平面向量数量积坐标表示
平面向量数量积的坐标表示
第六节 平面向量数量积的坐标学习目标:1.掌握两个向量数量积的坐标表示,能通过两个向量的坐标进行两个向量数量积的运算.2.能运用两个向量的数量积表示两个向量的夹角,掌握两个向量垂直的坐标条件,能运用这一条件去判断两个向量的垂直关系.3.能运用两个向量的数量积的坐标表示去解决处理有关长度、角度、垂直等问题.重点、难点:重点:两个向量数量积的坐标表示,向量的长度公式,两个向量垂直的条件.难点:对向量的长度公式,两个向量垂直条件的灵活运用.学习过程:(一) 课前预习检查1.设单位向量j i ,分别与平面直角坐标系中的x 轴、y 轴方向相同,O 为坐标原点,若向量,23j i OA +=则向量OA 的坐标是 ,若向量)2,1(-=a ,则向量a 可用j i ,表示为 .2. 已知,1==j i ,j i ⊥,23j i a +=,j i b -==⋅b a .3. A 点坐标(x 1,y 1),B 点坐标(x 2,y 2),_____,=AB ______,=BA ..______=AB4. (1) ______;=⋅b a(2) _____;______;==⋅a a a(3) .______cos ______;=⇔⊥θb a 5. 向量的数量积满足哪些运算律?(二) 提出问题,揭示课题我们学过向量的加法、减法、数乘向量可以用它们相应的坐标来运算,那么怎样用b a 和的坐标来表示b a ⋅呢? (三) 新课探究1. 平面向量数量积的坐标表示问题1:如图,i 是x 轴方向上的单位向量,j 是y 轴方向上的单位向量,请计算下列式子:(1) ____,=⋅i i (2) ____,=⋅j j(3) ____,=⋅j i (4) .____=⋅j j问题2:如何推导b a ⋅的坐标公式.已知非零向量),(),,(2211y x b y x a == ,设j i 和分别是x 轴和y 轴方向上的单位向量,则有,11j y i x a += j y i x b 22+=)()(2211j y i x j y i x b a +⋅+=⋅∴j j y y i j y x j i y x i i x x ⋅+⋅+⋅+⋅=211221210,1,122=⋅=⋅==i j j i j i2121y y x x b a +=⋅∴两个向量的数量积等于相应坐标乘积的和.2. 向量的模和两点间的距离公式(1) 向量的模.,),,(22222y x a y x a y x a +=+== 或则设(2)两点间的距离公式.)()(),,(),(2212212211y y x x AB y x B y x A -+-=则、设3. 两向量垂直和平行的坐标表示(1)垂直 0=⋅⇔⊥b a b a0)(),(21212,21,1=+⇔⊥==y y x x b a y x b y x a 则设(2)平行 0//)(),(12212,21,1=-⇔==y x y x b a y x b y x a 则设4. 两向量夹角公式的坐标运算.c o s ,180000ba b a b a ⋅=≤≤θθθ则)(的夹角为和设 .c o s ,1800),(),,(222221212121002,211y x y x y y x x b a y x b y x a +⋅++=≤≤==θθθ则)(的夹角为和设.0,022222121≠+≠+y x y x 其中 (四)讲解例题 探究新知例1. 已知)1,1(),32,1(=+-=b a ,求.,,θ的夹角和b a b a b a ⋅⋅解: ,311)32(11+=⨯++⨯-=⋅b a322)32()1(22+=++-=a , 21122=+=b)31(23242+=+=⋅∴b a,21)31(231c o s =++=θ001800≤≤θ 060=∴θ 例2. 已知A(1,2),B(2,3),C(-2,5),试判断ABC ∆的形状,并给出证明. 证明: )3,3()25,12(),1,1()23,12(-=---==--=AC AB031)3(1=⨯+-⨯=⋅∴AC ABAC AB ⊥∴是直角三角形A B C ∆∴变式:.),,1(),3,2(的值求实数中,在k k OB OA OAB Rt ==∆例3. 求以点C(a,b)为圆心,r 为半径的圆的方程.解: 设M(x,y)是圆C 上一点,则CM |=r,即 2r CMCM =⋅因为 (),,b y a x CM--= 所以()()222r b y a x =-+-,即为圆的标准方程.如果圆心在坐标原点上,这时a=0,b=0,那么圆的标准方程就是.222r y x =+由解析几何知给定斜率为k 的直线l ,则向量),1(k m = 与直线l 共线,我们把与直线l 共线的非零向量m 称为直线l 的方向向量.例4 已知直线01243:1=-+y x l 和0287:2=-+y x l ,求直线1l 和2l 的夹角.解: 任取直线1l 和2l 的方向向量)43,1(-=m 和)7,1(-=n . 设向量m 与n 的夹角为θ, 因为θcos n m n m =⋅,从而,22)7(1)43(1)7()43(11cos 2222=-+⨯-+-⨯-+⨯=θ 所以θ=45°,即直线1l 和2l 的夹角为45°.(五) 课堂练习1. 已知)1,1(),432,2(=-=b a ,求.,θ的夹角和b a b a ⋅2. 已知),9,6(),2,3(-==b a 求证.b a ⊥3. 若),6,5(),3,4(=-=b a 则.___432=⋅-b a a4. 若),3,(),1,3(-==x b a ,且b a ⊥,则实数.____=x5. 若),7,4(),3,2(-==b a ,则b a 在方向上的投影是 ;6. 若()2,4=a ,则与a 垂直的单位向量的坐标是 ;(六) 小结:平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.(七) 布置作业 课后巩固1. 已知三点()()(),7,6,3,2,5,7-C B A ,求证:ABC ∆直角三角形.2. 已知),5,(),0,3(k b a == ,.1350的值,求的夹角是与且k b a3. 已知直线017618:1=-+y x l 和09105:2=-+y x l ,求直线1l 和2l 的夹角.。
平面向量数量积的坐标表示
VS
计算力的合成与分解
利用向量的坐标表示,可以将多个力进行 合成与分解,方便对物体进行受力分析。
在工程中的应用
描述物体的运动
在工程中,物体的运动可以看作是向量的 变化过程,通过引入向量的坐标表示,可 以更精确地描述物体的运动轨迹。
向量场的旋度和散度
• 旋度的性质:旋度具有方向性,其方向与向量场在该点的旋转方向一致;旋度的模长等于向量场在该点的 旋转强度。
• 散度的定义:散度是一个标量,表示向量场中某点处的发散程度。对于一个向量场$\mathbf{F} = (u, v, w)$,其在某点$(x, y, z)$处的散度为$
• abla \cdot \mathbf{F} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$。
坐标表示的意义
通过坐标系来表示向量的位置和方向,进而可以直观地理解数量积的几计算
通过坐标表示可以方便地计算向量的长度,即向量的模。
向量夹角的计算
通过坐标表示可以求出两个向量的夹角,进而可以计算出它们 的数量积。
向量投影的计算
通过坐标表示可以求出一个向量在另一个向量上的投影,进而 可以计算出它们的数量积。
曲线和曲面的切线方向
• 切线方向的确定:切线方向是指曲线或曲面上某一点处的最速上升方向或最速下降方向。在二维平面上, 曲线在某一点的切线方向是该点函数值变化最快的方向。
• 切线方向的计算:对于曲线$y = f(x)$,在某一点$(x_0, y_0)$处的切线方向向量为$(1, f'(x_0))$;对于曲面 $z = f(x,y)$,在某一点$(x_0, y_0, z_0)$处的切线方向向量为$(\frac{\partial f}{\partial x}(x_0, y_0), \frac{\partial f}{\partial y}(x_0, y_0), 1)$。
《平面向量数量积的坐标表示》教案、导学案、课后作业
《6.3.5 平面向量数量积的坐标表示》教案【教材分析】平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。
它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章的重点之一.【教学目标与核心素养】课程目标1.学会用平面向量数量积的坐标表达式,会进行数量积的运算。
