平面向量数量积的坐标运算与度量公式
高中数学 第二章 平面向量 2.3 平面向量的数量积 2.3.3 向量数量积的坐标运算与度量公式学案
2.3.3 向量数量积的坐标运算与度量公式1.向量内积的坐标运算已知a =(a 1,a 2),b =(b 1,b 2),则a ·b =a 1b 1+a 2b 2.知识拓展非零向量a =(x 1,y 1)与b =(x 2,y 2)夹角θ的范围与坐标运算的数量积的关系是:(1)θ为锐角或零角⇔x 1x 2+y 1y 2>0; (2)θ为直角⇔x 1x 2+y 1y 2=0; (3)θ为钝角或平角⇔x 1x 2+y 1y 2<0.【自主测试1】若a =(2,-3),b =(x,2x ),且a ·b =43,则x 等于( )A .3B .13C .-13 D .-3解析:由题意,得2x -6x =43,解得x =-13.答案:C2.用向量的坐标表示两个向量垂直的条件已知a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔a 1b 1+a 2b 2=0.名师点拨解决两向量垂直的问题时,在表达方式上有一定的技巧,如a =(m ,n )与b =k (n ,-m )总是垂直的,当两向量的长度相等时,k 取±1.【自主测试2】已知a =(2,5),b =(λ,-3),且a ⊥b ,则λ=__________.解析:∵a ⊥b ,∴a·b =0,即2λ-15=0,∴λ=152.答案:1523.向量的长度、距离和夹角公式(1)向量的长度:已知a =(a 1,a 2),则|a |=a 21+a 22,即向量的长度等于它的坐标平方和的算术平方根.(2)两点之间的距离公式:如果A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12.(3)向量的夹角的余弦公式:已知a =(a 1,a 2),b =(b 1,b 2),则两个向量a ,b 的夹角的余弦为cos 〈a ,b 〉=a 1b 1+a 2b 2a 21+a 22b 21+b 22.你会求出与向量a =(m ,n )同向的单位向量a 0的坐标吗?答:a 0=a |a |=1m 2+n 2(m ,n )=⎝ ⎛⎭⎪⎫m m 2+n 2,n m 2+n 2.【自主测试3-1】已知A (1,2),B (2,3),C (-2,5),则△ABC 为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .无法判断解析:由AB →=(1,1),BC →=(-4,2),CA →=(3,-3), 得AB →2=2,BC →2=20,CA →2=18. ∵AB →2+CA →2=BC →2,即AB 2+AC 2=BC 2,∴△ABC 为直角三角形. 答案:B【自主测试3-2】已知m =(3,-1),n =(x ,-2),且〈m ,n 〉=π4,则x 等于( )A .1B .-1C .-4D .4 解析:cos π4=3x +210×x 2+4, 解得x =1. 答案:A【自主测试3-3】已知a =(3,x ),|a |=5,则x =__________. 解析:由|a |2=9+x 2=25,解得x =±4.答案:±41.向量模的坐标运算的实质剖析:向量的模即为向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离;同样若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=x 2-x 12+y 2-y 12,即平面直角坐标系中任意两点间的距离公式.由此可知向量模的运算其实质即为平面直角坐标系中两点间距离的运算.2.用向量的数量积的坐标运算来分析“(a·b )·c =a ·(b·c )”不恒成立 剖析:设a =(x 1,y 1),b =(x 2,y 2),c =(x 3,y 3), 则a·b =x 1x 2+y 1y 2, b·c =x 3x 2+y 3y 2.∴(a·b )·c =(x 1x 2+y 1y 2)(x 3,y 3)=(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3),a·(b·c )=(x 1,y 1)(x 3x 2+y 3y 2)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3).假设(a·b )·c =a·(b·c )成立,则有(x 1x 2x 3+y 1y 2x 3,x 1x 2y 3+y 1y 2y 3)=(x 1x 3x 2+x 1y 2y 3,x 2x 3 y 1+ y 1y 2y 3), ∴x 1x 2x 3+y 1y 2x 3=x 1x 3x 2+x 1y 2y 3,x 1x 2y 3+y 1y 2y 3=x 2x 3 y 1+y 1y 2y 3.∴y 1y 2x 3=x 1y 2y 3,x 1x 2y 3=x 2x 3 y 1. ∴y 2(y 1x 3-x 1y 3)=0,x 2(x 1y 3-x 3y 1)=0. ∵ b 是任意向量, ∴x 2和y 2是任意实数. ∴y 1x 3-x 1y 3=0. ∴a ∥c .这与a ,c 是任意向量,即a ,c 不一定共线相矛盾. ∴假设不成立.∴(a·b )·c =a·(b·c )不恒成立. 3.教材中的“思考与讨论”在直角坐标系xOy 中,任作一单位向量OA →旋转90°到向量OB →的位置,这两个向量的坐标之间有什么关系?你能用上述垂直的条件,证明下面的诱导公式吗?cos(α+90°)=-sin α,sin(α+90°)=cos α.反过来,你能用这两个诱导公式,证明上述两个向量垂直的坐标条件吗?把两向量垂直的坐标条件可视化.有条件的同学可用“几何画板”、“Scilab”等数学软件进行可视化研究.剖析:如图所示,在平面直角坐标系中,画出一单位圆,有A (cos α,sin α),B (cosβ,sin β),且β-α=90°,也就是β=α+90°.过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥x 轴于点N ,则△BNO ≌△OMA . ∴|OM →|=|NB →|,|ON →|=|MA →|.当点A 在第一象限时,点B 在第二象限, ∴|ON →|=-cos β,|NB →|=sin β, |OM →|=cos α,|MA →|=sin α,从而有-cos β=-cos(α+90°)=sin α, sin β=sin(α+90°)=cos α, 即cos(α+90°)=-sin α, sin(α+90°)=cos α.题型一 向量数量积的坐标运算【例题1】已知a =(-6,2),b =(-2,4),求a ·b ,|a |,|b |,〈a ,b 〉. 分析:直接套用基本公式a ·b =x 1x 2+y 1y 2,|a |=x 21+y 21,cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21x 22+y 22即可.解:a ·b =(-6,2)·(-2,4)=12+8=20. |a |=a ·a =-6,2×-6,2=36+4=210, |b |=-22+42=20=2 5.∵cos 〈a ,b 〉=a ·b |a ||b |=20210×25=22,且〈a ,b 〉∈[0,π], ∴〈a ,b 〉=π4.反思如果已知向量的坐标,则可以直接用公式来计算数量积、模和夹角等问题;如果向量的坐标是未知的,一般考虑用定义和运算律进行转化.〖互动探究〗设平面向量a =(3,5),b =(-2,1), (1)求a -2b 的坐标表示和模的大小; (2)若c =a -(a ·b )·b ,求|c |. 解:(1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), |a -2b |=72+32=58. (2)∵a ·b =-6+5=-1,∴c =a +b =(1,6),∴|c |=12+62=37. 题型二 平面向量垂直的坐标运算【例题2】在△ABC 中,AB →=(2,3),AC →=(1,k ),且△ABC 的一个内角为直角,求k 的值.分析:对△ABC 的三个内角分别讨论,并利用坐标反映垂直关系. 解:当A =90°时,AB →·AC →=0, ∴2×1+3×k =0.∴k =-23.当B =90°时,AB →·BC →=0,BC →=AC →-AB →=(1-2,k -3)=(-1,k -3),∴2×(-1)+3×(k -3)=0.∴k =113.当C =90°时,AC →·BC →=0,∴-1+k (k -3)=0, ∴k =3±132.因此,△ABC 有一个角为直角时,k =-23,或k =113,或k =3±132.反思(1)若a =(x 1,y 1),b =(x 2,y 2),a ≠0,则向量a 与b 垂直⇔a ·b =0⇔x 1x 2+y 1y 2=0.(2)向量垂直的坐标表示x 1x 2+y 1y 2=0与向量共线的坐标表示x 1y 2-x 2y 1=0很容易混淆,应仔细比较并熟记,当难以区分时,要从意义上鉴别,垂直是a ·b =0,而共线是方向相同或相反.题型三 数量积的坐标运算在几何中的应用 【例题3】已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)若四边形ABCD 为矩形,求点C 的坐标,并求矩形ABCD 的两对角线所夹的锐角的余弦值.解:(1)证明:∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3). ∴AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD . (2)若四边形ABCD 为矩形, 则AB →⊥AD →,AB →=DC →. 设C 点的坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧x +1=1,y -4=1,解得⎩⎪⎨⎪⎧x =0,y =5.∴C 点的坐标为(0,5).从而AC →=(-2,4),BD →=(-4,2),∴|AC →|=25,|BD →|=25,AC →·BD →=8+8=16. 设AC →与BD →的夹角为θ,则cos θ=AC →·BD →|AC →| |BD →|=1625×25=45,∴矩形ABCD 的两条对角线所夹的锐角的余弦值为45.反思用向量法解决几何问题的关键是把有关的边用向量表示,然后把几何图形中的夹角、垂直、长度等问题都统一为向量的坐标运算即可,最后再回归到原始几何图形中进行说明.题型四 利用向量数量积的坐标运算证明不等式【例题4】证明:对于任意的a ,b ,c ,d ∈R ,恒有不等式(ac +bd )2≤(a 2+b 2)(c 2+d 2). 分析:设m =(a ,b ),n =(c ,d ),用m ·n ≤|m |·|n |即可,要注意等号成立的条件. 证明:设m =(a ,b ),n =(c ,d ),两向量夹角为θ,则m ·n =|m ||n |cos θ,∴ac +bd =a 2+b 2·c 2+d 2·cos θ,∴(ac +bd )2=(a 2+b 2)(c 2+d 2)cos 2θ≤(a 2+b 2)(c 2+d 2), 当且仅当m 与n 共线时等号成立. ∴(ac +bd )2≤(a 2+b 2)(c 2+d 2)得证.