
c
的曲线就称为起始磁化
b
曲线。
a
O
磁饱和现象
d B=f (H)
导磁性能的 非线性现象
H∝i
12
2、磁滞回线
Φ
磁滞回线——当H在Hm和- Hm i 之间反复变化时,呈现磁滞现
第1章 磁路 本章内容
磁路的基本知识 电磁学基本定律 常用磁性材料及其特性
1
第一节 磁路的基本定律
一、磁场的几个常用物理量
1.磁感应强度(磁密) B
•表征磁场强弱及方向的物理量。单位:特斯拉T(Wb/m2)
03、磁性材料和磁路及磁路基本定律
![03、磁性材料和磁路及磁路基本定律](https://img.taocdn.com/s3/m/3c5fb19db0717fd5360cdcdb.png)
磁路及磁路基本定律
磁路及磁路基本定律
回顾
电路(Electric Circuit)
i2
i1
R2
R1
i4
R3
R4
E
1. 欧姆定律
2. Kirchhoff第一定律 (节点电流方程)
3. Kirchhoff第二定律 (回路电压方程)
磁路及磁路基本定律
比较
电路(Electric Circuit)
i2
i1
铜损
磁性器件绕组的电阻的直流铜耗 影响磁性器件的总损耗、温升和效率、
体积 所以绕组导线的直径不能取得过小
高频下的磁化曲线
B和H之间就存在相位差,即时间效应。交流磁场中曲线面积比直流磁场 的曲线面积大,且形状和大小也与磁场的变化频率有关。
磁性材料
开关电源技术——
磁性材料
磁性材料的划分(classifications)
磁滞损耗Ph
The area enclosed by the hysteresis loop is a measure of hysteresis loss per cycle.
涡流损耗Pe
剩余损耗Pc
由于磁化弛豫效应或磁性滞后效应引起 的损耗。所谓弛豫是指在磁化或反磁化 的过程中,磁化状态并不是随磁化强度 的变化而立即变化到它的最终状态,而 是需要一个过程,这个‘时间效应’便 是引起剩余损耗的原因。
相关标准
GJB1435-92 开关电源变压器总规范 GJB1521-92 小功率脉冲变压器总规范 GB/T15290-1994 电子设备用电源变压器和滤波扼流圈
总技术条件 GB/T9630-88 磁性氧化物制成的罐形磁芯及其附件
尺寸(IEC60133) IEC1007 磁性元件和铁氧体材料 IEC61248:1996 通信和电子设备用变压器和电感器
磁场和磁路知识点总结
![磁场和磁路知识点总结](https://img.taocdn.com/s3/m/d3341fcae43a580216fc700abb68a98271feac24.png)
磁场和磁路知识点总结一、磁场基础概念1. 磁场的概念磁场是物质周围或者物质内部存在的空间,该空间内每一点都存在着磁力的作用,通常用B表示。
磁场是物质所具有的最基本的物理性质之一。
在物质中,由于电子自身的自转产生了绕轨道上前进的电流,而电流则产生磁场。
这就是原子、分子和物质微观结构形成的原因,说明了磁场的实质。
2. 磁感线磁感线是用来表示磁场的一种图示法,即表现磁场的方向、强度和区域的一种方法。
3. 磁场强度磁场强度,通常由H表示,是磁场介质内任一点单位长度磁体磁化,产生的磁场强度。
二、磁路的概念1. 磁路的概念磁路是由磁路主体和磁路气隙两个组成部分构成的。
它是闭合的,但绕封闭轮廓的电动机是有励磁的,则没有完全闭合磁路。
在不同的电供电压下,发生不同的电磁能量转化,是电机工作的基础。
2. 磁路设计的基本要求磁路设计是指设计电磁设备的磁路结构,又称磁路设计。
磁路设计的基本要求有很多,包括各种要素的选择及组合。
磁路设计应该是可以促进和推动电机效果,使电机保持最高效率的设计。