理解掌握向量的模、夹角等公式.能根据公式解决两个向量的夹角、垂直等问题.2.经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神.数学学科素养1.数学抽象:数量积的坐标运算;2.逻辑推理:平面向量的夹角公式,模长公式,垂直关系等;3.数学运算:根据向量垂直求参数,根据已知信息求数量积、夹角、模长等;4.数据分析:根据已知信息选取合适方法及公式求数量积;5.数学建模:数形结合,将几何问题转化为代数问题解决,体现了事务之间是可以相互转化的.【教学重点和难点】重点:平面向量数量积的坐标表示;难点:向量数量积的坐标表示的应用.【教学过程】一、情景导入前面,我们学习了: 用坐标表示平面向量的加法和减法, 平面向量的数量积是如何定义, 向量的运算律有哪些.那么可以用坐标表示平面向量的数量积吗?如果可以,怎么表示?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本34-35页,思考并完成以下问题1、平面向量数量积的坐标表示是什么?2、如何用坐标表示向量的模、夹角、垂直?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、两向量的数量积与两向量垂直的公式(1)已知两个非零向量a =(x 1,x 2), b =(x 2,y 2),怎样用a 与b 的坐标表示数量积a ·b 呢?a ·b =x 1x 2+y 1y 2即:两个向量的数量积等于它们对应坐标的乘积的和 (2)a ⊥b <=> a ·b =0<=>x 1x 2+y 1y 2=0 2.与向量的模、夹角相关的三个重要公式 (1)若a =(x,y),则|a |=x 2+y 2(2)若A(x 1,x 2),B(x 2,y 2),则两点A 、B 间的距离为 (3)设a , b 都是非零向量,a =(x 1,y 1), b (x 2,y 2), a 与b 的夹角θ, 则四、典例分析、举一反三题型一 平面向量数量积的坐标运算例1 (1)向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1D .2(2)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ―→=(1,-2),AD ―→=(2,1),则AD ―→·AC ―→=( )A .5B .4C .3D .2【答案】(1) C .(2) A .【解析】(1)∵a =(1,-1),b =(-1,2), ∴(2a +b )·a =(1,0)·(1,-1)=1.(2)由AC ―→=AB ―→+AD ―→=(1,-2)+(2,1)=(3,-1),得AD ―→·AC ―→=(2,1)·(3,-,)()(212212y y x x AB -+-=222221212121cos y x y x y y x x +⋅++=θ1)=5.解题技巧(数量积坐标运算的两条途径)进行向量的数量积运算,前提是牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算.跟踪训练一1、在平面直角坐标系xOy 中,正方形OABC 的对角线OB 的两端点坐标分别为O (0,0),B (1,1),则AB ―→·AC ―→=________.2.在平行四边形ABCD 中,AC ―→=(1,2),BD ―→=(-3,2),则AD ―→·AC ―→=________.【答案】1、1 2、3.【解析】1、如图所示,在正方形OABC 中,A (0,1),C (1,0)(当然两者位置可互换,不影响最终结果),则AB ―→=(1,0),AC ―→=(1,-1),从而AB ―→·AC ―→=(1,0)·(1,-1)=1×1+0×(-1)=1.2、设AC ,BD 相交于点O ,则AD ―→=AO ―→+OD ―→=12AC ―→+12BD ―→=⎝ ⎛⎭⎪⎫12,1+⎝ ⎛⎭⎪⎫-32,1=(-1,2).又AC ―→=(1,2),∴AD ―→·AC ―→=(-1,2)·(1,2)=-1+4=3.题型二 向量的模的问题例2 (1)设平面向量a =(1,2),b =(-2,y ),若a ∥b ,则|3a +b |等于( ) A. 5 B. 6 C.17D.26(2)已知|a |=213,b =(2,-3),若a ⊥b ,求a +b 的坐标及|a +b |. 【答案】(1)A (2)a +b =(8,1)或a +b =(-4,-7),|a +b |=65. 【解析】 (1)∵a ∥b ,∴1×y -2×(-2)=0, 解得y =-4,从而3a +b =(1,2),|3a +b |= 5. (2)设a =(x ,y ),则由|a |=213,得x 2+y 2=52. ① 由a ⊥b ,解得2x -3y =0.②由①②,解得⎩⎪⎨⎪⎧x =6,y =4或⎩⎪⎨⎪⎧x =-6y =-4.∴a =(6,4)或a =(-6,-4). ∴a +b =(8,1)或a +b =(-4,-7), ∴|a +b |=65.解题技巧: (求向量模的两种基本策略)(1)字母表示下的运算:利用|a |2=a 2,将向量的模的运算转化为向量与向量的数量积的问题.(2)坐标表示下的运算:若a =(x ,y ),则a ·a =a 2=|a |2=x 2+y 2,于是有|a |=x 2+y 2. 跟踪训练二1.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为________. 2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 【答案】1、2+ 3. 2、8 2.【解析】1、2a -b =(2cos θ-3,2sin θ), |2a -b |=(2cos θ-3)2+(2sin θ)2 =4cos 2θ-43cos θ+3+4sin 2θ =7-43cos θ,当且仅当cos θ=-1时,|2a -b |取最大值2+ 3. 2、∵a =(2,4),b =(-1,2), ∴a·b =2×(-1)+4×2=6,∴c =a -(a·b )b =(2,4)-6(-1,2)=(2,4)-(-6,12)=(8,-8), ∴|c |=82+(-8)2=8 2. 题型三 向量的夹角和垂直问题例3 (1)已知向量a =(1,2),b =(-2,-4),|c |=5,若(c -b )·a =152,则a 与c 的夹角为( )A .30°B .60°C .120° D.150°(2)已知向量a =(1,2),b =(2,3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),求c 的坐标.【答案】(1)C. (2) c =⎝ ⎛⎭⎪⎫521,-17. 【解析】 (1)∵a ·b =-2-8=-10, ∴得(c -b )·a =c ·a -b ·a =c ·a +10=152, ∴c ·a =-52.设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=-525×5=-12.∵0°≤θ≤180°,∴θ=120°.(2)设c 的坐标为(x ,y ),则a +c =(1+x,2+y ). ∵(a +c )∥b ,∴(1+x )×3-2×(2+y )=0,即3x -2y =1. ① 又a +b =(3,5),且(a +b )⊥c ,∴3x +5y =0. ②联立①②,得方程组⎩⎪⎨⎪⎧3x -2y =1,3x +5y =0,解得⎩⎪⎨⎪⎧x =521,y =-17.故c =⎝ ⎛⎭⎪⎫521,-17.解题技巧(解决向量夹角问题的方法和注意事项)(1)先利用平面向量的坐标表示求出这两个向量的数量积a ·b 以及|a ||b |,再由cos θ=a ·b |a ||b |求出cos θ,也可由坐标表示cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22直接求出cos θ.由三角函数值cos θ求角θ时,应注意角θ的取值范围是0≤θ≤π.(2)由于0≤θ≤π,利用cos θ=a ·b|a ||b |来判断角θ时,要注意cos θ<0有两种情况:一是θ是钝角,二是θ=π;cos θ>0也有两种情况:一是θ为锐角,二是θ=0.跟踪训练三1、已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小.【答案】(1)b =(9,12),c =(4,-3).