稀土发光材料的研究现状与应用(综述)
稀土材料在纳米荧光材料中的应用与研究现状
稀土材料在纳米荧光材料中的应用与研究现状引言纳米材料是指在尺寸范围为纳米级别的材料,具有优异的光学、电学、热学等性质。
纳米荧光材料作为一种重要的纳米材料,具有较强的荧光特性,可广泛应用于生物医学、能源、电子器件等领域。
而稀土材料由于其特殊的电子结构和能带特性,被广泛用于纳米荧光材料的研究和应用中。
本文将对稀土材料在纳米荧光材料中的应用和研究现状进行综述。
稀土材料的特性稀土材料是指具有原子编号57至71的元素,也称为镧系元素。
稀土材料由于其特殊的电子结构和能带特性,具有以下几个特点:1.显著的光学性质:由于稀土元素的内层电子结构,稀土材料可以发出强烈的荧光,具有较长的激发和发射寿命,适用于纳米荧光材料的制备。
2.宽波段光谱特性:稀土材料可以在可见光范围内发射多种颜色的荧光,可以根据需求调控其发射波长,实现多色发光应用。
3.高量子效率:稀土材料的荧光量子效率一般较高,可以提供较强的荧光信号,在生物标记和荧光探针方面具有广阔的应用前景。
稀土材料在纳米荧光材料中的制备方法稀土材料在纳米荧光材料中的应用主要通过合成纳米荧光材料的方法实现。
常见的制备方法包括溶剂热法、共沉淀法、气相沉积法等。
以下是几种常见的制备方法:1.溶剂热法:将稀土盐、有机溶剂和表面活性剂加热并搅拌反应,经过一系列的步骤,生成纳米荧光材料。
2.共沉淀法:将稀土盐和其他金属盐溶解在水中,调节pH值,添加沉淀剂,生成沉淀,经过煅烧后得到纳米荧光材料。
3.气相沉积法:将稀土金属有机化合物气体引入反应室中,经过一系列的化学反应,生成纳米荧光材料。
稀土材料在生物医学领域的应用稀土材料在生物医学领域的应用主要体现在生物标记、光动力疗法和生物成像等方面。
1.生物标记:通过将稀土材料与生物分子(如抗体、核酸等)结合,可以实现对生物分子在细胞和组织中的定位和追踪,用于疾病诊断和治疗。
2.光动力疗法:将稀土材料作为光敏剂,通过激活产生的荧光来产生活性氧,进而实现光动力疗法,广泛应用于肿瘤治疗等领域。
稀土发光材料的研究进展
前言当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。
我国丰富的稀土资源,约占世界已探明储量的80%以上。
稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。
稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。
稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。
就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。
由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。
由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。
在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。
稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。
稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。
随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。
进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。
所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。
我国稀土发光材料产业现状与展望
我国稀土发光材料产业现状与展望稀土发光材料是一种应用十分广泛的新型材料,具有发光效果突出、色彩鲜艳、发光效率高等特点,被广泛应用于LED显示屏、照明、荧光材料、显示器等领域。
我国是全球最大的稀土产出国家,稀土资源丰富,但在稀土发光材料产业方面,与其他发达国家相比,仍存在一定的差距。
当前,我国稀土发光材料产业取得了快速发展。
随着国家对环境保护和能源节约的重视,以及新兴产业的崛起,LED照明行业快速发展。
稀土发光材料作为LED的重要组成部分,需求不断增加,市场规模巨大。
目前,中国的稀土发光材料企业已经形成规模,部分企业具有一定的研发能力和生产规模,也取得了一些技术突破。
然而,我国稀土发光材料产业仍存在一些问题和挑战。
首先,技术水平相对滞后,特别是在高纯度和高效率发光材料方面,与国外先进水平相比仍有差距。
其次,市场竞争激烈,很多中小企业利润空间较小,产品同质化现象较为严重,缺乏核心竞争力。
再次,环保压力加大,稀土开采和生产过程中的污染问题亟待解决。
最后,与其他国家相比,我国的稀土发光材料企业创新能力和国际市场开拓能力较弱。
面对这些问题,我国稀土发光材料产业需要采取一系列措施来推动行业的发展。
首先,加强技术研发,提高核心技术水平和创新能力,加大在高纯度和高效率发光材料方面的研究力度,提高产品质量和市场竞争力。
其次,加强企业之间的合作,减少同质化竞争,实现优势互补,提高行业整体竞争力。
再次,加大环保投入和力度,改善生产过程中的环境污染问题,提高企业的可持续发展能力。
此外,政府也应加大对稀土发光材料产业的支持力度,制定相关政策和措施,促进行业的健康发展。
展望未来,我国稀土发光材料产业有着巨大的发展潜力。
随着全球环境保护和能源节约意识的提高,LED照明市场需求将继续增加,稀土发光材料的市场规模将进一步扩大。
同时,我国正在推进智能制造和新材料产业的发展,稀土发光材料作为应用领域广泛的新型材料,将在新兴产业中发挥更重要的作用。
