人教版初一数学几何图形初步整理和复习练习题
人教版 七年级数学 第4章 几何图形初步 综合训练(含答案)
人教版七年级数学第4章几何图形初步综合训练一、选择题(本大题共10道小题)1.如图所示的几何体由5个相同的小正方体搭成,从正面看,这个几何体的形状是( )2. 经过同一平面内A,B,C三点可连接直线的条数为()A.一条B.三条C.三条或一条D.不能确定3. 下列哪个物体给我们以圆柱的形象( )4. 下列图形中,可以作为一个正方体的展开图的是()5. 如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店B,请你帮助他选择一条最近的路线()A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B6. 小明同学用一副三角尺画出了许多不同度数的角,但下列哪个度数的角画不出来()A.135°B.120°C.75°D.25°7. 如图,点B,C,D依次在射线AP上,则下列结论中错误的是()A.AD=2aB.BC=a-bC.BD=a-bD.AC=2a-b8. 如图,C,D是线段AB上的两点,E是线段AC的中点,F是线段BD的中点,若AB=10,CD=4,则EF的长为()A.6B.7C.5D.89. 如图0,将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.①B.②C.③D.④10. 如图所示,∠β>∠α,则∠α与(∠β-∠α)的关系为()A.互补B.互余C.和为45°D.和为22.5°二、填空题(本大题共6道小题)11. 1.45°=________′.12. 如图,∠1可以用三个大写字母表示为.13. 如图,已知O是线段AB的中点,C是AB的三等分点,OC=2 cm,则AB=.14. 如果一个角是60°,用放大镜放大到原来的10倍再观察这个角,那么这个角的度数应是.15. 如图,点B,O,D在同一条直线上,若∠1=15°,∠2=105°,则∠AOC=°.16. 图中可用字母表示出的射线有条.三、作图题(本大题共2道小题)17. 如图,已知线段a,b(a>b),作一条线段,使其等于2a-2b.18. 如图①,正方体的下半部分涂上了黑色油漆,在如图②所示的正方体的展开图中把刷油漆的部分涂黑(图②中涂黑部分是正方体的下底面).四、解答题(本大题共5道小题)19. 观察常用的时钟,回答下列问题:(1)早晨8时整,时针和分针构成多少度的角?(2)时针多长时间转一圈?它转动的速度是每小时多少度?20. 如图,是长方体的展开图,将其折叠成一个长方体,那么:(1)与点N重合的点是哪几个?(2)若AG=CK=14 cm,FG=2 cm,LK=5 cm,则该长方体的表面积和体积分别是多少?图21. 如图,已知∠1+∠2=90°.(1)若∠2+∠3=90°,则∠1与∠3是什么关系?为什么?(2)若要使∠2与∠4相等,则∠1与∠4要满足什么关系?为什么?22. 如图①是三个直立于水平面上的形状完全相同的几何体(下底面为圆,单位:cm),将它们拼成如图②所示的新几何体,求新几何体的体积(结果保留π).23. 如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)若∠AOB=α,其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从上面的结果中,你得出了什么结论?人教版七年级数学第4章几何图形初步综合训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】C3. 【答案】C4. 【答案】D5. 【答案】B6. 【答案】D[解析] 因为135°=90°+45°,120°=90°+30°,75°=30°+45°,所以选项A,B,C的角均可用一副三角尺画出,而25°不能写成90°,60°,45°,30°的和或差,故画不出.7. 【答案】C[解析] 由题图可知BD=a,所以选项C是错误的.8. 【答案】B[解析] 由线段的和差,得AC+DB=AB-CD=10-4=6.∵E是线段AC的中点,∴AE=AC.∵F是线段BD的中点,∴BF=BD.∴AE+BF=(AC+DB)=3.由线段的和差,得EF=AB-(AE+BF)=10-3=7.故选B.9. 【答案】A10. 【答案】B[解析] ∠α+(∠β-∠α)=(∠β+∠α)=×180°=90°.二、填空题(本大题共6道小题)11. 【答案】87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.12. 【答案】∠MCN或∠MCB13. 【答案】12 cm[解析] 因为AO=AB,AC=AB,所以OC=AO-AC=AB=2 cm.所以AB=12 cm.14. 【答案】60°[解析] 用放大镜观察角不会改变角的大小,所以这个角的度数应是60°.15. 【答案】90[解析] 因为∠2=105°,所以∠BOC=180°-∠2=75°,所以∠AOC=∠1+∠BOC=15°+75°=90°.16. 【答案】5[解析] 有OA,AB,BC,OP,PE,共5条射线.三、作图题(本大题共2道小题)17. 【答案】解:如图所示.①画射线AF;②在射线AF上顺次截取AB=BC=a;③在线段AC上顺次截取AD=DE=b,则线段EC即为所要画的线段.18. 【答案】解:如图所示.四、解答题(本大题共5道小题)19. 【答案】解:(1)8时,时针和分针中间相差4个大格.因为钟表上有12个数字,每相邻两个数字之间的夹角为30°,所以早晨8时整,分针与时针构成的夹角是4×30°=120°.(2)由生活常识可知时针12个小时转一圈,360°÷12=30°,故它转动的速度是每小时30°.20. 【答案】解:(1)与点N重合的点是点H,J.(2)由AG=CK=14 cm,LK=5 cm,可得CL=CK-LK=14-5=9(cm),所以长方体的表面积为2×(9×5+2×5+2×9)=146(cm2),体积为5×9×2=90(cm3).21. 【答案】解:(1)∠1=∠3.理由:因为∠1+∠2=90°,∠2+∠3=90°,所以∠1=∠3.(2)∠1+∠4=90°.理由:因为∠1+∠2=90°,∠1+∠4=90°,所以∠2=∠4.22. 【答案】解:π×22×(4+6)+[π×22×(4+6)]=40π+20π=60π(cm3).答:新几何体的体积为60π cm3.23. 【答案】解:(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.因为OM平分∠BOC,ON平分∠AOC,所以∠COM=60°,∠CON=15°.所以∠MON=∠COM-∠CON=45°.(2)因为∠AOB=α,∠AOC=30°,所以∠BOC=α+30°.因为OM平分∠BOC,ON平分∠AOC,所以∠COM=+15°,∠CON=15°.所以∠MON=∠COM-∠CON=.(3)因为∠AOB=90°,∠AOC=β,所以∠BOC=90°+β.因为OM平分∠BOC,ON平分∠AOC,所以∠COM=45°+,∠CON=.所以∠MON=∠COM-∠CON=45°.(4)从上面的结果中,得出以下结论:∠MON的度数始终等于∠AOB的度数的一半,而与∠AOC的度数无关.。
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)
人教版初中七年级数学上册第四章《几何图形初步》经典练习题(含答案解析)一、选择题1.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个B解析:B【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2.观察下列图形,其中不是正方体的表面展开图的是()A.B.C.D. B解析:B【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、C、D均是正方体表面展开图;B、是凹字格,故不是正方体表面展开图.故选:B.【点睛】本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.3.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒D解析:D【分析】 根据题意结合图形列出方程组,解方程组即可.【详解】解:由题意得,1290,2120∠+∠︒⎧⎨∠-∠︒⎩==,解得135,255.∠︒⎧⎨∠︒⎩==. 故选:D .【点睛】本题考查的是余角和补角的概念和性质,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF m =,CD n =,则AB =( )A .m n -B .m n +C .2m n -D .2m n + C解析:C【分析】由条件可知EC+DF=m-n ,又因为E ,F 分别是AC ,BD 的中点,所以AE+BF=EC+DF=m-n ,利用线段和差AB=AE+BF+EF 求解.【详解】解:由题意得,EC+DF=EF-CD=m-n∵E 是AC 的中点,F 是BD 的中点,∴AE=EC ,DF=BF ,∴AE+BF=EC+DF=m-n ,∵AB=AE+EF+FB ,∴AB=m-n+m=2m-n故选:C【点睛】本题考查中点性质及线段和差问题,利用中点性质转化线段之间的倍分关系和灵活运用线段的和、差转化线段之间的数量关系是解答此题的关键.5.已知∠AOB=40°,∠BOC=20°,则∠AOC的度数为( )A.60°B.20°C.40°D.20°或60°D解析:D【分析】考虑两种情形①当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,②当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°.【详解】解:如图当OC在∠AOB内部时,∠AOC=∠AOB-∠BOC=40°-20°=20°,当OC’在∠AOB外部时,∠AOC’=∠AOB+∠BOC=40°+20°=60°,故答案为20°或60°,故选D.【点睛】本题考查角的计算,解决本题的关键是学会正确画出图形,根据角的和差关系进行计算. 6.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.7.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.6A 解析:A【分析】由BC =83AB 可求出BC 的长,根据中点的定义可求出BD 的长,利用线段的和差关系求出AD 的长即可.【详解】∵BC =83AB ,AB=6cm , ∴BC=6×83=16cm , ∵D 是BC 的中点,∴BD=12BC=8cm , ∵反向延长线段AB 到C ,∴AD=BD-AB=8-6=2cm ,故选A.【点睛】本题考查了比较线段的长短,理解线段中点的概念,利用中点的性质转化线段之间的倍分关系是解题关键.8.22°20′×8等于( ).A .178°20′B .178°40′C .176°16′D .178°30′B解析:B【分析】根据角的换算关系即可求解.【详解】22°×8=176°,20′×8=160′=2°40′,故22°20′×8=176°+2°40′=178°40′故选B.【点睛】本题考查了角的度量单位以及单位之间的换算,掌握'160︒=,''160'=是解题的关键. 9.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A .10种B .20种C .21种D .626种C解析:C【分析】本题只需分别数出A 到B 、B 到C 、A 到C 的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.10.下列说法不正确的是()A.两条直线相交,只有一个交点B.两点之间,线段最短C.两点确定一条直线D.过平面上的任意三点,一定能作三条直线D解析:D【解析】【分析】根据直线公理、线段公理进行逐一分析判断.【详解】A. 根据直线公理“两点确定一条直线”,则两条直线相交,只有一个交点,故该选项正确;B.两点之间,线段最短,是线段公理,故该选项正确;C. 两点确定一条直线,是直线公理,故该选项正确;D. 当三点共线时,则只能确定一条直线,故该选项错误.故选 D.【点睛】此题考查直线、射线、线段,直线的性质:两点确定一条直线,线段的性质:两点之间线段最短,解题关键在于掌握各性质定义.二、填空题11.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm【分析】根据AC=ADCD=4cm求出再根据是线段的中点即可求得答案【详解】∵AC=ADCD=4cm∴∴∵是线段的中点∴∴故答案为【点睛】本题考查了线段中点的几何意义以及求线段的长根据题目中的几何语解析:12【分析】根据AC=13AD ,CD=4cm ,求出AD,再根据D是线段AB的中点,即可求得答案.