反思本题直接利用代数方法也易得证.若从不等式的特征构造向量,利用向量的数量积和模的坐标运算来证,显得比较灵活,体现了向量的工具性.题型五 易错辨析【例题5】设平面向量a =(-2,1),b =(λ,-1)(λ∈R ),若a 与b 的夹角为钝角,则λ的取值范围是( )A .⎝ ⎛⎭⎪⎫-12,2∪(2,+∞) B.(2,+∞) C .⎝ ⎛⎭⎪⎫-12,+∞ D .⎝ ⎛⎭⎪⎫-∞,-12 错解:由a 与b 的夹角为钝角,得a ·b <0, 即-2λ-1<0,解得λ>-12.故选C .错因分析:a ·b <0⇔a 与b 的夹角为钝角或平角.因此上述解法中需要对结论进行检验,把a 与b 的夹角为平角的情况舍去.正解:a ·b <0⇒(-2,1)·(λ,-1)<0⇒λ>-12.又设b =t a (t <0),则(λ,-1)=(-2t ,t ),所以t =-1,λ=2,即λ=2时,a 和b 反向,且共线,所以λ∈⎝ ⎛⎭⎪⎫-12,2∪(2,+∞).故选A .1.设m ,n 是两个非零向量,且m =(x 1,y 1),n =(x 2,y 2),则以下等式中,与m ⊥n 等价的个数为( )①m ·n =0;②x 1x 2=-y 1y 2;③|m +n |=|m -n |;④|m +n |=m 2+n 2. A .1 B .2 C .3 D .4解析:①②中的等式显然与m ⊥n 等价;对③④中的等式的两边平方,化简,得m ·n =0,因此也是与m ⊥n 等价的,故选D .答案:D2.已知向量a =(-2,1),b =(-2,-3),则向量a 在向量b 方向上的投影的数量为( )A .-1313 B .1313C .0D .1 答案:B3.(2012·广东广州测试)已知向量a =(1,n ),b =(n,1),其中n ≠±1,则下列结论正确的是( )A .(a -b )∥(a +b )B .(a +b )∥bC .(a -b )⊥(a +b )D .(a +b )⊥b解析:∵a -b =(1-n ,n -1),a +b =(1+n ,n +1), ∴(a -b )·(a +b )=0, ∴(a -b )⊥(a +b ). 答案:C4.已知a =(1,2),b =(1,1),c =b -k a ,若c ⊥a ,则c =__________.解析:根据a 和b 的坐标,求c 的坐标,再利用垂直建立关于k 的方程,求出k 后可得向量c .答案:⎝ ⎛⎭⎪⎫25,-155.已知i =(1,0),j =(0,1),a =i -2j ,b =i +m j ,给出下列命题:①若a 与b 的夹角为锐角,则m <12;②当且仅当m =12时,a 与b 互相垂直;③a 与b不可能是方向相反的向量;④若|a |=|b |,则m =-2.其中正确的命题的序号是__________.答案:①②③6.设向量a =(1,-1),b =(3,-4),x =a +λb ,λ为实数,证明:使|x |最小的向量x 垂直于向量b .证明:因为|x |2=x ·x =|a |2+λ2|b |2+2λa ·b , 所以x 2=25λ2+14λ+2=⎝ ⎛⎭⎪⎫5λ+752+125.当5λ+75=0,即λ=-725时,|x |最小.此时x =a -725b =⎝ ⎛⎭⎪⎫425,325. 又425×3-325×4=0,所以向量x 与b 垂直.。
向量数量积的坐标运算与度量公式PPT课件
k t3 3t 4
k t2 1 t2 4t 3 1 t 22 7
t4
4
4
当t 2时,k t 2 有最小值 7 .
t
4
说明:本题考查平面的数量积及相关知识,与函数联 系在一起,具有综合性。要注意观察揭示题中的隐含 条件,然后根据垂直条件列出方程得出k与t的关系, 利用二次函数求最值。
2 2 ≤ cos ≤1
3
课堂小结:
这节课我们主要学习了平面向量数量积 的坐标表示以及运用平面向量数量积性质的坐 标表示解决有关垂直、平行、长度、角度等几
何问题。 设a (x1,y1),b (x2,y2)
a b x1 x2 y1 y2
(1)两向量垂直条件的坐标表示
a b x1 x2 y1 y2 0
解: (Ⅰ) OP OQ 2 cos x , OP OQ 1 cos2 x ,
cos
OP OQ OP OQ
2cos x 1 cos2 x
,∴
f
(x)
2cos x 1 cos2 x
(x
4
, 4
)
第20页/共24页
变形 2:平面直角坐标系有点 P(1, cosx) , Q(cos x,1) ,
(2)两向量平行条件的坐标表示
a / /b x1y2 x2 y1 0
第22页/共24页
设a (x1,y1),b (x2,y2)
(3)向量的长度(模)
a
2
2
a
x2 1
y2 1
或a
x2 1
y2 1
(4)两向量的夹角
cos a b
ab
= x1x2 + y1y2 x12 + y12 x22 + y22
平面向量的所有公式归纳总结
平面向量的所有公式归纳总结平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
1、向量的加法满足平行四边形法则和三角形法则.ab+bc=ac.a+b=(x+x',y+y').a+0=0+a=a.2、向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c).如果a、b就是互为恰好相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0ab-ac=cb.即“共同起点,指向被减”a=(x,y)b=(x',y')则a-b=(x-x',y-y').1、定义:已知两个非零向量a,b.作oa=a,ob=b,则角aob称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量内积(内积、点内积)就是一个数量,记作ab.若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣.2、向量的数量积的坐标表示:ab=xx'+yy'.3、向量的数量内积的运算律ab=ba(交换律);(λa)b=λ(ab)(关于数乘法的结合律);(a+b)c=ac+bc(分配律);4、向量的数量内积的性质aa=|a|的平方.a⊥b〈=〉ab=0.|ab|≤|a||b|.5、向量的数量内积与实数运算的主要不同点(1)向量的数量积不满足结合律,即:(ab)c≠a(bc);例如:(ab)^2≠a^2b^2.(2)向量的数量积不满足用户解出律,即为:由ab=ac(a≠0),推不出b=c.(3)|ab|≠|a||b|(4)由|a|=|b|,推不出a=b或a=-b.1、实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣.当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任一.当a=0时,对于任意实数λ,都有λa=0.备注:按定义言,如果λa=0,那么λ=0或a=0.实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,则表示向量a的存有向线段在原方向(λ>0)或反方向(λ<0)上弯曲为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍.2、数与向量的乘法满足用户下面的运算律结合律:(λa)b=λ(ab)=(aλb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘坐向量的解出律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ.1、定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a||b|sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b 和a×b按这个次序构成右手系.若a、b共线,则a×b=0.2、向量的向量内积性质:∣a×b∣是以a和b为边的平行四边形面积.a×a=0.a‖b〈=〉a×b=0.3、向量的向量内积运算律a×b=-b×a;(λa)×b=λ(a×b)=a×(λb);(a+b)×c=a×c+b×c.备注:向量没乘法,“向量ab/向量cd”就是没意义的.1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;①当且仅当a、b逆向时,左边挑等号;②当且仅当a、b同向时,右边取等号.2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣.①当且仅当a、b同向时,左边取等号;②当且仅当a、b逆向时,右边挑等号.定比分点公式(向量p1p=λ向量pp2)设p1、p2就是直线上的两点,p就是l上不同于p1、p2的任一一点.则存有一个实数λ,并使向量p1p=λ向量pp2,λ叫作点p棕斑向线段p1p2阿芒塔的比.若p1(x1,y1),p2(x2,y2),p(x,y),则有op=(op1+λop2)(1+λ);(的定比分点向量公式)x=(x1+λx2)/(1+λ),y=(y1+λy2)/(1+λ).(的定比分点座标公式)我们把上面的式子叫做有向线段p1p2的定比分点公式1、三点共线定理若oc=λoa+μob,且λ+μ=1,则a、b、c三点共线2、三角形战略重点推论式在△abc中,若ga+gb+gc=o,则g为△abc的重心3、向量共线的关键条件若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb. a//b的关键条件就是xy'-x'y=0.4、零向量0平行于任何向量.5、向量横向的充要条件a⊥b的充要条件是ab=0.a⊥b的充要条件就是xx'+yy'=0.6、零向量0垂直于任何向量.。
向量积的坐标运算及度量公式
D(3,5).
(1)求证:四边形ABCD是直角梯形;
(2)求∠DAB的大小.
(1) 证明: AB = (1 – (-1), 1 – 3) y
D
= (2, -2),
A
C
DC = (4 – 3, 4 – 5) = (1, -1),
BC = (4 – 1,4 – 1) = (3, 3).
B x
∵ AB = 2DC, ∴ AB//DC.
y AC (2 1,5 2) (3,3) C(-2,5)
AB AC 1 (3) 1 3 0
AB AC
三角形ABC 是直角三角形.
B(2,3) A(1,2)
练习A.2.3.
x 0
课堂练习:
B 1.若a 2, 3,b x, 2x,且a b 4 ,则x等于____ 3
2
(2)a a a 或 a a a;
a b a b 0; cos a b .
ab
二.探究新知:
1.平面向量的数量积能否用坐标表示?
2.已知两个非零向量a a1, a2 ,b b1,b2 ,
怎样用a和b的坐标表示a b呢? 3.怎样用向量的坐标表示两个平面向量垂直 的条件? 4.能否根据所学知识推导出向量的长度、距
A. 3 B. 1 C. 1 D.-3
D 3
3
2.设a 1, 2,b 1, m,若a与b的夹角为钝角,则m的取值范围是 ___
A. m 1 B. m 1 C. m 1 D. m 1
2
2
2
2
A 3.在ABC中,C=90 ,AB k,1, AC 2,3,则k的值是_____
答案:(1)b (3 , 4)或b ( 3 , 4).