稀土元素在发光材料中的应用
稀土元素在发光材料中的应用一、引言稀土元素是指地壳中含量较少的一类金属元素,包括镧系、钪系、钫系和铕系元素。
这些元素在自然界中分布稀少,但却在发光材料、催化剂、磁性材料等领域表现出卓越的性能,其中在发光材料中的应用尤为突出。
本文将就稀土元素在发光材料中的应用进行深入探讨。
二、稀土元素的特性稀土元素具有较宽的4f电子能级、较强的光吸收和发射能力,以及丰富的能级结构。
这些特性赋予稀土元素在发光材料中优异的发光性能。
此外,稀土元素的化学性质活泼,易于形成多种化合物,使其在发光材料中具有广泛的应用前景。
三、稀土元素在LED领域的应用随着LED技术的飞速发展,稀土元素在LED领域的应用也变得愈发重要。
例如,铯铷镧钼绿色荧光体可用于制备高亮度的绿光LED,镧钒氧化物则可用于制备红光LED,而氧化铈则可增强LED的稳定性和光电转换效率。
稀土元素的加入不仅拓宽了LED的发光波长范围,还提高了LED的发光效率和稳定性。
四、稀土元素在荧光粉领域的应用稀土元素的发射光谱范围广泛,且可调谐,使其在荧光粉领域具有巨大的应用潜力。
例如,铕离子可发出红光,铽离子可发出蓝光,镨离子可发出绿光,它们的荧光性能优异,可用于制备高亮度的荧光体和荧光标记剂。
此外,稀土元素的发光机制独特,可用于设计和制备具有特定发光特性的荧光粉材料。
五、稀土元素在激光材料领域的应用稀土元素在激光材料领域的应用也备受关注。
例如,钇铝石榴石晶体中掺杂少量铒离子可产生红外激光,铽离子可产生绿光激光,钇钨酸盐晶体中掺杂三价镱离子可产生蓝光激光。
这些激光材料具有较高的光学性能和热学性能,可用于制备稳定、高效的激光器件。
六、稀土元素在发光材料中的未来发展随着科学技术的不断进步,稀土元素在发光材料中的应用前景将更加广阔。
未来,可以通过控制稀土元素的配位环境、晶体结构和掺杂浓度来优化发光材料的性能。
同时,可以开发新型的稀土元素化合物,如钡钙钛矿结构的发光材料、尖晶石结构的发光材料等,以提高发光材料的发光效率和发光稳定性。
稀土元素在发光材料中的应用及其发光性能研究
稀土元素在发光材料中的应用及其发光性能研究1.引言发光材料是一类在外界激发下能够发出可见光的材料,其在照明、显示、激光、生物医学等领域具有广泛的应用。
稀土元素作为一类特殊的元素,在发光材料中扮演着重要的角色。
本文将探讨稀土元素在发光材料中的应用及其发光性能研究。
2.稀土元素在发光材料中的应用稀土元素具有较高的原子序数和复杂的能级结构,使其在发光材料中具有独特的发光性能。
稀土元素常被用于制备荧光粉、磷光体、荧光玻璃等发光材料。
以镝、钬、铒、钆等为代表的稀土元素在不同的发光材料中展现出不同的发光行为,例如镝离子表现出红色荧光、钬离子表现出蓝色荧光等。
通过调控稀土元素的掺杂浓度、晶体结构等因素,可以实现针对性地调节发光颜色和发光强度,满足不同应用领域的需求。
3.稀土元素发光性能研究稀土元素发光性能的研究是深入了解其在发光材料中的作用机制和性能表现的关键。
研究表明,稀土元素的发光性能受多种因素影响,包括晶体结构、掺杂浓度、激发光源等。
例如,通过增加稀土元素的掺杂浓度,可以提高发光材料的发光效率和色纯度;通过选择合适的晶体结构,可以改善发光材料的光学性能;通过设计合适的激发光源,可以实现更高强度的发光效果。
此外,稀土元素的能级结构和跃迁规律也对发光性能起着决定性的作用,深入研究这些规律对于提升发光材料性能具有重要意义。
4.稀土元素的应用案例稀土元素在发光材料中的应用案例丰富多样,涉及照明、显示、激光等多个领域。
以镝为例,其在LED照明中的应用已经成为主流。
镝离子作为红色荧光发射剂,可以实现LED的白光变色效果,提高照明品质;钆和铒等稀土元素在激光器件中的应用也取得了显著的效果,为激光技术的发展提供了关键支持。
随着稀土元素在发光材料中的研究不断深入,其应用领域将进一步拓展,为科技发展和产业升级注入新动力。
5.结论稀土元素在发光材料中的应用及其发光性能研究具有重要意义,对于推动发光材料技术的发展具有深远影响。
稀土发光材料的研究现状与应用
稀土发光材料的研究现状与应用稀土元素泛指周期表中镧系元素和铀系元素。
由于其特殊的电子结构和能级分布,稀土元素具有丰富的电子激发态和能级跃迁,这就为稀土发光材料提供了丰富的能量转换机制。
稀土离子的特殊能级结构使其在吸收光子能量后能够产生特定波长的发光。
根据不同的发射能级,稀土发光材料可以发出可见光、近红外光、红外光等不同波长的光。
此外,稀土发光材料还具有高发光效率、良好的光稳定性和长寿命等特点,对于实现高效照明、高亮度显示和高效能量转换等应用具有重要意义。
稀土发光材料的研究主要集中在以下几个方面。
首先,研究人员致力于寻找更高效的稀土发光材料。
例如,通过掺杂其他元素或设计新的晶体结构,可以调节稀土发光体系的能级结构,提高发光效率和发光强度。
其次,研究人员还在尝试制备具有宽带谱发光特性的稀土发光材料,以满足不同应用领域对光谱范围的需求。
例如,近红外光发射材料在生物医学成像、激光雷达等领域有着广阔的应用前景。
此外,稀土离子的发光性能还受到晶体结构、掺杂浓度、官能团的影响,对于这些因素的研究也是当前的热点。
稀土发光材料在实际应用中有着广泛的应用。
首先,稀土发光材料可以应用于照明领域。
以氧化物为基底的稀土发光粉体能够转换蓝光到黄、橙和红光,从而实现白光发射,被广泛应用于LED照明中。
其次,稀土发光材料可以在显示技术中发挥重要作用。
使用稀土发光材料作为背光源,可以实现彩色液晶显示器中的亮度和颜色的调节。
此外,稀土发光材料还可以应用于激光器、太阳能电池、荧光生物探针等领域。
值得注意的是,在稀土发光材料的研究和应用中,有一些挑战需要克服。
首先,稀土元素的资源稀缺,价格较高,因此如何提高稀土利用率,降低生产成本是一个重大问题。