【详解】∵AC=13AD ,CD=4cm ,∴12433CD AD AC AD AD AD =-=-== ∴6AD =,∵D 是线段AB 的中点,∴212AB AD ==∴12AB cm =故答案为12【点睛】 本题考查了线段中点的几何意义以及求线段的长,根据题目中的几何语言列出等式,是解题的关键.12.线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =__________.4【分析】根据线段的和差关系即可求解【详解】∵线段在线段的延长线上截取则AB+BC=4cm 故填:4【点睛】此题主要考查线段的长度解题的关键是熟知线段的和差关系解析:4【分析】根据线段的和差关系即可求解.【详解】∵线段3AB cm =,在线段AB 的延长线上截取1BC cm =,则AC =AB+BC=4cm ,故填:4.【点睛】此题主要考查线段的长度,解题的关键是熟知线段的和差关系.13.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________. 【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.14.下午3:40时,时钟上分针与时针的夹角是_________度.130【分析】分别求出时针走过的度数和分针走过的度数用分针走过的度数减去时针走过的度数即可得出答案【详解】时针每小时走30°分针每分钟走6°∴下午3:40时时针走了3×30°+×30°=110°分针解析:130【分析】分别求出时针走过的度数和分针走过的度数,用分针走过的度数减去时针走过的度数,即可得出答案.【详解】时针每小时走30°,分针每分钟走6°∴下午3:40时,时针走了3×30°+4060×30°=110° 分针走了40×6°=240°∴夹角=240°-110°=130°【点睛】本题考查的是钟面角问题,易错点在于计算时针走过的度数时,往往大部分人只计算了前面3个小时时针走过的度数,容易忽略后面40分钟时针也在走.15.看图填空.(1)AC =AD -_______=AB +_______,(2)BC +CD =_______=_______-AB ,(3)AD =AC+___.CDBCBDADCD 【分析】根据线段之间的和差关系进行解答即可得答案【详解】(1)AC=AD-CD=AB+BC (2)BC+CD=BD=AD-AB (3)AD=AC+CD 故答案为:CD ;BC ;BD ;AD解析:CD BC BD AD CD【分析】根据线段之间的和差关系进行解答即可得答案.【详解】(1)AC=AD-CD=AB+BC ,(2)BC+CD=BD=AD-AB,(3)AD=AC+CD,故答案为:CD;BC;BD;AD;CD【点睛】本题主要考查线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.16.如图所示,∠BOD=45°,那么不大于90°的角有___个,它们的度数之和是____.450°【分析】(1)∠AOE=90°故图中所有的角都是不大于90°的角;(2)将所有的角相加发现有的角相加等于∠EOA即和为90°而有的角相加等于∠BOD即和为45°将这样的角凑在一起计算即可求出解析:450°【分析】(1)∠AOE=90°,故图中所有的角都是不大于90°的角;(2)将所有的角相加,发现有的角相加等于∠EOA,即和为90°,而有的角相加等于∠BOD,即和为45°,将这样的角凑在一起计算,即可求出所有角的度数.【详解】不大于 90°的角有∠EOD,∠EOC,∠EOB,∠EOA,∠DOC,∠DOB,∠DOA,∠COB,∠COA,∠BOA共10个;它们的度数之和是(∠EOD+∠DOA)+(∠EOC+∠COA)+(∠ EOB+∠BOA)+[(∠DOC+∠COB)+∠DOB]+∠EOA=90°+90°+90°+(45°+45°)+90°=450°.故答案为10;450°.【点睛】此题主要考查角的表示与和差关系,解题的关键是熟知角的定义运算法则.17.如图,点C是线段AB的中点,点D,E分别在线段AB上,且ADDB=23,AEEB=2,则CDCE的值为____.【分析】由线段中点的定义可得AC=BC=AB根据线段的和差关系及==2可得出CDCE与AB的关系进而可得答案【详解】∵点C是线段AB的中点∴AC=BC=AB∵==2BD=AB-ADAE=AB-BE∴解析:3 5【分析】由线段中点的定义可得AC=BC=12AB,根据线段的和差关系及ADDB=23,AEEB=2,可得出CD、CE与AB的关系,进而可得答案.【详解】∵点C是线段AB的中点,∴AC=BC=12AB,∵ADDB =23,AEEB=2,BD=AB-AD,AE=AB-BE,∴AD=25AB,BE=13AB,∵CD=AC-AD,CE=BC-BE,∴CD=12AB-25AB=110AB,CE=12AB-13AB=16AB,∴CDCE=11016ABAB=35,故答案为3 5【点睛】本题主要考查中点的定义及线段之间的和差关系,灵活运用线段的和、差、倍、分转化线段之间的数量关系是解题关键.18.(1)比较两条线段的长短,常用的方法有_________,_________.(2)比较两条线段a和b的大小,结果可能有种情况,它们是_______________.(1)度量比较法叠合比较法;(2)3a>ba=ba<b【分析】(1)比较两条线段长短的方法有两种:度量比较法叠合比较法依此即可求解;(2)两条线段a和b的大小有三种情况【详解】(1)比较两条线段的大解析:(1)度量比较法,叠合比较法;(2)3,a>b、a=b、a<b【分析】(1)比较两条线段长短的方法有两种:度量比较法、叠合比较法.依此即可求解;(2)两条线段a和b的大小有三种情况.【详解】(1)比较两条线段的大小通常有两种方法,分别是度量比较法、重合比较法.(2)比较两条线段a和b的大小,结果可能有3种情况,它们是a>b、a=b、a<b.故答案为度量比较法,重合比较法;3,a>b、a=b、a<b.【点睛】本题考查了比较线段的长短,是基础题型,是需要识记的知识.19.如图所示,能用一个字母表示的角有________个,以点A为顶点的角有________个,图中所有大于0°小于180°的角有________个.37【分析】根据角的概念和角的表示方法依题意求得答案【详解】能用一个字母表示的角有2个:∠B∠C;以A为顶点的角有3个:∠BAD∠BAC∠DAC;大于0°小于180°的角有7个:∠BAD∠BAC∠D解析:3 7【分析】根据角的概念和角的表示方法,依题意求得答案.【详解】能用一个字母表示的角有2个:∠B,∠C;以A为顶点的角有3个:∠BAD,∠BAC,∠DAC;大于0°小于180°的角有7个:∠BAD,∠BAC,∠DAC,∠B,∠C,∠ADB,∠ADC.故答案为2,3,7.【点睛】利用了角的概念求解.从一点引出两条射线组成的图形就叫做角.角的表示方法一般有以下几种:1.角+3个大写英文字母;2.角+1个大写英文字母;3.角+小写希腊字母;4.角+阿拉伯数字.20.已知∠A=67°,则∠A的余角等于______度.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.如图所示,已知射线OC将∠AOB分成1∶3的两部分,射线OD将∠AOB分成5∶7的两部分,若∠COD=15°,求∠AOB的度数.解析:90°【分析】设∠AOB的度数为x,根据题意用含x的式子表示出∠AOC,∠AOD,根据角的关键列出方程即可求解.【详解】解:设∠AOB的度数为x.因为射线OC将∠AOB分成1∶3两部分,所以∠AOC=14 x.因为射线OD将∠AOB分成5∶7两部分,所以∠AOD=512x.又因为∠COD=∠AOD-∠AOC,∠COD=15°,所以15°=512x-14x.解得x=90°,即∠AOB的度数为90°.【点睛】本题考查了角的和差,设出未知数,表示出∠AOC,∠AOD,列出方程是解题关键.22.如图,点C是AB的中点,D,E分别是线段AC,CB上的点,且AD=23AC,DE=35AB,若AB=24 cm,求线段CE的长.解析:CE=10.4cm.【分析】根据中点的定义,可得AC、BC的长,然后根据题已知求解CD、DE的长,再代入CE=DE-CD即可.【详解】∵AC=BC=12AB=12cm,CD=13AC=4cm,DE=35AB=14.4cm,∴CE=DE﹣CD=10.4cm.23.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OE是射线OB的反向延长线.(1)求射线OC的方向角;(2)求∠COE的度数;(3)若射线OD平分∠COE,求∠AOD的度数.解析:(1)射线OC的方向是北偏东70°;(2)∠COE=70°;(3)∠AOD=90°.【分析】(1)先求出∠AOC=55°,再求得∠NOC的度数,即可确定OC的方向;(2)根据∠AOC=55°,∠AOC=∠AOB,得出∠BOC=110°,进而求出∠COE的度数;(3)根据射线OD平分∠COE,即可求出∠COD=35°再利用∠AOC=55°求出答案即可.【详解】(1)∵射线OA的方向是北偏东15°,射线OB的方向是北偏西40°即∠NOA=15°,∠NOB=40°,∴∠AOB=∠NOA+∠NOB=55°,又∵∠AOB=∠AOC,∴∠AOC=55°,=°,∴∠NOC=∠NOA+∠AOC=15°+ 55°70∴射线OC的方向是北偏东70°.(2)∵∠AOB=55°,∠AOB=∠AOC,∴∠BOC=∠AOB+∠AOC=55°+55°=110°,又∵射线OD是OB的反向延长线,∴∠BOE=180°,∴∠COE=180°-110°=70°,(3)∵∠COE=70°,OD平分∠COE,∴∠COD=35°,∴∠AOD=∠AOC+∠COD=55°+35°=90°.【点睛】此题主要考查了方向角的表达即方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.24.如图,点C为线段AD上一点,点B为CD的中点,且6cmBD=.AC=,2cm(1)图中共有多少条线段?(2)求AD的长.解析:(1)6条;(2)10cm【分析】(1)根据线段的定义,即可得到答案;(2)由点B 为CD 的中点,即可求出CD 的长度,然后求出AD 的长度.【详解】解:(1)根据题意,图中共有6条线段,分别是AC ,AB ,AD ,CB ,CD ,BD . (2)因为点B 是CD 的中点,2cm BD =,所以24cm CD BD ==,所以10cm AD AC CD =+=.【点睛】本题考查了线段中点的有关计算,以及线段的定义,解题的关键是熟练掌握线段有关的计算问题.25.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出. 【详解】(1)∵∠AOE=90°,OC 平分∠AOE ,∴∠AOC =12∠AOE =12×90°=45°, ∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.26.如图,∠AOC:∠COD:∠BOD=2:3:4,且A,O,B三点在一条直线上,OE,OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数。
人教版初中数学几何图形初步知识点总复习附答案
D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.
故选:B.
【点睛】
本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
2.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为( )
【答案】C
【解析】
分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
详解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“时”相对的字是“奋”;
“代”相对的字是“新”;
“去”相对的字是“斗”.
故选C.
点睛:本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.
17.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()
A.是B.好C.朋D.友
【答案】A
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“我”与“是”是相对面,
“们”与“朋”是相对面,
【详解】
解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.
∵圆柱底面的周长为4dm,圆柱高为2dm,
∴AB=2dm,BC=BC′=2dm,
∴AC2=22+22=4+4=8,
∴AC=2 dm,
∴这圈金属丝的周长最小为2AC=4 dm.
故选D.
【点睛】
本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.