3. 磁路的分析磁路分析是为了定量计算磁路中各种参数的影响,及时发现磁路中可能存在的问题,进行技术分析和处理。
三、磁场与磁路的关系1. 磁场与磁路之间的联系磁场与磁路是相互联系的,磁场的产生、存在和变化,必然需要磁路作为周围环境。
反之,磁路中磁通的变化也必然会引起周围磁场的变化。
这种联系是磁场和磁路的关系。
2. 磁路与效应磁场与磁路的关系,不仅是在实际电磁设备中产生电机效应,磁路中的参数对于电磁设备的性能起着至关重要的作用。
任意一点的磁场强度、磁感应强度、磁通、磁势等都至关重要,同时又与磁路中各种参数有关。
不同的磁路、磁场产生和变化的结果,最终会在转换和作用电机效果过程中得到充分的体现,所以这点和电磁学颇为类似。
四、磁路的基本参数1. 磁路的导磁系数磁路的导磁系数,是磁路中的物质对磁通的相对通过能力。
磁路中磁通的大小是取决于磁路导磁系数的。
电磁原理
![电磁原理](https://img.taocdn.com/s3/m/6548a8096c85ec3a87c2c578.png)
原电流 i 增大 方向:向上
i i i 原电流 减小—— L与 方向相同
原电流 减小 方向:向上
i原 +
eL
iL
-
i原 - iL eL
(4)自感电动势的应用 ⑴ 有利应用——日光灯工作原理 ⑵ 有害的预防措施 —— 灭弧装置
2、互感 (1)互感现象:由一个线圈中的电流发生变化而引起另 一
个线圈中产生感应电动势的现象。
13、磁阻的大小与磁路中的( C )。
A、磁力线的平均长度成反比
B、磁导率成正比
C、磁导率成反比
D、横截面积成正比
14、线圈中感生电流的磁场方向与原磁场方向的关系是 ( C )。 A、相同 B、相反 C、阻碍变化 D、无关
89、对电感意义的叙述,( A )的说法不正确。 A、线圈中的自感电动势为零时,线圈的电感为零 B、电感是线圈的固有参数 C、电感的大小决定于线圈的几何尺寸和介质的磁导率 D、电感反映了线圈产生自感电动势的能力
特点:
是互不交叉的闭合曲线; 其密疏表示磁场的强弱。 曲线 上任意一点的切线方向就是该点的磁场方向。
方向:磁体内部由S极
N极
磁体外部由N极 S极
(3)磁化现象:在外磁场的作用下,使原来不显磁性的物质 获得磁性的现象。
(4)磁性材料:由铁、镍、钴及其合金组成的材料
(1)软磁材料:易磁化,易去磁。其矫玩力 H c 103 安/米。
穿过线圈的磁通量发生变化。
(2)线圈中感应电动势的方向——楞次定律
定律内容——感应电流产生的磁通总是企图阻碍 原磁 通的变化。(增反减同)
步骤:⑴ 确定原磁场的方向及其变化趋势。(增或减)
⑵ 根据“增反减同”原则确定感应电流磁通方向。
第二章 磁与电磁
![第二章 磁与电磁](https://img.taocdn.com/s3/m/6eace1146edb6f1aff001fa1.png)
2、闭合开关,当拨动滑动变阻器滑片,使一 次线圈中的电流迅速增加或迅速减少时,电流计指 针发生偏转,表明二次线圈回路中有感应电流。
结论:当穿过闭合回路的磁能量发生变化时, 回路中就有感应电流产生。
本质分析:
1、第一种说法:V↑↓(
I) 2、Φ
↑↓
V↑↓
S↑↓
Φ↑↓
I
所以无论是导体做切割磁力线运动还是磁通量 发生变化本质统一的,结果是一致的。
—— 左手定则
l
I
B
F
第三章 电磁现象和磁路
第六节 磁场对通电导体的作用力
二、平行载流直导体间的相互作用力
法国物理学家安培(1775—1836)发现,平行导线 间有相互作用力。 B1 F12 F B2 F2 F1 B1
B2
当电流方向相同时是吸引力 当电流方向相反时是排斥力
例题
如图所示,两根互相平行的通电直导体,给它们通以相 同方向的电流,它们将互相吸引还是排斥?
