锂离子电池三元镍钴锰正极材料研究现状综述
锰酸锂正极材料研究现状评述
![锰酸锂正极材料研究现状评述](https://img.taocdn.com/s3/m/44ca8f1452d380eb62946da2.png)
锰酸锂正极材料研究现状评述摘要锂离子电池是二十世纪末发展起来的一种新型的绿色环保电池。
正极材料作为锂离子电池整体系的锂源,其设计与选材对锂离子电池的发展尤为重要。
目前,对它的研究主要集中在LiNiO2、层状LiCoO2和尖晶石LiMn2O4三种材料及其衍生物上。
三种材料比较之下,Mn资源在自然界中丰富,LiMn2O4的尖晶石相结构又相对稳定,制备简单,且对环境友好,因此,制备性能优良的锰酸锂正极材料,对于锂离子电池的进一步商业化有着重要的意义。
本论文主要对锰酸锂的基本晶体学性质、锰酸锂的生产、制备方法和改性研究进行了描述。
锰酸锂主要是尖晶石结构的LiMn2O4,它是一种典型的离子晶体,具有Fd3m 对称性。
尖晶石结构LiMn2O4价格低、电位高、环境友好、安全性能高,是未来很有前途的环保电池正极材料。
制备尖晶石结构LiMn2O4主要有固相法和液相法。
固相合成法包括:高温固相法、机械化学法、熔盐浸渍法、微波烧结法和固相配位法等。
而液相合成法有:Pechini法、溶胶凝胶法、离子交换法、共沉淀法、水热合成法等。
为改善尖晶石结构的LiMn2O4高温容量衰减和循环性能差的问题,国内外研究人员对尖晶石型正极材料进行大量的改性研究,主要的改性方法有合成工艺改进、掺杂改性和表面修饰。
关键词:锰酸锂正极材料制备容量衰减改性AbstractLithium ion batteries are new type of green environmental protection batteries developed in twentieth century .The positive materials as the lithium source of the whole lithium ion battery , its design and material selection are particularly important for lithium batteries development.At present,the research of this mainly concentrated in the LiNiO2, layer LiCoO2 and spinel LiMn2O4three kinds of materials and its derivatives.Three kinds of materials is under, Mn resources in nature is rich, the LiMn2O4 spinel phase structure and relative stability, simple preparation, and friendly to environment,so,it has important meaning for further commercial lithium ion batteries to prepare excellent properties manganese acid lithium battery anode materials.This thesis mainly describes the basic crystal learn properties, manganese acid lithium production, method of preparation and modification methods of lithium manganese acid.Manganese acid lithium is mainly spinel structure of the LiMn2O4,It is a kind of typical ion crystals, with Fd3m symmetry.Spinel structure LiMn2O4is the very promising environmental protection batteries battery anode materials with low price, high potential, environment friendly, high safety performance .Preparation spinel structure LiMn2O4 main have solid phase method and the liquid phase method.Solid agree the diagnosis include: high temperature solid phase method, mechanization the research method, the plasma-nitriding immersion method, microwave sintering and solid match a method, etc.Liquid synthesis: Pechini method, sol-gel, ion exchange method, total precipitation, hydrothermal synthesis, etc.To improve the problem of high temperature capacity attenuation and circulation of the poor performance of the spinel structure LiMn2O4,Researchers at home and abroad go on a large number of modified for spinel positive materials. The main modification methods are synthetic process improvement, doping modification and surface modification.Key words:LiMn2O4Battery anode materials PreparationCapacity attenuation Modification能源开发是世界各国要保持可持续发展所共同面临的必须解决的课题,可充放电池既是常用电器,如手机、计算机、电动自行车和电动机车的动力源,又可做太阳能和风能转化利用的储电设备。
锂离子电池正极材料的发展现状和研究进展
![锂离子电池正极材料的发展现状和研究进展](https://img.taocdn.com/s3/m/736850e0102de2bd9605886c.png)
作者简介:蒋 兵(1981-),男,助理工程师,主要从事有色金属材料的检验和测试工作。