(2)3π4. 【解析】(1)∵a ∥b ,∴3x =4×9,∴x =12. ∵a ⊥c ,∴3×4+4y =0,∴y =-3, ∴b =(9,12),c =(4,-3).(2)m =2a -b =(6,8)-(9,12)=(-3,-4),n =a +c =(3,4)+(4,-3)=(7,1).设m ,n 的夹角为θ,则cos θ=m ·n |m ||n |=-3×7+(-4)×1(-3)2+(-4)2·72+12=-25252=-22.∵θ∈[0,π],∴θ=3π4, 即m ,n 的夹角为3π4.题型四 平面向量的数量积问题例4 已知点A ,B ,C 满足|AB ―→|=3,|BC ―→|=4,|CA ―→|=5,求AB ―→·BC ―→+BC ―→·CA ―→+CA ―→·AB ―→的值.【答案】-25.【解析】[法一 定义法]如图,根据题意可得△ABC 为直角三角形,且B =π2,cos A =35,cos C =45, ∴AB ―→·BC ―→+BC ―→·CA ―→+CA ―→·AB ―→ =BC ―→·CA ―→+CA ―→·AB ―→=4×5cos(π-C )+5×3cos(π-A )=-20cos C -15cos A =-20×45-15×35 =-25. [法二 坐标法]如图,建立平面直角坐标系,则A (3,0),B (0,0),C (0,4). ∴AB ―→=(-3,0),BC ―→=(0,4), CA ―→=(3,-4).∴AB ―→·BC ―→=-3×0+0×4=0, BC ―→·CA ―→=0×3+4×(-4)=-16, CA ―→·AB ―→=3×(-3)+(-4)×0=-9.∴AB ―→·BC ―→+BC ―→·CA ―→+CA ―→·AB ―→=0-16-9=-25. 解题技巧(求平面向量数量积常用的三个方法) (1)定义法:利用定义式a ·b =|a ||b |cos θ求解; (2)坐标法:利用坐标式a·b =x 1x 2+y 1y 2求解;(3)转化法:求较复杂的向量数量积的运算时,可先利用向量数量积的运算律或相关公式进行化简,然后进行计算.跟踪训练四1、如果正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,那么cos ∠DOE 的值为________.【答案】45.【解析】法一:以O 为坐标原点,OA ,OC 所在的直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,则由已知条件,可得OD ―→=⎝ ⎛⎭⎪⎫1,12,OE ―→=⎝ ⎛⎭⎪⎫12,1.故cos ∠DOE =OD ―→·OE―→|OD ―→|·|OE ―→|=1×12+12×152×52=45.法二:∵OD ―→=OA ―→+AD ―→=OA ―→+12OC ―→, OE ―→=OC ―→+CE ―→=OC ―→+12OA ―→, ∴|OD ―→|=52,|OE ―→|=52, OD ―→·OE ―→=12OA ―→2+12OC ―→2=1, ∴cos ∠DOE =OD ―→·OE ―→| OD ―→ ||OE ―→|=45.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本36页练习,36页习题6.3的剩余题.【教学反思】结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,最终在教师的指导下去探索发现问题,解决问题。
平面向量数量积的坐标表示
求两向
平面向量数量积的坐标表示
平面向量数量积的坐标表示
已知向量a,b的夹角θ的范围,求参数的取值范围时,可利用性质:①0°≤θ<90°⇔ a·b>0;②90°<θ≤180°⇔a·b<0.
3.解决投影向量问题的方法 已知非零向量a=(x1,y1),b=(x2,y2),则a在b方向上的投影向量为 · =
. ,
.
平面向量数量积的坐标表示
判断正误,正确的画“√” ,错误的画“ ✕” .
1.向量a=(x1,y1),b=(x2,y2)的数量积仍是向量,其坐标为(x1x2,y1y2). ( ✕ ) 2.| |的计算公式与A,B两点间的距离公式是一致的. ( √ )
3.若非零向量a=(x1,y1),b=(x2,y2)的夹角为锐角,则x1x2+y1y2>0;反之,若非零向量a=(x1, y1),b=(x2,y2)满足x1x2+y1y2>0,则它们的夹角为锐角. ( ✕ )
.
其中的真命题为 ②③ .(填序号)
思路点拨 根据平面向量的夹角、模及投影向量公式求解.
平面向量数量积的坐标表示
平面向量数量积的坐标表示
解析 对于①,∵a=(1,2),b=(1,1), ∴a+λb=(1+λ,2+λ). ∵a与a+λb的夹角为锐角,
∴
解得
∴λ的取值范围为
∪(0,+∞),故①错误.
对于②,∵a⊥c,∴2x-4=0,解得x=2.
6.3.5 平面向量数量积的坐标表示
1.能用坐标表示平面向量的数量积,会求两个平面向量的夹角. 2.会用两个向量的坐标判断它们是否垂直. 3.会利用平面向量的数量积解决判断图形形状的问题,进一步体会数形结合的 思想方法.
平面向量数量积及坐标表示
a b 13 20 7
练习:课本P1071、2、3.
例2 已知A(1,2),B(2,3),C(-2,5),
试判断ABC的形状,并给出证明.
y B(2,3) A(1,2) x
0
C(-2,5) 证明 :AB (2 1,3 2) (1,1)
AC (2 1,5 2) (3,3)
2.4 平面向量的数量积 及运算律
一、平面向量数量积的定义: 已知两个非零向量 a 和 b ,我们把数量 | a || b | cos q 叫做a与 b的数量积 ( 或内积 ) ( 或点积 )
a a
A
记作 a b , 即 a b a b cos q . 其中,q 是 a与b 的夹角
的夹角为 600, 例3 已知 a 6, 4,a与b b 求( 2b ) (a - 3b ) a . 2 2 解:( 2b ) ( - 3b ) a a b 6b a a 2 2 | a | a b 6 | b |
4、两向量夹角公式的坐标运算
设a与b 的夹角为q(0 q
a b ab
设a x1 , y1 ), b ( x2 , y2 ), 且a与b夹角为q, ( (0 q 180 )则 cos q
2 1 2 1 2 2
x1 x2 y1 y2 x y x y
提高练习
1、已知OA (3,1), (0,5),且 AC // OB, OB BC AB ,则点C的坐标为
29 C (3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、 D(5,8),则四边形ABCD的形状是矩形 .
2022年第部分 第二章 § 平面向量数量积的坐标表示
由 a·b<0,得 1+2λ<0,故 λ<-12, 由 a 与 b 共线得 λ=2,故 a 与 b 不可能反向. 所以 λ 的取值范围为-∞,-12. (3)因为 a 与 b 的夹角为锐角, 所以 cos θ>0,且 cos θ≠1, 所以 a·b>0 且 a,b 不同向. 由 a·b>0,得 λ>-12,由 a 与 b 同向得 λ=2. 所以 λ 的取值范围为-12,2∪(2,+∞).
3.已知向量a=(3,-1),b=(1,-2),求: (1)(a+b)2; (2)(a+b)·(a-b). 解:a=(3,-1),b=(1,-2), (1)a+b=(3,-1)+(1,-2)=(4,-3), ∴(a+b)2=|a+b|2=42+(-3)2=25.
(2)法一:∵a=(3,-1),b=(1,-2), ∴a2=32+(-1)2=10,b2=12+(-2)2=5, ∴(a+b)·(a-b)=a2-b2=10-5=5. 法二:∵a=(3,-1),b=(1,-2), ∴a+b=(3,-1)+(1,-2)=(4,-3), a-b=(3,-1)-(1,-2)=(2,1), ∴(a+b)·(a-b)=(4,-3)·(2,1) =4×2+(-3)×1=5.
8.已知 a=(1,1),b=(0,-2),当 k 为何值时, (1)ka-b 与 a+b 共线; (2)ka-b 的模等于 10?
解:∵a=(1,1),b=(0,-2), ka-b=k(1,1)-(0,-2)=(k,k+2). a+b=(1,1)+(0,-2)=(1,-1).
1.设a=(x1,y1),b=(x2,y2),则a⊥b⇔x1x2+y1y2=0. 应用该条件要注意:由a⊥b可得x1x2+y1y2=0;反过来,由 x1x2+y1y2=0可得a⊥b.