电磁感应:
磁转化为电的现象称 电磁感应。
A
N
B
运动方向(1) 运动方向(2)
感应电动势:
-
+
S
由电磁感应现象产生的电动势。
第三章 电磁现象和磁路
第七节 电磁感应
一、直导体中的感应电动势 (一)导体切割磁力线产生感应电流 (二)直导体中感应电动势方向的判定 右手定则:
平伸右手,拇指 与其余四指垂直,使 磁力线穿过手心,拇 指的指向表示导体的 运动方向,其余四指 的指向就是感应电动 势的方向。
第三章 电磁现象和磁路
第七节 电磁感应
(四)楞次定律-----判断感应电动势(电流) 的方向
在1834年,德国科学家楞次首先发现确定感应电流 方向普遍适用的规律,即楞次定律。
第一章 磁路基础知识
![第一章 磁路基础知识](https://img.taocdn.com/s3/m/af920b9adaef5ef7ba0d3c6f.png)
l1 l2 3l 15 10 2 m 两边磁路长度:
气隙磁位降: B 1.211 2H 2 2 2.5 10 3 A 4818 A 0 4π 10 7
1.211 (2 0.25) 2 B T 1.533T 中间铁心磁位降: 3 4 A 4 10
磁路基础知识
1.2.3涡流与涡流损耗 1、涡流 2、涡流损耗:涡流在铁心中引起的损耗 3、注意:为减小涡流损耗,电机和变压器的铁心都用 含硅量较高的薄硅钢片叠成。 4、铁心损耗:磁滞损耗+涡流损耗
2 pFe f 1.3 BmG
南通大学《电机学》
磁路基础知识
1.3直流磁路的计算
磁路计算正问题——给定磁通量,计算所需的励磁磁动势 磁路计算逆问题——给定励磁磁势,计算磁路内的磁通量 磁路计算正问题的步骤: 1)将磁路按材料性质和不同截面尺寸分段; 2)计算各段磁路的有效截面积Ak和平均长度lk; 3)计算各段磁路的平均磁通密度Ak ,Bk=Φk/Ak; 4)根据Bk求出对应的Hk;
Φ
RmFe
N
F
Rm
i
Φ
串联磁路 南通大学《电机学》 磁路基础知识
模拟电路图
解:铁心内磁通密度为 BFe 0.0009 T 1T
AFe 0.0009
从铸钢磁化曲线查得:与BFe对应的HFe=9×102A/m
H FelFe 9 10 2 0.3A 270 A 铁心段的磁位降:
查磁化曲线:H1 H 2 215 A/m
H1l1 H 2l2 215 15 10 2 A 32.25A
总磁动势和励磁电流为:
Ni 2H H l
3 3
H 1l1
磁学基础知识
![磁学基础知识](https://img.taocdn.com/s3/m/2b63414b5e0e7cd184254b35eefdc8d376ee149f.png)
磁学基础知识一、磁性材料1.磁性:物体吸引铁、镍、钴等物质的性质。
2.磁体:具有磁性的物体。
3.磁极:磁体上磁性最强的部分,分为南极和北极。
4.磁性材料:具有磁性的物质,如铁、镍、钴及其合金。
5.硬磁材料:一经磁化,磁性不易消失的材料,如铁磁性材料。
6.软磁材料:磁化后,磁性容易消失的材料,如软铁、硅钢等。
7.磁场:磁体周围存在的一种特殊的物质,它影响着磁体和铁磁性物质。
8.磁场线:用来描述磁场分布的假想线条,从磁南极指向磁北极。
9.磁感线:用来表示磁场强度和方向的线条,从磁南极出发,回到磁北极。
10.磁通量:磁场穿过某一面积的总量,用Φ表示,单位为韦伯(Wb)。
11.磁通密度:单位面积上磁通量的大小,用B表示,单位为特斯拉(T)。
三、磁场强度1.磁场强度:磁场对单位长度导线所产生的力,用H表示,单位为安培/米(A/m)。