锂离子电池正极材料的发展现状和研究进展蒋 兵(湖南有色金属研究院,湖南长沙 410015)摘 要:介绍了锂离子电池正极材料钴酸锂、镍酸锂、锰酸锂、磷酸铁锂、钒的氧化物以及导电高聚合物正极材料的发展现状和研究进展。
LiCoO 2在今后正极材料发展中仍然有发展潜力,通过微掺杂和包覆都可使钴酸锂的综合性能得到提高,循环性能大大改善。
环保、高能的三元材料和磷酸铁锂为代表的新型正极材料必将成为下一代动力电池材料的首选。
关键词:锂离子电池;正极材料;磷酸铁锂;三元材料中图分类号:T G146126 文献标识码:A 文章编号:1003-5540(2011)01-0039-04自日本Sony 公司于1990年首先推出以碳为负极的锂离子二次电池产品后,因具有工作电压高、容量大、自放电小、循环性能好、使用寿命长、重量轻、体积小等突出优点,目前,其应用已渗透到包括移动电话、笔记本电脑、摄像机、数码相机等众多民用及军事领域。
另外,国内外也在竞相开发电动汽车、航天和储能等方面所需的大容量锂离子电池。
对锂离子电池而言,其主要构成材料包括电解液、隔膜、正负极材料等。
一般来说,在锂离子电池产品组成部分中,正极材料占据着最重要的地位,正极材料的好坏,直接决定了最终锂离子电池产品的性能指标。
本文将对锂离子电池正极材料的发展现状和研究进展进行综述和探讨。
1 正极材料的选择正极材料在性质上一般应满足以下条件:(1)在要求的充放电电位范围,与电解质溶液具有相容性;(2)温和的电极过程动力学;(3)高度可逆性;(4)在全锂化状态下稳定性好。
其结构具有以下特点:(1)层状或隧道结构,以利于锂离子的脱嵌,且在锂离子脱嵌时无结构上的变化,以保证电极具有良好的可逆性能;(2)锂离子在其中的嵌入和脱出量大,电极有较高的容量,并且在锂离子脱嵌时,电极反应的自由能变化不大,以保证电池充放电电压平稳;(3)锂离子在其中应有较大的扩散系数,以使电池有良好的快速充放电性能。
锂离子电池三元镍钴锰正极材料研究现状综述
![锂离子电池三元镍钴锰正极材料研究现状综述](https://img.taocdn.com/s3/m/85d56fcfad51f01dc281f1cf.png)
三元系锂电池正极材料研究现状摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。
三元系正极材料的结果:LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。
Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。
其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由 6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。
在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。
抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。
在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。
而相对于LiNiO2及LiNi x Co1-x-y O2,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。
同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。
由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸锂的高安全性及低成本等优点,利用分子水平的掺杂、包覆和表面修饰等方法来合成锰镍钴等多元素协同的复合正极材料,因其良好的研究基础及应用前景而成为近年来研究热点之一。
《2024年锂离子电池富锂锰基三元正极材料的研究》范文
![《2024年锂离子电池富锂锰基三元正极材料的研究》范文](https://img.taocdn.com/s3/m/1e844f406ad97f192279168884868762caaebbb8.png)
《锂离子电池富锂锰基三元正极材料的研究》篇一一、引言随着电动汽车、移动电子设备等领域的快速发展,对锂离子电池的性能要求越来越高。
正极材料作为锂离子电池的关键组成部分,其性能的优劣直接决定了电池的整体性能。
富锂锰基三元正极材料因其高能量密度、长循环寿命和低成本等优点,在锂离子电池领域得到了广泛的应用。
本文将重点研究锂离子电池富锂锰基三元正极材料的性能、制备方法及其应用前景。
二、富锂锰基三元正极材料的性能富锂锰基三元正极材料主要由锂、锰、镍等元素组成,其结构稳定、容量高、成本低,是当前锂离子电池领域的研究热点。
该材料具有较高的能量密度和功率密度,能够满足电动汽车、移动电子设备等领域的实际需求。
此外,富锂锰基三元正极材料还具有较好的热稳定性和安全性,能够在高温环境下保持稳定的电化学性能。
三、制备方法目前,制备富锂锰基三元正极材料的方法主要包括固相法、溶胶凝胶法、共沉淀法等。
其中,共沉淀法因其工艺简单、成本低廉等优点,受到了广泛的关注。
在共沉淀法中,通过控制沉淀条件,可以获得粒径均匀、结晶度高的富锂锰基三元前驱体。
随后,经过烧结、破碎等工艺,最终得到所需的正极材料。
四、研究进展及存在问题近年来,针对富锂锰基三元正极材料的研究取得了显著的进展。
在制备工艺方面,研究人员通过优化沉淀条件、调整烧结温度等方法,提高了材料的电化学性能。
在材料改性方面,通过掺杂其他元素、制备复合材料等方法,进一步提高了材料的循环稳定性和安全性。
然而,仍存在一些问题亟待解决。
例如,材料的容量衰减问题、高温性能的进一步提升等。
此外,制备过程中产生的环境污染问题也需要引起足够的重视。
五、解决方案及创新点针对上述问题,我们可以从以下几个方面着手解决:首先,通过深入研究材料的结构和性能关系,优化制备工艺参数,提高材料的电化学性能和循环稳定性。
其次,采用环境友好的制备方法,降低生产过程中的环境污染。
此外,通过材料改性,如掺杂其他元素、制备复合材料等手段,进一步提高材料的性能。
高电压三元正极材料研究现状
![高电压三元正极材料研究现状](https://img.taocdn.com/s3/m/29504b1ba22d7375a417866fb84ae45c3b35c2ce.png)
第50卷第3期 辽 宁化工V〇1.50,No.3 2021 ^-3M_______________________________Liaoning Chemical Industry_____________________________________March,2021高电压三元正极材料研究现状孙宏达,周森,牛犇(东北大学冶金学院,辽宁沈阳110069)摘要:三元锂电池材料主要有以下优点:电池成本低廉,高克容量(>150m A h.f),工作电压与国内现有的电解液完全匹配(4.1 V),安全性好,平台相对钴酸锂、锰酸锂低。