2022-2021学年高二数学人教B版必修4学案:2.3.3 向量数量积的坐标运算与度量公式
2.3.3 向量数量积的坐标运算与度量公式明目标、知重点 1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能依据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能依据向量的坐标求向量的夹角及判定两个向量垂直.1.平面对量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a·b=x 1x 2+y 1y 2. 即两个向量的数量积等于相应坐标乘积的和. 2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2), 则a ⊥b ⇔x 1x 2+y 1y 2=0. 3.平面对量的长度(1)向量长度公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2), 则|AB →|=(x 2-x 1)2+(y 2-y 1)2. 4.向量的夹角公式设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[情境导学] 在平面直角坐标系中,平面对量可以用有序实数对来表示,两个平面对量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面对量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现?平面对量的数量积还会是一个有序实数对吗?同时,平面对量的模、夹角又该如何用坐标来表示?通过回顾两个向量的数量积的定义向向量的坐标表示,在此基础上推导、探究平面对量数量积的坐标表示. 探究点一 平面对量数量积的坐标表示思考1 已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),怎样用a 与b 的坐标表示a ·b? 答 ∵a =x 1i +y 1j ,b =x 2i +y 2j , ∴a ·b =(x 1i +y 1j )·(x 2i +y 2j ) =x 1x 2i 2+x 1y 2i ·j +x 2y 1j ·i +y 1y 2j 2.又∵i ·i =1,j ·j =1,i ·j =j ·i =0,∴a ·b =x 1x 2+y 1y 2.思考2 若a =(x 1,y 1),b =(x 2,y 2),则a·b =x 1x 2+y 1y 2,这就是平面对量数量积的坐标表示.你能用文字描述这一结论吗?答 两个向量的数量积等于它们对应坐标的乘积的和. 例1 已知a 与b 同向,b =(1,2),a·b =10. (1)求a 的坐标;(2)若c =(2,-1),求a (b·c )及(a·b )c .解 (1)设a =λb =(λ,2λ) (λ>0),则有a·b =λ+4λ=10,∴λ=2,∴a =(2,4). (2)∵b·c =1×2-2×1=0,a·b =1×2+2×4=10, ∴a (b·c )=0a =0,(a·b )c =10(2,-1)=(20,-10).反思与感悟 两个向量的数量积是实数,这和前面三种运算性质不同.同时本例进一步验证了平面对量的数量积不满足结合律.跟踪训练1 若a =(2,3),b =(-1,-2),c =(2,1),则(a·b )·c =____________;a·(b·c )=____________. 答案 (-16,-8) (-8,-12) 解析 ∵a·b =2×(-1)+3×(-2)=-8, ∴(a·b )·c =-8×(2,1)=(-16,-8). ∵b·c =(-1)×2+(-2)×1=-4, ∴a·(b·c )=(2,3)×(-4)=(-8,-12).探究点二 平面对量长度的坐标形式及两点间的距离公式思考1 若a =(x ,y ),如何计算向量的长度|a |? 答 ∵a =x i +y j ,∴a 2=(x i +y j )2=(x i )2+2xy i ·j +(y j )2 =x 2i 2+2xy i ·j +y 2j 2. 又∵i 2=1,j 2=1,i ·j =0, ∴a 2=x 2+y 2,∴|a |2=x 2+y 2, ∴|a |=x 2+y 2.思考2 若A (x 1,y 2),B (x 2,y 2),如何计算向量AB →的长度? 答 如图,∵AB →=OB →-OA →=(x 2,y 2)-(x 1,y 1)=(x 2-x 1,y 2-y 1), ∴|AB →|=(x 2-x 1)2+(y 2-y 1)2.例2 已知在△ABC 中,A (2,-1)、B (3,2)、C (-3,-1),AD 为BC 边上的高,求|AD →|与点D 的坐标. 解 设点D 坐标为(x ,y ),则AD →=(x -2,y +1),BC →=(-6,-3), BD →=(x -3,y -2),∵D 在直线BC 上,即BD →与BC →共线, ∴存在实数λ,使BD →=λBC →, 即(x -3,y -2)=λ(-6,-3).∴⎩⎪⎨⎪⎧x -3=-6λ,y -2=-3λ.∴x -3=2(y -2),即x -2y +1=0.① 又∵AD ⊥BC ,∴AD →·BC →=0, 即(x -2,y +1)·(-6,-3)=0, ∴-6(x -2)-3(y +1)=0. 即2x +y -3=0.②由①②可得⎩⎪⎨⎪⎧x =1,y =1,即D 点坐标为(1,1),AD →=(-1,2). ∴|AD →|=(-1)2+22=5,即|AD →|=5,D (1,1).反思与感悟 在几何里利用垂直及长度来求解点的题型是一种常见题型,其处理方法:设出点的坐标,利用垂直及长度列出方程组进行求解.跟踪训练2 以原点和A (5,2)为两个顶点作等腰直角△OAB ,∠B =90°,求点B 和AB →的坐标. 解 设B (x ,y ),则|OB →|=x 2+y 2,∵B (x ,y ),A (5,2),∴|AB →|=(x -5)2+(y -2)2.又∵|AB →|=|OB →|,∴(x -5)2+(y -2)2=x 2+y 2.可得10x +4y =29,①又OB →=(x ,y ),AB →=(x -5,y -2),且OB →⊥AB →, ∴OB →·AB →=0,∴x (x -5)+y (y -2)=0, 即x 2-5x +y 2-2y =0,②由①②解得⎩⎨⎧x 1=32,y 1=72,或⎩⎨⎧x 2=72,y 2=-32.∴B ⎝⎛⎭⎫32,72或⎝⎛⎭⎫72,-32. ∴AB →=⎝⎛⎭⎫-72,32或AB →=⎝⎛⎭⎫-32,-72. 探究点三 平面对量夹角的坐标表示思考1 设向量a =(x 1,y 1),b =(x 2,y 2),若a ⊥b ,则x 1,y 1,x 2,y 2之间的关系如何?反之成立吗? 答 a ⊥b ⇔x 1x 2+y 1y 2=0.思考2 设a ,b 都是非零向量,a =(x 1,y 1),b =(x 2,y 2),θ是a 与b 的夹角,那么cos θ如何用坐标表示? 答 cos θ=a·b|a||b |=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 例3 已知a =(1,2),b =(1,λ),分别确定实数λ的取值范围,使得:(1)a 与b 的夹角为直角;(2)a 与b 的夹角为钝角;(3)a 与b 的夹角为锐角. 解 设a 与b 的夹角为θ, 则a·b =(1,2)·(1,λ)=1+2λ.(1)由于a 与b 的夹角为直角,所以cos θ=0, 所以a·b =0,所以1+2λ=0,所以λ=-12.(2)由于a 与b 的夹角为钝角,所以cos θ<0且cos θ≠-1, 所以a·b <0且a 与b 不反向. 由a·b <0得1+2λ<0,故λ<-12,由a 与b 共线得λ=2,故a 与b 不行能反向.所以λ的取值范围为⎝⎛⎭⎫-∞,-12. (3)由于a 与b 的夹角为锐角,所以cos θ>0,且cos θ≠1, 所以a·b >0且a ,b 不同向.由a·b >0,得λ>-12,由a 与b 同向得λ=2.所以λ的取值范围为⎝⎛⎭⎫-12,2∪(2,+∞). 反思与感悟 由于两个非零向量a ,b 的夹角θ满足0°≤θ≤180°,所以用cos θ=a·b|a||b |来推断,可将θ分五种状况:cos θ=1,θ=0°;cos θ=0,θ=90°;cos θ=-1,θ=180°;cos θ<0且cos θ≠-1,θ为钝角;cos θ>0且cos θ≠1,θ为锐角.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.∵a ,b 的夹角α为钝角.∴⎩⎪⎨⎪⎧λ-1<0,21+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1).1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2 答案 B解析 ∵|a |=10,|b |=5,a ·b =5. ∴cos 〈a ,b 〉=a ·b |a ||b |=510×5=22. 又∵a ,b 的夹角范围为[0,π]. ∴a 与b 的夹角为π4.2.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A.1 B. 2 C.2 D.4 答案 C解析 ∵(2a -b )·b =2a ·b -|b |2 =2(-1+n 2)-(1+n 2)=n 2-3=0, ∴n 2=3.∴|a |=12+n 2=2.3.在△ABC 中,∠C =90°,AB →=(k,1),AC →=(2,3),则k 的值为________. 答案 5解析 ∵BC →=AC →-AB →=(2,3)-(k,1)=(2-k,2), AC →=(2,3),∴BC →·AC →=2(2-k )+6=0,∴k =5.4.已知平面对量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________. 答案 82解析 ∵a =(2,4),b =(-1,2),∴a ·b =2×(-1)+4×2=6, ∴c =a -6b , ∴c 2=a 2-12a ·b +36b 2 =20-12×6+36×5=128. ∴|c |=8 2.[呈重点、现规律]1.向量的坐标表示简化了向量数量积的运算.为利用向量法解决平面几何问题以及解析几何问题供应了完善的理论依据和有力的工具支持.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的力气.3.留意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若a =(x 1,y 1),b =(x 2,y 2).则a ∥b ⇔x 1y 2-x 2y 1=0,a⊥b ⇔x 1x 2+y 1y 2=0.一、基础过关1.已知向量a =(1,3),b =(3,m ).若向量a ,b 的夹角为π6,则实数m 等于( )A.2 3B. 3C.0D.-3 答案 B解析 ∵a ·b =(1,3)·(3,m )=3+3m , 又a ·b =12+(3)2×32+m 2×cos π6,∴3+3m =12+(3)2×32+m 2×cos π6,∴m = 3.2.