2.磁感应强度:磁场对放入其中的导线所产生的磁力,用B表示,单位为特斯拉(T)。
3.磁化强度:磁性材料内部磁畴的磁化程度,用M表示,单位为安培/米(A/m)。
4.磁化:磁性材料在外磁场作用下,内部磁畴的排列发生变化,产生磁性的过程。
5.顺磁性:磁化后,磁畴的排列与外磁场方向相同的现象。
6.抗磁性:磁化后,磁畴的排列与外磁场方向相反的现象。
7.铁磁性:磁化后,磁畴的排列在外磁场作用下,相互一致的现象。
8.磁路:磁场从磁体出发,经过空气或其他磁性材料,到达另一磁体的路径。
9.磁阻:磁场在传播过程中遇到的阻力,类似于电学中的电阻。
10.磁导率:材料对磁场的导磁能力,用μ表示,单位为亨利/米(H/m)。
11.磁芯:具有高磁导率的材料,用于集中和引导磁场。
六、磁现象的应用1.电动机:利用电流在磁场中受力的原理,将电能转化为机械能。
2.发电机:利用磁场的变化在导体中产生电流的原理,将机械能转化为电能。
3.变压器:利用电磁感应原理,改变交流电压。
4.磁记录:利用磁性材料记录和存储信息,如硬盘、磁带等。
磁性材料基础知识-ppt课件
![磁性材料基础知识-ppt课件](https://img.taocdn.com/s3/m/24f40322a36925c52cc58bd63186bceb19e8edfa.png)
求其轴线上一点 p 的磁感强度的方向和大小.
Idl
r
dB
B
o
R
p B
x
*
x
I
dB 0
4π
Idl r2
解: 根据对称性分析
毕奥—萨伐尔定律的应用2
Idl
sin R
R
o
r
x
dB
*p x
r2 R
B0I
4π
r 2 x2
sindl
l r2
dB x
dB 0
4π
Idl r2
dB xdsBin4 π 0Isri2 n dl
0I dl
2πR l
I B
dl
oR
l
l 设 l 与 I 成右螺旋
关系
3.3 安培环路定理-应用
求载流螺绕环内的磁场 (已知 n N I)
1) 对称性分析;环内 B 线为同心圆,环外 B 为零.
2 )选 回路(顺时针圆周) .
lB d Bl 2 0π NR I B 0 NI
2π R
d
令L2πRB0NIL
内部交流报告
磁性材料基础知识
提纲
1 磁性材料的发展简史
2 磁学基本常识
磁性来源 磁学基本概念 磁性材料分类
3 电磁学主要定律-恒稳/交变磁场
4 磁性材料性能分析
5 磁性材料应用实例
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
一、磁性材料发展简史(续)
• 1946年 Bioembergen发现NMR效应 • 1948年 Neel建立亜铁磁理论
磁路基础知识
![磁路基础知识](https://img.taocdn.com/s3/m/b37cf45c17fc700abb68a98271fe910ef12daef4.png)
基尔霍夫第二定律
NI= Hl ΦRm
电路旳基本物理量及公式
电动势E 电 流I 电 阻R 电 导G 欧姆定律
I E/R
基尔霍夫第一定律
i=0
基尔霍夫第二定律
e=iR
南通大学《电机学》
磁路基础知识
1.2铁磁材料及其特征
1.2.1铁磁材料旳高导磁性 1.铁磁物质旳磁化
将铁、镍、钴等铁磁物质放入磁场后,铁磁物质 呈现很强旳磁性,这种现象,称为铁磁物质旳磁化。
磁畴:在铁磁物质内部存在着许多很小旳天然磁化区。
南通大学《电机学》
磁路基础知识
2.起始磁化曲线