随着高电压比率大容量三元负极材料的不断完善,镍钻锰三元正极材料被认为是当今最接近于能够实现250~300W h'k f电池应用目标的一类三元正极材料。
着重介绍高电压三元正极材料的改性反应过程和机理、目前面临的一些技术难题,分析总结三元正极材料的改性反应研究发展现状。
关键词:高电压;三元;正极材料;改性研究中图分类号:T M911.3文献标识码:A文章编号:1004-0935 (2021 ) 03-0396-04三元电池材料的前驱体正极放射性材料称为镍 钴锰酸锂Li(NiC〇Mn)02,其钴锰酸锂前驱体正极产 物的主要原料为放射性镍、锰、钴盐,其中3种放 射性元素的含量和比例直接影响其电化学性能。
以三元材料钴锰酸锂作为前驱体正极的锰酸锂电池其 正极安全性高,但是其正极的电化学性能与负极的 钴酸锂电池的安全性存在着较大的差异,因此二者 被广泛应用于不同的领域。
目前三元电池材料主要 应用于钴酸锂动力电池以及小型锰酸锂电池。
1研究难题目前普通的三元镇钴锰材料电池相较于钴酸锂 材料的电池可以具有更好的循环充电性能、更高的 充电比重和容量,但是目前的三元材料都是类球形 的二次颗粒的形貌,这样的二次颗粒结构直接导致 了其内部压实的能量和密度较小,从而直接导致了 钴酸锂电池的最大体积能量和密度的降低。
锂离子电池正极三元材料的研究进展及应用
![锂离子电池正极三元材料的研究进展及应用](https://img.taocdn.com/s3/m/1efc85271fb91a37f111f18583d049649a660e5b.png)
锂离子电池正极三元材料的研究进展及应用一、本文概述随着全球能源危机和环境污染问题的日益严重,锂离子电池作为一种高效、环保的能源储存和转换方式,已经在电动汽车、移动电子设备等领域得到了广泛应用。
其中,正极材料作为锂离子电池的重要组成部分,其性能直接影响到电池的能量密度、循环寿命和安全性能。
因此,研究和开发高性能的正极材料是锂离子电池领域的重要研究方向。
本文将对锂离子电池正极三元材料的研究进展和应用进行全面的综述,旨在探讨其发展趋势和未来应用前景。
本文将简要介绍锂离子电池的基本原理和正极材料的重要性。
然后,重点分析三元材料的结构特点、性能优势以及存在的问题和挑战。
接着,综述近年来三元材料在合成方法、改性技术和应用领域的研究进展,包括纳米化、复合化、掺杂等改性手段对三元材料性能的影响。
展望三元材料在未来的发展趋势和应用前景,提出可能的研究方向和建议。
通过本文的综述,旨在为相关领域的研究人员和企业提供有益的参考和启示,推动锂离子电池正极三元材料的研究和应用进一步发展。
二、三元材料的基本性质三元材料,又称为三元正极材料,是锂离子电池中的关键组成部分,对电池的能量密度、功率密度以及循环寿命等性能起着决定性的作用。
其一般化学式可表示为LiNixCoyMn1-x-yO2 (NCM) 或LiNixCoyAlzO2 (NCA),其中x、y、z为各元素的摩尔比例,可根据需要进行调整以优化材料的性能。
高能量密度:三元材料具有较高的比容量,这使得锂离子电池在相同体积或重量下能够存储更多的能量,因此适用于高能量需求的电子设备或电动车等领域。
良好的电化学性能:三元材料具有良好的电子导电性和离子迁移率,这有助于提高电池的充放电效率和循环稳定性。
其结构稳定,能够在充放电过程中保持结构的完整性,减少电池容量的衰减。
安全性:三元材料在高温下具有较好的热稳定性,能够有效防止电池热失控的发生。
同时,其结构中的元素均为无毒或低毒元素,对环境和人体健康影响较小。
毕业论文锂离子电池的现状研究
![毕业论文锂离子电池的现状研究](https://img.taocdn.com/s3/m/385bafe2bb68a98270fefa95.png)
绪论当前世界电池工业的发展有以下3个显著特点:一是绿色环保电池的迅猛发展,包括锂离子电池、氢镍电池、无汞碱锰电池等,这是人类社会发展的需求;二是一次电池向二次电池转化,在一次锂电池的基础上,研究、开发了可充锂离子电池,在碱性锌锰电池的基础上,研究、开发了可充碱锰电池,扣式电池也向可充性发展,这有利于节约地球有限的资源,符合可持续发展的战略;三是电池进一步向小型化、大型化方向发展。
锂离子电池自1990年开发成功以来,由于它具有比能量高、工作电压高、应用温度范围宽、自放电率低、循环寿命长、无污染、安全性能好等独特的优势,特别是聚合物锂离子电池,可以实现可充电池的薄形化。
现已广泛用作袖珍贵重家用电器如移动电话、便携式计算机、摄像机、照相机等的电源,并已在航空、航天、航海、人造卫星、小型医疗仪器及军用通讯设备领域中逐步替代传统的电池。
锂离子电池的应用前景十分广阔,据统计,中国的移动电话用户为全球第一,中国已成为全世界移动电话用户规模最大的国家,并且今后几年的用户还将继续扩大,这表明锂离子电池还有很大的潜在市场。
随着高新技术的发展和人民生活水平的提高,锂离子电池制造技术的进步和电池成本的下降,又将大大加快现代移动通讯和家用电器的发展速度,并促进国防军工、电信技术的发展。
可以预言,锂离子电池将成为21世纪人造卫星、宇宙飞船、潜艇、鱼雷、军用导弹、飞机等现代高科技领域的重要化学电源之一。
受石油危机、空气污染的影响,电动汽车的研制开发甚至产业化成为全世界普遍关注的问题。
据预测未来10~20年将是HEV、EV高速发展阶段。
大容量、高功率的动力型锂离子电池将成为环保型电动汽车的理想电源。
在美国、日本、法国等汽车制造大国,政府所实施的专项计划都在大力推动锂离子动力电池的发展。
我国政府在“十五”“863”计划中设立了电动汽车重大专项,锂离子动力电池是该专项的重点研究内容,通过该专项的实施,我国锂离子动力电池技术得到了极大的提高。
2024年高镍三元正极市场发展现状
![2024年高镍三元正极市场发展现状](https://img.taocdn.com/s3/m/32030848b42acfc789eb172ded630b1c58ee9b5c.png)
高镍三元正极市场发展现状引言在电动汽车等领域的快速发展背景下,高镍三元锂离子电池作为一种重要的能源储存技术,在电池领域备受关注。
正极材料是决定电池性能的关键因素之一,高镍三元正极材料以其高能量密度、高比能量、低自放电率等特点而备受瞩目。
本文将分析当前高镍三元正极市场的发展现状,探讨其面临的挑战和未来的发展前景。
市场规模和增长趋势高镍三元正极市场的规模正在逐渐扩大,其主要受益于电动汽车市场的快速增长。
据统计数据显示,电动汽车销量从2013年的31.7万辆增长到2019年的约226.1万辆,年均复合增长率达到了48.8%。
高镍三元正极材料作为电动汽车电池的重要组成部分,其需求呈现出快速增长的趋势。
主要厂商和产品目前,全球高镍三元正极市场上的主要厂商包括宁德时代、比亚迪、LG化学等。
这些厂商在技术研发、生产能力和市场份额等方面具有一定优势。
