平面向量数量积
平面向量的数量积

泥土中……接着,一棵浅绿色鸡尾模样的贪婪巨大怪芽疯速膨胀起来……一簇簇浅绿色灵芝模样的僵死巨大枝叶疯速向外扩张……突然!一朵亮红色小鱼模样的炽热巨蕾恐怖
地钻了出来……随着紫葡萄色水母模样的狠毒巨花狂速盛开,无数淡橙色牛屎模样的变态花瓣和葱绿色花蕊飞一样伸向远方……突然,无数亮蓝色钉子模样的贪婪果实从巨花
斯玻爱杀手见月光妹妹快要追上,又急忙变成长着离奇牙齿的水青色古怪果冻朝东南方向飞去……月光妹妹笑道:“嘻嘻!又换一套马甲,我随便找出一件都比你们的强……
”月光妹妹一边说着一边变成长着怪异脑袋的锅底色超级闪电追了上去……只见女奴仆Y.曼妍米依仙女和另外三个校精怪突然齐声怪叫着组成了一个巨大的蝴蝶缸须神!这
(a – 4 b )· (7 a – 2 b )=0
即 7a ·a + 16 a ·b – 15 b · b =0
7a ·a - 30 a · b + 8 b ·b =0
两式相减得:
2
a
·b
=
b
2,代入其中任一式中得:
2
a
2=
b
例3、求证:直径所对圆周角为直角
• 证明:设AC是圆O的一条直径,
C
∠ABC为圆周角,如图
2 已知 |a| =12,|b| =9,a · b =-54√2,求a和 b3的、夹已角知 △ A B C 中 , a = 5 , b = 8 , C = 6 0 0 , 求 BC · CA A
B
C
4、已知 | a | =8,e是单位向量,当它们之间的夹
角为
三、典型例题
• 例1、 已知(a – b)⊥(a + 3 b),求
神飞去,变成的巨大植物根基飞去,而月光妹妹则朝那伙校精的真身冲飞去……蝴蝶缸须神的所有果实和替身都被撞得粉碎!而巨大的植物已经被壮妞公主一顿肥拳猛腿弄得
平面向量的数量积PPT课件

运算律
向量与标量乘法结合律
对于任意向量$mathbf{a}$和标量$k$,有$kmathbf{a} cdot mathbf{b} = (kmathbf{a}) cdot mathbf{b} = k(mathbf{a} cdot mathbf{b})$。
向量与标量乘法交换律
对于任意向量$mathbf{a}$和标量$k$,有$mathbf{a} cdot kmathbf{b} = k(mathbf{a} cdot mathbf{b}) = (kmathbf{b}) cdot mathbf{a}$。
向量数量积的性质
向量数量积满足交换律和结合 律,即a·b=b·a和 (a+b)·c=a·c+b·c。
向量数量积满足分配律,即 (a+b)·c=a·c+b·c。
向量数量积满足正弦律,即 a·b=|a||b|sinθ,其中θ为向量a 和b之间的夹角。
02 平面向量的数量积的运算
计算公式
定义
平面向量$mathbf{a}$和$mathbf{b}$的数量积定义为 $mathbf{a} cdot mathbf{b} = |mathbf{a}| times |mathbf{b}| times cos theta$,其中$theta$是向量 $mathbf{a}$和$mathbf{b}$之间的夹角。
交换律
平面向量的数量积满足交换律,即$mathbf{a} cdot mathbf{b} = mathbf{b} cdot mathbf{a}$。
分配律
平面向量的数量积满足分配律,即$(mathbf{a} + mathbf{b}) cdot mathbf{c} = mathbf{a} cdot mathbf{c} + mathbf{b} cdot mathbf{c}$。
平面向量的数量积

平面向量的数量积
什么是平面向量的数量积?
平面向量的数量积,也被称为点积或内积,是指两个向量之间
的运算结果。
它通过将两个向量的对应分量相乘,并将乘积相加得
到一个标量值。
数量积的计算公式
假设有两个平面向量A和B,其坐标分别为(Ax, Ay)和(Bx, By),则它们的数量积被定义为以下公式:
A ·
B = (Ax * Bx) + (Ay * By)
数量积的性质
交换律
两个向量的数量积满足交换律,即 A · B = B · A。
分配律
数量积满足分配律,即对于向量A和向量B,以及标量k,有
以下等式成立:
k(A · B) = k(Ax * Bx) + k(Ay * By)
数量积的意义
计算角度
通过数量积的计算公式,我们可以得到两个向量之间的夹角的
余弦值。
具体地,设向量A和向量B之间的夹角为θ,则有以下等
式成立:
cosθ = (A · B) / (|A| * |B|)
其中,|A| 和 |B| 分别表示向量A和向量B的长度。
因此,通过计算数量积,我们可以得到向量之间的夹角。
判断垂直与平行关系
若两个向量的数量积为0,则它们垂直;若两个向量的数量积
不为0且它们的长度相等,则它们平行。
该文档介绍了平面向量的数量积的定义、计算公式以及性质。
同时,说明了数量积在计算角度和判断垂直与平行关系方面的意义。
平面向量的数量积