人教版初中七年级数学上册第四单元《几何图形初步》经典复习题(含答案解析)
一、选择题1.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 2.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 3.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠DOE =60°,∠BOE =13∠EOC ,则下列四个结论正确的个数有( ) ①∠BOD =30°;②射线OE 平分∠AOC ;③图中与∠BOE 互余的角有2个;④图中互补的角有6对.A .1个B .2个C .3个D .4个4.如图,点O 在直线AB 上,射线OC ,OD 在直线AB 的同侧,∠AOD =40°,∠BOC =50°,OM ,ON 分别平分∠BOC 和∠AOD ,则∠MON 的度数为( )A .135°B .140°C .152°D .45°5.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是( )A .∠AOD+∠BOE=60°B .∠AOD=12∠EOCC .∠BOE=2∠COD D .∠DOE 的度数不能确定6.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 7.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .68.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转 9.如图.已知//AB CD .直线EF 分别交,AB CD 于点,,EF EG 平分BEF ∠.若1 50∠=︒.则2∠的度数为( )A .50︒B .65︒C .60︒D .70︒10.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 11.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 12.若∠A=20°18′,∠B=20°15″,∠C=20.25°,则有( ) A .∠A >∠B >∠C B .∠B >∠A >∠C C .∠A >∠C >∠B D .∠C >∠A >∠B 13.一个小立方块的六个面分别标有字母A ,B ,C ,D ,E ,F ,从三个不同的方向看形如图所示,则字母D 的对面是( )A .字母AB .字母FC .字母ED .字母B 14.由A 站到G 站的某次列车,运行途中停靠的车站依次是A 站——B 站—C 站——D 站——E 站——F 站——G 站,那么要为这次列车制作的火车票有( )A .6种B .12种C .21种D .42种15.下列说法不正确的是( )A .两条直线相交,只有一个交点B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 17.如图所示,128∠=︒,272∠=︒,OC 平分BOD ∠,则COD ∠=________.18.如图,点C 是线段AB 的中点,点D ,E 分别在线段AB 上,且AD DB =23,AE EB =2,则CD CE的值为____.19.如图,点C ,M ,N 在线段AB 上,且M 是AC 的中点,CN :NB=1:2,若AC=12,MN=15,则线段AB 的长是_______.20.如图所示,能用一个字母表示的角有________个,以点A 为顶点的角有________个,图中所有大于0°小于180°的角有________个.21.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.22.25°20′24″=______°.23.把命题“等角的余角相等”改写成“如果……那么……”的形式:__________________________. 是______命题(填“真”或“假”)24.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若17MN cm =,则BD =__cm .25.已知∠A=67°,则∠A 的余角等于______度.26.已知线段MN=16cm ,点P 为任意一点,那么线段MP 与NP 和的最小值是_____cm .三、解答题27.如图,点C 在线段AB 上,AC=6cm ,MB=10cm ,点M 、N 分别为AC 、BC 的中点.(1)求线段BC 的长;(2)求线段MN 的长;(3)若C 在线段AB 延长线上,且满足AC ﹣BC=b cm ,M ,N 分别是线段AC ,BC 的中点,你能猜想MN 的长度吗?请写出你的结论(不需要说明理由)28.如图,∠AOC :∠COD :∠BOD=2:3:4,且A ,O ,B 三点在一条直线上,OE ,OF 分别平分∠AOC 和∠BOD ,OG 平分∠EOF ,求∠GOF 的度数。
2021-2022学年人教版七年级数学上册几何图形基础知识整理及试题
七年级数学上册《几何图形初步》知识整理一、几何图形【知识点】1.几何图形的分类。
2.展开图。
3.视图。
4.点、线、面、体。
(一)常识题1.2.学习、研究几何图形的 形状、位置、大小。
3.平面图形和立体图形的关系(1)由 平面图形得到立体图形:①平面图形围成立体图形②运动得到立体图形 点动成线 线动成面 面动成体(2)由 立体图形得到平面图形:①视图 :从不同的角度看得到的图形。
常见的有正视图、左视图、俯视图 。
②展开图。
正方体的展开图(二)常见考题4.下列图形不是立体图形的是( )A . 球B . 圆柱C . 圆锥D . 圆5.下列立体图形中,有五个面的是 ( )A .四棱锥B .五棱锥C .四棱柱D .五棱柱6.下面的图形,是由A 、B 、C 、D 中的哪个图旋转形成的( )A.B.C.D.7.上题中的B、C、D选项中形成的几何图形分别是、、。
8.下列图形中,经过折叠不能围成一个立方体的是()A. B. C.D.9.下列图形中不是正方体展开图的是()A.B.C D.10.如图是一个小正方体的展开图,八展开图折叠成小正方体后,有“建”字一面的相对面上的字是()A、和B、谐C、社D、会10.如图所示的几何体中,从上面往下看所得到的图形是()A. B. C. D.11.由五个小立方体搭成如图的几何体,从正面看到的平面图形是( )A .B .C .D .12.下面几何体的从正面看得到的是( )13.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是 .二、直线、射线、线段【知识点】1.经过两点有一条直线,并且只有一条直线。
简单说成:两点确定一条直线。
2.两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
3.连接两点间的线段的长度,叫做这两点的距离。
4.线段的中点。
5.线段的几等分点。
(一)常识题1.直线、射线、线段之间的关系2.直线上有n 个点,组成( )条线段。
(1)思路:由一个端点构成(n-1)条线段,共有n 个点,所以有n (n-1)条,又因为每条线段数了两遍,所以要除以2。
人教版初中七年级数学上册第四单元《几何图形初步》经典复习题(含答案解析)(1)
一、选择题1.如图,已知点C为线段AB的中点,则①AC=BC;②AC=12AB;③BC=12AB;④AB=2AC;⑤AB=2BC,其中正确的个数是()A.2 B.3 C.4 D.52.如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cmA.4 B.3 C.2 D.13.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A.美B.丽C.云D.南4.如图,点O在直线AB上,射线OC,OD在直线AB的同侧,∠AOD=40°,∠BOC=50°,OM,ON分别平分∠BOC和∠AOD,则∠MON的度数为()A.135°B.140°C.152°D.45°5.“枪挑一条线,棍扫一大片”,从数学的角度解释为().A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线6.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转7.如图,长度为12cm的线段AB的中点为M,C为线段MB上一点,且MC:CB=1:2,则线段AC的长度为()A.8cm B.6cm C.4cm D.2cm8.某正方体的平面展开图如下图所示,这个正方体可能是下面四个选项中的().A.B.C.D.9.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.圆锥,正方体,三棱柱,圆柱10.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为()A.30°B.60°C.120°D.150°11.已知线段AB=6cm,反向延长线段AB到C,使BC=83AB,D是BC的中点,则线段AD的长为____cmA.2 B.3 C.5 D.612.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7 B.3 C.3或7 D.以上都不对13.下列图形中,不可以作为一个正方体的展开图的是()A.B.C.D.14.由A站到G站的某次列车,运行途中停靠的车站依次是A站——B站—C站——D站——E站——F站——G站,那么要为这次列车制作的火车票有()A.6种B.12种C.21种D.42种15.两个锐角的和是()A.锐角B.直角C.钝角D.锐角或直角或钝角二、填空题16.硬币在桌面上快速地转动时,看上去象球,这说明了_________________.17.如图,点C,M,N在线段AB上,且M是AC的中点,CN:NB=1:2,若AC=12,MN=15,则线段AB的长是_______.18.36.275︒=_____度______分______秒.19.按照图填空:(1)可用一个大写字母表示的角有____________.(2)必须用三个大写字母表示的角有_____________________.(3)以B为顶点的角共有______个,分别表示为_______________________.20.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.21.如图,数轴上A,B两点表示的数分别为2-和6,数轴上的点C满足AC BC=,点D在线段AC的延长线上.若32AD AC=,则BD=________,点D表示的数为________.22.把一个棱长为1米的正方体分割成棱长为1分米的小正方体,并把它们排列成一排,则可排________米.23.如图是一个正方体盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数,则填入正方形中A,B,C内的三个数依次为__,___,___.24.一个圆的周长是62.8m,半径增加了2m后,面积增加了____2m.(π取3.14) 25.已知∠A=67°,则∠A的余角等于______度.26.如图,把一张长方形纸片沿AB折叠后,若∠1=50°,则∠2的度数为______.三、解答题27.已知:点O 为直线AB 上一点,过点O 作射线OC ,100BOC ∠=︒.(1)如图1,求AOC ∠的度数;(2)如图2,过点O 作射线OD ,使90COD ∠=︒,作AOC ∠的平分线OM ,求MOD ∠的度数;(3)如图3,在(2)的条件下,作射线OP ,若BOP ∠与AOM ∠互余,请画出图形,并求COP ∠的度数.28.射线OA ,OB ,OC ,OD ,OE 有公共端点O .(1)若OA 与OE 在同一直线上,如图(1),试写出图中小于平角的角.(2)如图(2),若108AOC ︒∠=,(072)COE n n ︒∠=<<,OB 平分AOE ∠,OD平分COE ∠,求BOD ∠的度数.29.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.30.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?。
七年级数学几何图形初步单元复习练习(Word版 含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.问题情境1:如图1,AB∥CD,P是ABCD内部一点,P在BD的右侧,探究∠B,∠P,∠D之间的关系?小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠B,∠P,∠D之间满足____关系。
(直接写出结论)问题情境2如图3,AB∥CD,P是AB,CD内部一点,P在BD的左侧,可得∠B,∠P,∠D之间满足____关系。
(直接写出结论)问题迁移:请合理的利用上面的结论解决以下问题:已知AB∥CD,∠ABE与∠CDE两个角的角平分线相交于点F(1)如图4,若∠E=80°,求∠BFD的度数;(2)如图5中,∠ABM= ∠ABF,∠CDM= ∠CDF,写出∠M与∠E之间的数量关系并证明你的结论。
(3)若∠ABM= ∠ABF,∠CDM= ∠CDF,设∠E=m°,用含有n,m°的代数式直接写出∠M=________.【答案】(1)解:根据问题情境2,可得出∠BFD=∠AEF+∠CDF∵,∠ABE与∠CDE两个角的角平分线相交于点F∴∠AEF=∠FBE,∠CDF=∠FDE∴∠FBE+∠FDE=∠BFD∵∠E+∠BFD+∠FBE+∠FDE=360°∴80°+∠BFD+∠BFD=360°∴∠BFD=140°(2)结论为:6∠M+∠E=360°证明:∵∠ABM= ∠ABF,∠CDM= ∠CDF∴∠ABF=3∠ABM,∠CDF=3∠CDM∵∠ABE与∠CDE两个角的角平分线相交于点F∴∠ABE=6∠ABM,∠CDE=6∠CDM∵∠ABE+∠CDE+∠E=360°∴6(∠ABM+∠CDM)+∠E=360°∵∠M=∠ABM+∠CDM∴6∠M+∠E=360°(3)证明:根据(2)的结论可知2n∠ABM+2n∠CDM+∠E=360°2n(∠ABM+∠CDME)+∠E=360°∵∠M=∠ABM+∠CDM∴2n∠M+m°=360°∴∠M=【解析】问题情境1: 图1中∠B,∠P,∠D之间关系是:∠P+∠B+∠D=360°,问题情境2:图3中∠B,∠P,∠D之间关系是:∠P=∠B+∠D;【分析】问题情境1和2 过点P作EP∥AB,利用平行线的性质,可证得结论。
人教版七年级数学上册 几何图形初步单元复习练习(Word版 含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.【答案】(1)∠PFD+∠AEM=90°(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【解析】【解答】(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN 交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.2.将一副三角板中的两个直角顶点叠放在一起(如图①),其中,, .(1)猜想与的数量关系,并说明理由;(2)若,求的度数;(3)若按住三角板不动,绕顶点转动三角,试探究等于多少度时,并简要说明理由.【答案】(1)解:,理由如下:,(2)解:如图①,设,则,由(1)可得,,,(3)解:分两种情况:①如图1所示,当时,,又,;②如图2所示,当时,,又,.综上所述,等于或时, .【解析】【分析】(1)由∠BCD=∠ACB+∠ACD=90°+∠ACD,即可求出∠BCD+∠ACE的度数.(2)如图①,设∠ACE=a,可得∠BCD=3a,结合(1)可得3a+a=180°,求出a的度数,即得∠BCD的度数.(3)分两种情况讨论,①如图1所示,当AB∥CE时,∠BCE=180°-∠B=120°,②如图2所示,当AB∥CE时,∠BCE=∠B=60°,分别求出∠BCD的度数即可.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
人教版数学七年级上册第四章《几何图形初步》 综合复习题