将一块还未磁化旳铁磁材料进行磁化,当磁场 强度H由零逐渐增大时,磁通密度B也将随之增大, 曲线B=f(H)就称为起始磁化曲线
B
c
d
B f (H)
b
a
0
南通大学《电机学》
磁路基础知识
B 0H
H
3.磁滞回线
相应旳模拟电路图
南通大学《电机学》
磁路基础知识
1.1.5磁路旳基尔霍夫定律 1、磁路旳基尔霍夫第一定律
闭合面A显然有:
-Φ1+Φ2+Φ3=0
Φ=0
穿出(或进入)任一闭合面旳总磁通量恒等于零( 或者说,进入任一闭合面旳磁通量恒等于穿出该闭 合面旳磁通量)
南通大学《电机学》
磁路基础知识
2、磁路旳基尔霍夫第二定律
Φ
RmFe
F
Rm
磁路基础知识
模拟电路图
解:铁心内磁通密度为
0.0009
BFe
AFe
T 1T 0.0009
从铸钢磁化曲线查得:与BFe相应旳HFe=9×102A/m
铁心段旳磁位降: H l Fe Fe 9 102 0.3A 270A
磁路及动力学基础知识
![磁路及动力学基础知识](https://img.taocdn.com/s3/m/e3fb93b7f121dd36a32d82e2.png)
矫顽力
磁滞现象是铁磁材料的另一个特性。
第1章
返 回 上 页 下 页
说明1:基本磁化曲线
B
不同的铁磁物 质其磁滞回线 宽窄是不同的, 当铁磁材料的 磁滞回线较窄 时,可用它的 平均磁化曲线, 即基本磁化曲 线进行计算
基 本 磁 化 曲 线
H
基本磁化曲线
定义:对同一铁磁材料,选择 不同的磁场强度进行反复磁 化,可得一系列大小不同的 磁滞回线,再将各磁滞回线的 顶点联接起来,所得的曲线。 第1章
第1章
返 回 上 页 下 页
■磁场强度 磁场强度是计算磁场所用的物理量,其大小等 于磁场中某点的磁感应强度与该点上的磁导率之比。 H的单位:安/米 B 矢量 H B的单位: 特斯拉 的单位:亨/米
讨论 磁场内某一点的磁场强度H与有关吗?
NI Hx lx
磁场内某一点的H只与电流大小、线圈匝数及该点的几何 位臵有关,而与(磁介质的磁性)无关。
问 磁场内某一点的磁感应强度B与有关吗?
第1章
返 回 上 页 下 页
1.1.2 本课程中常用的基本电磁定律
复习电路定律
1.电路欧姆定律 I U ,直流电路
R U I ,交流电路 Z
2.基尔霍夫定律
I 0,直流电路 基尔霍夫第一定律 I 0,交流电路
x Hx
I
Hdl H l I NI
其中
x x
H x 2 x
NI Hx lx
l x=2 x是半径为x的圆周长 Hx是半径 x 处的磁场强度 NI = F即线圈匝数与电流的乘积,称磁动势或磁势 单位为安匝(A)
第1章
返 回 上 页 下 页
磁性元件知识简介
![磁性元件知识简介](https://img.taocdn.com/s3/m/3542c436915f804d2b16c19a.png)
第二章 磁性材料及特性
3.铁钴软磁合金 铁钴软磁合金为含钴27%~50%,其余为铁(或含有其他元素)的软磁合金。其主 要特点是具有较高的机械强度和高的饱和磁感应强度(Bs可高达2.45T),是目前 使用的软磁材料中Bs最高的合金。 铁钴软磁合金的缺点是:钴含量在40%~60%时,合金变脆,电阻率也很低不易在 高频下使用;钴价极高,故合金成本很高。在铁钴合金中添加其他合金的方法,如 添加2%的钒(V)等可改善脆性,使其可以冷加工,同时电阻率也明显提高。 目前主要应用在航空400Hz电源变压器上的为Co50-Fe型合金(含2%的钒)牌号为 1J22合金,也称铁钴钒合金。带厚为0.1mm,损耗在1.8T/400Hz条件下,损耗为: 20W/Kg 材料价格约1500元/公斤。