∴ (a – b)·(a + 3 b)=0 即 a · a + 3 a· b – b · a – 3 b · b = 0 即 a · a + 2 a· b– 3 b · b = 0 ∴ (a + b)2 = 4 b2 即 | a + b |2 = 4 | b |2
∴|a+b| =2|b|
例2、已知a、b都是非零向量,且a + 3 b 与7 a – 5 b 垂直,a – 4 b 与7 a – 2 b垂 直,求a与b的夹角。 cosθ=
|
• • 特别地:a · a=| a |
2
或 |a|=
• (4)cosθ=
(5)| a· b|≤|a||b
|
3、平面向量的数量积满足的运算率 (1) (交换律) a ·b = b ·a (2)(实数与向量结合律)
(λ a )· b =λ(a · b )=a · (λb )
(3)(分配律)(a + b )· c =a· c+b· c
2 已知 |a| =12,|b| =9,a ·b =-54√2,求a和b 的夹角 3、已知△ABC中,a =5,b =8,C=600,求BC · CA
A
B C
4、已知 | a | =8,e是单位向量,当它们之间的夹 角为
三、典型例题
• 例1、 已知(a – b)⊥(a + 3 b),求 证: ab + b( |= 23 |b b | 解:∵ (| a– )⊥ a+ )
四、巩固练习
1、已知△ABC中,AB=a,AC=b,当a· b<0, a· b=0时, △ABC各是什么样的图形? 2、已知| a |=3,| b |=4,且a与b的夹角θ=1500,求a · b, ( a + b )2,| a + b | 3、设a是非零向量,且b ≠ c,求证:a · b=a· c的充要 条件是a⊥(b - c) 4、若b =(1,1)且a · b =0,(a – b)2=3,求向量a的模 5、证明: (λ a )· b =λ(a · b )=a · (λb )
平面向量的数量积与向量积知识点总结

平面向量的数量积与向量积知识点总结平面向量是数学中的重要概念之一,它们可以用来表示物体在平面上的位移、速度、加速度等。
平面向量有许多重要的运算,其中包括数量积和向量积。
本文将对平面向量的数量积与向量积进行知识点总结和讨论。
一、数量积数量积又称为点积,是两个向量的运算,它的结果是一个标量(即一个实数)。
数量积的定义如下:对于两个向量a和b,它们的数量积定义为:a·b = |a||b|cosθ其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b之间的夹角。
1. 特点:数量积是两个向量的乘积与它们的夹角的余弦值的乘积。
根据这个特点,我们可以得出一些重要结论:(1)若夹角θ为90°,则cosθ=0,数量积为0,即两个向量垂直。
(2)若夹角θ为180°,则cosθ=-1,数量积为-|a||b|,即两个向量反向。
(3)若夹角θ为0°,则cosθ=1,数量积为|a||b|,即两个向量同向。
2. 计算数量积的方法:(1)坐标法:设向量a的坐标为(a₁, a₂),向量b的坐标为(b₁, b₂),则a·b = a₁b₁ + a₂b₂。
(2)几何法:设向量a的起点为O,终点为A,向量b的起点为O,终点为B,则a·b = AB·OBcosθ,其中AB和OB分别表示向量a和向量b的长度。
3. 应用:数量积在物理学中有广泛应用,例如计算力的做功、计算向量的投影等。
二、向量积向量积又称为叉积,是两个向量的运算,它的结果是一个向量。
向量积的定义如下:对于两个向量a和b,它们的向量积定义为:a×b = |a||b|sinθn其中,|a|和|b|分别表示向量a和b的模(长度),θ表示向量a和b 之间的夹角,n表示垂直于a和b所在平面的单位向量。
1. 特点:向量积的结果是一个垂直于原向量所在平面的向量,并且其模的大小等于a和b所张的平行四边形的面积。
平面向量的数量积和叉积的物理意义

平面向量的数量积和叉积的物理意义平面向量的数量积和叉积是向量运算中的两个重要概念,它们在物理学中具有深远的物理意义。
数量积是两个向量的数量乘积再乘以夹角的余弦,而叉积是两个向量的数量乘积再乘以夹角的正弦。
下面将分别介绍平面向量的数量积和叉积,并探讨它们在物理学中的实际应用。
一、平面向量的数量积平面向量的数量积也称为内积、点积或标量积。
设有两个平面向量A和B,它们的数量积表示为A·B,计算公式为:A·B = |A|·|B|·cosθ其中,|A|和|B|分别表示向量A和B的长度,θ表示两个向量之间的夹角。
数量积给出了两个向量的相似程度,可以用于判断两个向量之间的夹角、平行关系以及向量投影等。
在物理学中,数量积的物理意义包括以下几个方面:1. 投影:数量积可以用于计算一个向量在另一个向量方向上的投影。
设有向量A和B,它们之间的夹角为θ,则向量A在向量B方向上的投影为|A|·cosθ。
2. 夹角:通过数量积的计算公式,可以得到两个向量之间的夹角θ。
这在物理学中常用于计算物体受力的方向或计算光线的折射角度等。
3. 正交性:若两个向量的数量积为零,即A·B=0,则可以判断它们是垂直或正交的关系。
这在力学和电磁学中经常用到,例如判断力矩是否为零或判断电场和磁场之间的关系等。
二、平面向量的叉积平面向量的叉积也称为外积、矢量积或向量积。
设有两个平面向量A和B,它们的叉积表示为A×B,计算公式为:A×B = |A|·|B|·sinθ·n其中,|A|和|B|分别表示向量A和B的长度,θ表示两个向量之间的夹角,n表示垂直于A和B所在平面的单位法向量。
叉积给出了两个向量之间的垂直性以及它们所形成面积的大小。
在物理学中,叉积的物理意义包括以下几个方面:1. 垂直性:若两个向量的叉积为零,即A×B=0,则可以判断它们是平行或共线的关系。
平面向量的数量积和点积