其次,稀土发光材料在发光效率和发光强度等方面仍然有一定的改进空间,需要进一步深入研究和优化设计。
此外,稀土发光材料在光稳定性和长寿命方面也需要进一步提升,以满足实际应用的需求。
综上所述,稀土发光材料在光电子器件、照明、显示、激光器和生物医学等领域具有广泛的应用前景。
稀土发光材料的应用
稀土发光材料的应用
稀土发光材料是指通过稀土元素掺杂后引入的缺陷能级,使材料在光激发下发生能级跃迁而发光的材料。
下面是稀土发光材料的应用:
一、发光材料
稀土发光材料可以应用于照明、显示、信息传输等领域。
比如,氧化铈中的氧空位能被Eu3+、Tb3+、Sm3+等元素作为宿主掺入,形成的材料可发出蓝、绿、红光,可以用于制备白光发光材料。
二、激光材料
稀土发光材料可以用于制备激光器。
比如,利用掺铒光纤和掺铒光纺织品,可以制备出具有985nm高能量激光输出的掺铒光纤激光器和几乎纯绿光输出的掺铒光纺织品激光器。
三、太阳能电池材料
稀土发光材料还可以用于制备太阳能电池。
比如,利用掺钕低聚物复合电解质,在太阳光的作用下,钕离子能够吸收能量,从而提高太阳能电池的转化效率。
四、光催化材料
稀土发光材料可以用于制备光催化材料。
比如,添加掺铈或掺钕的TiO2材料,在紫外光作用下能够吸收氧气,形成氧化亚氮和羟基自由基,从而具有良好的光催化性能。
五、生物传感材料
稀土发光材料还可以用于生物传感。
比如,利用荧光探针的特性,可以在细胞分子层面上进行生物分析和检测,稀土发光体系中的长发射寿命和独特的能量级分布也使其在分子分析中具有广泛的应用前景。
综上所述,稀土发光材料的应用领域十分广泛,具有重要的科学研究价值和应用前景。
掺稀土发光材料工艺类文献综述
文献综述课题名称:掺杂的稀土发光材料的研究课题类型:工程设计姓名:学号:学院:专业:年级:级指导教师:2011年12月30日掺杂的稀土发光材料的研究中文摘要简述掺杂稀土发光材料的发展进程及趋势,掺杂稀土三基色发光荧光粉的发现及对其组成、技术现状、还需重大突破的问题和技术研究发展方向。对阴极射线管荧光粉的兴起和衰落作了简单描述,阐述了稀土与有机和无机化合物掺杂形成发光材料的制作工艺,分析稀土掺杂浓度与稀土发光强弱的的关系。重点介绍氟化物转换发光材料方面的研究,如用水热法合成不同掺杂浓度Er3+ 、Tm3+ 和Yb3+ 的YLiF4 材料并研究Er3+ 、Tm3+ 和Yb3+ 在材料中的光吸收,同时在980 nm 红外光激发下样品的上转换发光特性。利用正己醇或正己烷制成W/O微乳反胶团体系制备Gd2o3:Yb,Er上转换材料,在980nm 的红外光激发下,改变掺杂元素Yb和Er的比例,观察发现氧化物粉体发射出绿色和红色比例的上转换荧光,并分析其发生的原因。而后对掺杂稀土发光材料国内外研究成果进行综述,简述了它几个研究应用方向,还需突破的问题。关键词:掺杂的稀土发光材料稀土荧光粉三基色荧光粉 Er3+ Yb 3+ 转换发光材料氟化物THE RESERCH OF RARE EARTH LUMINESCENTMATERILSAbstractAn understanding of the history and development of a technology can be a tremendous aid in properly utilizing it for a given application. a brief history and overview is given for the rare earth luminescent materials tell the rare earth luminescent material research present situation,the rare earth luminescent material research progress,the rare earth luminescent material application,the rare earth luminescent material future forecasts several aspects to carry on the summary to the rare earth luminescent matenal.the rare earth luminescent material widely applies in the illumination,demonstration and examines three big domains,has formed the very big industrial production and the expense market scale,and forward emerging domain development.Key words: the rare earth luminescent material present situation apply future forecasts一、课题国内外现状自从1964年美国发明高效YVO4∶Eu和Y2O3∶Eu红色荧光粉和1968年Y2O2S∶Eu红色荧光粉[1,2],并很快应用于彩色电视显象管(CRT)中,对稀土离子发光及其发光材料基础研究和应用发展发生划时代的转折点。
稀土材料的光致发光特性研究及应用展望
稀土材料的光致发光特性研究及应用展望引言稀土材料由于其特殊的能级结构和光学性质,在光电子、光通信、生物医学和照明等领域有着广阔的应用前景。
光致发光特性是稀土材料的重要性质之一,研究和探索稀土材料的光致发光特性不仅可以深入了解其光物理过程,还可以为材料的设计和应用提供理论依据。
本文将对稀土材料的光致发光特性研究进行综述,并展望其在不同领域中的应用。
稀土材料的光致发光特性研究稀土离子的特殊能级结构稀土离子是指周期表中镧系元素的离子,在分子中可以起到很多重要的作用。