合肥磁越电子科技有限公司 培训资料
6
第一章 磁的基本知识
磁芯的饱和过程见下图,磁芯中的磁通是从磁芯内侧逐步到磁芯的外侧扩 散,直至磁芯的完全饱和。
合肥磁越电子科技有限公司 培训资料
7
第一章 磁的基本知识
6.磁滞回线(B-H回线) 当磁性材料进行一个磁化和去磁的完整周期后, 其结果如图所示。这个图表示从一个中性 的磁性材料,即其B-H回线通过原点X开始。 当H增加时,磁通密度沿着虚线增加 。 到饱和点Bs。这时当H减小时,B-H回线 将沿着一个较高水平的路径回到Br,此处 H为零且磁芯仍处于被磁化状态。这一点 的磁通Br被称位剩余磁通。
磁性元件知识简介
第一章 磁的基本知识
磁性是自然界中某些物质(如铁、钴、镍等)的特殊的物理性能。 电磁存在两种不同的计量单位——国际单位制(MKS制,即米-千克-秒制) 和实用单位制(cgs制,即厘米-克-秒制) 1.真空中的磁特性 一段载有直流电流I的长直导线 在导线周围产生一圆形磁场如图 所示, 一直导线周围磁力线的方向可 用“右手定则”来决定:当用右手 抓住导体,拇指的方向使电流流 动的方向时,其他手指的指向就是磁力线的方向。
磁、磁路、磁兼容(EMC)基本知识(经典)
![磁、磁路、磁兼容(EMC)基本知识(经典)](https://img.taocdn.com/s3/m/954cf3a3f705cc17552709fc.png)
磁、磁路、磁兼容(EMC)基本知识(经典)一、磁的基本知识磁的范围比较广,讨论起来太泛!而磁场是电机实现能量交换的媒介(磁场和电流是电机工作两个基本条件),所以在下面我们以讨论磁场开始,首先介绍必要的一些概念。
为了易懂,我们采用了较为狭义的表述方法(所谓狭义是指在大多数情况下是对的或者说有条件的正确),请大家注意!1、磁通及磁感应强度一条通电导体或一块永久磁铁,它的周围是充满磁场的,在每一点它既有大小也有方向,通常形象地用磁力线表磁场的分布(如图1),借助磁力线,我们介绍两个物理量。
a.磁通:用磁力线的数量来表示。
如通电导体周围磁力线的总和,我们就叫总磁通,其单位不是我们想象用“根数、条数”表示,而是用麦克斯韦尔Mx或韦伯(Wb)作为其单位,且有1Wb=108 Mxb.磁感应强度B:也称磁通密度即单位面积的磁力线数量。
如图1中通过阴影面积S′的磁力线(磁通)为Φ,则B=Φ/S 单位是高斯(GS)或特斯拉(T),且有T =104 GS2、 磁场及磁场强度图2是一个类似于我们常用的充磁实验装置。
环形均质永磁体的上端被切下一段,形成一个长为Lδ的气隙,下端装匝数为W的一个线圈,当线圈通以电流时,便会在圆环磁体内部以及空气隙Lδ中产生磁通。
我们定义“I•W”为磁动势F,简称磁势,单位是吉伯(Gb)或安(A),且有1A=0.4π Gb我们知道安培环频定律可表示为:F=∮H•dL=∑(Hi•△Li)=H1△L1+ H2△L2+•••+Hn △Ln+•••H即为磁场强度,其物理意义可在以下分析中体现。
如在图2磁路中将切割的小截磁体放回,则可视为一个特制磁路并设总长为L1,在均质磁路中可认为H处处相等,则 F=∑(Hi•△Li)=H•L 即H=F/L(安/ 米)因此,可以狭义地理解为:磁场强度H是磁路中单位长度上的磁动势。
3、 剩磁、矫顽力、磁化曲线及磁导率如图2,我们将切割下来的小截磁体放回即变成一个均匀的磁路,然后将电流从“0”开始,不断加大,这时候磁路的磁通中不断上升见图3”og”段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁的基本知识:磁场、磁路、磁性材料