平面向量的数量积和点积在数学中,向量是用来表示有大小和方向的量的。
而平面向量是指在一个平面内的向量,它由两个实数(或复数)组成。
平面向量的数量积和点积是两个重要的概念,它们在向量运算中起着关键的作用。
一、平面向量的数量积平面向量的数量积,也称为内积或点积,表示了两个向量之间的夹角关系。
设有两个平面向量$\vec{a}=(x_1,y_1)$和$\vec{b}=(x_2,y_2)$,它们的数量积可以用如下公式表示:$$\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2$$其中,$\cdot$表示数量积的运算符。
从公式中可以看出,数量积的结果是一个标量,即一个实数。
根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:$\vec{a}\cdot\vec{b}=\vec{b}\cdot\vec{a}$,表示数量积满足交换律,与向量的顺序无关。
2. 分配律:$(\vec{a}+\vec{b})\cdot\vec{c}=\vec{a}\cdot\vec{c}+\vec{b}\cdot\vec{c} $,表示数量积满足分配律,可以按照矩阵乘法的性质进行运算。
二、点积与夹角的关系数量积不仅可以表示两个向量之间的夹角关系,还可以通过夹角的余弦值来计算数量积。
根据余弦定理,两个向量$\vec{a}$和$\vec{b}$之间的夹角$\theta$可以用下面的公式表示:$$\cos\theta=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$$其中,$|\vec{a}|$和$|\vec{b}|$分别表示向量$\vec{a}$和$\vec{b}$的模。
这个公式非常重要,因为它可以帮助我们计算向量的夹角,而不需要直接通过几何图形进行推导。
三、数量积的几何意义数量积还有一个重要的几何意义,它可以帮助我们计算向量之间的投影。
设有向量$\vec{a}$和$\vec{b}$,以及它们之间的夹角$\theta$,那么$\vec{b}$在$\vec{a}$上的投影可以表示为:$$\text{proj}_\vec{a}\vec{b}=|\vec{b}|\cos\theta$$通过数量积的计算,我们可以轻松得到投影的结果。
平面向量数量积的概念及几何意义

平面向量数量积的概念及几何意义平面向量数量积是向量分析中一个重要的概念,也称为点乘或内积。
数量积是两个向量的乘积,其结果是一个标量数值。
本文将介绍平面向量数量积的概念及其几何意义。
平面向量数量积是指两个向量在共面情况下的乘积,也就是点乘运算。
若有两个向量,分别为a和b,则它们的数量积可以表示为a•b,其中a•b=|a|*|b|*cosθ,其中|a|和|b|分别为向量a和b的模长,θ为两个向量之间的夹角。
由此可以看出,数量积的结果是一个标量。
1.求夹角从数量积的定义式可以看出,两个向量的数量积是它们的模长和夹角的乘积。
由此,可以推导出两个向量之间的夹角θ=arccos(a•b/|a|*|b|)。
因此,通过数量积可以求出两个向量之间的夹角。
2.平面内向量正交当两个向量的数量积为0时,即a•b=0,此时两个向量互相垂直或正交。
这是因为cos90°=0,在这种情况下,数量积的结果是零,即两个向量之间的夹角为90°。
3.求投影设有向量a和向量b,向量a在向量b上的投影可以表示为|a|cosθ,其中θ为a和b两个向量之间的夹角。
因此,向量a在向量b上的投影可以表示为a•(b/|b|),这表明向量a在向量b上的投影等于向量a与向量b的单位向量的数量积。
4.求面积对于一个平面内的三角形ABC,如果AB和AC分别表示为向量a和向量b,则三角形ABC 的面积可以表示为S=1/2|a|*|b|sinθ,其中θ为向量a和向量b之间的夹角。
这表明,可以借助数量积来求平面内三角形的面积。
以上四种几何意义,展示了平面向量数量积在向量分析中的重要性。
数量积往往用于推导和计算向量之间的夹角、向量在平面内的正交关系、向量在平面内的投影以及平面内三角形的面积等。
并且,数量积的结果是一个标量,与向量的方向没有关系,因此常用于求解平面内的问题。
平面向量的数量积与平行关系