宁德时代作为全球最大的动力电池制造商之一,其生产的高镍三元正极材料在市场上具有较大份额。
比亚迪、LG化学等公司也正在不断加大对高镍三元正极材料的研发和生产投入,以满足市场需求。
技术进展和创新高镍三元正极材料的技术进展是推动市场发展的重要因素之一。
近年来,随着科技的不断进步,高镍三元正极材料的电池性能得到了显著提升。
新型结构设计、材料改良和工艺优化等创新技术在提高电池能量密度、延长电池寿命和提高安全性等方面取得了显著成果。
同时,一些新材料的引入也为高镍三元正极市场带来了更多可能性。
挑战和机遇高镍三元正极市场虽然发展迅速,但仍面临着一些挑战。
首先是材料成本的问题,高镍三元正极材料相对于其他材料来说成本较高,如何降低成本仍然是一个亟待解决的问题。
其次是相关技术的限制,目前高镍三元正极材料存在一些问题,如循环寿命较短、温度敏感等,需要进一步研发解决。
然而,面对这些挑战,高镍三元正极市场依然充满着巨大的机遇。
随着科技的迅猛发展,高镍三元正极材料有望在性能和成本方面实现进一步突破,从而推动市场的快速发展。
锂离子电池正极材料的研究进展
![锂离子电池正极材料的研究进展](https://img.taocdn.com/s3/m/4f27a08659f5f61fb7360b4c2e3f5727a4e9245f.png)
锂离子电池正极材料的研究进展随着现代社会科学技术的不断发展,电池作为能量存储和转化的一种形式,已经成为了我们日常生活中必不可少的一部分。
其中,锂离子电池由于其重量轻、体积小、储能量大以及循环寿命长等优点,成为了当前最常用的电池类型之一。
而锂离子电池的核心组成部分便是正极材料,其性能的优劣直接决定了电池的性能。
因此,正极材料的研究一直是锂离子电池领域的重要研究课题。
本文将对锂离子电池正极材料的研究进展进行综述。
一、锂离子电池正极材料的种类及其优缺点在锂离子电池的正极材料中,最常见的是锂钴氧化物(LiCoO2)、锂镍钴铝氧化物(NCA)、锂铁磷酸(LiFePO4)、锂锰氧化物(LiMn2O4)和三元材料LiNi0.33Co0.33Mn0.33O2(NCM)等。
这些材料具有不同的结构,性能和成本等特点,它们的使用也会受到电池的应用领域和终端设备的要求等多种因素的影响。
其中,锂钴氧化物作为第一代正极材料,具有高的储能量和较高的系统电压,但其价格昂贵,含有的钴元素资源匮乏,同时热稳定性和安全性能也有所欠缺;NCA具有高能量密度、长寿命和优异的功率性能,并且所含有的材料成分也比较丰富,但其制备成本较高,同时在高温和高电压下易发生失稳和过热等安全问题;LiFePO4的循环寿命长,热稳定性好,同时价格较为低廉,但它的理论储能量低、电导率差,同时在高功率放电和低温放电等情况下其性能明显下降;LiMn2O4具有低成本、高电导率和热稳定性好等优点,但其含有锰元素,易受到水解和氧气氧化等因素的影响,同时循环寿命也不如其他材料长;NCM作为新型锂离子电池材料,具有高能量密度、优异的耐热性和循环寿命等特点,但其价格较高,同时还存在着容量衰减快和失稳的问题。
总的来说,各种材料都具有各自的特点和适用范围,根据实际需求选择合适的正极材料十分必要。
二、锂离子电池正极材料的研究进展随着人们对新能源和环境保护要求的不断提高,锂离子电池在挑战和追求更高性能的过程中,锂离子电池正极材料也在不断地进行研究和改进。
锂离子电池高镍三元材料的研究进展
![锂离子电池高镍三元材料的研究进展](https://img.taocdn.com/s3/m/20a4030fa9956bec0975f46527d3240c8447a1fb.png)
锂离子电池高镍三元材料的研究进展一、本文概述随着全球能源危机和环境污染问题日益严重,可再生能源的开发和利用受到了广泛关注。
锂离子电池作为一种高效、环保的储能技术,被广泛应用于电动汽车、便携式电子设备等领域。
高镍三元材料(NCA、NMC等)作为锂离子电池正极材料的代表之一,因其高能量密度、低成本等优点,近年来成为了研究的热点。
本文旨在综述锂离子电池高镍三元材料的研究进展,包括其晶体结构、合成方法、性能优化以及应用前景等方面,以期为相关领域的研究提供参考和借鉴。
本文将介绍高镍三元材料的晶体结构和基本性能,阐述其作为锂离子电池正极材料的优势与不足。
将重点综述高镍三元材料的合成方法,包括固相法、溶液法、熔融盐法等,并分析各种方法的优缺点。
在此基础上,本文将进一步探讨高镍三元材料的性能优化策略,如表面包覆、掺杂改性等,以提高其循环稳定性、倍率性能等。
本文将展望高镍三元材料在锂离子电池领域的应用前景,探讨其未来的发展方向和挑战。
通过本文的综述,期望能够为锂离子电池高镍三元材料的研究和应用提供有益的参考和启示,推动该领域的技术进步和发展。
二、高镍三元材料的结构与性能高镍三元材料,通常指的是NCA(镍钴铝)和NMC(镍锰钴)等富镍正极材料,其中镍的含量通常超过50%。
这些材料因其高能量密度和良好的循环性能而受到广泛关注。
高镍三元材料的晶体结构通常为层状结构,属于α-NaFeO₂型六方晶系。
在这种结构中,镍、钴和锰(或铝)离子占据3a位置,氧离子占据6c位置,形成八面体配位。
镍离子因其较高的氧化态(+3或+4)而占据锂层中的部分位置,这有助于提高材料的能量密度。
然而,高镍含量也带来了结构不稳定性的问题,因为镍离子半径较大,容易引起晶格畸变。
高镍三元材料具有较高的比容量和较高的能量密度,这使得它们成为下一代锂离子电池的理想选择。
例如,NCA材料的理论比容量可以达到275 mAh/g,远高于传统的钴酸锂(LCO)材料(约140 mAh/g)。
锂离子电池三元正极材料研究现状
![锂离子电池三元正极材料研究现状](https://img.taocdn.com/s3/m/9341ba7cbf23482fb4daa58da0116c175f0e1eee.png)
锂离子电池三元正极材料研究现状摘要:如今,我国在新能源汽车领域的研究不断深入,目前已经取得一定研究成果。
对于新能源汽车来说,锂离子电池是非常重要的组成部分,其对新能源汽车的发展起到了决定性作用。
为提升锂离子电池性能,国内外都在对其材料进行研究探索。
本文就锂离子电池三元正极材料的发展现状进行了分析,并阐述了三元正极材料的未来发展方向,以期为锂离子电池三元正极材料的发展提供相关参考。
关键词:锂离子电池;三元正极材料;新能源引言能源是人类赖以生存的前提基础,如今全球能源都在不断减少,人们在发展过程中也逐渐意识到了节约能源的重要性,能源危机意识在不断提高。
如果想要实现可持续性的发展,则需对现有的生产方式和生活方式进行优化,减少对于能源的依赖度,通过节约能源的方式来推进社会的发展及进步。
如今人们的生活水平在不断提高,与环境间的矛盾问题也越发突出。
人们在发展过程中致力于实现与环境的和谐发展,因此十分注重对新能源领域的研究。
锂离子电池作为推进新能源汽车发展的重要因素,一直以来都备受人们关注。
1、三元正极材料的现状分析我国对三元正极材料的研究时间并不长,从2016年起,才正式对该领域有深入的研究。