线圈通入电流时,在其周围会产生磁场。
把线圈套在铁心上,磁场会加强而且集中,并能吸引铁磁物质,使之运动。
电磁吸盘、电磁阀、接触器、继电器等许多电气设备就是利用这种原理制成的。
磁场被认为是一种能量,能吸引铁磁物质运动做功,把线圈通入的电能转化为铁质运动的机械能。
借助于磁场,很容易实现电能和机械能的相互转换,导线切割磁场运动,导线会产生感应电动势,基于这种原理制成的发电机,就是把机械能转换为电能的一个实例。
通电的导体在磁场中会受力运动,基于这种原理制成的电动机,就是借助于磁场实现电能转换成机械能的实例。
变压器是借助磁场的变化,使一种电压等级的交流电能转化为另一种电压等级的电能。
以上事实说明了,一个电工仅掌握电路方面的知识,而不掌握磁路、磁场方面的知识,那么,他的知识是残缺不全的。
从本节课开始将分四篇来学习有关知识,内容不是具体介绍每个电气设备的电磁原理,而是介绍它们共有的最基本的磁知识。
这样,在学习各个电气设备时,才有扎实的基础。
(有些部分在初级电工基础知识里面也是接触过的,这里再加深一次)。
磁场和磁路
如图下图a所示,线圈通入电流I时,在其周围产生磁场。
在图中,磁场用虚线形象化地表示,称为磁力线。
磁力线箭头方向表示磁场方向,磁力线是无始无终的闭合回线。
产生磁场的电流称为励磁电流或激磁电流,电流值与线圈匝数N 的乘积IN称为磁动势F,记作F=IN,单位为安匝。
所产生的磁场方向与励磁电流方向之间符合右螺旋定则。
磁场方向常用南(S)、北(N )极来描述,图a中,线圈上方为S极,下方为N极,把线圈包含的一段磁路称为内磁路,未包含的磁路(即空气中的磁路)称为外磁路,外磁路的磁场方向由N极指向S极,内磁路磁场方向则由S极指向N极。
为使较小的励磁电流能产生较大的磁场,并把磁场集中在一定范围内加以利用,常把线圈套在由铁磁材料制成的一定形状的铁心中。
图b是电磁铁未吸合时的磁路。
由于铁磁材料容易导磁,故大部分磁力线在铁心中形成闭合回路,这部分磁通称为主磁通Φ,另外一小部分磁力线则不经过铁心而经过空气形成闭合回路,这部分磁通称为漏磁通,记作Φs。
磁场的基本物理量
一、磁感应强度
磁感应强度(B)它是表示磁场中某一点磁场强弱和方向的物理量,是一个矢量。
磁场中某一点的磁感应强度是用它对放在该点且垂直于磁场方向并通有1A电流、长度为1m的
导体所产生的作用力来衡量的。
其大小为:B=F/Il"
role="presentation" style="position: relative;">B=F/IlB=F/Il
B=F/Il" role="presentation" style="position:
relative;">B=F/IlB=F/Il
上式中参数含义分别是:
F:磁力(N);
B:磁感应强度(T);
I:电流(A);
l:长度(m)。
磁感应强度B的方向与磁场(磁力线)方向相同,即按励磁电流方向也符合右螺旋定则。
二、磁通
磁通(Φ)表示某一截面积A通过与之垂直方向的磁感应强度B的乘积,称为磁通Φ。
Φ=BA" role="presentation" style="position: relative;">Φ=BAΦ=BA
Φ的单位是Wb(韦伯)。
按Φ=BA,B=Φ/A的含义,B又可称为磁通密度,其单位可用Wb/m2" role="presentation" style="position: relative;">Wb/m2Wb/m2表示。