高一数学平面向量数量积的坐标表示
思考3:根据数量积的运算性质,a·b等 于什么?
a·b=x1x2+y1y2
思考4:若a=(x1,y1),b=(x2,y2),则 a·b=x1x2+y1y2,这就是平面向量数量 积的坐标表示.你能用文字描述这一结论 吗?
两个向量的数量积等于它们对应坐标的 乘积的和.
小结作业
1.a∥b a⊥b 二者有着本质区别.
好似天龙一般的强劲腹部忽亮忽暗跃出; 速读教育加盟 速读加盟品牌 ;豹隐桑香般的跃动。紧接着甩动精明快乐的黑亮眼睛一笑,露出一副 虚幻的神色,接着转动灵敏小巧的薄耳朵,像纯黑色的百心旷野蟒般的一抛,古怪的矫健刚劲的手臂顷刻伸长了三倍,像飞云瀑布般的海沙色月光风衣也骤然膨胀了四倍……
2.4 平面向量的数量积
2.4.2 平面向量数量积的坐标 表示、模、夹角
问题提出
1.向量a与b的数量积的含义是什么?
a·b=|a||b|cosθ. 其中θ为向量a与b的夹角
2.向量的数量积具有哪些运算性质?
(1)a⊥b a·b=0(a≠0,b≠0); (2)a2=︱a︱2; (3)a·b=b·a;
最后晃起青春光洁的手掌一耍,轻飘地从里面跳出一道怪影,他抓住怪影俊傲地一抖,一套蓝冰冰、白惨惨的兵器∈追云赶天鞭←便显露出来,只见这个这玩意儿,一边蜕变 ,一边发出“喇喇”的猛声。!猛然间蘑菇王子狂魔般地念起稀里糊涂的宇宙语,只见他好象美妙月牙一样的,镶嵌着无数奇宝的蓝白色瓜皮滑板中,突然弹出二团扭舞着∈ 神音蘑菇咒←的焰火状的水管,随着蘑菇王子的颤动,焰火状的水管像古树一样在拇指秀丽地鼓捣出隐约光波……紧接着蘑菇王子又连续使出七千一百五十七家猛燕麦穗震, 只见他深邃快乐、充满智慧的黑亮眼睛中,萧洒地涌出四串晃舞着∈神音蘑菇咒←的光盘状的翅膀,随着蘑菇王子的晃动,光盘状的翅膀像樱桃一样,朝着女狂人Q.玛娅婆 婆丰盈的胸部直跳过去!紧跟着蘑菇王子也晃耍着兵器像门柱般的怪影一样向女狂人Q.玛娅婆婆直跳过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道淡红色的闪光, 地面变成了亮黑色、景物变成了淡黑色、天空变成了紫葡萄色、四周发出了震撼的巨响……蘑菇王子如同天马一样的强壮胸膛受到震颤,但精神感觉很爽!再看女狂人Q.玛 娅婆婆矮小的乳白色拖网一般的眼睛,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,女狂人Q.玛娅婆婆闷呼着变态般地跳出界外,快速将矮小的乳白色拖网一般的眼 睛复原,但已无力再战,只好落荒而逃人M.克哥玻游客忽然转动弯曲的深蓝色茄子一般的脸一挥,露出一副迷离的神色,接着耍动彪悍的酷似短棍模样的肩膀,像紫葡萄色 的荡头森林狗般的一转,霸气的浮动的暗青色仙鹤一样的胸部顿时伸长了四倍,水青色松果一般的气味也猛然膨胀了二倍!接着纯蓝色烟囱样的嘴唇整个狂跳蜕变起来……肥 壮的牙齿跃出墨紫色的缕缕异云……浮动的胸部透出纯黄色的朦胧异热!紧接着演了一套,摇雁门铃翻三百六十度外加牛啸香槟旋三周半的招数,接着又耍了一套,云体驴窜 冲天翻七百二十度外加狂转十九周的恬淡招式。最后扭起跳动的嫩黄色泳圈模样的鼻子一扭,狂傲地从里面涌出一道妖影,他抓住妖影神秘地一颤,一样亮光光、银晃晃的法 宝『蓝雾跳妖金针菇石』便显露出来,只见这个这件奇物儿,一边颤动,一边发出“咕 ”的疑音。……突然间M.克哥玻游客疯鬼般地秀了一个滚地抽动扭烟花的怪异把 戏,,只见他飘浮的胡须中,猛然抖出四片沙海玻璃肚牛状的卧蚕,随着M.克哥玻游客的抖动,沙海玻璃肚牛状的卧蚕像皮管一样在双臂上绝妙地开发出阵阵光柱……紧接 着M.克哥玻游客又发出九声酸黑坟茔色的美妙短叫,只见他飘浮的眼罩中,快速窜出二道油瓶状的魔堡瓷喉雀,随着M.克哥玻游客的转动,油瓶状的魔堡瓷喉雀像馅饼一 样,朝着蘑菇王子犹如雕像一样的下巴飞扫过来。紧跟着M.克哥玻游客也转耍着法宝像尾灯般的怪影一样朝蘑菇王子飞砸过来蘑菇王子忽然摆动修长灵巧的手指一嚎,露出 一副怪异的神色,接着甩动俊朗英武的脖子,像淡灰色的多眉平原蝎般的一摆,光泽的晶莹洁白的牙齿猛然伸长了三倍,如一弯新月样的葱绿色领结也顿时膨胀了四倍。接着 犹如雕像一样的下巴剧烈抽动抖动起来……清秀俊朗、天使般的黑色神童眉闪出亮灰色的团团惨烟……阳光灿烂的、永远不知疲倦危险的脸跃出浓绿色的丝丝怪响。紧接着玩 了一个,飞蟒茅草翻三百六十度外加狐嚎茄子旋三周半的招数!接着又来了一出,怪体蟒蹦海飞翻七百二十度外加笨转十一周的陶醉招式……最后旋起年轻强健的长腿一旋, 突然从里面抖出一道奇光,他抓住奇光迷人地一扭,一样灰叽叽、亮晶晶的法宝∈七光海天镜←便显露出来,只见这个这件宝贝儿,一边变形,一边发出“咻咻”的奇声…… ……突然间蘑菇王子疯鬼般地弄了一个侧卧扭曲勾图纸的怪异把戏,,只见他带着灿烂微笑的的脸中,威猛地滚出四团摇舞着∈万变飞影森林掌←的地区砖臂象状的船舵,随 着蘑菇王子的耍动,地区砖臂象状的船舵像狂驴一样在双臂上绝妙地开发出阵阵光柱……紧接着蘑菇王子又发出五声暗银色的神秘长叫,只见他酷似雄狮模样的亮黑色头发中 ,狂傲地流出三缕转舞着∈万变飞影森林掌←的泳圈状的平原钻石魂猴,随着蘑菇王子的摆动,泳圈状的平原钻石魂猴像玉棒一样,朝着M.克哥玻游客天蓝色细小肥肠造型 的胡须飞掏过去。紧跟着蘑菇王子也转耍着法宝像尾灯般的怪影一样朝M.克哥玻游客飞抓过去随着两条怪异光影的瞬间碰撞,半空顿时出现一道浅绿色的闪光,地面变成了 水绿色、景物变成了鹅黄色、天空变成了土黄色、四周发出了美妙的巨响!蘑菇王子犹如雕像一样的下巴受到震颤,但精神感觉很爽!再看M.克哥玻游客天青色面具一样的 短发,此时正惨碎成闹钟样的水白色飞沫,狂速射向远方,M.克哥玻游客闷呼着变态般地跳出界外,快速将天青色面具一样的短发复原,但元气已受损伤人蘑菇王子:“哈 哈!这位干部的科目很不潇洒哦!还真没有震撼性呢!”M.克哥玻游客:“哈咿!我要让你们知道什么是暴力派!什么是邪恶流!什么是飘然有趣风格!”蘑菇王子:“哈 哈!小老样,有什么玩法都弄出来瞧瞧!”M.克哥玻游客:“哈咿!我让你享受一下『紫冰香祖邮筒理论』的厉害!”M.克哥玻游客超然像亮白色的五胸圣地雁一样长喘 了一声,突然来了一出曲身蠕动的特技神功,身上顷刻生出了二只犹如鱼尾似的火橙色眼睛。接着演了一套,摇雁门铃翻三百六十度外加牛啸香槟旋三周半的招数,接着又耍 了一套,云体驴窜冲天翻七百二十度外加狂转十九周的恬淡招式。