稀土离子的能级结构决定了其在光激发下的发光行为。
稀土离子的能级结构由基态、激发态和荧光态组成,其中激发态和荧光态之间的跃迁是稀土材料光致发光的基本过程。
光激发机制光致发光是指稀土材料在受到外界光激发后,从基态跃迁到激发态并发射光的过程。
光激发机制是研究稀土材料光致发光的重要内容之一。
常见的光激发机制包括直接吸收和能量传递两种。
直接吸收是指外界光直接被稀土离子吸收并激发至激发态,然后再发射出光。
能量传递机制是指外界光先被其他物质吸收并激发,然后通过能量转移的方式将能量传递给稀土离子,使其发射光。
光致发光特性的影响因素稀土材料的光致发光特性受到多种因素的影响。
其中包括晶体结构、化学组成、外界温度和压力等因素。
晶体结构的改变可以影响稀土离子的能级分裂和跃迁过程,进而影响其发射光谱。
化学组成的改变可以调控稀土离子的排列和相互作用,进而影响其光致发光特性。
外界温度和压力的变化也会引起稀土离子能级的改变,从而影响其发射光谱。
稀土材料的应用展望光电子学由于稀土材料具有特殊的光学性质,因此在光电子学领域有着广泛的应用前景。
稀土材料可以用于制造光纤放大器、激光器和光电器件等光学器件,用于实现光信号的传输和处理。
光通信稀土材料的发光特性使其成为光通信中的重要组成部分。
稀土材料可以用作光纤放大器中的掺杂物,提高光信号的传输距离和传输速率。
同时,稀土材料还可以用于谐振腔激光器中,发射和接收光信号。
稀土发光材料技术现状及展望
稀土发光材料技术现状及展望一、稀土发光材料技术升级换代 稀土发光材料是稀土的一个重要应用领域。
按照不同的用途,稀土发光材料主要分为三类:照明用稀土发光材料,显示用稀土发光材料,特种稀土发光材料。
在照明领域,中国是世界稀土发光材料的主要产地,稀土灯用荧光粉产能曾经达到2.5万吨/年,全球约90%的节能灯、60%的计算机、50%的电视机都出自我国。
目前使用稀土发光材料的终端产品大多在我国生产,我国稀土发光材料生产企业主要分布于江苏、广东、江西、甘肃、陕西、福建等地。
半导体照明的异军突起,使白光LED逐渐取代稀土三基色节能灯,成为当前照明的主流技术。
从2011年开始,灯用稀土荧光粉产量逐年下降,□ 沈雷军 乔鑫 王忠志 稀土信息·10·2019年第4期但由于照明质量以及特殊照明用途的要求,目前稀土三基色节能灯和金卤灯依然保有一定的使用量,因此国内相应的发光材料仍然拥有一定的产量。
2012年,我国灯用稀土三基色荧光粉产量较2011年大幅下跌了43.8%,为4500吨,2013年稀土三基色灯用荧光粉产量4300吨,2015年2200吨,2016年2000吨,2017年降至1600吨,较上年降幅达20%,2018年降至1500吨左右。
LED灯粉却逐年上升。
2012年国内生产LED荧光粉约34吨,比上年增长24%,2013年47吨,再增长28%;2015年LED荧光粉产量130吨,2016年200吨,2017年380吨,较上年增长率达90%。
随着紫外芯片和全光谱LED的成熟,高性能白光LED用荧光粉产量还将有较大幅度的增长。
2018年不完全统计LED粉产量接近300吨,比上一年有所下降。
中国已成为全球半导体照明产品最大的生产、应用和出口国。
由于核心技术的缺乏,封装企业大都采用进口芯片和荧光粉,只做封装加工,出口产品以OEM、ODM等代工为主,尚未形成国际知名品牌。
开发具有自主知识产权的新型封装技术及配套发光材料,使半导体照明真正成为我国的民族产业是我们亟待解决的问题。
稀土发光材料的制备及其应用研究
稀土发光材料的制备及其应用研究稀土元素在光电子学、化学、材料科学等领域具有着重要的应用。
发光是稀土元素普遍的特性,利用这个特性开发出来的各种发光材料,便成为现代科学技术中不可或缺的一部分。
稀土发光材料具有色彩鲜艳、高亮度、可调谐性和长寿命等特点,在现代生活中得到了越来越广泛的应用。
本文将会介绍稀土发光材料的制备及其应用研究现状。
一、稀土发光材料的制备稀土发光材料的制备可以采用物理、化学或其它手段。
其中,最常用的制备方法是溶液浸渍、共淀法、燃烧合成法和水热法。
这些方法可以通过改变溶剂、酸碱度、混合物浓度和反应温度等参数来调节材料的结构和性质。
1. 溶液浸渍法溶液浸渍法是指将一定质量的基体浸泡在含有稀土离子的溶液中,维持一定的时间后从溶液中取出基体,用清水冲净并烘干,最后进行 calcination 处理。
这样,稀土元素会均匀地分布在基体内,从而达到制备稀土发光材料的目的。
2. 共淀法共淀法,也称共析法,指不同溶液中溶解某些化合物,然后通过混合两者的溶液,以共成碳酸盐或氢氧化物的方法将所需成分淀出来。
此法适用于制备混合稀土材料。
3. 燃烧合成法燃烧合成法是指将稀土盐、燃烧助剂和 Oxidizer等混合物在惰性气氛或空气中混合均匀,然后在高温下进行爆炸燃烧,制备出具有稀土发光性质的材料。
4. 水热法水热法是利用水热反应的原理,将所需的原料在一定的温度、压力和时间下在水相或溶液中进行反应,制备出稀土发光材料。
二、稀土发光材料的应用研究1. 稀土发光材料在白光 LED 中的应用随着照明行业的经济、技术和环保要求的不断提高,白光 LED 从传统照明的替代品逐渐发展成为未来照明的主要方式。
稀土发光材料在白光 LED 中的应用是一种新兴的领域。
目前,稀土发光剂可以将发光蓝光转换成发绿、黄和红光,从而达到调节 LED 光谱、改变色温、增加亮度等效果。
稀土发光材料的应用还可以减少电力消耗、节能减排、提高 LED 光落度和扩大 LED 工作温度等方面发挥重要作用。
稀土光致发光材料的研究现状和应用
是利用氩气和汞蒸汽中的放电作用, 它的谱线随汞 蒸汽压力的增加而向长波移动. 在低压汞灯中可见 光部分仅占 2% 左右, 而在高压汞灯中发出的可见 光部分就比低压汞灯多得多, 其相对能量比见表 3.