第四章几何图形初步综合复习题一、单选题1.(2022·福建三明·七年级期末)如图,下列图形全部属于柱体的是()A.B.C.D.2.(2022·福建龙岩·七年级期末)下列图形中,绕铅垂线旋转一周可得到如图所示几何体的是()A.B.C.D.3.(2022·福建泉州·七年级期末)在开会前,工作人员进行会场布置,如图为工作人员在主席台上由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.(2022·福建宁德·七年级期末)如图,已知线段a,b.按如下步骤完成尺规作图,则AC的长是()①作射线AM;①在射线AM 上截取2AB a =;①在线段AB 上截取BC b =.A .a b +B .b a -C .2a b +D .2a b -5.(2022·福建莆田·七年级期末)如图,点,C D 在线段AB 上.则下列表述或结论错误的是( )A .若AC BD =,则AD BC =B .AC AD DB BC =+- C .AD AB CD BC =+- D .图中共有线段12条6.(2022·福建南平·七年级期末)如图,线段6,4AB BC ==,点D 是AB 的中点,则线段CD 的长为( )A .3B .5C .7D .87.(2022·福建福州·七年级期末)在同一条直线上按顺序从左到右有P 、Q 、M 、N 四个点,若MN QM PQ -=,则下列结论正确是( )A .Q 是线段PM 的中点B .Q 是线段PN 的中点C .M 是线段QN 的中点D .M 是线段PN 的中点8.(2022·福建泉州·七年级期末)如图,下列说法中错误的是( )A .OA 方向是北偏东30°B .OB 方向是北偏西15°C .OC 方向是南偏西25°D .OD 方向是东南方向9.(2022·福建莆田·七年级期末)如图,按照上北下南,左西右东的规定画出方向十字线,①AOE =m °,①EOF =90°,OM ,ON 分别平分①AOE 和①BOF ,下面说法:①点E 位于点O 北偏西m °的方向上;①点F 位于点O 北偏东m °的方向上;①①MON =135°,其中正确的有( )A.3个B.2个C.1个D.0个∠的余角的度数为()10.(2022·福建泉州·七年级期末)如果52a∠=︒,则aA.38︒B.48︒C.52︒D.128︒二、填空题11.(2022·福建漳州·七年级期末)如图,是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x-y=_____.12.(2022·福建泉州·七年级期末)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面上,与“祝”相对的面上的汉字是______.13.(2022·福建福州·七年级期末)木工师傅用两根钉子就能将一根细木条固定在墙上了,这其中含有的数学知识是___.14.(2022·福建南平·七年级期末)植树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,这是根据___.(应用所学过的数学知识填空)15.(2022·福建漳州·七年级期末)已知,线段AB=6,点C在直线AB上,AB=3BC,则AC= ___.16.(2022·福建三明·七年级期末)如图,两块三角板的直角顶点O重叠在一起,且OB恰好平分①COD,则①AOD的度数是____度.∠三等分,若图中所有小于平角的角的度17.(2022·福建龙岩·七年级期末)如图,射线OA,OB把POQ∠的度数为_____.数之和是300,则POQ18.(2022·福建泉州·七年级期末)把两块三角板按如图所示那样拼在一起,则①ABC等于___°.三、解答题19.(2022·福建宁德·七年级期末)在如图所示的正方形网格中,每个小正方形中都标有1个有理数,其中4个已经涂上阴影.现要在网格中选择2个空白的小正方形并涂上阴影,与图中的4个阴影正方形一起构成正方体的表面展开图.(1)图1是小明涂成的一个正方体表面展开图,求该表面展开图上6个有理数的和;(2)你能涂出一种与小明涂法不一样的正方体表面展开图吗?请在图2中涂出;(3)若要使涂成的正方体表面展开图上的6个有理数之和最大,应该如何选择?请在图3中涂出.20.(2022·福建龙岩·七年级期末)如图,已知四点A、B、C、D,用圆规和无刻度的直尺,按下列要求与步骤画出图形;(1)画直线AB;(2)画射线CB;(3)延长线段DA 至点E ,使AE=AD (保留作图痕迹).21.(2022·福建泉州·七年级期末)已知A ,B ,C ,D 四点在同一条直线上,点C 是线段AB 的中点.(1)点D 在线段AB 上,且AB =6,13BD BC =,求线段CD 的长度; (2)若点E 是线段AB 上一点,且AE =2BE ,当:2:3AD BD =时,线段CD 与CE 具有怎样的数量关系,请说明理由.22.(2022·福建福州·七年级期末)如图,已知线段10AB =,点C 是AB 的中点,点D 是线段上一点,3AD =.求线段CD 的长.23.(2022·福建厦门·七年级期末)如图,,B C 两点在射线AM 上,AC BC >,在射线BM 上作一点D 使得BD AC BC =-.(1)请用圆规作出点D 的位置;(2)若6cm AD =,求线段AC 的长.24.(2022·福建泉州·七年级期末)如图,在数轴上有A 、B 两点(点B 在点A 的右边),点C 是数轴上不与A 、B 两 点重合的一个动点,点M 、N 分别是线段AC 、BC 的中点.(1)如果点A 表示4-,点B 表示8,则线段AB = ;(2)如果点A 表示数a ,点B 表示数b ,①点C 在线段AB 上运动时,求线段MN 的长度(用含a 和b 的代数式表示);①点C 在点B 右侧运动时,请直接写出线段MN 的长度:___________________(用含a 和b 的代数式表示). 25.(2022·福建福州·七年级期末)如图,以直线AB 上一点O 为端点作射线OC ,使70AOC ∠=︒,在同一个平面内将一个直角三角板的直角顶点放在点O 处.(注:90DOE ∠=︒)(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,那么COE ∠的度数为______;(2)如图2,将直角三角板DOE 绕点O 按顺时针方向转动到某个位置,如果OC 恰好平分AOE ∠,求COD ∠的度数;(3)如图3,将直角三角板DOE 绕点O 任意转动,如果OD 始终在AOC ∠的内部,请直接用等式表示AOD ∠和COE ∠之间的数量关系.26.(2022·福建厦门·七年级期末)如图,对于线段AB 和A OB ''∠,点C 是线段AB 上的任意一点,射线OC '在A OB ''∠内部,如果AC A OC AB A OB ∠=∠'''',则称线段AC 是A OC ''∠的伴随线段,A OC ''∠是线段AC 的伴随角.例如:10,100AB A OB '='=∠︒,若3AC =,则线段AC 的伴随角30A OC ∠=''︒.(1)当8,130AB A OB '='=∠︒时,若65A OC ∠=''︒,试求A OC ''∠的伴随线段AC 的长;(2)如图,对于线段AB 和,6,120A OB AB A OB ''''∠=∠=︒.若点C 是线段AB 上任一点,E ,F 分别是线段,AC BC 的中点,,,A OE A OC A OF ''∠∠'∠'''分别是线段,,AE AC AF 的伴随角,则在点C 从A 运动到B 的过程中(不与A ,B 重合),E OF ''∠的大小是否会发生变化?如果会,请说明理由;如果不会,请求出E OF ''∠的大小.(3)如图,已知AOC ∠是任意锐角,点M ,N 分别是射线,OA OC 上的任意一点,连接MN ,AOC ∠的平分线OD 与线段MN 相交于点Q .对于线段MN 和AOC ∠,线段MP 是AOD ∠的伴随线段,点P 和点Q 能否重合?如果能,请举例并用数学工具作图,再通过测量加以说明;如果不能,请说明理由.27.(2022·福建三明·七年级期末)已知,O 为直线AB 上一点,①DOE =90°.(1)如图1,若①AOC =128°,OD 平分①AOC .①求的①BOD 度数;①请通过计算说明OE 是否平分①BOC .(2)如图2,若①AOD :①DOB =4:5,求①BOE 的度数.28.(2022·福建泉州·七年级期末)时钟上的分针和时针像两个运动员,绕着它们的跑道昼夜不停地运转.以下请你解答有关时钟的问题:(1)分针每分钟转了几度?(2)中午12时整后再经过几分钟,分针与时针所成的钝角会第一次等于121︒?(3)在(2)中所述分针与时针所成的钝角等于121︒后,再经过几分钟两针所成的钝角会第二次等于121︒?参考答案:1.C【解析】解:A 、有一个是三棱锥,故不符合题意;B 、有一个是不规则的多面体,故不符合题意;C 、分别是一个圆柱体、两个四棱柱;D 、有一个是圆台,故不符合题意.故选:C .2.A【解析】面动成体.由题目中的图示可知:此圆台是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.解:A 、是直角梯形绕高旋转形成的圆台,故A 正确;B 、是直角梯形绕底边的腰旋转形成的圆柱加圆锥,故B 错误;C 、绕直径旋转形成球,故C 错误;D 、绕直角边旋转形成圆锥,故D 错误.故选A.本题考查直角梯形转成圆台的条件:应绕垂直于底的腰旋转.3.B由两人拉着一条绳子,然后以“准绳”摆放整齐的茶杯,这样做的理由是两点确定一条直线 故选B .4.D【解析】根据题意作出图形,根据线段的和差进行求解即可解:如图,根据作图可知,AC AB BC =-2a b =-故选D本题考查了尺规作图作线段,线段和差的计算,数形结合是解题的关键.5.D【解析】根据两点间的距离的含义和求法,以及直线、射线和线段的认识,逐项判断即可. 解: A. 因为AD=AC+CD,BC=CD+DB,若AC=BD ,所以可得AC=BD ,此选项说法正确;B. AC AD DB BC =+-,此选项说法正确;C. AD AB CD BC =+-,此选项说法正确;D.由图形可得图中共有线段6条所以,此选项说法错误,故选D.此题主要考查了两点间的距离的含义和求法,以及直线、射线和线段的认识,要熟练掌握.6.C【解析】根据点D是AB的中点,可得BD=3,再由CD=BD+BC,即可求解.解:①AB=6,点D是AB的中点,①BD=3,①BC=4,①CD=BD+BC=3+4=7.故选:C本题主要考查了有关中点的计算,明确题意,准确得到线段间的数量关系是解题的关键.7.D-=,得出线段之间的关系,逐项进行判断即【解析】根据题意画出图形,根据MN QM PQ可.①PQ不一定等于QM,①Q不一定是线段PM的中点,故A错误;-=,①MN QM PQ=+=,①MN PQ QM PM①PM MN PN+=,①M是线段PN的中点,故B错误,D正确;-=,①MN QM PQ>,①MN QM①M不是线段QN的中点,故C错误.故选:D.本题主要考查了线段之间的关系,根据题意画出图形是解题的关键.8.A试题分析:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.根据定义就可以解决.解:A、OA方向是北偏东60°,此选项错误;B、OB方向是北偏西15°,此选项正确;C、OC方向是南偏西25°,此选项正确;D、OD方向是东南方向,此选项正确.错误的只有A.故选A.9.B【解析】观察方向图形,根据方向角解答即可.解:①点E位于点O北偏西(90﹣m)°的方向上,原结论错误;①①①AOE+①EOD=90°,①DOF+①EOD=90°,∴①DOF=①AOE=m°,∴点F位于点O北偏东m°的方向上,原结论正确;①①①AOE+①BOF=90°,OM,ON分别平分①AOE和①BOF,①①MOE+①NOF=45°,①∠MON=135°,原结论正确;其中正确的有2个.故选:B.此题考查的知识点是方向角,角平分线的性质,解题关键是明确方向角的意义,熟练运用角平分线和余角的性质推导角的关系.10.A【解析】根据余角的定义,利用90°减去52°即可.a∠的余角=90°-52°=38°.故选A.本题考查求一个数的余角,关键在于牢记余角的定义.11.5【解析】由正方体的表面展开图中的相对面中间一定隔着一个面的特点出发,确定相对面,再求解,x y的值,从而可得答案.解:由正方体的表面展开图可得:3和y相对,2-与x相对,而相对面上所标的两个数互为相反数,3,2,y xx y23235,故答案为:5本题考查的是正方体展开图中相对面上的数字,掌握正方体是立体图形,从相对面的特点进行分析是解本题的关键.12.功【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点,即可作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,① “你”与“试”相对,“考”与“成”相对,“祝”与“功”相对,①与“迎祝”相对的面上的汉字是“功”.故答案为:功本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是解题的关键.13.两点确定一条直线【解析】细木条为一条线段,两根钉子相当于两个点,即可求解.解:细木条代表一条直线,两根钉子相当于两个点,两个点确定,细木条代表的直线就确定了,故答案为:两点确定一条直线此题考查了两点确定一条直线的应用,解题的关键是理解题意,掌握并运用两点确定一条直线的性质.14.两点确定一条直线【解析】根据两点确定一条直线,即可求解.解:根据题意得的:这是根据两点确定一条直线.故答案为:两点确定一条直线本题主要考查了直线的基本事实,熟练掌握两点确定一条直线是解题的关键.15.4或8【解析】先求出BC的长,根据点C的位置分别计算可得答案.解:①AB=6,AB=3BC,①BC=2,当点C在线段AB上时,AC=AB-BC=6-2=4;当点C在线段AB延长线上时,AC=AB+BC=6+2=8;故答案为:4或8.此题考查了线段的和差计算,掌握分类思想解决问题是解题的关键,避免漏解的现象.16.135°【解析】本题是有公共定点的两个直角三角形问题,通过图形可知①AOC+①BOC=90°,①BOD+①BOC=90°,同时①AOC+①BOC+①BOD+①BOC=180°,可以通过角平分线性质求解.①OB平分①COD,①①COB=①BOD=45°,①①AOB=90°,①①AOC=45°,①①AOD=135°.故答案为135.本题考查的知识点是角的平分线与对顶角的性质,解题关键是熟记角平分线的性质是将两个角分成相等的两个角.17.90°【解析】先找出所用的角,分别用含字母x的代数式将每个角的度数表示出来,再列方程即可求出x的值,进一步求出①POQ的度数.设①QOB=x,则①BOA=①AOP=x,则①QOA=①BOP=2x,①QOP=3x,①①QOB+①BOA+①AOP+①QOA+①BOP+①QOP=10x=300°,解得:x=30°,①①POQ=3x=90°.故答案为:90°.本题考查了确定角的个数及角的度数的计算,解答本题的关键是根据题意列出方程.18.120解:由图可知①ABC=30°+90°=120°.故答案为:12019.(1)-6(2)见解析(3)见解析【解析】(1)根据有理数加法法则计算即可得答案;(2)根据正方体表面展开图添加即可;(3)根据正方体表面展开图,选择两个数字的和最大的添加即可.(1)-4+2+6+1+(-3)+(-8)=-6,答:该表面展开图上6个有理数的和是-6.(2)根据正方体表面展开图添加如下:(3)根据正方体表面展开图可添加数字如下:-4+4=0,-6+(-8)=-14,-6+4=-2,-6+3=-3,-6+(-1)=-7,3+(-1)=2,①涂成的正方体表面展开图上的6个有理数之和最大,①添加3和-1,如图所示:本题考查有理数加法运算及正方体表面展开图,熟练掌握正方体11种展开图是解题关键.20.(1)见解析(2)见解析(3)见解析【解析】(1)画直线AB,直线向两方无限延伸;(2)画射线CB,C为端点,再沿CB方向延长;(3)画线段DA,延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD.(1)画出直线AB;(2)画出射线CB;(3)延长线段DA,以A为圆心,AD为半径作弧交DA的延长线于E,则AE=AD(要求保留作图圆弧的痕迹,弧线和点E各画直线),所以,AE为所求作的线段(或表述E为所求作的点),如图所示:本题主要考查了直线、射线、线段,关键是掌握直线向两方无限延伸,射线向一方无限延伸,线段不能向两方无限延伸.21.(1)线段CD的长度为2;(2)5CD=3CE或CD=15CE.理由见解析【解析】(1)根据线段中点的性质求出BC,根据题意计算即可;(2)分两种情况讨论,当点D在线段AB上和点D在BA延长线上时,利用设元的方法,分别表示出AB以及CD、CE的长,即可得到CD与CE的数量关系.(1)解:如图1,①点C是线段AB的中点,AB=6,①BC=12AB=3,①BD=13 BC,①BD=1,①CD=BC-BD=2;(2)解:5CD=3CE或CD=15CE.理由如下:当点D在线段AB上,如图2,设AD =2x ,则BD =3x ,①AB =AD +BD =5x ,①点C 是线段AB 的中点,①AC =12AB =52x , ①CD =AC -AD =12x , ①AE =2BE ,①AE =23AB =103x , CE =AE -AC =56x , ①CD CE =1256x x ,即5CD =3CE ; 当点D 在BA 延长线上时,如图3,设AD =2a ,则BD =3a ,①AB =BD -AD =a ,①点C 是线段AB 的中点,①AC =12AB =12a , ①CD =AC +AD =52a , ①AE =2BE ,①AE =23AB =23a , CE =AE -AC =16a , ①CD CE =5216a a ,即CD =15CE . 综上,5CD =3CE 或CD =15CE .本题考查的是两点间的距离,正确理解线段中点的概念和性质是解题的关键.解第2问注意分类讨论.22.2CD =【解析】根据中点的性质可得AC 的长,再根据线段的和差计算出CD 的长即可. ①10AB =,点C 是AB 的中点 ①1110522AC AB ==⨯= ①5AC =,3AD =①532CD AC AD =-=-=本题考查了中点的定义和线段的和差,熟练掌握相关知识是解题的关键.23.(1)见解析(2)3cm【解析】(1)以C 为圆心,以AC 的长为半径画弧与射线CM 交于点D ,点D 即为所求; (2)根据BD AC BC =-,BD CD BC =-,得到AC CD =,由此即可得到答案.(1)解:如图所示,点D 即为所求;(2)解:①BD AC BC =-,BD CD BC =-,①AC CD =, ①13cm 2AC AD ==. 本题主要考查了尺规作图—作线段,线段的和差计算,熟知相关知识是解题的关键.24.