已知a =(-3,2),b =(-1,0),向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.-17B.17C.-16D.16答案 A解析 由a =(-3,2),b =(-1,0), 知λa +b =(-3λ-1,2λ),a -2b =(-1,2). 又(λa +b )·(a -2b )=0, ∴3λ+1+4λ=0,∴λ=-17.3.平面对量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B.23 C.4 D.12 答案 B解析 ∵a =(2,0),|b |=1, ∴|a |=2,a ·b =2×1×cos 60°=1. ∴|a +2b |=a 2+4·a ·b +4b 2=2 3.4.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79 D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.② 由①②解得x =-79,y =-73.5.若向量a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角等于( ) A.-π4 B.π6 C.π4 D.3π4答案 C解析 2a +b =2(1,2)+(1,-1)=(3,3), a -b =(1,2)-(1,-1)=(0,3), (2a +b )·(a -b )=9, |2a +b |=32,|a -b |=3.设所求两向量夹角为α,则cos α=932×3=22,∵α∈[0,π],∴α=π4.6.设a =(2,x ),b =(-4,5),若a 与b 的夹角θ为钝角,则x 的取值范围是________. 解 ∵θ为钝角,∴cos θ=a ·b|a ||b |<0, 即a ·b =-8+5x <0,∴x <85.∵a ∥b 时有-4x -10=0,即x =-52,当x =-52时,a =(2,-52)=-12b ,∴a 与b 反向,即θ=π.故a 与b 的夹角为钝角时,x <85且x ≠-52.7.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦;(2)若(a -λb )⊥(2a +b ),求实数λ的值. 解 (1)∵a ·b =4×(-1)+3×2=2, |a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8), 又(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0, ∴λ=529.二、力气提升8.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( ) A.-4 B.-3 C.-2 D.-1答案 B解析 由于m =(λ+1,1),n =(λ+2,2). 所以m +n =(2λ+3,3),m -n =(-1,-1). 由于(m +n )⊥(m -n ),所以(m +n )·(m -n )=0, 所以-(2λ+3)-3=0,解得λ=-3.9.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的正射影的数量为( ) A.322B.3152C. -322D.-3152答案 A解析 ∵AB →=(2,1),CD →=(5,5), ∴AB →在CD →方向上的正射影的数量为 AB →·CD →|CD →|=2×5+1×552+52=1552=322.10.平面对量a =(1,2),b =(4,2),c =m a +b (m ∈R ),且c 与a 的夹角等于c 与b 的夹角,则m =________.答案 2解析 由于向量a =(1,2),b =(4,2),所以c =m a +b =(m +4,2m +2),所以a ·c =m +4+2(2m +2)=5m +8,b ·c =4(m +4)+2(2m +2)=8m +20. 由于c 与a 的夹角等于c 与b 的夹角, 所以a ·c |a ||c |=b ·c |b ||c |,即a ·c |a |=b ·c |b |,所以5m +85=8m +2025,解得m =2.11.在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0, ∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0, ∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.12.设a =(1,2),b =(-2,-3),又c =2a +b ,d =a +m b ,若c 与d 夹角为45°,求实数m 的值. 解 ∵a =(1,2),b =(-2,-3), ∴c =2a +b =2(1,2)+(-2,-3)=(0,1), d =a +m b =(1,2)+m (-2,-3)=(1-2m,2-3m ), ∴c ·d =0×(1-2m )+1×(2-3m )=2-3m . 又∵|c |=1,|d |=(1-2m )2+(2-3m )2,∴cos 45°=c ·d|c ||d |=2-3m(1-2m )2+(2-3m )2=22. 化简得5m 2-8m +3=0,解得m =1或m =35.三、探究与拓展13.已知三个点A (2,1),B (3,2),D (-1,4). (1)求证:AB ⊥AD ;(2)要使四边形ABCD 为矩形,求点C 的坐标并求矩形ABCD 两对角线所成的锐角的余弦值. (1)证明 ∵A (2,1),B (3,2),D (-1,4), ∴AB →=(1,1),AD →=(-3,3), 又∵AB →·AD →=1×(-3)+1×3=0, ∴AB →⊥AD →,即AB ⊥AD .(2)解 AB →⊥AD →,四边形ABCD 为矩形,∴AB →=DC →. 设C 点坐标为(x ,y ),则AB →=(1,1),DC →=(x +1,y -4),∴⎩⎪⎨⎪⎧ x +1=1,y -4=1, 得⎩⎪⎨⎪⎧x =0,y =5.∴C 点坐标为(0,5). 由于AC →=(-2,4),BD →=(-4,2), 所以AC →·BD →=8+8=16>0, |AC →|=2 5,|BD →|=2 5. 设AC →与BD →夹角为θ,则 cos θ=AC →·BD →|AC →|·|BD →|=1620=45>0,∴矩形的两条对角线所成的锐角的余弦值为45.。
2.3.2、2.3.3向量积的运算公式及度量公式概述.
张喜林制2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式考点知识清单1.向量数量积的运算律: (1)交换律: (2)分配律:(3)数乘向量结合律: 2.常用结论:=+2))(1(b a =-2))(2(b a=-⋅+)())(3(b a b a3.两个向量的数量积等于它们对应坐标乘积的和,即若=a ),,(21a a ),,(21b b b =则=⋅b a 4.设).,(),,(2121b b b a a a == 如果,b a ⊥则 如果,02211=+b a b a 则对于任意实数k ,向量),(12b b k -与向量),(21b b 垂直.5.向量),,(),,(2121b b b a a a ==则=||a ,cos a <>=b6.若),,(),,(2211y x B y x A 则),,(1212y y x x AB --=所以=||AB要点核心解读1.向量数量积的运算律 a b b a ⋅=⋅)1((交换律); )()())(2(b a b a b a λλλ⋅=⋅=⋅(结合律); c b c a c b a ⋅+⋅=⋅+))(3((分配律). 2.向量数量积的运算律的证明a b b a ⋅=⋅)1((交换律)证明:,,cos ||||,cos ||||a b a b a b b a b a b a ⋅>=<>=<=⋅.a b b a ⋅=⋅∴)()()()2(b a b a b a λλλ⋅=⋅=⋅(结合律)证明:.,cos ||||)(><=⋅b a b a b a λλ①.,cos ||||)(><=⋅b a b a b a λλλ②当0>λ时,a λ与a 同向,),,(,b a b a >=<λ.,cos ||||)(><=⋅∴b a b a b a λλ当0=λ时,,00)0()(=⋅=⋅=⋅b b a b a λ,0,cos ||||>=<b a b a λ.,cos ||||)(><=⋅∴b a b a b a λλ,0时当<λb a 与λ反向,),,,(b a b a <->=πλ],cos[||||)()(><--=⋅∴b a b a b a πλλ],cos [||||><--=b a b a λ .,cos ||||><=b a b a综合以上可得.,cos ||||)(><=⋅b a b a b a λλ ③由②同理可证得:.,cos ||||)(><=b a b a b a λλ综合以上可得:.||||)()()(b a b a b a b a λλλλ=⋅=⋅=⋅.,cos ><b ac b c a c b a ⋅+⋅=⋅+))(3((分配律)证明:作轴L 与向量c 的单位向量0c 平行. 如图2-3 -2 -1,作==a ,,b 则.b a +=设点0、A 、B 在轴L 上的射影为、O ,//B A 、跟据向量的数量积的定义有,00/c a c OA ⋅=⋅= ,00//c b c AB B A ⋅=⋅== ,)(00/c b a c OB OB ⋅+=⋅=但对轴上任意三点,//B A O 、、都有,0////B A A OB += 即,)(000c b c a c b a ⋅+⋅=⋅+ 上式两边同乘以|,|c 由c c c =0||得:.)(c b c a c b a ⋅+⋅=⋅+∴ 得证.3.关于向量数量积的运算律需要注意的几点(1)数量积是由向量的长度和夹角来确定的,它对于这两个向量是对称的,即与次序无关,因而有交换律..a b b a ⋅=⋅(2)从力做功情况来看,若力增大几倍,则功也增大几倍,而当力反转方向时,功要变号,于是有).()(b a b a ⋅=⋅λλ(3)两个力在同一物体上所做的功等于合力所做的功,于是有分配律.)(2121b a b a b a a ⋅+⋅=⋅+(4)值得注意的是,平面向量的数量积不满足结合律,.a C b a c b ⋅⋅=⋅)()(是错误的,这是因为c b b a ⋅⋅与都是数量,所以c b a c b a ⋅⋅⋅⋅)()(与分别表示a 的共线向量和c 的共线向量,当然就不能相等.(5)由,)()(d b c b d a c a d c b a ⋅+⋅+⋅+⋅=+⋅+可得向量的三个运算公式:,||||)()(22b a b a b a -=-⋅+,||2||)(222b b a a b a +⋅+=+ .||2||)(222b b a a b a +⋅-=-4.向量内积的坐标运算建立正交基底}.,{21e e 已知),(),,(2121b b b a a a ==,则.)