平面向量的数量积与平行关系平面向量是在平面上具有大小和方向的有向线段,数量积是量化了两个向量之间的相关性的一个数值。
在平面向量中,我们可以通过数量积来判断向量之间的平行关系。
本文将介绍平面向量的数量积以及如何利用数量积来确定向量之间的平行关系。
一、平面向量的数量积平面向量的数量积,也称为点积或内积,是指两个向量之间的乘积与它们夹角的余弦值的乘积。
如果有两个平面向量a和b,它们的数量积表示为a·b。
此处,·表示数量积的运算符。
数量积的计算公式如下:a·b = |a| |b| cosθ其中,|a|和|b|分别表示向量a和b的模,θ表示向量a和b之间的夹角。
数量积的结果是一个标量,它可以用于判断向量之间的相似性、正交性和平行关系。
二、平行向量与数量积的关系两个平面向量a和b平行的充要条件是它们的数量积等于零,即a·b = 0。
这可以通过数量积的定义和性质来证明。
如果向量a和b平行,则它们的夹角θ为0或180度,此时cosθ的值为1或-1。
根据数量积的计算公式可得:a·b = |a| |b| cosθ = |a| |b| (1或-1)当cosθ等于1时,即θ为0度,两个向量同向,且关系为|a·b| = |a| |b|,即两个向量的模的乘积等于数量积的绝对值。
当cosθ等于-1时,即θ为180度,两个向量反向,且关系为|a·b| = -|a| |b|,即两个向量的模的乘积的负值等于数量积的绝对值。
综上所述,当a·b等于0时,两个向量a和b平行。
三、利用数量积判断平面向量的平行关系的步骤根据平面向量的数量积与平行关系的性质,可以通过以下步骤来判断平面向量的平行关系:1. 计算两个向量的数量积:a·b。
2. 如果数量积a·b等于0,则两个向量a和b平行。
3. 如果数量积a·b不等于0,则两个向量a和b不平行。
平面向量数量积及其几何意义

平面向量数量积及其几何意义平面向量的数量积,也称为点积、内积,是向量运算中的一种运算,用于比较两个向量的方向以及大小关系。
平面向量的数量积定义为两个向量的模的乘积与两个向量夹角的余弦的乘积。
可以表示为:A ·B = ,A,,B,cosθ其中,A和B是平面上的两个向量,A·B表示它们的数量积,A,和,B,表示两个向量的模,θ表示两个向量之间的夹角。
数量积具有以下几何意义:1.比较两个向量的方向:数量积大于0时,表示两个向量的方向相近;数量积小于0时,表示两个向量的方向相反;数量积等于0时,表示两个向量垂直。
2.比较两个向量的大小关系:根据数量积公式,可以看出如果夹角θ固定,向量A、B的模越大,数量积就越大。
因此,数量积可以衡量两个向量的大小关系。
3.求角度:根据数量积公式,可以反推夹角θ的大小。
通过解反三角函数可以求得θ的值。
4.计算投影:根据数量积的几何意义,可以推导出计算一个向量在另一个向量上的投影的公式。
投影表示一个向量在另一个向量上的阴影长度,可以用于解决现实中的很多问题,如力的分解、力的合成等。
5.判断两条直线的关系:如果两条直线的法向量相同,那么它们是平行的;如果两条直线的法向量垂直,那么它们是垂直的。
6.判断图形的性质:根据向量的数量积可以判断图形的性质。
如两个向量垂直,则表示两个直线垂直;两个向量平行,则表示两个直线平行。
除了以上几何意义外,数量积还有一些其他重要的性质:1.交换律:A·B=B·A2.数量积为0时,向量垂直:如果两个向量的数量积为0,即A·B=0,那么向量A和向量B垂直。
3.数量积的性质:(aA)·B=a(A·B),(A+B)·C=A·C+B·C总结来说,平面向量的数量积可以用来比较两个向量的方向和大小关系,求解向量的夹角和投影,判断直线和图形的性质。
它在几何学中具有重要的应用,也是向量运算中的基础概念之一。
平面向量的数量积与投影

平面向量的数量积与投影平面向量的数量积和投影是向量运算中的重要概念,在数学和物理学中具有广泛的应用。
本文将介绍平面向量的数量积和投影的概念、计算方法以及其在几何和物理中的应用。
一、平面向量的数量积平面向量的数量积(也称为内积、点乘)是指将两个向量的对应分量相乘后求和所得到的数值。
若有向量a=(a₁,a₂)和b=(b₁,b₂),则它们的数量积用符号表示为a·b,计算公式为:a·b=a₁b₁+a₂b₂。
数量积具有以下性质:1. 交换律:a·b=b·a2. 分配律:a·(b+c)=a·b+a·c3. 数乘结合律:(k·a)·b=k·(a·b)数量积的几何意义在于它可以用来计算两个向量之间的夹角。
设夹角为θ,则cosθ=(a·b)/(||a||*||b||),其中||a||和||b||分别为向量a和b的模。
根据这个公式,我们可以判断向量之间的夹角大小以及它们之间的相对方向。
二、平面向量的投影平面向量的投影是指一个向量在另一个向量上的影子长度,它是向量运算中的一种重要应用。
设有向量a和b,投影表示为proj_b a,计算公式为:proj_b a=(a·b)/||b|| * (b/||b||),其中(||b||)为向量b的模。
投影有以下性质:1. 投影为零向量当且仅当向量a与向量b垂直,即a⊥b。
2. 投影的方向与向量b相同或相反,具体取决于向量a与向量b的夹角。
当0°≤θ≤90°时,投影方向与b相同;当90°<θ≤180°时,投影方向与b相反。
投影的几何意义在于它可以帮助我们分析向量之间的关系,特别是在解决几何问题时,投影的计算能够简化向量的运算过程。
三、平面向量的数量积与投影的应用1. 几何应用:平面向量的数量积和投影在几何学中有广泛的应用。
4.3平面向量的数量积