根据相关调查研究显示,发展到2018年的时候,锂离子三元正极材料的生产量相较往年增长了15%,由此可见,2018年是三元正极材料发展的迅猛期。
研究生产三元正极材料的企业也逐渐走向正规,无论是发展规模还是生产模式都逐渐规范成熟。
2019年,我国提出了关于推广新能源汽车的相关财政补贴通告,通告中明确表示,补贴标准会进行减少,在补贴减少的情况下,企业在发展过程中的获利就会减少,企业的研究及生产成本会不断增加。
在该种背景下,以三元正极材料制定的锂离子电池被应用在新能源汽车生产的比例降低了40%,虽然新能源汽车的产量有所下降,但是汽车的销量却逐渐攀升。
之所以会出现该种发展情况,是因为人们的环保意识在不断提高,新能源汽车以其自身具备的多方面优势受到了人们的喜爱,由此可见,新能源汽车具有良好的发展前景。
镍钴锰三元正极材料在锂离子电池中的应用
![镍钴锰三元正极材料在锂离子电池中的应用](https://img.taocdn.com/s3/m/33399b5aa9114431b90d6c85ec3a87c240288a24.png)
镍钴锰三元正极材料在锂离子电池中的应用镍钴锰三元正极材料是近年来发展迅速的新型电池材料之一,在锂离子电池中具有广泛的应用前景。
这种材料具有高容量、高能量密度、长寿命、低成本等优点,在可重复充放电的环境下,具有良好的电化学性能和循环性能。
现在就让我们来深入了解一下镍钴锰三元正极材料在锂离子电池中的应用。
一、镍钴锰三元材料的结构和优缺点首先,我们来了解一下镍钴锰三元材料的结构和性质。
镍钴锰三元材料是由镍(Ni)、钴(Co)和锰(Mn)三种金属元素组成的正极材料。
它的结构为层状锂离子掺杂物的结构,具有较高的电导率和稳定性。
镍钴锰三元材料的容量可以达到200mAh/g以上,充电电压可达4.3V,具有高能量密度和高电压的特点。
与其他材料相比,镍钴锰三元材料有以下几点优缺点:1. 镍钴锰三元材料具有高容量、高能量密度和高电压,可以使电池的能量密度达到最大化。
2. 镍钴锰三元材料的价格较低,相对于钴酸锂材料,价格更具有竞争力。
3. 镍钴锰三元材料可以用于锂离子电池磷酸铁锂正电极材料等其他材料中的改性。
4. 镍钴锰三元材料的缺点是在高温环境下,材料结构会逐渐破坏,导致电池寿命缩短。
二、镍钴锰三元材料在锂离子电池中的应用镍钴锰三元材料是广泛应用于锂离子电池正极材料中的,它可以用于计算机、手机、电动汽车、储能系统、太阳能发电系统等各种设备中。
下面我们将从几个方面来探讨镍钴锰三元材料在锂离子电池中的应用。
1. 电动汽车电动汽车是近年来兴起的一种新能源汽车。
其中锂离子电池是电动车电池组的关键元素,而镍钴锰三元材料是电池正极材料的关键。
在电动汽车中,镍钴锰三元材料可以大大提高电池的续航里程,延长电池的寿命,使电动汽车更加节能环保。
2. 可再生能源储能系统目前可再生能源的开发是全球的热点。
可再生能源储能系统是解决可再生能源波动的最佳途径之一。
在可再生能源储能系统中,必须要使用高效的电池才能保证设备的长期运行,而镍钴锰三元材料正是一种优质的电池材料。
2023年三元正极材料行业市场分析现状
![2023年三元正极材料行业市场分析现状](https://img.taocdn.com/s3/m/758a954df02d2af90242a8956bec0975f465a4e6.png)
2023年三元正极材料行业市场分析现状三元正极材料是一种重要的电池材料,被广泛应用于锂离子电池中。
锂离子电池作为一种高效、环保、可再生能源,已经成为电动汽车、便携式设备等领域的主要能源来源。
在三元正极材料市场上,主要以钴锂酸锰、钴锂酸镍锰、钴锂酸镍等材料为主。
本文将从市场规模、竞争格局和发展趋势等方面分析三元正极材料行业的现状。
首先,三元正极材料市场规模不断扩大。
随着电动汽车和便携式设备市场的快速发展,锂离子电池市场需求持续增长,三元正极材料的市场规模也在逐步扩大。
根据市场研究机构的数据显示,2019年全球三元正极材料市场规模达到了60亿美元,预计到2025年将达到200亿美元以上。
其次,三元正极材料行业竞争格局复杂。
目前,三元正极材料市场主要由亚洲企业主导,中国、韩国和日本的企业在市场份额上占据主导地位。
其中,中国企业凭借其庞大的产能、低成本优势和政府支持,成为全球三元正极材料行业的重要力量。
而韩国企业则以技术创新和产品质量为优势,赢得了一定的市场份额。
再次,三元正极材料行业发展趋势明显。
随着锂离子电池技术的不断成熟和市场需求的增长,三元正极材料市场将继续保持良好的发展势头。
同时,环保和可持续发展也成为行业发展的重要驱动力。
越来越多的企业开始关注材料的可再生性和环境友好性,积极研发新型三元正极材料,以减少对有限资源的依赖和降低对环境的影响。
此外,三元正极材料行业面临一些挑战。
首先是原材料的供应风险。
目前,三元正极材料的主要原材料是钴、镍和锰,但这些原材料价格波动较大,供应不稳定。
此外,钴和镍等金属的开采和提炼过程也存在一定的环境问题,需要加强环境治理。
其次是技术创新的挑战。
随着市场竞争的加剧,企业需要不断提升技术水平,研发出更高性能和更经济的三元正极材料,以满足市场需求。
综上所述,三元正极材料行业市场规模不断扩大,竞争格局复杂,发展趋势明显。
尽管面临一些挑战,但随着技术创新和市场需求的不断增长,三元正极材料行业有望迎来更加广阔的发展前景。
锂电正极材料行业发展现状分析-市场供过于求现状仍持续
![锂电正极材料行业发展现状分析-市场供过于求现状仍持续](https://img.taocdn.com/s3/m/6a3ea52a8f9951e79b89680203d8ce2f006665f8.png)
锂电正极材料行业发展现状分析市场供过于求现状仍持续锂电正极材料行业基本概况锂电池主要由正极材料、负极材料、隔膜和电解液等构成,正极材料在锂电池的总成本中占据40%以上的比例,并且正极材料的性能直接影响了锂电池的各项性能指标,所以锂电正极材料在锂电池中占据核心地位。
目前已经市场化的锂电池正极材料包括钴酸锂、锰酸锂、磷酸铁锂和三元材料等产品。
全球范围来看,锂电池企业主要集中在日本、中国和韩国,相应的锂电池正极材料的生产也主要集中在以上国家。
由于锂电池正极材料生产所需的锂、钴、锰、镍等金属资源丰富,消费类电子产品、新能源汽车等锂电池其下游应用市场迅速扩张,近年来中国锂电池正极材料行业不断发展壮大。
国内锂电正极材料行业集中度较高,已经形成了以京津地区、长江中下游地区和华南地区三大锂电正极材料产业基地。
全球锂电正极材料销售额分析据发布的《锂电池正极材料行业发展前景与投资预测分析报告》最新统计数据显示,2016年全球锂电池出货量达115.41GWh,到2017年达129.15GWh。
预计到2018年全球锂电池出货量将超140GWh。
受锂电池及其下游行业快速发展的驱动,锂电池正极材料增长较为迅猛,2016年全球锂离子电池正极材料销量达到31.74万吨,同比增长42.1%,2011-2016年年均复合增长率为32.17%。