(1)12 (2)①1()2b a -;①1()2MN b a =-【解析】(1)结合数轴根据两点距离求解即可;(2)①由点M 、N 分别是线段AC 、BC 的中点,得AC BC AB b a +==-,进而根据12MN CM CN AB =+=求解即可; ①同理可得12MN CM CN AB =-=. (1) 点A 表示4-,点B 表示8,()8412AB ∴=--=故答案为:12(2)如果点A 表示数a ,点B 表示数b , ①点C 在线段AB 上,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,AC BC AB b a +==-, 11()22MN CM CN AB b a ∴=+==-; ①点C 在点B 右侧运动时,设C 点表示的数为c ,点M 、N 分别是线段AC 、BC 的中点,12CM AC ∴=,12CN BC =,()()AC BC c a c b b a -=---=-, ()11()22MN AC BC b a ∴=-=- 故答案为:1()2MN b a =-. 本题考查了数轴上两点距离,线段段中点的性质,线段和差的计算,数形结合是解题的关键. 25.(1)20︒;(2)20︒;(3)20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.【解析】(1)如图1,如果直角三角板DOE 的一边OD 放在射线OA 上,则①COE =20°; (2)由角平分线可得70COE AOC ∠=∠=︒,再利用角的和差进行计算即可;(3)分别用①COE 及①AOD 的式子表达①COD ,进行列式即可.解:(1)①90DOE ∠=︒,70AOC ∠=︒①907020COE DOE AOC =∠-∠=︒-︒=︒∠故答案为:20︒(2)①OC 平分AOE ∠,70AOC ∠=︒,①70COE AOC ∠=∠=︒,①90DOE ∠=︒,①907020COD DOE COE ∠=∠-∠=︒-︒=︒.(3)①90COD DOE COE COE =∠-∠=︒-∠∠, 70COD AOC AOD AOD =∠-∠=︒-∠∠ ①9070COE AOD ︒-∠=︒-∠①20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.故答案为:20COE AOD ∠-∠=︒或20COE AOD ∠=︒+∠.本题考查了角的和差关系,准确表达出角的和差关系是解题的关键.26.(1)AC =4;(2)不会,①E ′OF ′=60°.理由见解析(3)能,理由见解析【解析】(1)根据伴随角和伴随线段的定义定义列出等式即可求解;(2)由中点的定义可得EF =12AB ,再利用伴随角和伴随线段的定义列出等式,可得出结论; (3)由伴随角和伴随线段的定义可得,点P 和点Q 重合时,是MN 的中点,画出图形,测量即可.(1) 解:由伴随角和伴随线段的定义可知,AC A OC AB A OB ∠=∠'''',, ①65181302AC ︒==︒, ①AC =4;(2)解:不会,①E ′OF ′=60°.理由如下:①点E ,F 分别是线段AC ,BC 的中点,①EC =12AC ,CF =12BC , ①EF =12AB =3. ①①A ′OE ′,①A ′OC ′,①A ′OF ′分别是线段AE ,AC ,AF 的伴随角, ①AE A OE AB A OB ∠=∠'''',AC A OC AB A OB ∠=∠'''',AF A OF AB A OB ∠=∠'''', ①EF =AF -AE , ①12EF AF AE A OF A OE E OF AB AB AB A OB A OB A OB ∠∠'''''''''''∠'=-=-==∠∠∠, ①①A ′OB ′=120°,①①E ′OF ′=60°;(3)解:能,理由如下:①OD 是①AOC 的平分线,①①AOD =12①AOC ,①线段MP是①AOD的伴随线段,①12MP AODMN AOC∠==∠.即点P是MN的中点.若点P和点Q重合,则点Q为MN的中点.根据题意画出图形如下所示:测量得出当点P和点Q重合时,NP=MQ=1.25cm.本题属于线段和角度中新定义类问题,涉及中点的定义和角平分线的定义,关键是理解伴随角和伴随线段的定义.27.(1)①①BOD=116°;①OE平分①BOC,见解析(2)①BOE=10°.【解析】(1)①根据角平分线的定义求出①AOD的度数,再根据平角的定义求出①BOD的度数;①根据角的和差求出①COE=①DOE-①DOC=90°-64°=26°,①BOE=①BOD-①DOE=116°-90°=26°,根据角平分线的定义即可求解;(2)设①AOD=4x,则①DOB=5x,根据平角的定义列出方程求出x,进一步求出①BOE的度数.(1)解:①①OD平分①AOC,①AOC=128°,①①AOD=①DOC=12①AOC=12×128°=64°,①①BOD=180°-①AOD=180°-64°=116°;①①①DOE=90°,又①①DOC=64°,①①COE=①DOE-①DOC=90°-64°=26°,①①BOD=116°,①DOE=90°,①①BOE=①BOD-①DOE=115°-90°=26°,①①COE=①BOE,即OE平分①BOC;(2)解:若①AOD :①DOB =4:5,设①AOD =4x ,则①DOB =5x ,又①①AOD +①DOB =180°,①4x +5x =180°,①x =20°,①①AOD =4x =80°,①①DOE =90°,①①BOE =180°-80°-90°=10°.本题主要考查了角平分线的定义和角的运算.结合图形找到其中的等量关系是解题的关键. 28.(1)6︒(2)22 (3)23611【解析】(1)根据分针一小时转一圈即360°,用360°除以60计算即得;(2)根据分针每分钟转6°,时针每分钟转0.5°,时针与分针转过的角度差是121︒,列方程解答即可;(3)相对于12时整第二次所成的钝角第二次等于121︒时,时针与分针转过的角度差超过180°,这个差与121︒之和是360°.(1)解:①分针一小时转一圈即360°,①分针每分钟转过的角度是:360606︒÷=︒ ,答:分针每分钟转了6度;(2)设中午12时整后再经过x 分钟,分针与时针所成的钝角会第一次等于121°,①时针一小时转动角度为: 3601230︒÷=︒,时分针每分钟转过的角度是:30600.5÷︒=︒ ;①分针与时针所成的钝角会第一次等于121︒,①时针与分针转过的角度差是121︒,①60.5121x x -=,解得:22x =,答:中午12时整后再经过22分钟,分针与时针所成的钝角会第一次等于121°;(3)设经过y 分钟两针所成的钝角会第二次等于121︒,则从12时算起经过(y +22)分钟两针所成的钝角会第二次等于121︒,因为时针与分针转过的角度差超过180°,这个差与121︒之和是360°,故列得方程:6(22)0.5(22)121360y y +-++=,解得:6(22)0.5(22)121360y y +-++=, 解得:23611y =, 答:经过23611分钟两针所成的钝角会第二次等于121︒. 本题通过钟面角考查一元一次方程,掌握时针分针的转动情况,会根据已知条件列方程是解题的关键.选择合适的初始时刻会简化理解和运算难度,起到事半功倍的效果.。
最新人教版初中数学七年级上册 期末专项复习—几何图形初步
期末专项复习—几何图形初步一、选择题(每小题3分,共30分)1.下列说法正确的是(A.平角是一条直线B.周角是一条射线)C.用2倍的放大镜看1c m长的线段,这条线段变成了2c mD.用2倍的放大镜看30的角,这个角变成了60°°2.如图所示,在AOB的内部有4条射线,则图中角的个数为()A.10B.15C.5D.20BC C3.下面说法:①若线段AC,是线段AB的中点;②两点之间直线最短;③延长直线AB;④若一个角既有余角又有补角,则它的补角一定比它的余角大.正确的有(A.0个B.1个C.2个4.如图所示,小于平角的角有()D.3个)A.9个B.8个C.7个D.6个5.如图,C,D是线段AB上两点,CB 4cm,7cm,且D是A C的中点,则AC的长等于()D BA.3c mB.6c mC.11c mD.14c m6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是()A.C.ABC 22.5°ABC 67.5°B.ABC 45°D.ABC 135°7.如图所示,O C 是AOB的平分线,O D B O C是的平分线,那么下列各式正确的是()12A.C.CO D AOB B.AO D AO B2312BO D AOB D.BO C AO D338.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来8BC2O B、B C9.射线OA上有B、C两点,若OB,,线段的中点分别为D、E,则线段DE的长为()A.5B.3C.1D.5或310.如图,AOB C O D,若AO D 110,BO C 70,则以下结论正确的有()°°2①A O D A O C;④AO C BO D 90;②AOB 20;③A O B11A OB B O D°°A.1个B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.用度、分、秒表示:________________.′″35.12________°°12.已知,则′的余角的补角是________.4231°1113.延长线段AB到点C,使8cm,则C DB C AB反向延长线段,A C到点D,使A D A C.若AB22________.cm14.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于________.BC15.如图所示,C是线段AB外一点,那么AC________AB(填“>”“<”或“=”),理由是________.116.如图所示,A、O、B在一条直线上,AOC BO C30,OE平分B O C,则B O E________.°217.有公共顶点的两条射线分别表示南偏东15与北偏东25,则这两条射线组成的角的度数为________.°°118.延长线段AB到C,使B C AB,D为A C的中点,且6cm,则AB的长是________cm.D C3三、解答题(共46分)19.(8分)已知平面上的三点,如图所示.(1)按下列要求画出图形:①画直线AC;②画射线BC;③画线段AB.(2)指出图中有几条线段,并表示出来.(3)图中有哪些线段?用图中的字母表示出来.(4)图中有哪些直线?并用图中的字母表示出来.yz 20.(6分)如图所示的平面展开图折叠成正方体后,相对面上的两个数之和为5,求 x 的值.21.(6分)若1:2:3:41:3:4:1,而且1+2+3+4 180 ,那么这四个角分别为多少度?° 22.(8分)如下图,某轮船上午8时在 A 处,测得灯塔S 在北偏东 60 的方向上,向东行驶至中午12时,轮 ° 船到达 B 处,在 B 处测得灯塔 在北偏西 S 的方向上,已知轮船行驶速度为20千米/时. 30° (1)在图中画出灯塔S 的位置;(2)量出船在 B 处时,离灯塔 S 的图上距离,并求出它的实际距离.23.(8分)如图所示,点C 是线段 AB 上一点,点M 是线段 AC 的中点,点 N 是线段 BC 的中点.(1)如果 10 cm , 3 cm ,求 N C 的长.AB A M (2)如果 6 cm ,求 AB 的长.M N 24.(10分)如图所示,从一点O 出发,引两条射线可以得到一个角,引三条射线可以得到三个角,引四条 射线可以得到六个角,引五条射线可以得到十个角,如果从一点出发引 ( 为大于等于2的整数)条射线,n n则会得到多少个角?如果n8时,检验你所得的结论是否正确.。
人教版初中数学几何图形初步技巧及练习题附答案
人教版初中数学几何图形初步技巧及练习题附答案一、选择题1.如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【答案】A【解析】【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A.【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..2.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A.B.C.D.【答案】D【解析】解:Rt△ACB绕直角边AC旋转一周,所得几何体是圆锥,主视图是等腰三角形.故选D.首先判断直角三角形ACB绕直角边AC旋转一周所得到的几何体是圆锥,再找出圆锥的主3.将一副三角板如下图放置,使点A 落在DE 上,若BC DE ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】∵AB=AC,BD=BC,∴AD⊥BC,∴PB=PC,∴PC+PE=PB+PE,+≥,∵PB PE BE∴当B、P、E共线时,PC+PE的值最小,此时BE是△ABC的中线,∵AD也是中线,∴点P是△ABC的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.5.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.6.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.8.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.9.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .()2108123cm -C .()254243cm -D .()254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−23,再根据六棱柱的侧面积是6ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +3a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a 3a )cm ,宽为4acm , 由题意得:(2h +3)−(h +2a 3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23∴该六棱柱的侧面积是6ah =6×2×(9−232108(3) cm -;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.10.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.11.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM ∥BN ,CE ∥AB ,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.12.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD ,D G ∴∠=∠,//BF DE ,G ABF ∴∠=∠,D ABF ∴∠=∠, BF 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.13.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.14.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是( )A .是B .好C .朋D .友【答案】A【解析】【分析】 正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A .【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.如图,将一副三角板如图放置,∠COD=28°,则∠AOB 的度数为( )A .152°B .148°C .136°D .144°【答案】A【解析】【分析】 根据三角板的性质得90AOD BOC ∠=∠=︒,再根据同角的余角相等可得62AOC BOD ==︒∠∠,即可求出∠AOB 的度数.【详解】∵这是一副三角板∴90AOD BOC ∠=∠=︒∵28COD =︒∠∴62AOC BOD ==︒∠∠∴62+28+62=152AOB AOC COD BOD =++=︒︒︒︒∠∠∠∠故答案为:A .【点睛】本题考查了三角板的度数问题,掌握三角板的性质、同角的余角相等是解题的关键.16.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是( ) A . B .C .D .【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A .【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A、B、D,只有C符合.故选:C.【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.∠=∠的图形的个数是()20.如图,一副三角尺按不同的位置摆放,摆放位置中αβA.1B.2C.3D.4【答案】C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。
人教版七年级上册数学:第4章《几何图形初步》专项练习(含答案)
20.(1)∠DOE=45°;(2)∠DOE的大小不变等于45°.理由见解析;(3)∠DOE的大小发生变化,∠DOE=45°或135º.