已知点 F(1,0), P 在 y 轴上运动, M 在 x 轴上运动. 点 点 设 → → → → P(0,b),M(a,0)且PM·PF=0,动点 N 满足 2PN+NM=0. (1)求点 N 的轨迹 C 的方程; (2)F′为曲线 C 的准线与 x 轴的交点,过点 F′的直线 l 交曲线 C 于不同的两点 A、B,若 D 为 AB 中点,在 x 轴上存 → → → → 在一点 E,使AB·(AE-AD)=0,求|OE|的取值范围(O 为坐标 原点).
k2≠0, 2 2 2 2 k x +2(k -2)x+k =0,由 Δ>0
⇒0<k <1,
2
设 A(x1,y1),B(x2,y2),D(x0,y0), 2-k2 2 则 x0= k2 ,y0= k ,
→ → → ⇒→ → ∵AB·(AE-AD)=0⇒AB⊥DE, 2 1 2-k 2 故直线 DE 方程为 y- =- (x- 2 ), k k k 2 令 y=0,得 xE=1+ 2(0<k2<1) k → ∴x >3,即|OE|的取值范围是(3,+∞).
2
【例5】已知:a=(cosα,sinα),b=(cosβ,sinβ) 0<α < β < π (1)求证:a+b与a-b互相垂直; (2)若|ka+b|=|ka-b|,求α-β(其中k ∈ R且k≠ 0) - ( (3)|ka+b|= 3 |a-kb|,其中k>0. ①用k表示a·b; ②求a·b最小时,a与b的夹角.
【解】 (1)P(0,b),M(a,0),设 N(x,y), 2 → → 由PM·PF=0⇒a+b =0,① 由
→+NM=0⇒2x+a-x=0, → 2PN ⇒ 2(y-b)-y=0
a=-x, ⇒ 1 b=2y.
数学复习:平面向量数量积的计算