从应用结构看,锂电正极材料市场可以细分为小型锂电正极材料市场和动力锂电正极材料市场。
小型锂电正极材料主要包括钴酸锂、三元材料和锰酸锂,而动力锂电正极材料主要为锰酸锂、磷酸铁锂和三元材料。
2013-2018年全球锂电池出货量情况及预测数据来源:整理201-2016年全球锂电正极材料销售额及增长情况数据来源:整理中国锂电池正极材料市场规模2014-2016年锂离子电池正极材料呈现快速增长的态势,2016年中国的锂电正极材料产值达到217.6亿元,较2015年同比增长43.3%,主要原因是我国新能源汽车市场的爆发性增长,带动了动力型锂电池需求的快速增长。
单晶高镍三元正极材料研究进展
![单晶高镍三元正极材料研究进展](https://img.taocdn.com/s3/m/0161ff58f4335a8102d276a20029bd64783e62dc.png)
单晶高镍三元正极材料研究进展单晶高镍三元正极材料研究进展随着电动汽车市场的快速发展,研究并制造高性能的锂离子电池材料成为了十分重要的研究领域。
其中,正极材料是影响锂离子电池性能的关键因素之一。
近年来,单晶高镍三元正极材料作为锂离子电池新型材料备受关注,并在实际应用中取得了不俗的成绩。
本文将就单晶高镍三元正极材料的研究进展进行综述。
一、单晶高镍三元正极材料概述单晶高镍三元正极材料指的是一类采用氧化镍、钴、锰为基本元素,通过调控材料结构与配方比例等参数,使之呈现单晶结构,用于制造锂离子电池正极材料的一种新型电池材料。
单晶高镍三元正极材料的主要组成成分为Ni、Co和Mn,其晶体结构属于随机固溶体,分别属于岩盐型、红雨石型和层状钠离子石墨型。
该类材料的主要特点包括:高比容量、高能量密度、高充放电速率、较长的循环寿命、低价格等。
其中,高镍部分主要负责提供高比容量和高能量密度,而高钴和高锰部分主要用于提供循环稳定性和充放电速率等性能。
二、单晶高镍三元正极材料制备技术制备单晶高镍三元正极材料的方法主要包括逆微乳液法、高温固相法、溶胶-凝胶法、水热法等。
其中,逆微乳液法是一种能够制得单晶结构材料的有效方法。
该方法基于微乳液高度规则化分子扩散和反应,将镍、锰、钴的前体物在相应的界面反应生成单晶高镍三元材料。
同时,逆微乳液法也能制备出复合材料、组合材料等,具有广泛的应用前景。
三、单晶高镍三元正极材料性能研究单晶高镍三元正极材料自问世以来,其性能研究已成为众多研究者的热点研究领域。
目前已有诸多文献报道该类材料的电化学性能和其内在机理。
其中,研究发现,单晶高镍三元正极材料有着很高的比容量和能量密度,在高倍率放电时性能稳定,在循环寿命方面表现出色,且较低的价格使得其具有广阔的市场应用前景。
不过,由于其特殊的组成和结构,单晶高镍三元正极材料在电化学性能方面也存在着一些问题,如容量衰减速率快、放电平台过低、化学稳定性差等问题。
锂电池镍钴锰三元材料最新研究进展
![锂电池镍钴锰三元材料最新研究进展](https://img.taocdn.com/s3/m/9c35d254571252d380eb6294dd88d0d232d43c4b.png)
锂电池镍钴锰三元材料最新研究进展锂电池镍钴锰三元材料是一种广泛用于储能设备和电动车辆的重要电极材料。
它具有高能量密度、良好的循环寿命和较低的成本等优势,因此备受关注。
近年来,科研人员们不断进行对其性能的改进和优化,以期进一步提高其电化学性能。
本文将综述最新的研究进展,包括材料的改性、表面修饰、结构优化以及应用领域的拓展等方面。
一、材料的改性为了提高锂电池镍钴锰三元材料的电化学性能,研究人员们通过不同的方法进行了材料的改性。
例如,通过钙离子掺杂,可以改善材料的结构稳定性和电导率。
研究发现,Ca2+可以进入材料的晶格中,稳定材料结构,提高电子和离子的迁移率,从而显著提高材料的循环寿命和倍率性能。
二、表面修饰表面修饰是改善材料电化学性能的重要方法之一、研究人员们通过给镍钴锰三元材料进行负载/包覆一些具有高容量和优良电导率的材料,如碳、金属氧化物等,以有效提高电极材料的电化学性能。
此外,表面修饰还可以抑制电极材料与电解液的副反应,减少材料的容量衰减和循环寿命的损失。
三、结构优化结构优化是指通过改变材料的晶体结构和形貌,提高其电化学性能。
研究人员们通过控制材料的颗粒大小、形貌和表面形貌等因素,有效地提高材料的能量密度和循环寿命。
例如,通过控制材料的晶粒大小,可以增加材料的表面积和离子扩散路径,提高材料的离子和电子传输效率,从而提高电池的功率密度和循环寿命。
四、应用领域的拓展锂电池镍钴锰三元材料不仅在储能设备和电动车辆中得到广泛应用,近年来还逐渐拓展到其他领域。
例如,锂电池镍钴锰三元材料在光催化、超级电容器和电催化等方面的应用也引起了研究人员们的关注。
他们通过改变材料的组成和结构,调控其光学和电化学性能,实现了在这些领域中的高效催化和能量转换。
总结起来,锂电池镍钴锰三元材料的研究进展主要包括材料的改性、表面修饰、结构优化以及应用领域的拓展等方面。
通过这些研究,不断优化材料的电化学性能,将进一步推动锂电池技术的发展,为实现可持续发展做出更大的贡献。
锂离子电池三元正极材料镍钴铝酸锂(NCA)的研究进展
![锂离子电池三元正极材料镍钴铝酸锂(NCA)的研究进展](https://img.taocdn.com/s3/m/8707da3cdd36a32d737581d0.png)
1 . 三 元材料 N C A的结构性 能
Li Ni ㈣ Co 015A1 005O 2有
. .
着
与 和 A】 分别 以 2+和 3+价态存在 。
位置 的 N i 2 十 和3 a位置 的 L j 混排现象 , 导 致材 料的充放 电容量降低 。
L i Ni 1 / 3 C o l / 3 A1 1 / 3 O2 类似的a - Na F e O 2
单相层状结构 。 其 中L i 位于层状结构 的 3 a 位置 ,
N i 是材 料 的 主要 活性 物 质之 一 , 在 充放 电过 程 中,Ni 2 和 Ni 4 发 生相
互转 换。
C o 也是材料 的主要活性物质之一 ,
能很好地 稳定材料的层状结构 。 同时 C o 抖的掺入 能够 抑制 Ni 进
含量偏高 ,形成惰性层 ,降低最 终产 品
C o ( O H) : 工 艺 路 线 ,在 火 法 阶段 将
依据国内外动力 电池及其材料研讨 容量 ,同时工艺复杂 ,增加生产成本。 第2 种方案 Al 元素可 以均匀分布 ,
A l 源和 锂 ( L i )源一 起 昆 合 烧 结制 备
铝前驱体材料的技术和装备上水平较为
接近 ,不管 是 Ni 1 一 C o ( OH) 2 还 是 Ni 1 一
一
c o A1 ( OH) 制备工艺路线 ,如 日本住
C 0 A1 ( O H) 2 组成的前驱 体都初步具
① 制 备 Ni C o ( O H) 2 , 然 后 在 友、 日本户田,已进入量产 阶段 。
2 。 3喷 雾干燥 法
喷雾 干 燥法 ” 是将 已经 液化 的 物
淀法 、喷雾干燥法 等。
镍钴锰三元材料