()(121111122112211e b a e e b a e b e b e a e a b a +⋅=+⋅+=⋅.2122e b a e +⋅⋅+22221e e b a e因为,0,112212211=⋅=⋅=⋅=⋅e e e e e e e e 所以我们得到数量积的坐标表达式:5.用向量的坐标表示两个向量垂直的条件 设),,(),,(2121b b b a a a == 则.02211=+⇔⊥b a b a b a 6.向量的长度、距离和夹角公式(1)如图2-3 -2 -2,已知,1a a (=),2a 则=⋅=⋅=),(),(||21212a a a a a a a .2221a a +因此①这就是根据向量的坐标求向量长度的计算公式, 这个公式用语言可以表述为:向量的长度等于它的坐标平方和的算术平方根.(2)如果),,(),,(2211y x B y x A 则),,(1212y y x x AB --=从而②AB 的长就是A 、B 两点之间的距离,因此②式也是求两点的距离公式.这与我们在解析几何初步中得到的两点距离公式完全一样.(3)设),,(),,(2121b b b a a a == 则两个向量夹角余弦的坐标表达式7.如何运用坐标来解决垂直问题(1)设两非零向量),,(),,(2211y x b y x a ==则⇔⊥b a .02121=+y y x x利用向量垂直的坐标的条件,可使向量垂直问题代数他,从而有利于问题的解决.例如:已知: <<<<==βαββαα0)sin ,(cos ),sin ,(cos b a ),π则b a +与b a -是否互相垂直?并说明理由.解:由已知),sin ,(cos ),sin ,(cos ββαα==b a 有=+b a ),sin sin ,cos (cos βαβα++),sin sin ,cos (cos βαβα--=-b a又++-+=-<+αβαβα(sin )cos )(cos cos (cos )).(b a b a ).sin β)sin (sin βα-.0sin sin cos cos 2222=-+-=βαβα所以).()(b a b a -⊥+(2)平面向量数量积的坐标形式,一定要注意a 与b 的数量积等于两个向量对应坐标乘积之和.在用坐标形式判断两个向量垂直时,要与判断两个向量平行的坐标条件相区别:.0//;012212121=-⇔=+⇔⊥y x y x b a y y x x b a8.利用数量积求两个向量的夹角一定要注意两个向量的数量积为正不能得到它们的夹角一定为锐角,同样,两个向量的数量积为负也不能得到它们的夹角一定为钝角.设a ,b 为非零向量,如果,0>⋅b a 那么a ,b 的夹角为锐角或a ,b 同向,反之也成立;如果,0<⋅b a 那么a ,b 的夹角为钝角或a ,b 反向,反之也成立,典例分类剖析考点1 判断向量运算的正误[例1] 给出下列命题:①设a 、b 、c 是非零向量,则c b a ⋅⋅)(与c 共线;②若=a λ,R b ∈<λλ 且),0=/λ则0;=⋅=b a b a ③与a ⊥b 是等价命题;④若,.c b c a =⋅则;b a =⑤若a 与b 共线,则.||a b a =⋅ |;|b ⑥若.0<⋅b a 则),(b a 是钝角.其中真命题为 (填序号).[解析] 向量的加、减、数乘、数量积运算及运算律要理解透彻;注意有些命题在特殊情况下是否成立.①因为a ×b 是一个实数,不妨记作λ,故.)(λ=⋅⋅c b a ,//c c C λ=所以①正确.,0)(0=-⇔=-⇔=b a b a b a λλλλλ②因为,0=/λ所以,0=-b a 所以,b a =故②正确.③因为,c o s ||||,0θb a b a b a =⋅=⋅所以0||0||==b a 或或,0cos =θ所以0=a 或0=b 或.90 =θ又因为规定O 与任意向量垂直,所以.b a ⊥反之,.0cos 90,a b a b a ⇔=⇔>=⇔<⊥θ ,090cos ||||== b a b 故③正确.c b c a ⋅=⋅④不一定有.b a =例如,,C b c a ⊥⊥且,2b a =此时,0=⋅=⋅c b C a 但.b a =/故④错.⑤a 与b 共线b a 与⇒方向相同或方向相反0,>=⇒<b a 或.||||),(b a b a b a ±=⋅⇒=π故⑤错, ⑥因为,cos ||||,0θb a ab b a ⋅=<⋅所以,0cos <θ所以),,2(ππθ∈所以θ为钝角或平角,故⑥错.[答案] ①②③[点拨] 此例题为概念综合题,其中③是重要结论,注意深刻理解,灵活应用;⑤⑥的完整形式应用也较广泛,注意特殊情况1.已知a 、b 、c 是三个非零向量,则下列命题中真命题的个数为( ).;//||||||b a b a b a ⇔⋅=⋅①②a 、b 反向.||a b a -=⋅⇔|;|b |;|||b a b a b a -=+⇔⊥③④=a;c b c a b ⋅=⋅⇔⑤.000==⇔=⋅b a b a 或 1.A 2.B 3.C 4.D考点2 向量的混合运算[例2] (1)已知,2||,4||,120==>=⋅<b a b a则+a |=+⋅-+)()2(|b a b a b(2)若向量a 、b 、c 满足,0=++c b a 且,1||,3||==b a .4||=c 则=⋅+⋅+⋅a c c b b a [解析] (1))()2(b a b a b a +⋅-++2222)(b a b b a a b a -⋅-⋅+++= 2222b b a a b b a a -⋅-++⋅+=222120cos 24164120cos 24216⨯-⨯⨯-++⨯⨯+= .1232+=(2)根据已知条件,可知a 与b 同向,c 与a+b 反向.解法一:由已知得.|,|||||b a c b a c --=+=可知向量a 与b 同向,而向量c 与它们反向,-=++=⋅+⋅+⋅∴3180cos 12180cos 40cos 3 o a c c b b a .13124-=-解法二: ),(2)(2222a c cb b ac b a c b a ⋅+⋅+⋅+++=++a c cb b a ⋅+⋅+⋅∴2)()(2222c b a c b a ++-++=2)413(0222++-=.13-=[答案] 2132)1( + 13)2(- [点拨] ①利用公式2||a a a =⋅和向量数量积的运算性质计算.②(2)问解法二是利用2222)(b b a a b a +⋅+=+推广到=++2)(C b a +++222C b a)(2a c c b b a ⋅+⋅+⋅予以解答的.2.已知,21||,5||,4||=+==b a b a 求:;)1(b a ⋅)2()2)(2(b a b a -⋅+的值,考点3 利用数量积及运算律求横[例3] 已知向量a 、b 满足,1||||==b a 且,3|23|=-b a 求|3|b a +的值.[解析] 通过数量积a ×b 来探求已知条件3|23|=-b a 与目标式|3|b a +之间的关系..1||||,1||||22==∴==b a b a又,9)23(,3|23|2=-∴=-b a b a,9||412||922=+⋅-∴b b a a 将,1||||22==b a 代入有,31=⋅b a而 ,1213169||6||9)3(222=+⨯+=+⋅+=+b b a a b a.32|3|=+∴b a[点拨] 解题过程中要注意模与数量积之间的转换.3.已知向量a 、b 、c 满足:.0a c b a ,(=++:)(:)c b b ⋅=⋅)(a c ),23(:3:1-当1||=a 时;求||b 及||c 的值.考点4 向量夹角问题[例4] 已知a ,b 是两个非零向量,且|,|||||b a b a +==求向量b 与b a -的夹角.[解析] 我们可以利用向量减法的平行四边形法则,画出以a 、b 为邻边的平行四边形.如图2-3 -2 -3所示,若,,b a ==则=,,b a D b a -=+由+==a b a ||||||,b 可知,60oABC =∠b 与D所成角是.150我们还可以利用数量积的运算,得出b 与a-b 的央角,为了巩固数量积的有关知识,我们采用第二种方法解题,由||||)(,cos b a b b a b b a b --⋅>=-<作为切入点,.)(|,||||,|||22b a b a b b a b +=∴=+=.||21||)(2||||2222b b a b b a a b -=⋅+⋅+=∴ 而.||23||||21)(2222b b b b a b b a b -=--=-⋅=-⋅ ①由+-⨯-=+⋅-=-22222||)21(2||)(2)(b b b b a a b a ,|31||22b b =而.||3||,||3)(||222b b a b b a b a =-∴=-=- ②,||||)(,cos b a b b a b b a b --⋅>=-<代入①②得⋅-=⋅->=-<23||3||||23,cos 2b b b b a b 又 ⋅=-∴>∈-<65),(],,0[,ππb a b b a b 4.已知.3||,4||==b a(1)若a 与b 的夹角为,600求+-⋅+a b a b a |),3()2(|;3||,2b a b -(2)若,61)2()32(=+⋅-b a b a 求a 与b 的夹角. 考点5 垂直问题[例5] 已知,4||,5||==b a 且a 与b 的夹角为,60问:当且仅当k 为何值时,向量b ka -与b a 2+垂直?[解析] 利用,0=⋅⇔⊥b a b a 得到关于k 的方程,通过解此方程得到k 的值.于是,4||,5||==b a且a 与b 的夹角为,60o.10214560cos ||||=⨯⨯==⋅∴ b a b a 又向量b ka -与b a 2+垂直,.0)2()(=+⋅-∴b a b ka 则有k ,0||2)12(||22=-⋅-+b b a k a 即,042)12(10252=⨯--+k k解得⋅=1514k [点拨] 非零向量a ,b 若满足,0=⋅b a 则,b a ⊥反之也成立.根据这一结论我们可以解决两类问题:(1)由垂直条件求参数的值;(2)利用题谩条件证明向量垂直或直线垂直.5.已知a 、b 都是非零向量,且b a 3+与b a 57-垂直,b a 4-与b a 27-垂直,求a 与b 的夹角. 考点6 向量线性运算与数量积的综合问题[例6] △ABC 三边的长分别为a 、b 、c ,以A 为圆心,r 为半径作圆,如图2 -3 -2 -4,PQ 为直径,试判断P 、Q 在什么位置时,C ⋅有最大值?[解析] 由三角形法则构造P B 及Q C 的数量积转化为实数范围内求最大值,,.Q ,B B CA QA C A AP P =+-=即,--=--=A A C---=⋅∴AC AB C B ().AP (.Q P ⋅+⋅-=B A AC AP AP .)()22.r AC AB AP AB AP AC -⋅=⋅+- =-+)(=⋅+-⋅r AC ..2..cos ||.||2r A AB +-.cos 2+-=r A bc ⋅当与同向时,⋅最大为.||.||ra AP =即当QP 与共线且同方向时,C BP ⋅有最大值+A bc cos .2r ar -[点拨] 利用||||b a b a ⋅≤⋅求最值,但必须先构造出..C B ⋅6.