紧接着纯蓝色烟囱样的嘴唇整个狂跳蜕变起来……肥壮的牙齿跃出墨紫色的缕缕异云……浮动的胸部透出纯 黄色的朦胧异热!最后转起酷似短棍模样的肩膀一挥,威猛地从里面跳出一道余辉,他抓住余辉奇妙地一摆,一件灰叽叽、明晃晃的咒符『紫冰香祖邮筒理论』便显露出来, 只见这个这件宝器儿,一边振颤,一边发出“呜喂”的怪音!。骤然间M.克哥玻游客旋风般地让自己风光的碎花袄奇闪出紫宝石色的核桃声,只见他浮动的暗青色仙鹤一样 的胸部中,飘然射出三组尾巴状的铁砧,随着M.克哥玻游客的甩动,尾巴状的铁砧像瓜皮一样在身后痴呆地搞出缕缕光雾……紧接着M.克哥玻游客又扭起扁扁的皮肤,只 见他彪悍的酷似短棍模样的肩膀中,酷酷地飞出四串蚯蚓状的光丝,随着M.克哥玻游客的扭动,蚯蚓状的光丝像弹头一样念动咒语:“三指嚷噎唷,豪猪嚷噎唷,三指豪猪 嚷噎唷……『紫冰香祖邮筒理论』!精英!精英!精英!”只见M.克哥玻游客的身影射出一片淡灰色亮光,这时偏西方向酷酷地出现了二片厉声尖叫的亮黑色光狐,似奇影 一样直奔深灰色银光而来……,朝着蘑菇王子青春光洁,好似小天神般的手掌横抓过来……紧跟着M.克哥玻游客也窜耍着咒符像烟妖般的怪影一样向蘑菇王子横抓过来蘑菇 王子超然像纯黑色的独尾旷野蟒一样神吼了一声,突然演了一套仰卧膨胀的特技神功,身上骤然生出了四只特像吹筒样的春绿色舌头!接着玩了一个,飞蟒茅草翻三百六十度 外加狐嚎茄子旋三周半的招数!接着又来了一出,怪体蟒蹦海飞翻七百二十度外加笨转十一周的陶醉招式……紧接着犹如雕像一样的下
平面向量数量积的坐标表示 课件 高中数学人教A版(2019)必修第二册
解法1:因为 = (2 − 1,3 − 2) = (1,1)
= −2 − 1,5 − 2 = −3,3 , = (−4,2),
所以
2
=
所以
2
= 12 + 12 = 2,
(−3)2
2
+ 32
+
2
= 18,
=
2
= (−4)2 + 22 = 20,,
6.3.5 平面向量数量积的坐标表示
课标ห้องสมุดไป่ตู้位
学习
目标
1.掌握平面
向量数量积
的坐标表示;
学习
目标
2.会运用两
个向量的数
量积的坐标
表示解决有
关长度、角
度、垂直等
几何问题;
学习
目标
3、通过对
平面向量数
量积的坐标
表示的学习,
培养学生数
学抽象、数
学运算等数
学素养。
目录
01
温
故
知
新
02
例
题
讲
解
03
当
堂
检
测
04
∙
||∙||
=
+
∙
+ +
例1:设Ԧ =(4,-3), =(5,12),求Ԧ ·
解:Ԧ ∙ = 4 × 5+(-3) × 12=20-36=-16
变式:求Ԧ , 的夹角θ的余弦值.
Ԧ ∙ = ||
Ԧ ∙ ||
则Ԧ ⋅ Ԧ − = −2,4 ⋅ −3,3 = 18
)
2、若向量 = −, , = , ,则向量 + 与 + 的夹角的余弦
《平面向量数量积的坐标表示》课件2
3、 cos
x1 x2 y1 y2 x1 y1
2 2
x2 y2
2
2
4、 a // b x1y2 x2 y1 0 5、 a b x1 x2 y1 y2 0
6、已知:A(x1,x2),B(x1,x2)则
AB ( x2 x1 ) 2 ( y2 y1 ) 2 ,
基础训练题
1.有四个式子: 10 a 0, 20 a 0, 3a b a c b c,
4 a b a b , 其中正确的个数为:
A. 4个 B.3个 C. 2个
D
D.1个
2. 已知a, b均为单位向量下列结论正确的是 , :
B
D.a b 0
证明:
AB (2 1,3 2) (1,1)
BC (2 2,5 3) (4,2)
AC (2 1,5 2) (3,3)
AB AC 1 (3) 1 3 0
∴ AB⊥AC 又∵ ︱AB︱ ≠ ︱AC︱
∴△ABC是直角三角形
练习: 书P107,1,2, 书P108习题2.4A第5题(1)
x2 y2 .
2 2
如何计算?
2)、若设A(x1,y1),B(x2,y2),则向量AB的 模
AB ( x2 x1 ) 2 ( y2 y1 ) 2 ,
这就是A、B两点间的距离公式.
探索3: 你能写出向量夹角公式的坐标表示式
已知两个非零向量a=(x 1, y1) , b=(x2 , y2)
其中假命题序号是:
(2)
4.若a 0,1, b 1,1且 a b a, 则实数的值是
A.-1 B.0 C.1 D.2
6-3-5 平面向量数量积的坐标表示(教学课件)-高中数学人教A版 (2019)必修第二册
我们发现是∆直角三角形.证明如下:
因为 = − , − = (, ),
= − − , − = (−, )
所以 ∙ = × − + × =
于是 ⊥
因此, ∆直角三角形
6.3.5 平面向量数量
积的坐标表示
引入
①
③
i i =
ij=
1
②
0
④
j j =
j i =
1
0
数量积坐标表示
因为a x1 i y1 j, b x2 i y2 j,
所以a b ( x1 i y1 j ) ( x2 i y2 j )
2
方法一:AM·AN=AD+ AB·AB+ AD
3
2
1 2 1 2
=0+ ×2 + ×3 +0=5.
2
3
→
→
方法二:以 A 为原点,AB,AD的方向分别为 x,y 轴的
正方向建立平面直角坐标系,则 A(0,0),M(1,2),N(3,1),
→
→
→ →
于是AM=(1,2),AN=(3,1),故AM·AN=5.
例1
(1)已知向量a=(-1,2),b=(3,2).
①求a·(a-b);
②求(a+b)·(2a-b);
③若c=(2,1),求(a·b)c.
①方法一:∵a=(-1,2),b=(3,2),∴a-b=(-4,0).
∴a·(a-b)=(-1,2)·(-4,0)=(-1)×(-4)+2×0=4.
方法二:a·(a-b)=a2-a·b=(-1)2+22-[(-1)×3+2×2]=4.
平面向量数量积的坐标表示
求k的值.
答案:(1)b (3 , 4)或b ( 3 , 4)
55
55
(2)( 2, 2 2)或( 2, 2 2) (3)k 5
提高练习
1、已知OA (3,1),OB (0,5),且AC // OB,
BC AB,则点C的坐标为
C(3, 29) 3
2、已知A(1,2)、B(4、0)、C(8,6)、 D(5,8),则四边形ABCD的形状是矩形.