21.MN的长为12cm.
22.(1) 或 (2)10(3)2
23.(1)37.5°;(2) 37。5°.(3) 37。5°.
24.见解析
七年级期末总复习图形的初步专项
1.如图,该几何体的展开图是( )
A. B。 C。 D。
2.左图中的图形绕虚线旋转一周,可得到的几何体是( )
A.(A)B.(B)C.(C)D。(S)
3.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是( )
A。 B。 C。 D.
4.如图所示的几何体是由以下四个图形中的哪一个图形绕着虚线旋转一周得到的( )
(3)若 点、 点和 点( 点在原点)同时向左运动,它们的速度分别为 、 、 个长度单位/分,则第几分钟时, 为 的中点?
23.如图①,将一副三角板的两个锐角顶点放到一块,∠AOB=45°,∠COD=30°,OM,ON分别是∠AOC,∠BOD的平分线.
(1)当∠COD绕着点O逆时针旋转至射线OB与OC重合时(如图②),则∠MON的大小为________;
(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;
(3)拓展应用:8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?
请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题。
19.如图是由几个小正方体块所搭成的几何体,请画出这个几何体从正面看,从左面看和从上面看的图形
21.如图,C、D是线段AB上两点,已知AC:CD:DB=1:2:3,M、N分别为AC、DB的中点,且AB=18cm,求线段MN的长.
人教版初一数学上册《几何图形初步》全章复习与巩固(提高)巩固练习
【巩固练习】一、选择题1.分析下列说法,正确的有()①长方体、正方体都是棱柱;②三棱柱的侧面是三角形;③圆锥的三视图中:主视图、左视图是三角形,俯视图是圆;④球体的三种视图均为同样大小的图形;⑤直六棱柱有六个侧面、侧面为长方形.A.2种 B.3种 C.4种 D.5种2.在4个图形中,只有一个是由如图所示的纸板折叠而成,请你选出正确的一个().3.(2015春•淄博校级期中)如图所示,下列表示角的方法错误的是()A.∠1与∠AOB表示同一个角B.∠β表示的是∠BOCC.图中共有三个角:∠AOB,∠AOC,∠BOCD.∠AOC也可用∠O来表示4.从点O出发有五条射线,可以组成的角的个数是( )A. 4个B. 5个C. 7个D. 10个5.用一副三角板画角,下面的角不能画出的是()A.15°的角 B.135°的角C.145°的角 D.150°的角6.如图所示,已知射线OC平分∠AOB,射线OD,OE三等分∠AOB,又OF平分∠AOD,则图中等于∠BOE的角共有( ).A.1个 B.2个 C.3个 D.4个7.(2016•花都区一模)已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm8. 平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.12B.16C.20D.以上都不对二、填空题9.把一个周角7等分,每一份是________的角(精确到秒).10.(2015春•泰山区期末)时钟在6时30分时,时针与分针的夹角等于.11.如图是用一样的小立方体摆放的一组几何体,观察该组几何体并探索:照这样摆下去,第五个几何体中共有_______个小立方体,第n个几何体中共有_______个小立方体.12.如图所示的是由几个相同的小正方体搭成的几何体从不同的方向看所得到的图形,则搭成这个几何体的小正方体的个数是_______.13.如图,点B、O、C在同一条直线上,∠AOB=90°,∠AOE=∠BOD,下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠BOD;④∠COE+∠BOD=90°.其中正确的是 .14.如图,∠AOB是钝角,OC、OD、OE是三条射线,若OC⊥OA,OD平分∠AOB,OE平分∠BOC,那么∠DOE的度数是.15.已知:A、B、C三点在一条直线上,且线段AB=15cm,BC=5cm,则线段AC=_______。
人教版初中七年级数学上册第四章《几何图形初步》复习题(含答案解析)(2)
人教版初中七年级数学上册第四章《几何图形初步》复习题(含答案解析)(2)一、选择题1.下列说法错误的是( )A .若直棱柱的底面边长都相等,则它的各个侧面面积相等B .n 棱柱有n 个面,n 个顶点C .长方体,正方体都是四棱柱D .三棱柱的底面是三角形B解析:B【解析】A 、若直棱柱的底面边长都相等,则它的各个侧面面积相等,说法正确;B 、n 棱柱有n+2个面,n 个顶点,故原题说法错误;C 、长方体,正方体都是四棱柱,说法正确;D 、三棱柱的底面是三角形,说法正确;故选B .2.将如图所示的直角三角形绕直线l 旋转一周,得到的立体图形是( )A .B .C .D . B 解析:B【分析】根据题意作出图形,即可进行判断.【详解】将如图所示的直角三角形绕直线l 旋转一周,可得到圆锥,故选B .【点睛】此题考查了点、线、面、体,重在体现面动成体:考查学生立体图形的空间想象能力及分析问题,解决问题的能力.3.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上B .点C 在线段AB 的延长线上 C .点C 在直线AB 外D .不能确定A解析:A【分析】本题没有给出图形,在画图时,应考虑到A 、B 、C 三点之间的位置关系,再根据正确画出的图形解题.如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.下列语句正确的有( )(1)线段AB 就是A 、B 两点间的距离;(2)画射线10AB cm =;(3)A ,B 两点之间的所有连线中,最短的是线段AB ;(4)在直线上取A ,B ,C 三点,若5AB cm =,2BC cm =,则7AC cm =. A .1个B .2个C .3个D .4个A解析:A【分析】根据两点之间距离的定义可以判断A 、C ,根据射线的定义可以判断B ,据题意画图可以判断D .【详解】∵线段AB 的长度是A 、 B 两点间的距离,∴(1)错误;∵射线没有长度,∴(2)错误;∵两点之间,线段最短∴(3)正确;∵在直线上取A ,B ,C 三点,使得AB=5cm ,BC=2cm ,当C 在B 的右侧时,如图,AC=5+2=7cm当C 在B 的左侧时,如图,AC=5-2=3cm ,综上可得AC=3cm 或7cm ,∴(4)错误;正确的只有1个,故选:A .本题考查了线段与射线的定义,线段的和差,熟记基本定义,以及两点之间线段最短是解题的关键.5.如图,CD是直角三角形ABC的高,将直角三角形ABC按以下方式旋转一周可以得到右侧几何体的是().A.绕着AC旋转B.绕着AB旋转C.绕着CD旋转D.绕着BC旋转B 解析:B【分析】根据直角三角形的性质,只有绕斜边旋转一周,才可以得出组合体的圆锥,进而解答即可.【详解】将直角三角形ABC绕斜边AB所在直线旋转一周得到的几何体是:故选:B.【点睛】本题考查了点、线、面、体,培养学生的空间想象能力及几何体的三视图.6.如图,在数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A,D两点表示的数分别为-5和6,点E为BD的中点,在数轴上的整数点中,离点E最近的点表示的数是()A.2 B.1C.0 D.-1A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.7.体育课上,小悦在点O处进行了四次铅球试投,铅球分别落在图中的M,N,P,Q四个点处,则表示他最好成绩的点是()A.M B.N C.P D.Q C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.8.在钟表上,1点30分时,时针与分针所成的角是( ).A.150°B.165°C.135°D.120°C解析:C【分析】根据钟表上每个大格30°,1点30分时针与分针之间共4.5个大格即可求解.钟表上12个大格把一个周角12等分,每个大格30°.1点30分时针与分针之间共4.5个大格,故时针与分针所成的角是4.5×30°=135°.故选C.【点睛】此题考查的是角的运算,钟表上每个大格30°,明确1点30分时针与分针之间共4.5个大格是解题的关键.9.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是()A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的B解析:B【分析】本题为数学知识的应用,由题意将弯曲的道路改直以缩短路程,就用到两点间线段最短定理.【详解】解:弯曲的道路改直,使两点处于同一条线段上,两点之间线段最短.故选B.【点睛】本题考查了两点之间线段最短的性质,正确将数学定理应用于实际生活是解题关键.10.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题11.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.12.如图,C 为线段AB 的中点,线段AB=12cm ,CD=2cm .则线段DB 的长为_______4cm 【分析】先由线段中点的定义得出BC=AB再根据DB=BC-CD 即可求解【详解】∵C 为线段AB 的中点线段AB=12cm ∴BC=AB=6cm ∵CD=2cm ∴DB=BC-CD=6-2=4cm ∴线段D解析:4cm【分析】先由线段中点的定义得出BC=12AB ,再根据DB=BC-CD 即可求解. 【详解】∵C 为线段AB 的中点,线段AB=12cm , ∴BC=12AB=6cm , ∵CD=2cm , ∴DB=BC-CD=6-2=4cm .∴线段DB 的长为4cm .故答案为:4cm【点睛】本题考查了线段的中点的概念及线段的和差计算.利用线段中点定义转化线段之间的倍分关系是解题的关键,13.如图,若AOB ∠是直角,OM 平分AOC ∠,ON 平分COB ∠,则MON ∠=________.45°【分析】结合图形根据角的和差以及角平分线的定义找到∠MON与∠AOB的关系即可求出∠MON的度数【详解】解:∵OM平分∠AOCON平分∠BOC∴∠MOC=∠AOC∠NOC=∠BOC∴∠MON=解析:45°【分析】结合图形,根据角的和差,以及角平分线的定义,找到∠MON与∠AOB的关系,即可求出∠MON的度数.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC,∠NOC=12∠BOC,∴∠MON=∠MOC-∠NOC=12(∠AOC-∠BOC)=12(∠AOB+∠B0C-∠BOC)=12∠AOB=45°.故选答案为45°.【点睛】本题考查了角的计算,属于基础题,此类问题,注意结合图形,运用角的和差和角平分线的定义求解.14.用一个平面分别截棱柱、圆锥,都能截出的一个图形是________.三角形【分析】分析用一个平面分别去截圆锥棱柱分别能够得到哪些截面图形然后从分别得到的截面图形中找出都有的图形即可【详解】用一个平面去截棱柱可以得到三角形长方形;用一个平面去截圆锥可以得到圆三角形等故解析:三角形【分析】分析用一个平面分别去截圆锥、棱柱,分别能够得到哪些截面图形,然后从分别得到的截面图形中找出都有的图形即可.【详解】用一个平面去截棱柱可以得到三角形、长方形;用一个平面去截圆锥可以得到圆、三角形等.故用一个平面分别去截分别截棱柱、圆锥,都能截出的一个截面是三角形.故答案为三角形.【点睛】此题考查几何体的截面图形,熟练掌握常见几何体的截面图形是解题的关键.15.如图是一个多面体的表面展开图,则折叠后与棱AB重合的棱是________.BC【分析】把展开图折叠成一个长方体找到与AB重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB重合的线段即可.【详解】解:根据题意得:折叠后与棱AB重合的棱是BC.故答案为BC.【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.16.36.275︒=_____度______分______秒.1630【解析】【分析】利用度分秒的换算1度=60分1分=60秒来计算【详解】36度16分30秒故答案为:361630【点睛】此题考查度分秒的换算解题关键在于掌握换算法则解析:16 30【解析】【分析】利用度分秒的换算1度= 60分,1分=60秒,来计算.【详解】36.275︒=36度16分30秒故答案为:36,16,30.【点睛】此题考查度分秒的换算,解题关键在于掌握换算法则.17.车轮旋转时,看起来像一个整体的圆面,这说明了_______;直角三角形绕它的直角边旋转一周形成了一个圆锥体,这说明了________.线动成面面动成体【解析】【分析】车轮上有线看起来像一个整体的圆面所以是线动成面;直角三角形是一个面形成圆锥体所以是面动成体【详解】车轮旋转时看起来像一个整体的圆面这说明了线动成面;直角三角形绕它的直解析:线动成面面动成体【解析】【分析】车轮上有线,看起来像一个整体的圆面,所以是线动成面;直角三角形是一个面,形成圆锥体,所以是面动成体.【详解】车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体.故答案为线动成面,面动成体.【点睛】此题考查点、线、面、体,解题关键在于掌握其定义.18.已知点B在直线AC上,AB=6cm,AC=10cm,P、Q分别是AB、AC的中点,则PQ=_____2或8【分析】本题没有给出图形在画图时应考虑到ABC三点之间的位置关系的多种可能再根据正确画出的图形解题【详解】解:如图:当点BC在点A的不同侧时∴AP=AB=3cmAQ=AC=5cm∴PQ=AQ+解析:2或8【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.【详解】解:如图:当点B、C在点A的不同侧时,∴AP=12AB=3cm,AQ=12AC=5cm,∴PQ=AQ+AP=5+3=8cm.当点B、C在点A的同一侧时,∴AP=12AB=3cm,∴AQ=12AC=5cm,PQ=AQ-AP=5-3=2cm.故答案为8cm或2cm.【点睛】在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.19.若1∠与2∠互补,2∠的余角是36︒,则1∠的度数是________.