表 3 高压汞灯中不同波长光的相对能量比较
颜色 红 绿
蓝
荧光粉组成
( Y0. 9Eu0. 11D 2O3 ( C 0. 67Tb 0. 33D MgAl11O19
( ZH0. 90MH0. 10D SiO4 BaMg2Al16O27, Eu 2+ , MH2+
Sr 5Cl( PO4D 3, Eu 2+ BaMg2Al16O27, Eu 2+ SrMg2Al18O39, Eu 2+ BaMg2Al16O27, Eu 2+ , MH2+
要求
金属卤灯在传统的照明应用领域发展极为迅
速9全世界产销量的年增长率达到 15% ~ 20% 国 内绿色照明工程的实施极大地促进了金属卤灯的发
展9一些大型金属卤灯生产线未来一两年内将大幅 度扩大生产9另有一些新的金属卤灯制造厂正在建 设之中9总的发展速度比国外还要大 随着相关行业 的技术进步9近年来人们在影视~ 光化学~ 光生态~ 汽 车~ 家庭~ 装饰等领域为金属卤灯的应用开辟了新天 地 可以预期在不久的将来9小功率金属卤灯在汽车 及家庭照明方面将达到实用化规模9到那时金属卤 灯的应用数量将成倍增加
我国也紧跟这一世界电光源的发展新潮流, 成 功地开发出 T5 型荧光灯. 我国的 T5 型荧光灯生产 企业采用我国自产的优质不球磨稀土三基色荧光
粉, 并且采用了金属氧化物超细粉顶涂膜和固态注 汞等新工艺新技术, 使我国稀土三基色荧光灯的制 造技术开始步入了国际先进行列.
2024年稀土发光材料市场分析现状
2024年稀土发光材料市场分析现状1. 引言稀土发光材料是一类具有独特光学性能的材料,广泛应用于光电子、信息显示、荧光材料等领域。
本文旨在对稀土发光材料市场进行分析,探讨其现状,并对未来市场趋势进行展望。
2. 稀土发光材料市场规模稀土发光材料市场自20世纪90年代以来持续增长,并逐渐形成了世界范围内的巨大规模。
根据市场研究机构的数据显示,2019年全球稀土发光材料市场规模达到了XX亿美元,预计到2025年将增长至XX亿美元。
3. 稀土发光材料市场应用领域稀土发光材料在信息显示领域有着广泛的应用。
随着智能手机、平板电脑等电子设备的普及,对显示效果的要求也越来越高,稀土发光材料由于其优异的色彩饱和度和亮度而成为首选材料。
此外,在荧光灯、LED光源、太阳能电池等领域中,稀土发光材料也发挥着重要的作用。
4. 稀土发光材料市场竞争格局目前,全球稀土发光材料市场竞争激烈,主要的竞争者有美国、中国、日本等国家的企业。
这些企业通过技术创新、产品升级等手段提高市场竞争力。
此外,近年来新兴市场崛起,也加剧了市场竞争。
5. 稀土发光材料市场发展趋势稀土发光材料市场未来的发展趋势主要有以下几点:•技术创新:稀土发光材料市场需要不断进行技术创新,开发出更加高效、环保的材料,以满足市场需求。
•产业集中度提高:目前稀土发光材料市场存在着众多小型企业,未来市场将逐渐集中于规模相对较大的企业。
•绿色生产:稀土发光材料的生产过程中产生大量的废弃物和污染物,未来市场将越来越注重环保问题,推动绿色生产。
•新兴市场崛起:随着全球经济发展与科技进步,新兴市场需求将逐渐增长,为稀土发光材料市场提供更多的机会。
6. 总结稀土发光材料市场具有巨大的发展潜力,尤其是在信息显示、光电子、荧光材料等领域。
随着技术创新的推动和市场需求的不断扩大,稀土发光材料市场将迎来更加广阔的发展空间。
然而,市场竞争将会更加激烈,企业应不断提升自身技术实力和研发能力,以保持市场竞争力。
稀土发光材料的研究与应用展望
稀土发光材料的研究与应用展望一、本文概述稀土发光材料作为一种独特的发光材料,在科技、工业、医疗、显示等众多领域具有广泛的应用前景。
本文将对稀土发光材料的研究现状进行概述,分析其在不同领域的应用及其优势,同时探讨当前存在的挑战与问题。
在此基础上,本文将展望稀土发光材料未来的发展趋势,探讨其在科技进步和社会发展中的重要作用。
通过本文的阐述,旨在为读者提供一个全面、深入的稀土发光材料研究与应用展望的参考。
二、稀土发光材料的研究现状稀土发光材料,作为一种重要的光学材料,在照明、显示、生物标记、激光技术等领域具有广泛的应用前景。
近年来,随着科技的不断进步和研究的深入,稀土发光材料的研究现状呈现出以下几个方面的特点。
在材料制备方面,研究者们不断探索新的合成方法,以期获得具有优异发光性能的稀土发光材料。
例如,通过溶胶-凝胶法、水热法、共沉淀法等合成方法,可以制备出粒径均匀、结晶性好的稀土发光纳米材料。
同时,研究者们还通过表面修饰、掺杂改性等手段,进一步优化材料的发光性能,提高其在不同应用领域的适应性。
在发光性能方面,稀土发光材料的研究不断取得新的突破。
一方面,研究者们通过调控材料的组成、结构和形貌,实现了对材料发光颜色、发光强度、发光寿命等性能的精确调控。
另一方面,研究者们还探索了稀土发光材料在特殊环境下的发光性能,如高温、高压、强磁场等极端条件下的发光行为,为拓展其应用领域提供了更多可能性。
在应用研究方面,稀土发光材料在照明、显示、生物标记、激光技术等领域的应用研究取得了一系列重要进展。
例如,在照明领域,稀土发光材料被广泛应用于LED灯具、荧光灯等照明产品中,显著提高了照明效率和质量。
在显示领域,稀土发光材料被用于制造各种显示器件,如液晶显示器、有机发光二极管显示器等,为现代显示技术的发展做出了重要贡献。
稀土发光材料在生物标记、激光技术等领域的应用研究也取得了显著成果,为相关领域的发展提供了有力支持。
然而,尽管稀土发光材料的研究取得了显著进展,但仍存在一些挑战和问题。
稀土发光材料文献报告
强制性的f-f跃迁产生的影响
RE3+ [Xe] 4fn5s25p6 3.+3价态镧系离子的外层电子形成 了满壳层(5s25p6),4f轨道处在内层, f-f跃迁几乎不受外部场的影响,发 射波长是稀土离子自身的特有行为, 而与周围环境无关。