如证明四边形是矩形,三角形的高,菱形对角线垂直等.
5、两向量垂直、平行的坐标表示
a =(x1,y1),b= (x2,y2),则
a // b(b 0) a b x1 y2 x2 y1 0
a b a b 0 x1x2 y1 y2 0
例4:已知 a 1,2,b 3,2,当k取何值时,
3、已知 a = (1,2),b = (-3,2), 若k a +2 b 与 2 a - 4b 平行,则k = - 1.
小结:
(1)掌握平面向量数量积的坐标表示, 即两个向量的数量积等于它们对应坐标 的乘积之和;
(2)要学会运用平面向量数量积的坐标表 示解决有关长度、角度及垂直问题.
a =(x1,y1),b= (x2,y2),则
解:1) ka b k1,2 3,2 k 3,2k 2
a 3b 1,233,2 10,4
当ka b a 3b 0时 这两个向量垂直
由k 310 2k 2 4 0 解得k=19
2) 当ka b与a 3b平行时,存在唯一实数, 使ka b a 3b
得 k
1 3
1). k a b 与 a 3b 垂直? 2). k a b 与 a 3b 平行? 平行时它们是同向
还是反向?
2.4.2平面向量数量积的坐标表示黑底 -
2 2 y j x1 x2i 2 x1 y2i j x2 y1i j y1 1 2 2
x1 x2 y1 y2
a b x1 x2 y1 y2
例1 已知 a 5, b 4, a 与b 的夹角
=120 ,求a b.
解: a b= a b cos 5 4 cos120 10.
例2 a 3, 4 , b 5, 2 , 求a b.
解: a b -3 5 4 2 -7
问题二
已知一个向量的坐标, 能否利用坐标求出该向量的模 ? 2 2 2 1 若 a x , y , 则 a a a x y ,
AB =
x2 x1 + y2 y1 ,
2 2
即两点间的距离公式.Fra bibliotekx2 y2
2
2
.
例4 a 1,1 , b 3,3 , 求a 与 b的夹角 .
解: cos a b a b 1 (-3) +1 3 1 +1 (-3)+3
2 2 2 2
=0,
又因为0 180 ,所以 =90 .
小结
1. 设a x1 , y1 , b x2 , y2 , a与b的夹角为,则
① a b x1 x2 y1 y2
② a⊥b a b=0 x1x2 y1 y2 0
③a
④ cos
x
2 1
y
2 1
a b a b
x1 x2 y1 y2 x12 y12 x2 2 y2 2
平面向量数量积的坐标表示 课件-高一数学人教A版(2019)必修第二册
又OA (1, 1) (O为坐标原点), 则OC OA AC (0, 3),所以点C(0, 3)
OD OA AD (3, 9), 所以点D的坐标为(3, 9)
OE OA AE (2, 1), 所以点E的坐标为(2, 1)
7. 你认为下列各组点具有什么样的位置关系? 证明你的猜想. A. A(1, 2), B(3, 4), C(2, 3.5); (2) P(1, 2), Q(0.5, 0), R(5, 6); (3) E(9, 1), F (1, 3), G(8, 0.5).
(2)由(1, 3) ( x 1, y 5), 得点B的坐标为(0, 8); (3)由(2, 5) ( x 3, y 7), 得点B的坐标为(1, 2)
4.已知平行四边形ABCD的顶点A(1, 2), B(3, 1), C(5, 6), 求顶点D 的坐标.
由题意知AD
BC
,
设D(
x,
(2) EF EG,
EF·EG
1 3
b
1 2
a
1 2
a
1 3
b
1 2 1 2 19 2 1 2 b a a a 0,
9 4 94 4
EF EG, 即EF EG
7. 你认为下列各组点具有什么样的位置关系? 证明你的猜想. A. A(1, 2), B(3, 4), C(2, 3.5); (2) P(1, 2), Q(0.5, 0), R(5, 6); (3) E(9, 1), F (1, 3), G(8, 0.5).
(3) E、F、G三点共线. 证明:因为EF (8, 4), EG (1, 0.5), 所以EF 8EG,因为直线EF与直线EG有公共点E, 所以E、F、G三点共线.
平面向量数量积公式坐标
平面向量数量积公式坐标一、平面向量数量积的坐标表示公式推导。
1. 设向量→a=(x_1,y_1),→b=(x_2,y_2)- 根据向量数量积的定义→a·→b=|→a||→b|cosθ(其中θ为→a与→b的夹角)。
- 又因为→a=(x_1,y_1),则|→a|=√(x_1)^2+y_{1^2};→b=(x_2,y_2),则|→b|=√(x_2)^2+y_{2^2}。
- 我们可以通过向量的坐标运算来表示cosθ。
- 设→i,→j是分别与x轴、y轴正方向相同的单位向量,则→a=x_1→i + y_1→j,→b=x_2→i+y_2→j。
- →a·→b=(x_1→i+y_1→j)·(x_2→i+y_2→j)- 根据向量数量积的分配律可得:→a·→b=x_1x_2→i·→i+x_1y_2→i·→j+x_2y_1→j·→i+y_1y_2→j·→j。
- 由于→i·→i = 1,→j·→j=1,→i·→j=→j·→i = 0。
- 所以→a·→b=x_1x_2+y_1y_2。
二、公式的应用示例。
1. 计算向量数量积。
- 例:已知→a=(1,2),→b=(3, - 4),求→a·→b。
- 解:根据平面向量数量积的坐标公式→a·→b=x_1x_2+y_1y_2,这里x_1=1,y_1=2,x_2=3,y_2=-4。
- 则→a·→b=1×3+2×(-4)=3 - 8=-5。
2. 判断向量垂直。
- 若两个非零向量→a=(x_1,y_1),→b=(x_2,y_2)垂直,则→a·→b=0,即x_1x_2+y_1y_2=0。
- 例:判断向量→m=(2, - 3)与→n=(6,4)是否垂直。
- 解:计算→m·→n=2×6+(-3)×4 = 12 - 12 = 0,所以→m⊥→n。
平面向量数量积的坐标表示、模、夹角
2.4.2平面向量数量积的坐标表示、模、夹角学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示设非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.知识点二平面向量模的坐标形式及两点间的距离公式知识点三平面向量夹角的坐标表示cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.思考若两个非零向量的夹角满足cos θ<0,则两向量的夹角θ一定是钝角吗?答案不一定,当cos θ<0时,两向量的夹角θ可能是钝角,也可能是180°.1.若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1y2-x2y1=0.(×)2.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.(×)提示当两向量同向共线时,cos θ=1>0,但夹角θ=0,不是锐角.3.两个非零向量a=(x1,y1),b=(x2,y2),满足x1y2-x2y1=0,则向量a与b的夹角为0°.(×)题型一数量积的坐标运算例1(1)已知a=(2,-1),b=(1,-1),则(a+2b)·(a-3b)等于()A.10 B.-10C.3 D.-3考点平面向量数量积的坐标表示与应用题点坐标形式下的数量积运算答案 B解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10. (2)如图所示,在矩形ABCD 中,AB =2,BC =2,点E 在边CD 上,且DE →=2EC →,则AE →·BE →的值是________.考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案329解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =2,BC =2,∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 在边CD 上,且DE →=2EC →,∴E ⎝⎛⎭⎫223,2.∴AE →=⎝⎛⎭⎫223,2,BE →=⎝⎛⎭⎫-23,2, ∴AE →·BE →=-49+4=329.反思感悟 数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系: ①|a |2=a ·a .②(a +b )·(a -b )=|a |2-|b |2. ③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,可先建立坐标系,写出相关向量的坐标,再求数量积.跟踪训练1 向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A .-1 B .0 C .1 D .2考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案 C解析 因为a =(1,-1),b =(-1,2),所以2a +b =2(1,-1)+(-1,2)=(1,0),则(2a +b )·a =(1,0)·(1,-1)=1,故选C. 题型二 平面向量的模例2 已知平面向量a =(3,5),b =(-2,1). (1)求a -2b 及其模的大小; (2)若c =a -(a ·b )b ,求|c |.考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 解 (1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), ∴|a -2b |=72+32=58.(2)∵a ·b =-6+5=-1, ∴c =a +b =(1,6), ∴|c |=12+62=37.反思感悟 求向量a =(x ,y )的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a 2=|a|2=x 2+y 2,求模时,勿忘记开方. (2)a ·a =a 2=|a |2或|a |=a 2=x 2+y 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.跟踪训练2 已知向量a =(2,1),a·b =10,|a +b |=52,则|b |等于( ) A. 5 B.10 C .5 D .25 考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 答案 C解析 ∵a =(2,1),∴a 2=5, 又|a +b |=52,∴(a +b )2=50, 即a 2+2a ·b +b 2=50,∴5+2×10+b 2=50,∴b 2=25,∴|b |=5.题型三 平面向量的夹角与垂直问题命题角度1 向量的夹角例3 已知点A (3,0),B (0,3),C (cos α,sin α),O (0,0),若|OA →+OC →|=13,α∈(0,π),则OB →,OC →的夹角为( ) A.π2 B.π4 C.π3 D.π6考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 D解析 因为|OA →+OC →|2=(OA →+OC →)2=OA →2+2OA →·OC →+OC →2=9+6cos α+1=13, 所以cos α=12,因为α∈(0,π),所以α=π3,所以C ⎝⎛⎭⎫12,32,所以cos 〈OB →,OC →〉=OB →·OC →|OB →||OC →|=3×323×1=32,因为0≤〈OB →,OC →〉≤π,所以〈OB →,OC →〉=π6,所以OB →,OC →的夹角为π6,故选D.反思感悟 利用向量的数量积求两向量夹角的一般步骤 (1)利用向量的坐标求出这两个向量的数量积. (2)利用|a |=x 2+y 2求两向量的模.(3)代入夹角公式求cos θ,并根据θ的范围确定θ的值.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.又∵a ,b 的夹角α为钝角,∴⎩⎪⎨⎪⎧λ-1<0,2·1+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1). 命题角度2 向量的垂直例4 在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 考点 平面向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0,∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.反思感悟 利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.