![镍钴锰三元材料](https://img.taocdn.com/s3/m/70121223001ca300a6c30c22590102020740f23a.png)
镍钴锰三元材料
镍钴锰三元材料是一种重要的正极材料,被广泛应用于锂离子电池中。
它具有高比容量、优良的循环稳定性和良好的安全性能,因此备受关注。
首先,镍钴锰三元材料具有高比容量。
由于镍、钴、锰三元材料在充放电过程中能够释放出更多的锂离子,因此其比容量较高。
这意味着在相同体积下,镍钴锰三元材料能够储存更多的电能,使得电池具有更长的续航能力。
这一特性使得镍钴锰三元材料成为锂离子电池的理想选择之一。
其次,镍钴锰三元材料具有优良的循环稳定性。
在充放电循环过程中,材料能够保持较高的电池容量,并且减少极化现象的发生。
这意味着镍钴锰三元材料能够保持电池的稳定性能,延长电池的使用寿命,降低电池更换的频率,从而降低了整体的使用成本。
另外,镍钴锰三元材料具有良好的安全性能。
由于其化学稳定性较高,能够有效地抑制电池的热失控现象,降低电池的自燃和爆炸风险。
这一特性使得镍钴锰三元材料成为安全性能较高的正极材料,广泛应用于电动汽车、储能设备等领域。
综上所述,镍钴锰三元材料作为一种重要的正极材料,具有高比容量、优良的循环稳定性和良好的安全性能,因此在锂离子电池领域具有广泛的应用前景。
随着科技的不断进步和发展,相信镍钴锰三元材料将会在未来发挥更加重要的作用,为电池领域的发展做出更大的贡献。
锂离子电池正极材料研究进展
![锂离子电池正极材料研究进展](https://img.taocdn.com/s3/m/209588a018e8b8f67c1cfad6195f312b3169eb0f.png)
锂离子电池正极材料研究进展
锂离子电池作为当前主流的电池类型之一,在移动电子设备、电动汽车、储能系统等领域有着广泛的应用。
其中,正极材料作为锂离子电池的关键组成部分,直接影响着电池的能量密度、循环寿命和安全性能。
因此,对锂离子电池正极材料的研究一直备受关注。
本文将从目前锂离子电池正极材料的研究现状和未来发展方向两个方面进行探讨。
首先,当前锂离子电池正极材料的研究主要集中在钴酸锂、镍酸锂、锰酸锂和钛酸锂等化合物上。
这些化合物具有较高的比容量和较高的工作电压,但同时也存在着价格昂贵、资源紧缺和安全性能差的缺点。
因此,研究人员开始转向新型正极材料的开发,如锰基氧化物、钴基磷酸盐、钛基氧化物等。
这些材料具有丰富的资源、低成本和良好的安全性能,是未来锂离子电池正极材料的发展方向之一。
其次,未来锂离子电池正极材料的研究将主要集中在提高能量密度、延长循环寿命和提高安全性能三个方面。
在提高能量密度方面,研究人员将重点关注多元化合物的设计和合成,以提高材料的比容量和工作电压。
在延长循环寿命方面,研究人员将致力于减少材料在充放电过程中的结构变化和粒径变化,以提高材料的循环稳定性。
在提高安全性能方面,研究人员将着重于提高材料的热稳定性和耐高温性能,以降低电池的热失控风险。
综上所述,锂离子电池正极材料的研究正处于快速发展的阶段,新型正极材料的开发和现有材料性能的改进将成为未来的研究重点。
随着材料科学和能源领域的不断进步,相信锂离子电池正极材料的研究将为电池技术的发展和应用带来新的突破。
希望本文对锂离子电池正极材料的研究有所帮助,也期待未来能够有更多的科研成果为电池技术的发展做出贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三元系锂电池正极材料研究现状摘要:综述了近年来锂离子电池层状Li-Ni-Co-Mn-O正极材料的研究进展,重点介绍了正极材料LiNi l/3Co l/3Mn l/3O其合成方法电化学性能以及掺杂、包覆改性等方面的研究结果。
三元系正极材料的结果:LiMn x Co y Ni1-x-y O2具有α-2NaFeO2层状结构。
Li原子占据3a位置,Ni、Mn、Co随机占据3b位置,氧原子占据6c位置。
其过渡金属层由Ni、Mn、Co 组成,每个过渡金属原子由6 个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的(MnxCo yNi1-x-y) O2层之间。
在层状锂离子电池正极材料中均有Li+与过渡金属离子发生位错的趋势,特别是以结构组成中有Ni2+存在时这种位错更为突出。
抑制或消除过渡金属离子在锂层中的位错现象是制备理想α-2NaFeO2结构层状正极材料的关键,在LiMn x Co y Ni1-x-y O2结构中, Ni2+的半径( rNi2+=0.069nm)与Li+的( rLi+=0.076nm)半径接近,因此晶体结构会发生位错,即过渡金属层中的镍原子占据锂原3a的位置,锂原子则进驻3b位置。
在Li+层中,Ni2+的浓度越大,则Li+在层状结构中脱嵌越困难,电化学性能越差。
而相对于LiNiO2及LiNi x Co1-x-y O2 ,LiMn x Co y Ni1-x-y O2中这种位错由于Ni 含量的降低而显著减少。
同时由于Ni2 + 的半径( rNi2 + =0. 069nm) 大于Co3+ ( rCo3+ = 0. 0545nm) 和Mn4 + ( rMn4 + =0. 053nm) ,LiMnxCo yNi1 - x - yO2 的晶格常数有所增加。
由于充分综合镍酸锂的高比容量、钴酸锂良好的循环性能和锰酸锂的高安全性及低成本等优点,利用分子水平的掺杂、包覆和表面修饰等方法来合成锰镍钴等多元素协同的复合正极材料,因其良好的研究基础及应用前景而成为近年来研究热点之一。
对于LiMn x Co y Ni1- x-y O2材料来说,各元素的比例对其性能有显著的影响。
Ni的存在能使LiMn x Co y Ni1-x-y O2的晶胞参数a和c值分别增加, c/a减小,晶胞体积增大,有助于提高材料的可逆嵌锂容量。
但过多Ni2+的存在又会因为位错现象而使材料的循环性能变差。
Co 能有效稳定复合物的层状结构并抑制3a与3b位置阳离子的混合,即减小Li层与过渡金属层的阳离子混合,从而使锂离子的脱嵌更容易,并能提高材料的导电性以及改善其充放电循环性能; 但随Co 的比例增大,晶胞参数中的c和a值分别减小(但c/ a值增加) ,晶胞体积变小,导致材料的可逆嵌锂容量下降。
而引入Mn后,除了能大幅度降低成本外,还能有效改善材料的安全性能。
但Mn 的含量太高则容易出现尖晶石相,从而破坏材料的层状结构。
LiNi1/3Co1/3Mn1/3O2的电化学特征LiNi1/3Co1/3Mn1/3O2作为锂离子电池正极材料在充电过程中的反应有以下特征:(1)在3.75-4.54V之间有两个平台且容量可以充到250Ma.h/g,为理论容量的91%。
(2)通过XANES和EXAFS分析得到3.9V左右为Ni2+/Ni3+,在3.9V-4.1V之间为Ni3+/Ni4+。
当高于4.1V时,Ni4+不再参与反应。
(3)Co3+/Co4+与上述两个平台都有关。