除了f-f跃迁之外,+3价镧系离子Ce3+、 Pr3+、Tb3+等还有f-d跃迁,这种跃迁是非 强制性的,其特点与f-f跃迁几乎完全相反, 有: A 其光谱呈现宽 B 强度较高; C 荧光寿命短; D 由于5d处于外层,f-d跃迁受外场影响较 大。
S
能量 传递
M
A
热
热
荧光猝灭
稀土配合物发光材料发展历史
稀土有机 配合物
稀土配合物发光材料发展历史
稀土有机配合物 1942年,Weissman首次采用紫外光激 发多种稀土有机配合物得到了稀土离 子的特征荧光,而揭开了稀土配合物 发光材料的帷幕
1960~1962年Crosby等提出了分子内或分 子间能量传递过程是通过配体分子三线激 发态实现的理论
1.光谱呈狭窄线状,谱线强度较低,在激发光谱 中,这种特点不利于吸收激发能量。
20
稀土发光材料的研究现状与应用(综述)
学年论文稀土发光材料的研究现状与应用材化092 班…指导老师:….(陕西科技大学材料科学与工程学院陕西西安710021)摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。
由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。
稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。
稀土元素在我国的储量丰富,约占全世界的40%。
本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。
关键词稀土,发光材料, 应用Current Research and Applications of rare earth luminescentmaterialsAbstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials,1/ 8the synthesis of light-emitting materials are fully applied in lighting, display, medical, military, and security and other areas. The rare earth elements is abundant in China , with 40 percent of the total in the world. The luminescence mechanism of luminescent materials, luminescent properties, chemical synthesis methods, the main application areas, as well as the problems of the exploitation of rare earth minerals, and predict the direction of future in-depth research are all have being summarized in this paper.Key word rare earth, luminescent materials, application0 前言我国是稀土资源大国,在世界已探明的稀土储量为6200万吨(以稀土氧化物计)中,其中中国稀土资源工业储量为4800万吨,占世界已探明资源的80%,“稀土”并不稀少。
稀土发光材料研究综述
稀土发光材料的研究现状及应用[摘要]:概述了稀土发光材料的优点,介绍了稀土发光材料的应用领域和制备方法,并对稀土发光材料未来发展进行了展望。
[Abstract]:Outlines the advantages of rare earth luminescent materials, introduces the field of application of rare earth luminescent material and preparation method, and the future development of rare earth luminescent materials is prospected.1.引言在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。
稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土[1-7]。
稀土元素的原子具有未充满的受到外界屏蔽的4f5d电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。
随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用得到显著发展[8-12]。
发光是稀土化合物光、电、磁三大功能中最突出的功能,受到人们极大的关注[13-14]。
就世界和美国24种稀土应用领域的消费分析结果来看,稀土发光材料的产值和价格均位于前列[15]。
中国的稀土应用研究中,发光材料占主要地位[16]。
2.稀土发光材料2.1稀土发光材料及其优势[17]15个镧系元素加上钪和钇共17个稀土元素。
钇和镧系元素的区别是:它的4f能级中没有电子,O层(5S能级)中只有两个电子,P层中也没有电子。
稀土原子具有相同的最外层电子结构s2,在内层的4f轨道内逐一填充电子,所以稀土元素及稀土离子表现出相似的化学性质。
稀土发光材料的综述
稀土发光材料的综述一.前言所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。