跟踪训练4 已知a =(-3,2),b =(-1,0),若向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.17 B .-17 C.16 D .-16考点 向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 答案 B解析 由向量λa +b 与a -2b 垂直,得 (λa +b )·(a -2b )=0.因为a =(-3,2),b =(-1,0), 所以(-3λ-1,2λ)·(-1,2)=0, 即3λ+1+4λ=0,解得λ=-17.向量的坐标在解三角形中的应用典例 如图,已知△ABC 的面积为32,AB =2,AB →·BC →=1,求边AC 的长.解 以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0), ∵AB =2,∴点B 的坐标是(2,0), ∴AB →=(2,0),BC →=(x -2,y ). ∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C 点坐标为⎝⎛⎭⎫52,32,则AC →=⎝⎛⎭⎫52,32, ∴|AC →|=⎝⎛⎭⎫522+⎝⎛⎭⎫322=342, 故边AC 的长为342. [素养评析] 本题通过建立直角坐标系,从而建立形与数的联系.利用平面向量的坐标解决线段的长度问题,提升了学生数形结合的能力,培养了学生数学运算及直观想象的数学核心素养.1.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.135D.13 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 A 解析 |a |=32+42=5,|b |=52+122=13.a·b =3×5+4×12=63.设a ,b 夹角为θ,所以cos θ=635×13=6365.2.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( ) A .3 B .-3 C.53 D .-53考点 平面向量数量积的坐标表示与应用题点 已知数量积求参数答案 A解析 a·b =-x +6=3,故x =3.3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( )A .-4B .-3C .-2D .-1考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数答案 B解析 因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3.4.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=35,则b 等于( )A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)考点 平面向量数量积的坐标表示与应用题点 平面向量模与夹角的坐标表示的综合应用答案 A解析 由题意设b =λa =(λ,-2λ)(λ<0),则|b |=λ2+(-2λ)2=5|λ|=35,又λ<0,∴λ=-3,故b =(-3,6).5.已知三个点A (2,1),B (3,2),D (-1,4).求证:AB ⊥AD .证明 ∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3).又∵AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →,即AB ⊥AD .6.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数解 (1)∵a ·b =4×(-1)+3×2=2,|a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8),(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0,∴λ=529.1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若两非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”而忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.一、选择题1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2考点 平面向量夹角的坐标表示与应用题点 求坐标形式下的向量的夹角答案 B解析 ∵|a |=10,|b |=5,a ·b =5.∴cos 〈a ,b 〉=a ·b|a ||b |=510×5=22.又∵a ,b 的夹角范围为[0,π].∴a 与b 的夹角为π4.2.设向量a =(2,0),b =(1,1),则下列结论中正确的是( )A .|a |=|b |B .a·b =0C .a ∥bD .(a -b )⊥b考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 D解析 a -b =(1,-1),所以(a -b )·b =1-1=0,所以(a -b )⊥b .3.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为() A. 3 B .3 C .- 3 D .-3考点 平面向量投影的坐标表示与应用题点 平面向量投影的坐标表示与应用答案 D解析 向量a 在b 方向上的投影为a·b |b|=-62=-3.故选D. 4.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( )A .1 B. 2 C .2 D .4考点 平面向量模与夹角的坐标表示与应用题点 利用坐标求向量的模答案 C解析 ∵(2a -b )·b =2a ·b -|b |2=2(-1+n 2)-(1+n 2)=n 2-3=0,∴n 2=3,∴|a |=12+n 2=2.5.若a =(2,-3),则与向量a 垂直的单位向量的坐标为() A .(3,2)B.⎝⎛⎭⎫31313,21313C.⎝⎛⎭⎫31313,21313或⎝⎛⎭⎫-31313,-21313D .以上都不对考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 C解析 设与a 垂直单位向量的坐标为(x ,y ),∵(x ,y )是单位向量的坐标形式,∴x 2+y 2=1,即x 2+y 2=1,①又∵(x ,y )表示的向量垂直于a ,∴2x -3y =0,②由①②得⎩⎨⎧ x =31313,y =21313或⎩⎨⎧ x =-31313,y =-21313.6.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( )A .-1+ 3B .-2C .-1±3D .1考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 ∵|k a -b |=k 2+(k +2)2, |a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2,又k a -b 与a +b 的夹角为120°,∴cos 120°=(k a -b )·(a +b )|k a -b ||a +b |, 即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1±3.7.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( )A .(2,6)B .(-2,-6)C .(2,-6)D .(-2,6)考点 向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用答案 D解析 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6). 8.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在⎝⎛⎭⎫0,π12内变动时,实数m 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫33,3C.⎝⎛⎭⎫33,1∪(1,3) D .(1,3)考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 如图,作OA →=a ,则A (1,1).作OB 1→,OB 2→,使∠AOB 1=∠AOB 2=π12, 则∠B 1Ox =π4-π12=π6, ∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3). 又a 与b 的夹角不为0,故m ≠1.由图可知实数m 的取值范围是⎝⎛⎭⎫33,1∪(1,3). 二、填空题9.已知a =(3,3),b =(1,0),则(a -2b )·b =________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.10.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.考点 平面向量模的坐标表示与应用题点 利用坐标求向量的模答案 8 2解析 由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.11.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“⊗”为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q 的坐标为________.考点 平面向量数量积的坐标表示与应用题点 已知数量积求向量的坐标答案 (-2,1)解析 设q =(x ,y ),则p ⊗q =(x -2y ,y +2x )=(-4,-3).∴⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3,∴⎩⎪⎨⎪⎧x =-2,y =1.∴q =(-2,1). 12.已知向量OA →=(1,7),OB →=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA →·MB →的最小值是________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 -8解析 设M ⎝⎛⎭⎫x ,12x , 则MA →=⎝⎛⎭⎫1-x ,7-12x ,MB →=⎝⎛⎭⎫5-x ,1-12x , MA →·MB →=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54(x -4)2-8. 所以当x =4时,MA →·MB →取得最小值-8.三、解答题13.(2018·安徽芜湖质检)已知向量a =(1,2),b =(2,-2).(1)设c =4a +b ,求(b ·c )a ;(2)若a +λb 与a 垂直,求λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用解 (1)∵c =4(1,2)+(2,-2)=(6,6),∴b ·c =(2,-2)·(6,6)=2×6-2×6=0,∴(b ·c )a =0·a =0.(2)∵a +λb =(1,2)+λ(2,-2)=(1+2λ,2-2λ),(a +λb )⊥a ,∴(1+2λ)+2(2-2λ)=0,解得λ=52.14.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,且当AB →=BC →时,求λ的值;(3)求|OC →|的最小值.考点 平面向量夹角的坐标表示与应用题点 平面向量模的坐标表示的综合应用解 (1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, ∴OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,又因为BC →与AB →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12, ∴当λ=12时,|OC →|取最小值2 3.。
6.3.5+平面向量数量积的坐标表示+课件-2024-2025学年高一下学期数学人教A版必修第二册
a b
a b
a⊥b
x1 x2 y1 y2
x12 y12 x2 2 y2 2
x1x2+y1y2=0
夹角公式的特例
探索新知
例10 若点A(1,2),B(2,3),C(-2,5),则△ABC是什么形状?