如图2 -3 -2 -5,在Rt△ABC 中,已知,a BC =若长为2a 的线段PQ 以点A 为中心,问:Q B P 与 的夹角θ为何值时,.CQ BP ⋅的值最大?并求出这个最大值,考点7 向量内积的坐标运算[例7] 已知),3,1(),1,2(-==b a 若存在向量c ,使得:.9,4-=⋅=⋅C b c a 试求向量c 的坐标. [解析] 设),,(y x c =则由4=⋅c a 可得;42=+y x 又由9-=⋅c b 可得.93-=+-y x于是有⎩⎨⎧-=+-=+,93,42y x y x 解得⎩⎨⎧-==⋅.2,3y x⋅-=∴)2,3(c[点拨] 已知两向量a 、b ,可以求出它们的数量积a ×b ,但是反过来,若已知向量a 及数量积a ×b ,却不能确定b .需要像本例一样,已知两向量,及这两个向量与第三个向量的擞量积,则我们可利用数量积的坐标表示,通过解方程组的方法,确定第三个向量.7.巳知,1),4,2(),3,2(-=-==(c b a ),2-求.)()(),)((,2b a C b a b a b a b a +⋅+⋅-+⋅ 考点8 运用坐标运算处理垂直问题[例8] 在△ABC 中,),,1(),3,2(k ==且△ABC 的一个内角为直角,求k 的值. [解析] 题目没有明确哪一个角是直角,要对三个角分别进行讨论,当90=A 时,;32,0312,0.-=∴=⨯+⨯∴=⋅k k A A当90=B =--=-==)3,21(,0k A B ),3,1(--k,0)3(3)1(2=-⨯+-⨯∴k;311=∴k 当oC 90=时,,0)3(1,0C C =-+-∴=⋅k k B A⋅±=∴2133k 32-=∴k 或⋅±2133311或8.(1)已知点A(1,2)和B(4,一1),问在y 轴上是否存在一点C ,使得.90=∠ACB 若不存在,请说明理由;若存在,求出点C 的坐标.(2)已知),2,4(=a 求与a 垂直的单位向量的坐标,考点9 运用坐标运算求向量的夹角[例9] 已知a 、b 是两个非零向量,同时满足==b a |||,|b a -求a 与b a +的夹角.[解析] 解法一:根据,|||||,|||22b a b a ==有又由|,|||b a b -=得,||.2||||222b b a a b +-=.||212a b a =⋅∴ 而,||3||2||||2222a b b a a b a =+⋅+=+.||3||a b a =+∴设a 与b a +的夹角为θ,则,23||3||||21||||.||)(cos 22=⋅+=++=a a a a b a a b a a θ .30,1800o o =∴≤≤θθ解法二:设向量),,(),,(2211y x b y x a ==.|,|||22222121y x y x b a +=+∴=由|,|||b a b -= 得),(2121212121y x y y x x +=+即⋅+=⋅)(212121y x b a 由),(3)(212)(2||2121212121212y x y x y x b a +=+⨯++=+ 得.3||211y x b a +=+设a 与b a +的夹角为θ,则⋅=+⋅⋅++++=+⋅+=233)(21)(||||)(cos 212121212121212y x y x y x y x b a a b a a t θ .30,1800 =∴≤≤θθ解法三:根据向量加法的几何意义,作图(如图2 -3 -2 -6).在平面内任取一点O .作B b a 0,,以==为邻边作平行四边形OACB.|,|||b a = 即|,|||=∴ 四边形OACB 为菱形,OC 平分,AOB ∠这时,,0b a BA b a C -=+=而|,|||||b a b a -==即 .||||||==∴ △AOB 为正三角形,则,60 =∠AOB 于是,30 =∠AOC即a 与b a +的夹角为.30[点拨] 基于平面向量的表示上的差异,也就是表示方法的不同,才产生了以上三种不同的解法.9.(1)已知),1,1(),432,2(=-=b a 求a 与b 的夹角.(2)已知),1,1(),2,1(==b a 且a 与b a λ+的夹角为锐角,求实数A 的取值范围,考点10 向量坐标运算的综合应用[例10] 已知),23,21(),1,3(=-=b a 且存在实数k 和t ,使得,)3(2b t a x -+=,tb ka y +-=且 ,y x ⊥试求t t k 2+的最小值.[解析] 由题意可得,2)1()3(||22=-+=a,1)23()21(||22=+=b ,0231213=⨯-⨯=⋅b a 故有.b a ⊥ 由,y x ⊥知,0)(])3([2=+-⋅-+tb ka b t a即,0)3()3(2232=⋅+-+-+-b a k k t t b t t ka.00)3(1)3(22232=⋅+-+⋅-+⋅-∴k k t t t t k∴ 可得 433t t k -=故 ,47)2(41)34(41222-+=-+=+t t t t t k 即当2-=t 时,t t k 2+有最小值为⋅-47 [点拨] 向量与函数知识相结合的综合问题,关键是正确应用向量数量积的坐标形式,将其转化为函数问题,然后利用函数的相关知识来解决,10.已知向量,sin 2(),1,sin 3x b x a ==(],32,6[),1ππ∈x 记函数,)(b a x f ⋅Λ求函数)(x f 的值域.学业水平测试1.若),5,3(),2,(-==b a λ且a 与b 的夹角为钝角,则A 的取值范围是( ).),310.(+∞A ),310[+∞⋅B )310,.(-∞C )310,.(-∞D2.已知A 、B 、C 是坐标平面上的三点,其坐标分别为、)2,1(A ),1,0()1,4(-C B 、则△ABC 的形状为( ).A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均不对3.给定两个向量),1,2(),4,3(-==b a 且),()(b a xb a -⊥+则x 等于( ).23.A 223.B 323.C 423.D 4.已知),1,1(),2,3(--B A 若点)21,(-x P 在线段AB 的中垂线上,则=x 5.已知,,21),1,0(),0,1(mj i b j a j i +=-===给出下列命题:①若a 与b 的夹角为锐角,则;21<m ②当且仅当21=m 时,a 与b 互相垂直;③a 与b 不可能是方向相反的向量;④若|,|||b a =则.2-=m 其中正确的命题的序号是6.求与向量)1,2(),2,1(==b a 夹角相等的单位向量c 的坐标高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分×8 =40分)1.(2007年湖北高考题)设b a a 在),3,4(=上的投影为,225b 在x 轴上的投影为2,且,14||≤b 则b 为( ). )14,2(⋅A )72,2.(-B )72,2.(-C )8,2(⋅D 2.(2009年辽宁高考题)平面向量a 与b 的夹角为,2,60(=a=+=|2|,1||),0b a b 则( ). 3.A 32.B 4.C 12.D3.与)4,3(=a 垂直的单位向量是( ).)53,54.(A )53,54.(--B )53,54.(-C 或)53,54(- )53,54.(D 或)53,54(-- 4.若O 为△ABC 所在平面内一点,且满足+-OB O ().OC B (,0)2=-则△ABC 的形状为( ).A .正三角形B .等腰三角形C .直角三角形 D.A 、B 、C 均不正确5.(2011年辽宁理)若a ,b ,c 均为单位向量,且-=⋅a b a (,0,0)()≤-⋅c b c 则||c b a -+的最大值为( ).12.-A 1.B 2.C 2.D6.(2007年重庆高考题)已知向量),5,3(),6,4(==O 且,//,0⊥则向量=0( ))72,73.(-A )214,72.(-B )72,73.(-C )214,72.(-D 7.(2010年安徽高考题)设向量),21,21(),0,1(==b a 则下列结论中正确的是( ). ||||.b a A = 22.=⋅b a B b a C -.与b 垂直 b a D //. 8.(2009年陕西高考题)在△ABC 中,M 是BC 的中点,,1A =M 点P 在AM 上且满足⋅=PA PM AP 则,2)(PC PB +等于( ).94.-A 34.-B 34.C 94.D 二、填空题f5分x4 =20分)9.(2008年江西高考题)直角坐标平面上三点,3()2,1(B A 、),7,9()2C 、-若E 、F 为线段BC 的三等分点,则=⋅F E A A10.(2008年宁夏高考题)已知平面向量,4(),3,1(=-=b a b a +-λ),2与a 垂直,则=λ11.(2010年广东高考题)若向量===c b x a ),1,2,1(),,1,1(),1,1,1(满足条件,2)2()(-=⋅-b a c 则=x12.(2011年安徽理)已知向量a ,b 满足=-⋅+)()2(b a b a ,6-且,2||,1||==b a三、解答题(10分×4 =40分)13.(1)已知,120,,1||,1||ob a b a >=<==计算向量b a -2在向里b a +方向上的投影.(2)已知,4||,6||==b a a 与b 的夹角为,60 求).2(b a +)3(b a -的值.14.已知向量.),1,3(),1,2(),2,3(R t c b a ∈-==-=(1)求||tb a +的最小值及相应的t 值;(2)若tb a -与c 共线,求实数t 的值.15.如图2-3 -2 -7,四边形ABCD 是正方形,P 是对角线BD 上的一点,PECF 是矩形,用向量法证明: ;)1(EF PA =.)2(EF PA ⊥16.平面内有向量)1,2(),1,5(B ),7,1(===OP O OA 点X 为直线OP 上的一个动点.(1)当≡⋅X 取最小值时,求O 的坐标;(2)当点X 满足(I)的条件和结论时,求AXB ∠cos 的值,。
平面向量的数量积与坐标
平面向量的数量积与坐标平面向量是我们在平面上研究问题时经常使用的工具。
在平面向量中,有一个重要的运算叫做数量积,也称为点积或内积。
数量积可以帮助我们计算向量的长度,夹角以及方向等信息。
在本文中,我们将详细介绍平面向量的数量积以及与坐标之间的关系。
1. 数量积的定义数量积(点积)是指两个向量相乘后对应分量相加的运算。
设有两个平面向量A和B,它们的数量积(记作A·B或AB)定义为:A·B = |A| |B| cosθ,其中|A|和|B|分别表示向量A和B的模长,θ表示A和B之间的夹角。
2. 数量积的坐标表示通常情况下,我们用坐标来表示平面向量。
设有向量A = (x₁, y₁)和向量B = (x₂, y₂),那么A·B的计算可以通过坐标之间的运算得到。
根据数量积的定义,我们有:A·B = x₁x₂ + y₁y₂。
这个式子就是平面向量的数量积的坐标表示。
3. 数量积的性质数量积具有以下几个性质:- 交换律:A·B = B·A,即数量积的结果与顺序无关。