这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛稀土元素在发光材料的研究与实际应用中占有重要地位。
全球稀土荧光粉占全部荧光粉市场的份额正在逐年增加。
由于稀土发光材料具有优异的性能,甚至在某些领域具有不可替代的作用,故稀土发光材料正在逐渐取代部分非稀土发光材料。
目前,彩色阴极射线管用红粉、三基色荧光灯用蓝粉、绿粉和红粉,等离子显示屏用红粉、蓝粉,投影电视用绿粉与红粉,以及近几年问世的发光二极管照明的黄粉和三基色粉,全是稀土荧光粉。
稀土发光材料已成为信息显示和高效照明器具的关键基础材料之一。
我国是世界稀土资源最丰富的国家,尤其是南方离子型稀土资源(氧化钇)为我国稀土发光材料的发展提供了重要资源保障。
但多年来,我国虽是稀土资源大国,但不是稀土强国。
国家领导人非常重视我国稀土的开发利用工作,明确提出要把我国的稀土资源优势转化为经济优势。
稀土发光材料作为高新材料的一部分,为某些高纯稀土氧化物提供了一个巨大市场,而且其本身具有较高附加值,尤其是辐射价值更是不可估量,故发展稀土发光材料是把我国稀土资源优势向经济优势转化的具体体现。
二.稀土发光材料的合成方法稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。
2. 1 水热合成法在水热合成中水的作用是:作为反应物直接参加反应;作为矿化剂或溶媒促进反应的进行;压力的传递介质,促进原子、离子的再分配和结晶化等[1]。
由于在高温高压下,水热法为各种前驱物的反应和结晶提供了一个在常压条件下无法得到的特殊的物理、化学环境,使得前驱物在反应系统中得到充分的溶解,并达到一定的过饱和度,从而形成原子或分子生长基元,进行成核结晶生成粉末或纳米晶[2]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学年论文稀土发光材料的研究现状与应用材化092 班…指导老师:….(陕西科技大学材料科学与工程学院陕西西安710021)摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。
由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。
稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。
稀土元素在我国的储量丰富,约占全世界的40%。
本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。
关键词稀土,发光材料, 应用Current Research and Applications of rare earth luminescentmaterialsAbstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials,1/ 8the synthesis of light-emitting materials are fully applied in lighting, display, medical, military, and security and other areas. The rare earth elements is abundant in China , with 40 percent of the total in the world. The luminescence mechanism of luminescent materials, luminescent properties, chemical synthesis methods, the main application areas, as well as the problems of the exploitation of rare earth minerals, and predict the direction of future in-depth research are all have being summarized in this paper.Key word rare earth, luminescent materials, application0 前言我国是稀土资源大国,在世界已探明的稀土储量为6200万吨(以稀土氧化物计)中,其中中国稀土资源工业储量为4800万吨,占世界已探明资源的80%,“稀土”并不稀少。
然而在过去的几十年里,我国长期处于廉价出口国的地位。
同时,自20世纪60年代稀土氧化物实现高纯化后,稀土发光材料有了重大突破,尤其在彩电荧光粉、三基色灯用荧光粉和医用影像荧光粉方面发展迅猛。
稀土元素发光材料的优点是吸收能力强,转换率高,可发射从紫外到红外的光谱,在可见光区域,有很强的发射能力,且物理化学性质稳定。
目前稀土发光材料的应用非常广泛。
主要用在彩电显象管、计算机显示器、节能灯、防伪、拍摄电影以及转光农膜等上。
稀土发光材料广泛应用于照明、显示和检测三大领域,形成了很大的工业生产和消费市场规模,并向着新兴领域拓展。
稀土发光材料的研究具有格外重要的意义。
1稀土发光材料的发光机理和发光特性1.1稀土发光材料的发光原理稀土原子具有特殊的电子层结构。
稀土化合物的发光是基于它们4f电子层在f-f组态之内或f-d组态之间的跃迁。
具有未充满的4f壳层的稀土原子或离子,其光谱中大约有30000条可观察到的谱线,它们可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。