三、导磁率
导磁率(μ)是描述物质对磁场所呈现的导磁能力的物理量,单位为H/m(亨利/米)。
真空的导磁率μ0最小,μ0=4π×107H/m。
某种物质的导磁率μ和真空导磁率的比值,称为相对导磁率,用μr表示。
μr=μμ0" role="presentation"
style="position: relative;">μr=μμ0μr=μμ0
自然界中,铁、钴、镍及其合金,导磁率很高(μr>>1),称为磁性材料或铁磁物质,常被利用做电气设备的元件材料。
四、磁场强度
磁场强度(H)由于通电线圈缠绕不同物质时,所产生的磁场强弱不同(B不同),为回避物质导磁率μ对磁路计算带来的麻烦,使计算简化,因而引入一个也是反映磁场大小和方向的物理量,称为磁场强度H,它也是矢量。
磁场强度定义为:
H=Bμ,B=μH" role="presentation"
style="position: relative;">H=Bμ,B=μHH=Bμ,B=μH
H的单位是A/m(安/米),方向与B相同。
由于H的定义式比值(B/μ),因此线圈缠绕不同物质时所产生的磁场强度H(不是B)与物质的导磁率μ无关。
磁性材料
电工设备中主要使用的磁性材料包括铁、钴、镍及其合金。
他们具有的特性如下:
一、高导磁性:铁磁材料的导磁率很高,一般有几百至极板。
二、磁饱和非线性:磁性材料中,随着磁场强度H的增加,磁感应强度B亦随之增加,B=μ/H。
B与H的关系曲线称为磁化曲线,或称B—H曲线,如下图所示。
按定义,磁化曲线的斜率(U/B)便是导磁率μ。
由B—H
曲线可见,μ不是常数,即B—H线不是直线。
随着磁场强度H增大到一定程度后,磁感应强度B便不再显著增大,而是缓慢地增加,最终甚至不再增加了。
这种现象称磁饱和,该段B—H曲线称饱和段。
例如上图硅钢片B—H曲线,选B=1.1T时,H=4.5A/cm;若选B=1.3T,则H=9.5A/cm。
两点比较,H增加1倍,而B
仅增加18%。
三、磁滞性:当铁心线圈通入交变电流(方向和大小均变化)时,铁心受到交变磁化,所得的磁化曲线不再是上图所示那样B值和H值是一一对应的一条曲线,而是如右图所示的由两条磁化曲线组成的回线状磁化曲线。
在线圈反向电流逐渐减至零再逐渐增大为正向电流时(相应H值由b至0再到a),磁感应强度B沿由4→5→6→1点组成的曲线变化;在线圈正向电流逐渐减至零再反向电流逐渐增加时(相应H值由a
至0再到b),B沿由1→2→3→4点组成的曲线变化。
当H 已减到零值时,B值并未回到零值(相当于图中的2点和5点),即励磁电流已经不存在了,铁心仍有剩磁场Br,这种现象称为剩磁。
永久磁铁就是利用Br剩磁制成的。
欲使Br 值回零,必须加一定值的反向电流(对应为反向H值,相当于图的2点变到3点),此时相应的值称为矫顽力,记作Hc。
在交变磁化过程中,由于B值滞后于值回零的性质,故称磁材料具有磁滞性,相应的磁化曲线称为磁滞回线。
磁材料不同,其磁滞回线也不同,用途也不同,大体分为三类:
软磁材料。
Br值和Hc值均较小,磁滞回线较窄。
一般用作变压器、电动机、电磁铁等电气设备的铁心。
硅钢片、坡莫合金属此类。
硬磁材料。
Br值和Hc值均较大,磁滞回线较宽。
一般用作永久磁铁,制造扬声器及仪表表头。
碳钢、钴钢、铝镍钴,金等属此类。
矩磁材料。
它是指磁滞回线呈窄矩形的磁性材料,在很弱的外磁场作用下也能磁化饱和,去掉外磁场后,磁性仍保持饱和状态。
主要用作记忆元件及开关元件。
镁锰、铁淦氧属此类。