- 分配律:(A + B)·C = A·C + B·C,即对一个向量的和进行数量积的结果等于对每个向量进行数量积后再相加。
- 数量积的零向量:A·0 = 0,即任何向量与零向量的数量积都等于零。
- 向量与自身的数量积:A·A = |A|²,即向量与自身的数量积等于该向量的模长的平方。
4. 数量积与夹角通过数量积的定义,我们可以得到向量A·B的形式为:A·B = |A| |B| cosθ。
根据三角函数的定义,我们可以得到cosθ = A·B / (|A| |B|)。
由此可见,向量的数量积与其夹角是密切相关的。
通过求解数量积,我们可以计算向量的夹角。
如果两个向量的数量积为正,则夹角为锐角;如果数量积为负,则夹角为钝角;如果数量积为零,则夹角为直角。
(完整版)高中平面向量公式及知识点默写
平面向量知识点及公式默写一,基本概念1,向量的概念: 。
2,向量的表示:。
3,向量的大小:(或称模)4,零向量:,记为 ,零向量方向是 。
5,单位向量:长度为 的向量称为单位向量,一般用e 、i 1=1=6,平行向量(也称共线向量):方向 向量称为平行向量,规定零向量与任意向量 。
若a 平行于b ,则表示为a ∥b 。
7,相等向量: 称为相等向量。
若a 与b 相等,记为a =b8,相反向量: 称为相反向量。
若a 与b 是相反向量,则表示为a =b -;向量BA AB -=二,几何运算1,向量加法:(1)平行四边形法则(起点相同),可理解为力的合成,如图所示:(2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, =+BC AB(3)两个向量和仍是一个向量;(4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式):= << = 2,减法:(1)两向量起点相同,方向是从减数指向被减数,如图=-AC AB(2)两向量差依旧是一个向量;(3)减法本质是加法的逆运算:CB CA AB CB AC AB =+⇔=- 3,加法、减法联系:(1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,DB AD AB =- (2=,则四边形ABCD 为矩形 4,实数与向量的积:(1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: BAaCB A•aba babba +当0>λ时,a λ与a 方向 ;当0<λ时,a λ与a 方向 ;当0=λ时,=a λ当0=a 时,0=a λ;=(2)实数与向量相乘满足:=)(a μλ =+a )(μλ=+)(b a λ5,向量共线:(1)向量b 与非零向量a 共线的条件是:有且只有一个实数λ(2)如图,平面内C BA ,,使得0=++OC n OB m OA q ,且0=++q n m ,反之也成立。
向量数量积的坐标运算与度量公式
向量数量积的坐标运算与度量公式向量的数量积,也叫点积或内积,表示了两个向量之间的数值关系。
向量的数量积被定义为两个向量的相应分量的积的和。
设向量A和B的坐标分别为(A1,A2,A3)和(B1,B2,B3),则它们的数量积可以表示为:A·B=A1*B1+A2*B2+A3*B3向量的数量积具有以下几个重要的性质:1.A·B=B·A(数量积的交换律)数量积满足交换律,即A与B的数量积等于B与A的数量积。
2.A·(B+C)=A·B+A·C(数量积的分配律)数量积满足分配律,即A与向量B和向量C的和的数量积等于A与B的数量积加上A与C的数量积。
3.k(A·B)=(kA)·B=A·(kB)(数量积的结合律)数量积满足结合律,即向量A与k乘以B的数量积等于k乘以A与B的数量积,也等于A与k乘以B的数量积。
4.A·A≥0,当且仅当A=0时,A·A=0任意非零向量A与自身的数量积大于等于0,当且仅当A是零向量时,A与自身的数量积等于0。
数量积的几何意义是,它等于一个向量在另一个向量上的投影的长度乘以两个向量夹角的余弦值。
设向量A和向量B的夹角为θ,则有:cosθ = A·B / (,A, * ,B,)其中,A,和,B,分别表示向量A和向量B的长度。
这个公式说明了向量的数量积与夹角之间的关系。
当夹角θ等于90度时,cosθ等于0,所以此时A·B=0,即两个向量相互垂直;当夹角θ等于0度时,cosθ等于1,所以此时A·B等于两个向量的模的乘积,即数量积最大。
通过数量积的度量公式,我们可以计算出向量的模和夹角。
向量A的模可以通过数量积计算得出:A,=√(A·A)这里的√表示开方运算。
向量A和向量B的夹角可以通过数量积和模的计算得出:cosθ = A·B / (,A, * ,B,)θ = arccos(A·B / (,A, * ,B,))这里的arccos表示反余弦函数。
高中数学平面向量知识及注意事项
高中数学平面向量知识及注意事项一、向量基础知识1、实数与向量的积的运算律:设λ、μ为实数,那么(1)结合律:λ(μa )=(λμ) a ;(2)第一分配律:(λ+μ) a =λa +μa ;(3)第二分配律:λ(a +b)=λa +λb .2、向量的数量积的运算律:(1) a ·b = b ·a(交换律);注:c b a c b a )()(∙≠∙(2)(λa )·b = λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c = a ·c +b ·c .3、平面向量基本定理:如果1e 、2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a =λ11e +λ22e .不共线的向量1e 、2e 叫做表示这一平面内所有向量的一组基底.4、投影:向量b 在向量a方向上的投影为|b |cos θ。
5、a 与b 的数量积(或内积):a ·b =|a ||b |cos θ.6、a ·b 的几何意义:数量积a ·b 等于a 的长度|a|与b 在a 的方向上的投影|b |cos θ的乘积.7、平面向量的坐标运算:(1)设a =11(,)x y ,b =22(,)x y ,则a +b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212x x y y +.8、两向量的夹角公式:121222221122cos x x y y x y x y θ+=+⋅+(a=11(,)x y ,b =22(,)x y ).9、向量的模与平面两点间的距离公式:|a |22x y =+,A B d =||AB AB AB =⋅ 222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).10、两个非零向量的共线与垂直的充要条件:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a ∥b ⇔b =λa12210x y x y ⇔-=.a ⊥b (a ≠0 )⇔a ·b=012120x x y y ⇔+=.11、三角形的重心坐标公式:△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC的重心的坐标是123123(,)33x x x y y y G ++++.G G GC 0A B++= 二、向量中需要注意的问题1、向量运算的几何形式和坐标形式,请注意:向量运算中向量起点、终点及其坐标的特征.2、几个概念:零向量、单位向量(与AB 共线的单位向量是||ABAB ± ,平行(共线)向量(无传递性,是因为有0 )、相等向量(有传递性)、相反向量、向量垂直、以及一个向量在另一向量方向上的投影(a 在b上的投影是cos ,a ba ab b⋅=<>=∈R).3、两非零向量....共线的充要条件://a b a b λ⇔= cos ,1a b ⇔<>=± 12210x y x y ⇔-=. 两个非零向量....垂直的充要条件:0||||a b a b a b a b ⊥⇔⋅=⇔+=- 12120x x y y ⇔+=. 特别:零向量和任何向量共线和垂直. b a λ=是向量平行的充分不必要条件!4、三点A B C 、、共线⇔ AB AC 、共线;向量 PA PB PC、、中三终点A B C 、、共线⇔存在实数αβ、使得:PA PB PC αβ=+且1αβ+=.5、向量的数量积:22||()a a a a ==⋅ ,1212||||cos a b a b x x y y θ⋅==+,121222221122cos ||||x x y y a b a b x y x y θ+⋅==++ ,12122222||cos ,||x x y y a b a b a a b b x y +⋅=<>==+在上的投影. 注意:,a b <> 为锐角⇔0a b ⋅> 且 a b 、不同向;,a b <>为直角⇔0a b ⋅= 且 0a b ≠ 、; ,a b <> 为钝角⇔0a b ⋅< 且 a b 、不反向,0a b ⋅< 是,a b <> 为钝角的必要非充分条件.6、一个重要的不等式:||||||||||||a b a b a b -≤±≤+注意: a b 、同向或有0⇔||||||a b a b +=+ ≥||||||||a b a b -=- ; a b 、反向或有0 ⇔||||||a b a b -=+ ≥||||||||a b a b -=+; a b、不共线⇔||||||||||||a b a b a b -<±<+ .(这些和实数集中类似)7、中点坐标公式1212,22x x y y x y ++==,122MP MP MP P +=⇔为12PP 的中点.。
向量坐标运算公式
向量坐标运算公式1. 向量坐标:向量坐标是一种以坐标方式表示向量的一种变换方式。
它将空间中每一个点给予它独一无二的坐标用来描述。
它使用平面(二维)或空间(三维)坐标来表示向量,例如平面内的向量可以用(x, y)的形式来表示。
2. 向量坐标的运算:(1)加法:如果有两个具有相同维数的向量,那么它们可以相加,其结果也是一个向量。
假设有两个二维向量A=(x1, y1)和B=(x2, y2),那么它们的和就是A+B=(x1+x2, y1+y2)。
(2)减法:类似于加法,向量之间也可以作减法,其结果也是一个向量。
假设有两个二维向量A=(x1, y1)和B=(x2, y2),那么它们的差就是A-B=(x1-x2, y1-y2)。
(3)乘法:向量可以与标量乘法,即A*a,结果也是一个向量,假设A=(x1, y1),那么A*a=(x1*a, y1*a)。
(4)除法:向量可以与标量相除,即A/a,结果也是一个向量,假设A=(x1, y1),那么A/a=(x1/a, y1/a)。
(5)数量积:它是两个向量之间运算,正常而言,两个或多个向量可以做数量积。
若A=(x1, y1),B=(x2, y2),则A·B=x1*x2+y1*y2。
需要注意的是,此运算的结果是一个实数。
(6)矢量积:它是在三维及以上空间上的向量之间运算,若有A=(x1, y1, z1),B=(x2, y2, z2),则A×B=(y1*z2-y2*z1,z1*x2-z2*x1,x1*y2-x2*y1)。
另外,矢量积有一个重要特性,即空间内两个线段对应的向量相乘,其结果是其所在平行四边形的有向面积。