稀土离子丰富的能级和4f电子的跃迁特性使稀土成为巨大的发光宝库,从中可以发掘出更多新型的发光材料。
普遍认为中心离子发光的稀土配合物的发光是经过这样一个过程:配体吸收紫外光并跃迁到激发单重态,激发单重态的寿命很短,很快便经系间窜跃到亚稳的三重态,再进一步将能量传递给稀土离子的各振动能级,稀土离子从激发态回到基态时发射其离子的特征荧光.显然稀土配合物的发光能力与稀土离子以及有机配体的结构特性有很大的关系。
整个发光过程的机理可以用图1表示:2/ 8图1.由配体向中心离子能量传递示意图1.2 稀土元素的发光特性稀土离子具有丰富的发射光谱.其中,除La3+、Lu3+之外的其余镧系离于的4f电子可在7个4f轨道之间任意分布,从而产生各种光谱项和能级,对未充满f电子壳层的原子或离子可观察到的谱线多达三万条.因此,可以发射紫外到红外各种波长的电磁辐射。
1.3 纳米稀土发光材料的发光特性纳米发光材料比常规(大于纳米)发光材料具有更优越的发光特性,甚至具备同质常规材料不具备的新的光学特性。
主要表现为如下几方面:(1)提高分辨率:光学显示器件分辨率高低有双重意义,即像元密度和器件包含的像元总数。
由电子束聚焦、发光粉颗粒及发光效率等因素而定。
发光粉颗粒粒径达到纳米尺寸,可提高发光器件的分辨率。
(2)光谱蓝移或红移:随着粒子尺寸的减少,发光粒子的量子能级分立,有限带隙展宽,其相应的吸收光谱和发光光谱发生蓝移。
(3)使原不发光的促成发光:对于经表面化学修饰的纳米发光粒子,其屏蔽效应减弱,在室温下就可观察到较强的光致发光现象。
如纳米硅薄膜受360nm激发光的激发可产生荧光。
(4)宽频带强吸收:发光材料的尺寸减小到纳米级时,对红外有一个宽频带强吸收谱。
这是由于纳米大的比表面导致其与常规大块材料不同,没有一个单一的、择优的键振动模,而存在一个较宽的键振动模的分布。
(5)有望解决发光粉颗粒尺寸和发光粉表面层无辐射中心的问题.2 稀土发光材料的化学合成方法3/ 84 / 8在较低温度下通过一般化学反应制备,有可能得到具有“介稳”、“亚稳”结构的材料体系,从而更有应用潜力。
软化学过程更易于实现反应过程、途径和机制进行设计,进而对材料物理化学性质进行“剪裁”,有可能获得一些用高温固相反应与物理合成方法难以获得的低熵、低焓或低对称发光材料。
但化学法能方便粒子表面进行碳、硅和有机物包裹或修饰处理,使粒子尺寸细小和均匀,性能更加稳定。
软化学法典型的有:沉淀法、相转移法、界面合成法、插入反应法、离子交换法、熔盐(助熔剂)法、有机元素化合物热解法、生物矿化过程、自组装法等,以下介绍的通过文献调研得知的几种合成方法的介绍。
2.1 高温固相法高温固相反应法是发光材料的一种传统的合成方法。
固相反应通常取决于材料的晶体结构及其缺陷结构,而不仅是成分的固有反应性。
固相反应通常包括以下步骤:(1)固体界面如原子或离子的跨过界面的扩散;(2)原子规模的化学反应;(3)新相成核通过固体的输运及新相的长大.决定固相反应性的两个重要因素是成核和扩散速度。
如果产物和反应物之间存在结构类似性则成核容易进行。
扩散与固相内部的缺陷、界面形貌、原子或离子的大小及其扩散系数有关。
此外,某些添加剂的存在可能影响固相反应的速率。
在高温固相反应中往往还需要控制一定的反应气氛,有些反应物在不同的反应气氛中会生成不同的产物,因此要想获得满意的某种产物,就一定要控制好反应气氛。
其工艺流程方框图如图2所示:图2. 高温固相反应法合成稀土发光材料方框图2.2 软化学法软化学方法合成发光材料的共同优点是,其反应的各组分的混合是在分子、原子级别上进行的,反应能够达到分子水平上的高度均匀性,掺杂范围广,便于准确控制掺杂量,适合制备多组分体系,使合成温度大大降低,产物相纯度高,可获得较小颗粒,设备简单,易于操作。
但与高温固相合成法相比,发光效率低,余辉性能差,结晶质量逊色,晶粒性质难以控制,不易工业化。
2.2.1溶胶-凝胶法用溶胶-凝胶法合成发光材料可以获得更细的粒径,无需研磨,且合成温度比传统的合成方法要低,这种方法在发光材料的合成中具有一定的潜力,是合成纳米发光材料的方法之一。
其基本原理是:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去除其他有机成分,最后得到无机材料。
该方法已成功地合成了多种稀土发光材料。
如, YBO3:Eu3+荧光粉的合成。
将浓度为1 mol/L的Ln(NO3)3(Ln=Y,Eu)溶液与分析纯的硼酸三丁酯混合,搅拌同时滴加乙醇至完全互溶,将所得到的溶液置于85℃水浴中加热至成为凝胶,烘干凝胶后研磨。
然后在900℃下烧结,可获得单一的纯相YBO3:Eu3+纳米粉末。
2.2.2低温燃烧合成法:燃烧合成法是指材料通过前驱物的燃烧而获得的一种方法。
在一个燃烧合成反应中,反应物达到放热反应的点火温度时,以某种方法点燃,随后反应由放出的热量维持,燃烧产物即为所需材料。
该方法具有安全、省时、节能等优点,是一个很有应用前景的新方法。
2.2.3水热合成法:水热合成法是高温高压下在水(水溶液)或水蒸气等流体中进行有关化学反应(水热反应)来合成超细微粉的一种方法,自1982年开始用水热反应制备超细微粉的水热法已引起国内外的重视。
用水热法制备的超细微粉最小粒径已经达到数纳米的水平。
水热合成法也是发光材料合成的新方法,用该方法已经合成了很多的发光材料。
2.2.4缓冲溶液沉淀法:把缓冲溶液作为一种沉淀介质,将金属盐溶液与之混合,生成沉淀,通过洗涤、干燥,然后在一定温度和一定气氛下焙烧,冷却即得发光粉。
3稀土发光材料的主要应用领域3.1 光致发光材料灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化、艺术化方向发展。