数学复习:平面向量数量积的计算一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .19352.基底法计算例2-1.已知平面向量,a b 满足a =,)(21R e e b ∈+=λλ ,其中21,e e 为不共线的单位向量,若对符合上述条件的任意向量,a b ,恒有4a b +≥ ,则21,e e 夹角的最小值是()A .6πB .π4C .π3D .π2例2-2.已知菱形ABCD 的边长为2,120BAD ︒∠=,点E 在边BC 上,3BC BE =,若G 为线段DC 上的动点,则AG AE ⋅的最大值为()A .2B .83C .103D .43.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P,则PA PB PA PC ⋅+⋅的最小值为()6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC =,则()AO AB AC ⋅+= ()A .10B .9C .8D .6平面向量数量积的计算答案一.基本原理(3)夹角:222221212121||||cos y x y x y y x x b a b a +⋅++=⋅⋅= θ投影也是一个数量,不是向量.当θ为锐角时投影为正值;当θ为钝角时投影为负值;当直角时投影为0;当0θ=时投影为||b;当180θ= 时投影为b - 5.极化恒等式人教版必修二第22页练习3设置了这样的问题:求证:22)()(4→→→→→→--+=⋅b a b a b a .若我们将这个结论进一步几何化,就可以得到一把处理数量积范围问题的利器:极化恒等式.下面我先给出这道习题的证明,再推出该恒等式.证明:由于→→→→→→++=+b a b a b a 2)(222,→→→→→→-+=-b a b a b a 2)(222两式相减可得:22)()(4→→→→→→--+=⋅b a b a b a .特别,在ABC ∆中,设→→→→==AC b AB a ,,点M 为BC 中点,再由三角形中线向量公式可得:2241→→→→-=⋅BC AM AC AB (极化恒等式).6.与外心有关的数量积计算结论:如图1,||||||cos ||OB OD OB AOB OA OB OA ⋅=⋅∠=⋅→→,特别地,若点A 在线段OB 的中垂线上时,2||21OB OB OA ⋅=⋅→→.如图1如图2进一步,外心性质:如图2,O 为ABC ∆的外心,可以证明:(1).2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.(2).)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.(3).)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:AO BC AD BC ⋅=⋅ ()()2222111()().222AB AC AC AB AC AB n m =+-=-=-二.典例分析1.定义法计算例1.已知向量a ,b 满足||5a = ,||6b = ,6a b ⋅=- ,则cos ,=a a b <+> ()A .3135-B .1935-C .1735D .1935【解析】5a = ,6b = ,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-= .7a b+=,因此,()1919cos,5735a a ba a ba a b⋅+<+>===⨯⋅+.2.基底法计算例2-1.已知平面向量,a b满足4a=,)(21Reeb∈+=λλ,其中21,ee为不共线的单位向量,若对符合上述条件的任意向量,a b,恒有4a b+≥,则21,ee夹角的最小值是()A.6πB.π4C.π3D.π2【解析】因a=221()||cos,0||cos,8a b a b b b a b b a b+⇔+≥⇔〈〉≥⇔≥〈〉,依题意,||2b≥恒成立,而21eebλ+=,21,ee为不共线的单位向量,即有2221,cos21be=++λλ,于是得21,cos221,cos21221221++⇔≥++λλλλeee恒成立,则02,cos4212≤-=∆ee,即有22,cos2221≤≤-e,又π≤≤21,0ee,解得43,421ππ≤≤ee,所以21,ee夹角的最小值是π4.例2-2.已知菱形ABCD的边长为2,120BAD︒∠=,点E在边BC上,3BC BE=,若G为线段DC上的动点,则AG AE⋅的最大值为()A.2B.83C.103D.4【答案】B【解析】由题意可知,如图所示因为菱形ABCD 的边长为2,120BAD ︒∠=,所以2AB AD == ,1cos1202222AB AD AB AD ︒⎛⎫⋅==⨯⨯-=- ⎪⎝⎭,设[],0,1DG DC λλ=∈ ,则AG AD DG AD DC AD AB λλ=+=+=+ ,因为3BC BE =,所以1133BE BC AD ==,13AE AB BE AB AD =+=+ ,()2211(1333AG AE AD AB AB AD AD AB AD ABλλλ⎛⎫⋅=+⋅+=+++⋅ ⎪⎝⎭ ()22110222123333λλλ⎛⎫=⨯+⨯++⨯-=- ⎪⎝⎭,当1λ=时,AG AE ⋅ 的最大值为83.3.坐标法例3.在ABC ∆中,3AC =,4BC =,90C ∠=︒.P 为ABC ∆所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是()A .[5-,3]B .[3-,5]C .[6-,4]D .[4-,6]【答案】D【解析】在ABC ∆中,3AC =,4BC =,90C ∠=︒,以C 为坐标原点,CA ,CB 所在的直线为x 轴,y 轴建立平面直角坐标系,如图:则(3,0)A ,(0,4)B ,(0,0)C ,设(,)P x y ,因为1PC =,所以221x y +=,又(3,)PA x y =-- ,(,4)PB x y =--,所以22(3)(4)34341PA PB x x y y x y x y x y ⋅=----=+--=--+,设cos x θ=,sin y θ=,所以(3cos 4sin )15sin()1PA PB θθθϕ⋅=-++=-++ ,其中3tan 4ϕ=,当sin()1θϕ+=时,PA PB ⋅有最小值为4-,当sin()1θϕ+=-时,PA PB ⋅有最大值为6,所以[4PA PB ⋅∈- ,6].变式.在ABC ∆中,90A ∠=︒,2AB AC ==,点M 为边AB 的中点,点P 在边BC 上,则MP CP ⋅的最小值为.【答案】98-【解析】建立平面直角坐标系如下,则(2,0)B ,(0,2)C ,(1,0)M ,直线BC 的方程为122x y+=,即2x y +=,点P 在直线上,设(,2)P x x -,∴(1,2)MP x x =-- ,(,)CP x x =-,∴22399(1)(2)232()488MP CP x x x x x x x ⋅=---=-=--- ,∴MP CP ⋅ 的最小值为98-.4.投影法计算例4.在边长为2的正六边形ABCDEF 中,动圆Q 的半径为1、圆心在线段CD (含端点)上运动,点P 是圆Q 上及其内部的动点,则AP AB ⋅的取值范围是()A .[2,8]B .[4,8]C .[2,10]D .[4,10]【解析】由cos ,AP AB AB AP AP AB ⋅=⋅ ,可得AP AB ⋅ 为AB 与AP 在AB方向上的投影之积.正六边形ABCDEF 中,以D 为圆心的圆Q 与DE 交于M ,过M 作MM AB '⊥于M ',设以C 为圆心的圆Q 与AB 垂直的,切线与圆Q 切于点N 与AB 延长线交点为N ',则AP 在AB方向上的投影最小值为AM ',最大值为AN ',又1AM '=,cos 6014AN AB BC '=++=,则248AP AB ⋅≤⨯= ,212AP AB ⋅≥⨯= ,则AP AB ⋅ 的取值范围是[2,8].5.极化恒等式例5-1.已知ABC ∆是长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值是()A.2-B .32-C .43-D .1-【解析】(方法1.几何法)设点M 为BC 中点,可得→→→=+PM PC PB 2,再设AM 中点为N ,这样用极化恒等式可知:22212→→→→-=⋅AM PN PM P A ,在等边三角形ABC ∆中,3=AM ,故→→⋅PM P A 取最小值当且仅当2322-=⋅→→→PN PM P A 取最小,即0||=→PN ,故23)(min -=⋅→→PM P A .(方法2.坐标法)以BC 中点为坐标原点,由于(0A ,()10B -,,()10C ,.设()P x y ,,()PA x y =- ,()1PB x y =--- ,,()1PC x y =--,,故()2222PA PB PC x y ⋅+=-+ 2233224x y ⎡⎤⎛⎫⎢⎥=+-- ⎪ ⎪⎢⎥⎝⎭⎣⎦,则其最小值为33242⎛⎫⨯-=- ⎪⎝⎭,此时0x =,32y =.例5-2.已知等边ABC ∆的三个顶点均在圆224x y +=上,点P ,则PA PB PA PC ⋅+⋅ 的最小值为()A .14B .10C .8D .2【解析】(法1.极化恒等式)根据题干特征,共起点的数量积范围问题,我们尝试往恒等式方向走.记BC 中点为M ,AM 中点为N .由于→→→→→⋅=+⋅PM P A PC PB P A 2)(,而)41(2222→→→→-=⋅AM PN PM P A .由于ABC ∆为等边三角形,则M O A ,,三点共线,且由于O 是外心,也是重心,故32=⇒=AM OA .则→→→→⇔+⋅min min ||)]([PN PC PB P A ,显然,由P 在圆外,且N O ,共线(AM 中点为N ),则25||||||min =-=→→→ON OP PN .综上所述,8212)]([22min min =⋅-=+⋅→→→→→AM PN PC PB P A .(法2.基底法)()()()()PA PB PA PC PO OA PO OB PO OA PO OC ⋅+⋅=+++++ 22()()PO PO OA OB OA OB PO PO OA OC OA OC=+++⋅++++⋅ 22()PO PO OA OB OA OC OA OB OA OC =+++++⋅+⋅ ,因为等边ABC ∆的三个顶点均在圆224x y +=上,因此1cos 22()22OA OB OA OB AOB ⋅=⋅⋅∠=⨯⨯-=- ,3OP == ,因为等边ABC ∆的三个顶点均在圆224x y +=上,所以原点O 是等边ABC ∆的重心,因此0OA OB OC ++= ,所以有:18221414cos PA PB PA PC PO OA OP OA OP OA AOP⋅+⋅=+⋅--=-⋅=-⋅⋅∠ 146cos AOP =-∠,当0AOP ∠=时,即,OP OA 同向时,PA PB PA PC ⋅+⋅ 有最小值,最小值为1468-=.6.外接圆性质例6-1.已知点O 是ABC ∆的外心,6AB =,8BC =,2π3B =,若BO xBA yBC =+ ,则34x y +=()A .5B .6C .7D .8【解析】如图,点O 在AB 、AC 上的射影是点D 、E ,它们分别为AB 、AC 的中点.由数量积的几何意义,可得21182BO BA BA BD AB ⋅=⋅== ,23212BC BO BC BE BC ⋅=⋅== .又2π3B =,所以1cos 68242BA BC BA BC B ⎛⎫⋅=⋅=⨯⨯-=- ⎪⎝⎭,又BO xBA yBC =+ ,所以()2362418BO BA xBA yBC BA BA C x y BA x B y =+⋅⋅=+⋅=-= ,即1286x y -=.同理()2246432BO BC xBA yBC BC C y x B BC y BA x ⋅⋅=++⋅=+==- ,即384x y -+=,解得1091112x y ⎧=⎪⎪⎨⎪=⎪⎩.所以710113434912x y +=⨯+=⨯.例6-2.已知O 是ABC ∆的外心,4||=AB ,2AC = ,则()AO AB AC ⋅+= ()A .10B .9C .8D .6【解析】如图,O 为ABC ∆的外心,设,D E 为,AB AC 的中点,则,OD AB OE AC ⊥⊥,故()AO AB AC AO AB AO AC ⋅+=+⋅⋅ ||||cos |||co |s AO AB AO AC OAD OAE ⋅∠+=∠⋅⋅⋅ ||||||||AD AB AE AC +=⋅⋅ 2222111||41||2222210AB AC +=+⨯⋅== .。
平面向量的数量积和叉积的三角函数表示