(4)充到4.7V时Mn4+没有变化,因此Mn4+只是作为一种结构物质而不参与反应。
通过其在3.0-4.5V的循环伏安图可以看出LiNi1/3Co1/3Mn1/3O2第一次在4.289V有一不可逆阳极氧化峰,对应于第一次不可逆容量。
在3.825V有一阳极氧化峰,这一对氧化还原峰在反复扫描时,峰电位和峰强度都保持不变,说明这种材料具有良好的稳定性。
合成方法对LiNi1/3Co1/3Mn1/3O2电化学性能的影响LiNi1/3Co1/3Mn1/3O2的制备方法主要有固相法,共沉淀法,溶胶-凝胶法和喷雾热解法。
固相法固相法是将计量比例的锂盐,镍和钴及锰的氧化物或盐混合,在高温下处理,由于固相法中Ni,Co,Mn的均匀混合需要相当长的时间,因此一般要在1000℃以上处理才能得到性能良好的LiNi1/3Co1/3Mn1/3O2正极材料。
通过EXAFS研究,发现首次放电效率小是由于在放电过程中,Ni4+没有完全还原成Ni3+造成的。
金属乙酸盐与锂盐混合烧结—有机盐Cheng等人将充分混合的化学计量的LiCH3COO•2H2O、Ni(CH3COO)4H2O、Mn(CH3COO)2•4H2O 和Co(CH3COO)2•4H2O混合物加热到400 ℃2•得到前驱体。
球磨1h,然后在空气中加热到900℃并保温20h得到LiNi1/3Co1/3Mn1/3O2 粉末,在充电电流密度为20mAh/g 时,首次充电容量为176 mAh/g ,上限电压达4. 5V ,在50℃下循环35 次容量保持率为81 %以上,显示出较好的循环性能。
金属氧化物与锂盐混合烧结Zhaoxiang Wang等人将化学计量的Ni2O3(85%)、Co2O3 (99%) 和MnO2与7%过量的LiOH•H2O充分混合后在850~1100℃烧结24h得到纯相的LiNi1/3Co1/3Mn1/3O2,其晶格参数为a=0.28236nm , c =1.44087 nm,XRD 衍射图谱说明产物具有a-NaFeO2型层状结构,晶型完美,电化学性能测试表现出良好的电化学性能。
金属氢氧化物与锂盐混合烧结Naoaki等人将Ni(OH)2、Co(OH)2和Mn(OH)2按Co∶Ni∶Mn =0.98∶1.O2∶0.98 充分混合,球磨,在150℃下预热1h ,然后在空气中加热到1000℃烧结14h得到LiNi1/3Co1/3Mn1/3O2,其晶格参数为a= 0.2862nm, c=1.4227nm与计算的理论结果(a = 0.2831 nm , c = 1.388nm)接近,LiNi1/3Co1/3Mn1/3O2的晶胞体积为100.6×10-30m3 ,其值在LiCoO2和LiNiO2之间。
组装成实验电池后,在30℃下,在充电电流密度为0.17 mA/cm2时,在2.5~4.6 V放电,充电容量为200mAh/g ,并表现出优异的循环性能。
共沉淀法用氢氧化物作沉淀剂Lee 等人以NiSO4、CoSO4、MnSO4和NaOH为原料,以NH4OH为络合剂合成球形Ni1/3Co1/3Mn1/3(OH)2前驱体,然后与LiOH•H2O充分混合,烧结得到层状球形的LiNi1/3Co1/3Mn1/3O2粉末。
组装成实验电池,2.8~4.3V,2.8~4.4和2.8~4.5V电压围LiNi1/3Co1/3Mn1/3O2放电比容量分别为159 ,168 mAh/g和177 mAh/g ,并且在30℃时在20 mAh/g的电流密度下具有优异的循环性能。
用碳酸盐作沉淀剂禹筱元等人采用共沉淀法以NH4HCO3和Na2CO3为沉淀剂合成Ni、Mn、Co三元共沉淀前驱体,然后与Li2CO3球磨混合,在950℃下热处理20h ,冷却到室温得产物为球形或近球形形貌,颗粒均匀的LiNi1/3Co1/3Mn1/3O2正极材料。
测得LiNi1/3Co1/3Mn1/3O2材料的晶格常数为a=0.2866nm, c=1.4262nm电性能测试表明Li/LiNi1/3 Co1/3Mn1/3O2在2.8~4.6 V、0.1 C下的首次放电比容量为190.29 mAh/g,在2.75~4.2V、1 C下的初始放电比容量为145.5 mAh/g ,循环100次后容量保持率为98.41 %。
溶胶-凝胶法溶胶-凝胶法是将有机或无机化合物经溶液,水解等过程形成溶胶,在一定条件下凝胶化等过程而发生固化,然后经热处理制备固体氧化物的方法。
此法制备的产物具有化学成分均匀、纯度高、颗粒小、化学计量比可以精确控制等优点,有利于材料晶体的生成和生长,可以降低反应温度,缩短反应时间。
Kim等人,将Ni(CH3COO)2•4H2O、Mn (CH3COO)2•4H2O和Co(CH3COO)2•4H2O溶解到蒸馏水中,用乙醇酸作为络合剂,在反应过程中滴加NH4OH 来调节pH 值在7.0~7.5之间,然后将反应体系在70~80℃下蒸发得到粘性的透明胶体。
将胶体在450℃于空气中烘5 h得到粉末,球磨后于950℃烧结,并保温20 h ,淬冷至室温,得到非化学计量的Li [Li0.1Ni0.35–x/2Co x Mn0.55–x/2]O2(0≤x ≤0.3)。
经电性能测试,在 2.5~4.6V之间循环有较高的放电容量为:184~195 mAh/g ,表现出优异的电化学性能。
喷雾热解法De-Cheng等人用喷雾干燥法制备Li/LiNi1/3Co1/3Mn1/3O2。
将用蒸馏水溶解的LiNO3,Ni(CH3COO)2•4H2O、Mn(CH3COO)2•4H2O和Co(CH3COO)2•4H2O 作为最初的溶液。
将溶液抽到微型的喷雾干燥仪中,制得前驱体。
首先将前驱体加热到300℃,然后于900℃烧结,并保温20h得到LiNi1/3Co1/3Mn1/3O2粉末,在充电电流密度为20mAh/g时, 首次充电容量为208mAh/g ,充电电压达4.5 V,在50℃下循环35次容量保持率为85%以上,显示出较好的循环性能。
LiNi l/3Co l/3Mn l/3O2的修饰改性由于Ni2+与Li+半径相近,在LiNi l/3Co1/3Mn l/3O2中仍然存在阳离子混排现象,导致电化学性能变差。
为了消除或抑制阳离子混排现象,GH.Kim等选择Mg分别对LiNi l/3Co1/3Mn1/3O2中Ni、Co、Mn元素进行取代。
Mg取代过渡金属在不同程度上减少了阳离子混排现象。
当掺杂Mg取代部分的Ni或Co位时,会导致容量的减少,循环性能变差。
当掺杂Mg取代部分的Mn位时,材料LiNil/3CO1/3Mnl/3O2的比容量、循环性能和在高氧化态下的热稳定性都得到提高。
掺杂Ti可以提高材料LiNiO2在充电状态下的热稳定性,因此研究者在LiNi1/3Co1/3Mn1/3O2中引进Al、Ti元素,实验结果表明,掺杂Al、Ti对LiNi l/3Co1/3Mn l/3O2的结构没有改变,随着Al、Ti掺杂量的增加,只有参数有轻微的变小。
掺杂Al、Ti取代部分Co会升高放电电压平台,提高材料在4.3V 下的热稳定性。
Ti的加入同样可以提高LiNi l/3Co1/3Mn l/3O2材料在4.3V下的热稳定性。