【分析】首先根据∠1与∠2互补可得∠1+∠2=180°再表示出∠1的余角90°-(180°-∠2)即可得到结论【详解】∵的余角是∴∵与互补∴故答案为126°【点睛】本题考查了余角和补角关键是掌握余角解析:126︒【分析】首先根据∠1与∠2互补可得∠1+∠2=180°,再表示出∠1的余角90°-(180°-∠2),即可得到结论.【详解】∵2∠的余角是36︒,∴2903654︒︒︒∠=-=.∵1∠与2∠互补,∴118054126︒︒︒∠=-=.故答案为126°.【点睛】本题考查了余角和补角,关键是掌握余角和补角的定义.20.如图,点A ,O ,B 在同一直线上,12∠=∠,则与1∠互补的角是________.若1283235'''∠=︒,则1∠的补角为________.【分析】根据补角的性质和余角的性质解答即可【详解】∵∠1=∠2∴与∠1互补的角是∠AOD ∵∠1=28°32′35″∴∠1的补角=151°27′25″故答案为:∠AOD ;151°27′25″【点睛】本解析:AOD ∠ 2512517'''︒【分析】根据补角的性质和余角的性质解答即可.【详解】∵∠1=∠2,∴与∠1互补的角是∠AOD ,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD ;151°27′25″.【点睛】本题考查了余角和补角,两个角的和为90°,则这两个角互余;若两个角的和等于180°,则这两个角互补.三、解答题21.如图所示,点A 、O 、C 在同一直线上,OE 是BOC ∠的平分线,90EOF ∠=︒,()1420x ∠=+︒,()210x ∠=-︒.(1)求1∠的度数(请写出解题过程).(2)如以OF 为一边,在COF ∠的外部画DOF COF ∠=∠,问边OD 与边OB 成一直线吗?请说明理由.解析:(1)1140∠=︒;(2)边OD 与边OB 成一直线,理由详见解析.【分析】(1)因为OE 是∠BOC 的平分线 所以∠BOC=2∠2,再根据点A 、O 、C 在一直线上,求出∠1和∠2关于x 的关系式,列出等式求出x 的值;(2)根据∠EOF=∠EOC+∠COF=90°和∠EOC=12∠BOC ,∠FOC=12∠DOC ,12∠BOC+12∠DOC=90°,得出∠BOC+∠DOC=180°,进而可可判断边OD 与边OB 成一直线.【详解】(1)因为OE 是BOC ∠的平分线,所以22BOC ∠=∠,因为点A 、O 、C 在同一直线上,所以1180BOC ∠+∠=︒,又因为()1420x ∠=+︒,()210x ∠=-︒,所以()()420210180x x ++-=,解得:30x =,1140∠=︒(2)边OD 与边OB 成一直线.理由:因为90EOF EOC COF ∠=∠+∠=︒, 又因为12EOF BOC ∠=∠,12FOC DOC ∠=∠. ∴119022BOC DOC ∠+∠=︒, 即180BOC DOC ∠+∠=︒,所以点D 、O 、B 在同一直线上,即边OD 与边OB 成一直线.【点睛】本题主要考查角的计算和角平分线的知识点,解答本题的关键是熟练运用角之间的等量关系.22.已知线段10cm AB =,在直线AB 上取一点C ,使16cm AC =,求线段AB 的中点与AC 的中点的距离.解析:13cm 或3cm .【分析】结合题意画出简单的图形,再结合图形进行分类讨论:当C 在BA 延长线上时,当C 在AB 延长线上时,分别依据线段的和差关系求解.【详解】解:①如图,当C 在BA 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点, 所以15cm 2AD AB ==,18cm 2AE AC ==, 所以81513(cm)DE AE AD =+=+=. ②如图,当C 在AB 延长线上时.因为10cm AB =,16cm AC =,D ,E 分别是AB ,AC 的中点,所以15cm 2AD AB ==,18cm 2AE AC ==, 所以853(cm)DE AE AD =-=-=. 综上,线段AB 的中点与AC 的中点的距离为13cm 或3cm .【点睛】本题主要考查了两点间的距离,解决问题的关键是依据题意画出图形,进行分类讨论. 23.P 是线段AB 上任一点,12AB cm =,C D 、两点分别从P B 、同时向A 点运动,且C 点的运动速度为2/cm s ,D 点的运动速度为3/cm s ,运动的时间为t s .(1)若8AP cm =,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明2AC CD =;(2)如果2t s =时,1CD cm =,试探索AP 的值.解析:(1)①3cm ;②见解析;(2)9AP =或11cm.【分析】(1)①先求出PB 、CP 与DB 的长度,然后利用CD=CP+PB-DP 即可求出答案;②用t 表示出AC 、DP 、CD 的长度即可求证AC=2CD ;(2)t=2时,求出CP 、DB 的长度,由于没有说明点D 再C 点的左边还是右边,故需要分情况讨论.【详解】解:(1)①由题意可知:212,313CP cm DB cm =⨯==⨯=,∵8,12AP cm AB cm ==,∴4PB AB AP cm =-=,∴2433CD CP PB DB cm =+-=+-=;②∵8,12AP AB ==,∴4,82BP AC t ==-,∴43DP t =-,∴2434CD DP CP t t t =+=+-=-,∴2AC CD =;(2)当2t =时,224,326CP cm DB cm =⨯==⨯=,当点D 在C 的右边时,如图所示:由于1CD cm =,∴7CB CD DB cm =+=,∴5AC AB CB cm =-=,∴9AP AC CP cm =+=,当点D 在C 的左边时,如图所示:∴6AD AB DB cm =-=,∴11AP AD CD CP cm =++=,综上所述,9AP =或11cm.【点睛】本题考查的知识点是线段的简单计算以及线段中动点的有关计算.此题的难点在于根据题目画出各线段.24.如图,直线AB 与CD 相交于点O ,∠AOE=90°.(1)如图1,若OC 平分∠AOE,求∠AOD 的度数;(2)如图2,若∠BOC=4∠FOB ,且OE 平分∠FOC ,求∠EOF 的度数.解析:(1)135°;(2)54°【分析】(1)利用OC 平分∠AOE ,可得∠AOC =12∠AOE =12×90°=45°,再利用∠AOC+∠AOD=180°,即可得出.(2)由∠BOC=4∠FOB ,设∠FOB=x°,∠BOC=4x°,可得∠COF=∠COB-∠BOF=3x°,根据OE 平分∠COF ,可得∠COE=∠EOF=12∠COF=32x°,即可得出.(1)∵∠AOE=90°,OC平分∠AOE,∴∠AOC=12∠AOE=12×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°-∠AOC=180°-45°=135°,即∠AOD的度数为135°.(2)∵∠BOC=4∠FOB,∴设∠FOB=x°,∠BOC=4x°∴∠COF=∠COB-∠BOF=4x°-x°=3x°∵OE平分∠COF∴∠COE=∠EOF=12∠COF=32x°∵32x+x=90°∴x=36,∴∠EOF=32x°=32×36°=54°即∠EOF的度数为54°.【点睛】本题考查了角平分线的性质、方程思想方法、数形结合方法,考查了推理能力与计算能力.25.如图是一个去掉盖子的长方体礼品盒的展开图(单位:cm).从A,B两题中任选一题作答.A.该长方体礼品盒的容积为______3cm.B.如果把这个去掉盖子的礼品盒沿某些棱重新剪开,可以得到周长最大的展开图,则周长最大为____cm.解析:A:800;B:146【分析】A:根据题意可以得到长方体的长为16宽为10高为5,即可求出体积.B:依据题意展开,计算即可.解:A:根据题意高为20-15=5 宽为15-5=10 长为 26-10=16V=16×10×5=800B:依据题意展开如图周长=5×2+16×6+10×4=146【点睛】此题主要考查了立体图形体积计算及最大展开周长,注意最大展开周长一定是最长棱长最多的.26.已知线段AB=12,CD=6,线段CD在直线AB上运动(C、A在B左侧,C在D左侧).(1)M、N分别是线段AC、BD的中点,若BC=4,求MN;(2)当CD运动到D点与B点重合时,P是线段AB延长线上一点,下列两个结论:①PA PBPC+是定值;②PA PBPC-是定值,请作出正确的选择,并求出其定值.解析:(1)MN=9;(2)①PA PBPC+是定值2.【分析】(1)如图,根据“M、N分别为线段AC、BD的中点”,可先计算出CM、BN的长度,然后根据MN=MC+BC+BN利用线段间的和差关系计算即可;(2)根据题意可得:当CD运动到D点与B点重合时,C为线段AB的中点,根据线段中点的定义可得AC=BC,此时①式可变形为()()PC AC PC BCPA PBPC PC++-+=,进而可得结论.【详解】解:(1)如图,∵M、N分别为线段AC、BD的中点,∴CM=12AC=12(AB﹣BC)=12(12﹣4)=4,BN =12BD =12(CD ﹣BC )=12(6﹣4)=1, ∴MN =MC +BC +BN =4+4+1=9;(2)①正确,且PA PB PC+=2. 如图,当CD 运动到D 点与B 点重合时,∵AB =12,CD =6,∴C 为线段AB 的中点,∴AC =BC ,∴()()22PC AC PC BC PA PB PC PC PC PC ++-+===, 而()()212PC AC PC BC PA PB AC PC PC PC PC+---===,不是定值. ∴①PA PB PC +是定值2.【点睛】本题考查了线段中点的定义和线段的和差计算等知识,正确画出图形、熟练掌握线段中点的定义是解题的关键.27.蜗牛爬树 一棵树高九丈八,一只蜗牛往上爬.白天往上爬一丈,晚上下滑七尺八.试问需要多少天,爬到树顶不下滑?解析:蜗牛需41天才爬到树顶不下滑.【分析】根据题意可知蜗牛一个白天加一个晚上所爬行的路程,即蜗牛每天前进的路程,最后一天,也就是还剩下一丈的时候,他爬到树顶就不再往下滑了,在这之前都是白天爬一丈,晚上下滑七尺八;接下来设需要x 天,爬到树顶不下滑,列出方程即可解答.【详解】设蜗牛需x 天才爬到树顶不下滑,即爬到九丈八需x 天,可列方程(10-7.8)(x -1)+10=98,解得x =41.答:蜗牛需41天才爬到树顶不下滑.【点睛】此题考查一元一次方程的应用,解题关键在于理解题意找到等量关系列出方程. 28.如图,直角三角形ABC 的两条直角边AB 和BC 分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).。
人教版七年级上册数学 几何图形初步单元复习练习(Word版 含答案)
一、初一数学几何模型部分解答题压轴题精选(难)1.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明。
【答案】(1)解:猜想:AB=AC+CD.证明:如图②,在AB上截取AE=AC,连接DE,∵AD为∠BAC的角平分线时,∴∠BAD=∠CAD,∵AD=AD,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠ACB=2∠B,∴∠AED=2∠B,∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+DE=AC+CD.(2)解:猜想:AB+AC=CD.证明:在BA的延长线上截取AE=AC,连接ED.∵AD平分∠FAC,∴∠EAD=∠CAD.在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴△EAD≌△CAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B,∴∠FED=2∠B,∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.【解析】【分析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠AED=∠ACB,∠ACB=2∠B,所以∠AED=2∠B,即∠B=∠BDE,易证DE=CD,则可求得AB=AC+CD;(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.2.综合题(1)ⅰ问题引入如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=________(用α表示);ⅱ拓展研究如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,试求∠BOC的度数________(用α表示).ⅲ归纳猜想若BO、CO分别是△ABC的∠ABC、∠ACB的n等分线,它们交于点O,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=________(用α表示).(2)类比探索ⅰ特例思考如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,求∠BOC的度数________(用α表示).ⅱ一般猜想若BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=________(用α表示).【答案】(1)90°+∠α;120°+∠α;(2)120°-∠α; .【解析】【解答】(1)ⅰ90°+∠α;ⅱ如图②,∵∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,∴∠BOC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=180°-(180°-∠α)=180°-60°+∠α=120°+∠α;ⅲ;( 2 )ⅰ如图③,∵∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,∴∠BOC=180°-(∠DBC+∠ECB)=180°- [360°-(∠ABC+∠ACB)]=180°- [360°-(180°-∠A)]=180°-(180°+∠α)=180°-60°-∠α=120°-∠α.;ⅱ .【分析】(1)ⅰ根据角平分线的定义,可得出∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅱ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果;ⅲ根据∠CBO=∠ABC,∠OCB=∠ACB,可得出∠CBO+∠OCB=(180°-∠A),再在△COB中,利用三角形内角和定理得出∠BOC=180°-(∠CBO+∠OCB),即可得出结果。