平面向量的数量积和叉积的三角函数表示在数学中,平面向量是一种具有大小和方向的物理量,常用于描述平面上的位移、力等概念。
数量积和叉积是平面向量的两个重要运算,它们可以通过三角函数进行表示和计算。
一、平面向量的数量积数量积,也称为点积或内积,是平面向量的一种运算。
设有两个平面向量a=(a₁,a₂)和a=(a₁,a₂),它们的数量积表示为a∙a,满足以下公式:a∙a = |a| |a| cos a其中,|a|和|a|分别表示向量a和a的模长,而a表示向量a和a之间的夹角。
从公式可以看出,数量积的结果是一个标量(仅有大小,没有方向)。
它的值等于两个向量模长乘积与它们夹角的余弦值的乘积。
二、平面向量的叉积叉积,也称为叉乘或向量积,是平面向量的另一种运算。
设有两个平面向量a=(a₁,a₂)和a=(a₁,a₂),它们的叉积表示为a×a,满足以下公式:a×a = a₁a₂ - a₂a₁叉积的结果是一个新的向量,它的大小等于两个向量组成的平行四边形的面积,方向垂直于这个平行四边形所在的平面。
三、三角函数表示在平面向量的数量积和叉积中,三角函数被广泛应用来表示向量之间的关系。
1. 数量积的三角函数表示根据数量积的公式,a∙a = |a| |a| cos a,我们可以通过三角函数来表示数量积,即:cos a = a∙a / (|a| |a|)其中,a是向量a和a之间的夹角。
2. 叉积的三角函数表示叉积不能直接表示为三角函数的形式,但可以通过数量积和叉积之间的关系来推导。
设有两个向量a和a,它们的夹角为a,则数量积为a∙a = |a| |a| cos a。
根据叉积的定义,叉积的大小为a×a = |a| |a| sin a。
由于数量积和叉积之间满足a×a = |a| |a| sin a,我们可以推导出:sin a = (a×a) / (|a| |a|)根据三角函数的性质,我们还可以进一步推导出:cos a = sqrt(1 - sin^2a)这样,我们可以利用向量的叉积和模长来计算夹角a,并通过三角函数来表示。
平面向量的数量积

平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
平面向量的数量积读法

平面向量的数量积读法
平面向量的数量积,也称为点积或内积,是向量代数中的一个重要概念。
数量积可以通过多种方法来理解和计算。
首先,从几何角度来看,平面向量的数量积可以表示为两个向量的模长乘积与它们夹角的余弦值的乘积。
这可以用来计算一个向量在另一个向量方向上的投影,从而得到它们之间的关系。
其次,从代数角度来看,平面向量的数量积可以表示为两个向量对应分量的乘积之和。
即如果有两个向量A和B,分别表示为
A=(a1, a2)和B=(b1, b2),那么它们的数量积可以表示为A·B = a1b1 + a2b2。
另外,从物理角度来看,平面向量的数量积也可以表示为一个向量在另一个向量方向上的投影的大小与这个向量的模长的乘积。
这在物理学中有着重要的应用,例如在力和位移的计算中。
总的来说,平面向量的数量积具有几何、代数和物理等多重含义和应用,可以从不同角度来理解和计算。
它在向量代数和几何中有着广泛的应用,是学习和理解向量运算的重要基础。
平面向量的数量积和向量积的模长