证明你的猜想.
3 2) (11)
,
法一: 因为 AB (2 1,
AC (2 1,
1), AC (3,
法二:因为 AB (1,
3), BC (4,
2),
2
2
所以 AB 1 1 2, AC (3) 2 32 18,
2
2
2
BC (4) 2 2 2 20 ,
2
2
2
所以 AB AC BC ,
所以△ABC是直角三角形.
勾股定理逆定理是判断两条直线是否垂直的重要方法之一
(1)求 2a b 的值;
解析:
(1)因为 a 1, 2 , b 1, 1 ,
所以 2a b 2 1, 2 1, 1 3, 3 ,
所以 2a b 3 3 3 2 ;
2
2
当堂检测
2.Байду номын сангаас知平面向量 a 1, 2 , b 1, 1 .
两个向量的数量积等于它们对应坐标的乘积的和.
探索新知
问题1 若a=(x,y),如何计算向量的模|a|呢?
a x 2 y 2 或|a|2=x2+y2
问题2 如果表示向量a的有向线段的起点和终点的坐标分别
为A (x1,y1) ,B (x2,y2),如何计算向量a的模?
a AB ( x2 x1 )2 ( y2 y1 ) 2
平面向量数量积的坐标
平面向量数量积的坐标平面向量数量积是向量的一种重要运算,通常用来计算向量之间的夹角和长度。
在坐标系中,向量可以表示成有序数对 (x, y),因此向量的数量积也可以用坐标表示出来。
以下是平面向量数量积的坐标公式:设有向量 A = (x1, y1),B = (x2, y2),则向量 A 和向量 B 的数量积为:A·B = x1x2 + y1y2这里“·”表示数量积运算,即点乘。
为了更好地理解平面向量的数量积,我们可以通过几何直观来解释。
几何意义:向量的数量积可以理解为向量 A 在向量 B 上的投影乘以向量 B 的长度,也可以理解为向量 B 在向量 A 上的投影乘以向量 A 的长度。
如果两个向量的数量积为0,则它们垂直。
如果两个向量的数量积为正,则它们之间的夹角为锐角;如果两个向量的数量积为负,则它们之间的夹角为钝角。
数学性质:向量的数量积具有以下基本性质:1. 交换律:A·B = B·A2. 结合律:(kA)·B = k(A·B) = A·(kB)3. 分配律:A·(B+C) = A·B + A·C4. 平行四边形法则:(A+B)·(C+D) = A·C + A·D + B·C + B·D应用:通过向量的数量积,可以计算两个向量之间的夹角和长度。
夹角的计算公式为:cosθ = (A·B) / (|A||B|)其中,θ表示向量 A 和向量 B 之间的夹角,|A|和|B|表示向量 A 和向量B 的长度。
如果知道两个向量的长度和它们之间的夹角,也可以用数量积来求出向量的坐标。
综上所述,平面向量的数量积是向量的一项基本运算,可以帮助我们计算向量之间的夹角和长度,进而解决各种几何问题。
2.4.2平面向量数量积的坐标表示教学课件
[研一题]
[例 2] 平面直角坐标系 xOy 中,O
是原点(如图).已知点 A(16,12)、B(-5,15).
(1)求| OA|,| AB|;
(2[[[[自)自 自 自求主主 主 主∠解O解 解 解A答答 答 答B.]]]] ((((1111))))由由 由 由OOOOAAAA== = =((((11116666,,,,11112222)))),, , , AAAABBBB== = =((((-- - -5555-- - -11116666,,,,11115555-- - -11112222))))== = =((((-- - -22221111,,,,3333)))),, , ,得得 得 得 ||||OOOOAAAA||||== = = 111166662222++ + +111122222222== = =22220000,, , , ||||AAAABBBB||||== = = -- - -222211112222++ + +33332222== = =11115555 2222....
y A(x1,y1)
B(x2,y2)
a
bj
oi x
b 设两个非零向量 a =(x1,y1), =(x2,y2),则
aaaaaaaa==bb==bb====xx======xx11==xxxx11iixx((xx11i11i(x(x++11xxxx11x+x+xx1xx12222yy11ii2222yyiiii++11++ii22++11++j2j2++yy,,jjyy+y+,y,yy1111xx1yy111xjjxyy11j))j221yy1))22yybb22((bb2(2x(xii==xxii22==22jjiixxjjii++xx++22++++22iixxyyiixxy++y2222++2y2y22jjyyyyj))11jyy)212)1ii22iijj,,jjjj,,jj++++yyyy111yy1yy2222jjjj2222
数学(2.4.2平面向量数量积的坐标表示、模、夹角)
方向性
向量的模只与向量的长度有关, 与其方向无关。
模的计算方法
定义法
根据定义直接计算向量的模 。
勾股定理法
如果向量在直角坐标系中的 坐标已知,可以使用勾股定 理计算模。
向量分解法
将向量分解为两个互相垂直 的分量,然后分别求出分量 的模,再求和。
模的性质
共线性质
如果两个向量共线,那么它们的模相等或互为相反数。
05
实例分析
数量积的坐标表示实例
要点一
总结词
通过具体例题,展示如何利用坐标表示计算平面向量的数 量积。
要点二
详细描述
假设有两个向量$overset{longrightarrow}{a} = (x_{1}, y_{1})$和$overset{longrightarrow}{b} = (x_{2}, y_{2})$, 它们的数量积为$overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = x_{1}x_{2} + y_{1}y_{2}$。 通过具体例题,展示如何利用坐标表示计算平面向量的数量 积。
平面向量的模
定义与性质
定义
平面向量$vec{a}$的模定义为 $left|vec{a}right| = sqrt{a_1^2 + a_2^2}$,其中$a_1$和$a_2$ 分别是向量$vec{a}$模总是非负的,即 $left|vec{a}right| geq 0$。
数量积与夹角的关系
数量积与夹角余弦值的关系
向量的数量积等于两个向量模的乘积乘以它们夹角的余弦值,即$mathbf{A} cdot mathbf{B} = |mathbf{A}| times |mathbf{B}| times costheta$。