人教版初中七年级数学上册第四单元《几何图形初步》复习题(含答案解析)(1)
一、选择题1.给出下列各说法:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个是平的,1个是曲的;③球仅由1个面围成,这个面是平的;④正方体由6个面围成,这6个面都是平的.其中正确的为( ) A .①②B .②③C .②④D .③④2.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60°3.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是A .美B .丽C .云D .南4.如图,工作流程线上A 、B 、C 、D 处各有一名工人,且AB=BC=CD=1,现在工作流程线上安放一个工具箱,使4个人到工具箱的距离之和为最短,则工具箱安放的位置( )A .线段BC 的任意一点处B .只能是A 或D 处C .只能是线段BC 的中点E 处D .线段AB 或CD 内的任意一点处5.一副三角板按如图方式摆放,且1∠的度数比2∠的度数小20︒,则2∠的度数为( )A .35︒B .40︒C .45︒D .55︒6.如图,点O 在直线AB 上且OC ⊥OD ,若∠COA=36°则∠DOB 的大小为( )A .36°B .54°C .64°D .72°7.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A .B .C .D .8.已知线段8AB =,在线段AB 上取点C ,使得:1:3AC CB =,延长CA 至点D ,使得2AD AC =,点E 是线段CB 的中点,则线段ED 的长度为( ). A .5B .9C .10D .169.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ). A .不互余且不相等 B .不互余但相等 C .互为余角但不相等 D .互为余角且相等10.如图,CD 是直角三角形ABC 的高,将直角三角形ABC 按以下方式旋转一周可以得到右侧几何体的是( ).A .绕着AC 旋转B .绕着AB 旋转C .绕着CD 旋转 D .绕着BC 旋转11.如图所示,在∠AOB 的内部有3条射线,则图中角的个数为( ).A .10B .15C .5D .20 12.在钟表上,1点30分时,时针与分针所成的角是( ). A .150°B .165°C .135°D .120°13.下列事实可以用“经过两点有且只有一条直线”来说明的是( ) A .从王庄到李庄走直线最近B .在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C .向远方延伸的铁路给我们一条直线的印象D .数轴是一条特殊的直线14.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有( )A .7个面B .15条棱C .7个顶点D .10个顶点15.下列说法不正确的是( ) A .两条直线相交,只有一个交点 B .两点之间,线段最短C .两点确定一条直线D .过平面上的任意三点,一定能作三条直线二、填空题16.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 17.硬币在桌面上快速地转动时,看上去象球,这说明了_________________. 18.从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下: 站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价____种.19.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.20.科学知识是用来为人类服务的,我们应该把它们用于有意义的方面.下面的这两个情景,请你做出判断.情景一:如图,从教学楼到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所.学数学知识来说明这个问题:_______________________________________________.情景二:农民兴修水利,开挖水渠,先在两端立桩拉线,然后沿线开挖,请你说出其中的道理:________________________________________________________________________________.你赞同以上哪种做法,你认为应用科学知识为人类服务时应注意什么?21.乘火车从A 站出发,沿途经过3个车站方可到达B 站,那么在A ,B 两站之间需要安排不同的车票________种.22.如图,已知OM 是AOC ∠的平分线,ON 平分BOC ∠.若120AOC ︒∠=,30BOC ︒∠=,则MON ∠=_________.23.填空:(1)8.76︒=________︒________'________'';(2)41348︒'''=________︒;(3)36000''=________'=________︒;(4)0.15︒=________'=________''.24.如图,用边长为4cm的正方形,做了一套七巧板,拼成如图所示的一幅图案,则图中阴影部分的面积为_____cm2.25.如图所示,O是直线AB上一点,OD平分∠BOC, ∠COE=90°,若∠AOC=40°,则∠DOE=_________.26.如图,将一副三角板叠放一起,使直角的顶点重合于点O,则∠AOD +∠COB的度数为___________度.三、解答题27.已知线段14AB=,在线段AB上有点C,D,M,N四个点,且满足AC:CD:1DB=:2:4,12AM AC=,且14DN BD=,求MN的长.28.如图,点O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE平分∠BOC.(1)分别写出图中∠AOD和∠AOC的补角(2)求∠DOE的度数.29.如图,长度为12cm的线段AB的中点为M,点C将线段MB分成两部分,且:1:2MC CB ,则线段AC的长度为________.30.如图,O在直线AC上,OD是∠AOB的平分线,OE在∠BOC内.(1)若OE是∠BOC的平分线,则有∠DOE=90°,试说明理由;(2)若∠BOE=12∠EOC,∠DOE=72°,求∠EOC的度数.。
人教版初中七年级数学上册第四单元《几何图形初步》经典复习题(含答案解析)(3)
一、选择题1.如图,已知点C 为线段AB 的中点,则①AC =BC ;②AC =12AB ;③BC =12AB ;④AB =2AC ;⑤AB =2BC ,其中正确的个数是( )A .2B .3C .4D .52.如图所示,OA 是北偏东30°方向的一条射线,若∠AOB =90°,则OB 的方位角是( )A .北偏西30°B .北偏西60°C .北偏东30°D .北偏东60° 3.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为( )A .140°B .130°C .50°D .40°4.如图,90AOB ∠=︒,AOC ∠为AOB ∠外的一个锐角,且40AOC ∠=︒,射线OM 平分BOC ∠,ON 平分AOC ∠,则MON ∠的度数为( ).A .45︒B .65︒C .50︒D .25︒5.如图,已知线段12AB =,延长线段AB 至点C ,使得12BC AB =,点D 是线段AC 的中点,则线段BD 的长是( ).A .3B .4C .5D .66.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°7.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =m ,CD =n ,则AB =( )A .m ﹣nB .m +nC .2m ﹣nD .2m +n8.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π 9.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为( )A .互余B .互补C .相等D .无法确定10.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( ) A .①②B .③④C . ①②④D .①②③④11.如图,图中射线、线段、直线的条数分别为( )A .5,5,1B .3,3,2C .1,3,2D .8,4,112.下列平面图形中不能围成正方体的是( )A .B .C .D .13.高速公路的建设带动我国经济的快速发展.在高速公路的建设中,通常要从大山中开挖隧道穿过,把道路取直,以缩短路程.这样做包含的数学道理是( )A.两点确定一条直线B.两点之间,线段最短C.两条直线相交,只有一个交点D.直线是向两个方向无限延伸的14.如下图,直线的表示方法正确的是()①②③④A.都正确B.只有②正确C.只有③正确D.都不正确15.如图,点O在直线AB上,图中小于180°的角共有()A.10个B.9个C.11个D.12个二、填空题16.如图,点C、D在线段AB上,D是线段AB的中点,AC=13AD ,CD=4cm ,则线段AB的长为_____cm17.请写出图中的立体图形的名称.①_______;②_______;③_______;④_______.18.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式abc-的值是_________.19.若∠A=4817︒',则它的余角是__________;它的补角是___________。
人教版七年级《几何图形初步》期末复习题及答案
七年级上册期末复习资料几何图形初步班级:姓名:一、选择题:将以下各题正确答案的代号填在下表中。
每题 2 分,共 24 分。
1.如图是一个小正方体的睁开图,把睁开图折叠成小正方体后,有“建”字一面的相对面上的字是()建A.和B.谐C.社D.会2.下边左侧是用八块完整同样的小正方体搭成设和谐社的几何体,从上边看该几何体获得的图是()第 1题图会A B C D3.如图,四个图形是由立体图形睁开获得的,相应的立体图形按序是( A. 正方体、圆柱、三棱柱、圆锥B. 正方体、圆锥、三棱柱、圆柱C. 正方体、圆柱、三棱锥、圆锥D. 正方体、圆柱、四棱柱、圆锥根源学|科|网第3题图4.如图,关于直线AB,线段 CD,射线 EF,此中能订交的是(CB A B DA))BAC D F EE FE FA B C D5.下列说法中正确的选项是()A.画一条 3 厘米长的射线B.画一条 3 厘米长的直线C.画一条 5 厘米长的线段D.在线段、射线、直线中直线最长6.如图,将一副三角尺按不一样地点摆放,摆放方式中∠与∠互余的是()ααβββαβαA B C D7.点 E 在线段 CD 上,下边四个等式①CE= DE;② DE=1CD;③ CD=2CE;2④CD=1DE.此中能表示 E 是线段 CD中点的有()2A.1个B.2个C. 3个D.4个8. C 是线段 AB 上一点,D 是 BC 的中点,若 AB = 12cm,AC = 2cm,则 BD 的长为()A. 3cmB. 4cmC. 5cmD. 6cm9.如图是一正方体的平面睁开图,若AB= 4,则该正方体 A、B 两点间的距离为()A. 1B. 2AC. 3D. 410.用度、分、秒表示 91.34°为()第 9题图BA. 91° 20/ 24//B. 91° 34/C. 91° 20/4//D. 91°3/4//11.以下说法中正确的选项是()A.若∠ AOB=2 ∠AOC,则 OC均分∠ AOBB.延伸∠ AOB 的均分线 OCC.若射线 OC、 OD 三等份∠ AOB,则∠ AOC=∠ DOCD.若 OC 均分∠ AOB,则∠ AOC=∠ BOC12.甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法以下:D(B)D CCD 1A B AA 甲甲:将纸片沿对角线AC折叠,使 B 点落在 D 点上,则∠ 1= 45°;乙:将纸片沿 AM 、AN 折叠,分别使 B、D 落在对角线 AC 上的一点关于两人的做法,以下判断正确的选项是()A.甲乙都对B.甲对乙错C.甲错乙对NCPMB乙P,则∠ MAN =45°D.甲乙都错二、填空题:本大题共8 小题,每题 3 分,共 24 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初一数学几何图形初步整理和复习练习题
一、选择题(共4小题)
1. 如图所示的图形分别是由下列几个立体图形展开得到的?按顺序排列正确的是
①圆柱;②长方体;③三棱柱;④正方体.
A. ①②③④
B. ②③④①
C. ③②④①
D. ④②③①
2. 把如图所示的纸片沿着虚线折叠,可以得到的几何体是
A. 三棱柱
B. 四棱柱
C. 三棱锥
D. 四棱锥
3. 如图是某个几何体的展开图,该几何体是
A. 圆柱
B. 圆锥
C. 正方体
D. 三棱柱
4. 时钟指向点分时,时钟指针与分针所夹的锐角是
A. B. C. D.
二、填空题(共3小题)
5. 如图为某几何体的展开图,该几何体的名称是.
6. 如图以为一条边的角有.
7. 一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“我”所在
的面相对的面上所写的字是“”.
三、解答题(共3小题)
8. 如图所示,回答下列问题:
(1)写出能用一个字母表示的角;
(2)写出以点为顶点的角;
(3)图中共有几个小于平角的角?
9. 我们知道,对于一些立体图形问题,常把它转化为平面图形来研究和处理.将棱长为的正方体
摆成如图所示的形状.问:
(1)有几个正方体;
(2)这个几何体的表面积是多少?
10. 如图所示,画出的补角和,比较一下与的大小,概
括一下由此得到的结论.
答案
第一部分
1. D
2. A 【解析】观察展开图可知,几何体是三棱柱.
3. B
4. B 【解析】点分时,时钟指针与分针所夹的锐角是.
第二部分
5. 圆柱
6. ,,
7. 丽
第三部分
8. (1),.
(2),,.
(3)个.
9. (1)个.
(2).
10.
,同角的补角相等.。