平面向量的数量积和向量积的模长在数学中,平面向量是指具有大小和方向的量,用于描述平面上的位移、速度、力等物理量。
平面向量有很多重要的性质和运算规律,其中最常用的两个运算是数量积和向量积。
本文将介绍平面向量的数量积和向量积,并讨论它们的模长性质。
一、数量积数量积,也称为点积或内积,是平面向量的一种运算。
给定平面上两个向量a=(a_1,a_2)和a=(a_1,a_2),它们的数量积定义为:a⋅a=a_1⋅a_1+a_2⋅a_2数量积有以下几个重要的性质:1. a⋅a=a⋅a数量积具有交换律,即对于任意两个向量a和a,它们的数量积相等。
2. a⋅(a+a)=a⋅a+a⋅a数量积具有分配律,即对于任意三个向量a、a和a,它们的数量积满足这个等式。
3. a⋅a=||a||^2向量的数量积等于向量的模长的平方。
二、向量积向量积,也称为叉积或外积,是另一种平面向量的运算。
给定平面上两个向量a=(a_1,a_2)和a=(a_1,a_2),它们的向量积定义为:a×a=a_1a_2−a_2a_1向量积有以下几个重要的性质:1. a×a=−a×a向量积具有反交换律,即两个向量的向量积是互相相反的。
2. a×(a+a)=a×a+a×a向量积具有分配律,与数量积类似,对于任意三个向量a、a和a,它们的向量积满足这个等式。
3. a×a与向量a和a的夹角a相关向量积的模长等于向量a和a的模长乘以它们之间夹角a的正弦值,即 ||a×a||=||a||⋅||a||⋅aaaa。
通过向量积的模长公式,我们可以计算出两个向量的夹角a的正弦值。
这在解决几何问题中非常有用,例如确定两条直线的夹角或者判断三角形的形状等。
结语平面向量的数量积和向量积是数学中非常重要的运算,它们具有很多有用的性质和应用。
数量积可以用于计算向量之间的夹角和判断向量的正交性,而向量积则可以用于计算向量构成的平行四边形的面积和判断向量所在平面的法向量等。
平面向量的数量积与几何意义

平面向量的数量积与几何意义平面向量是代表了平面上的位移和方向的量,而数量积则是用来衡量两个向量之间的关系的一种运算。
它不仅仅是一个数值结果,还有着重要的几何意义。
本文将探讨平面向量的数量积及其几何意义。
一、数量积的定义与性质数量积,也叫点积或内积,是指两个向量的乘积与两个向量夹角的余弦值的乘积。
设有向量a和向量b,其数量积记为a·b。
数量积的定义如下:a·b = |a|·|b|·cosθ其中,|a|表示向量a的模长,|b|表示向量b的模长,θ表示a与b之间的夹角。
根据数量积的定义,我们可以得到一些重要的性质:1. 交换律:a·b = b·a2. 分配律:(a+b)·c = a·c + b·c3. 数量积的模长:|a·b| = |a|·|b|·|cosθ|4. 垂直性:若a·b=0,则a和b垂直二、数量积的几何意义数量积不仅仅是一个数值结果,还蕴含着重要的几何意义。
下面我们将从两个方面来解释数量积的几何意义。
1. 夹角的余弦值在数量积的定义中,夹角的余弦值cosθ是数量积的一个因子。
夹角的大小可以通过夹角的余弦值来衡量。
当夹角为锐角时,cosθ大于0;当夹角为钝角时,cosθ小于0;而当夹角为直角时,cosθ等于0。
由此可以得到以下结论:- 若a·b > 0,夹角θ为锐角;- 若a·b < 0,夹角θ为钝角;- 若a·b = 0,夹角θ为直角。
2. 平行与垂直根据数量积的性质4,若a·b=0,则a和b垂直。
这个性质给出了判定两个向量是否垂直的方法。
另外,当两个向量的数量积大于0时,可以说明它们的方向相似,即平行;当数量积小于0时,可以说明它们的方向相反,即反平行。
这些几何意义使得数量积在解决几何问题中有着广泛的应用。
三、数量积的应用举例1. 判断两个向量的方向通过判断两个向量的数量积的正负,可以得知它们的方向关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向量垂直
•
练习
•
向量在轴上的正射影
•
A O
向量的数量积
•
用向量的正射影解释数量积
•
A O
向量数量积的物理背景
•
θ
回顾小结
• 向量的夹角
• 向量在轴上的数量
• 向量的数量积
平面向量数量积的物理背景与定义
山东省青州实验中学
学习目标
•; 2、掌握平面向量数量积的定义及几何意义; 3、理解一个向量在另一个向量方向上的投影的概念。
向量的夹角
• • • 如何作出向量夹角?如何记? 向量夹角的范围如何?向量同向、反向时夹角如何? 向量垂直的定义?零向量与任何向量垂直吗?