平面向量数量积公式坐标
平面向量数量积公式坐标一、平面向量数量积的坐标表示公式推导。
1. 设向量→a=(x_1,y_1),→b=(x_2,y_2)- 根据向量数量积的定义→a·→b=|→a||→b|cosθ(其中θ为→a与→b的夹角)。
- 又因为→a=(x_1,y_1),则|→a|=√(x_1)^2+y_{1^2};→b=(x_2,y_2),则|→b|=√(x_2)^2+y_{2^2}。
- 我们可以通过向量的坐标运算来表示cosθ。
- 设→i,→j是分别与x轴、y轴正方向相同的单位向量,则→a=x_1→i + y_1→j,→b=x_2→i+y_2→j。
- →a·→b=(x_1→i+y_1→j)·(x_2→i+y_2→j)- 根据向量数量积的分配律可得:→a·→b=x_1x_2→i·→i+x_1y_2→i·→j+x_2y_1→j·→i+y_1y_2→j·→j。
- 由于→i·→i = 1,→j·→j=1,→i·→j=→j·→i = 0。
- 所以→a·→b=x_1x_2+y_1y_2。
二、公式的应用示例。
1. 计算向量数量积。
- 例:已知→a=(1,2),→b=(3, - 4),求→a·→b。
- 解:根据平面向量数量积的坐标公式→a·→b=x_1x_2+y_1y_2,这里x_1=1,y_1=2,x_2=3,y_2=-4。
- 则→a·→b=1×3+2×(-4)=3 - 8=-5。
2. 判断向量垂直。
- 若两个非零向量→a=(x_1,y_1),→b=(x_2,y_2)垂直,则→a·→b=0,即x_1x_2+y_1y_2=0。
- 例:判断向量→m=(2, - 3)与→n=(6,4)是否垂直。
- 解:计算→m·→n=2×6+(-3)×4 = 12 - 12 = 0,所以→m⊥→n。
平面向量数量积的坐标表示、模和夹角
目标要求1.掌握向量数量积的坐标表达式,会进行向量数量积的坐标运算.2.能运用数量积表示两个向量的夹角、计算向量的长度,会用数量积判断两个平面向量的垂直关系.热点提示向量的数量积是高考命题的热点,主要考查数量积的运算、化简、证明,向量平行、垂直的充要条件的应用以及利用向量解决平面几何问题.本节单独命题时,一般以选择、填空题的形式出现,属容易题;本节还可以与平面几何、解析几何、三角等内容交叉出现,一般以解答题形式出现,综合性较强,难度也较大,学习本节时应熟练掌握运算律,记准公式.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.即两个向量的数量积等于它们对应坐标的乘积的和.2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.知识要点3.三个重要公式(1)向量模公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.重要公式观察思考若向量a=(x,y),你可知与a共线的单位向量的坐标是什么吗?与a垂直的单位向量的坐标吗?设与a 共线的单位向量为a 0,则a 0=±1|a |a =±(x |a |,y |a |)=±(x x 2+y 2,y x 2+y 2),其中正号,负号分别表示与a 同向和反向, 易知b =(-y ,x )和a =(x ,y )垂直, ∴与a 垂直的单位向量b 0的坐标为±(-y x 2+y 2,x x 2+y 2),其中正,负号表示不同的方向.温馨提示自我测评1.已知向量a=(-5,6),b=(6,5),则a与b()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解析:已知向量a=(-5,6),b=(6,5),a·b=-30+30=0,则a与b垂直,选A.答案:A2.设向量a=(1,-3),b=(4,-2),λa+b和a垂直,那么λ=()A.2 B.1 C.-2 D.-1答案:D3.已知a=(2,3),b=(-4,7),则a在b方向上的投影为()A.13B.135 C.655 D.65答案:C4.已知向量a =(3,3),2b -a =(-1,1),设向量a 与b 的夹角为θ,且,则cos θ=________.分析:设向量b =(x ,y ),则有2b -a =(2x,2y )-(3,3)解得x =1,y =2,∴b =(1,2),则cos θ=a ·b |a ||b |=(3,3)·(1,2)32×5=31010.所求为 答案:310105.已知向量a=(1,3),b=(2,5),求a·b,|3a-b|,(a+b)·(2a-b).解:a·b=1×2+3×5=17.∵3a=3(1,3)=(3,9),b=(2,5),∴3a-b=(1,4),∴|3a-b|=12+42=17.∵a+b=(3,8),2a=(2,6),∴2a-b=(2,6)-(2,5)=(0,1),∴(a+b)·(2a-b)=3×0+8×1=8.温馨提示过标实现问题数应与(1)通向量的坐表示向量代化,注意方程、函等知的系数识联.(2)向量的理有思路:一是向量式,另一问题处两种种纯种标两补.是坐式,者互相充总结规律我们在进行向量的数量积运算时,要牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再由已知计算.三是如果涉及图形的数量积运算,只需把握图形特点,求出相关点的坐标,利用向量的三角形减法由终点坐标与起点坐标的差得到向量的坐标即可.1若向量a=(2,-1),向量b=(3,-2),求向量(3a -b)·(a-2b).=?解:由已知得a·b==8,a2==5,b2==13,所以(3a-b)·(a-2b)=-15.所求为b a b a b a a b ⋅=⋅==求求:已知例,43)2(;,//)1(1,21πθ,分两种情况:)由解:(b a //1;2,=⋅b a b a 同向,当。
平面向量的所有公式
平面向量的所有公式平面向量是研究平面上的有大小和方向的量,它有三个基本组成部分:模、方向和位移。
在平面向量的运算中,有加法、减法、数量乘法和点乘法等基本运算法则。
平面向量的计算公式如下:一、向量的模:向量的模即向量的长度,用,AB,表示,A、B为向量的起点和终点。
根据两点之间的距离公式,向量AB的长度为:,AB,= sqrt((x2-x1)^2 + (y2-y1)^2)二、向量的方向角:向量的方向角用θ表示,θ的计算公式为:θ = arctan(y/x)三、向量的加法:向量的加法可用平行四边形法则或三角形法则进行运算。
-平行四边形法则:若AB向量与CD向量首位相连,则它们的和向量AC的终点D与向量CD的终点D形成一条与中点O1O2平行的平行线。
-三角形法则:若AB向量与BC向量首位相连,则它们的和向量AC的起点A与向量AB的起点A和向量BC的起点B重合,且终点C与向量BC的终点C重合。
四、向量的减法:向量的减法可用向量加法的逆运算进行。
若向量AB与向量CD首位相连,则它们的差向量AC的终点C与向量CD的起点C重合。
即向量减法A-B=A+(-B),其中-B是向量B的逆向量。
五、数量乘法:向量与标量的乘法可分为两种情况。
-正数乘法:若k为正数,则k倍数的向量k·A与A方向相同,长度为原向量长度的k倍。
-负数乘法:若k为负数,则k倍数的向量k·A与A方向相反,长度为原向量长度的,k,倍。
六、数量积(点乘法):数量积是向量积的另一种形式,它用于计算两个向量之间的夹角以及向量在一些方向上的投影。
-数量积的计算:设A(x1,y1)和B(x2,y2)是平面上的两个向量,它们的数量积为:A·B=x1*x2+y1*y2- 夹角的计算:设向量A(x1, y1)和B(x2, y2)的夹角为θ,则夹角的余弦为:cosθ = (A·B) / (,A, * ,B,)- 向量在一些方向上的投影:设向量A的模为,A,θ为A与一些方向的夹角,则A在该方向上的投影为:P = ,A,* cosθ以上是平面向量的一些基本计算公式。
平面向量的数量积
平面向量的数量积【考点梳理】1.平面向量的数量积(1)定义:已知两个非零向量a 和b ,它们的夹角为θ,则数量|a ||b |cos θ叫做a 与b 的数量积(或内积).规定:零向量与任一向量的数量积为0.(2)几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.2.平面向量数量积的运算律 (1)交换律:a ·b =b ·a ;(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); (3)分配律:a ·(b +c )=a ·b +a ·c .3.平面向量数量积的性质及其坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2),θ=〈a ,b 〉.考点一、平面向量数量积的运算【例1】(1)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE =2EF ,则AF →·BC →的值为( ) A .-58 B .18 C .14 D .118(2)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________.[答案] (1)B (2) 6[解析] (1)如图所示,AF →=AD →+DF →.又D ,E 分别为AB ,BC 的中点,且DE =2EF ,所以AD →=12AB →,DF →=12AC →+14AC →=34AC →, 所以AF →=12AB →+34AC →. 又BC →=AC →-AB →,则AF →·BC →=⎝ ⎛⎭⎪⎫12AB →+34AC →·(AC →-AB →)=12AB →·AC →-12AB →2+34AC →2-34AC →·AB →=34AC →2-12AB →2-14AC →·AB →. 又|AB →|=|AC →|=1,∠BAC =60°, 故AF →·BC →=34-12-14×1×1×12=18.故选B. (2)设P (cos α,sin α), ∴AP →=(cos α+2,sin α),∴AO →·AP →=(2,0)·(cos α+2,sin α)=2cos α+4≤6, 当且仅当cos α=1时取等号.【类题通法】1.求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.2.解决涉及几何图形的向量数量积运算问题时,可先利用向量的加减运算或数量积的运算律化简再运算.但一定要注意向量的夹角与已知平面角的关系是相等还是互补.【对点训练】1.线段AD ,BE 分别是边长为2的等边三角形ABC 在边BC ,AC 边上的高,则AD →·BE →=( )A .-32 B .32 C .-332 D .332[答案] A[解析] 由等边三角形的性质得|AD →|=|BE →|=3,〈AD →,BE →〉=120°,所以AD →·BE →=|AD →||BE →|cos 〈AD →,BE →〉=3×3×⎝ ⎛⎭⎪⎫-12=-32,故选A.2.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________;DE →·DC →的最大值为________.[答案] 1 1[解析] 法一:以射线AB ,AD 为x 轴,y 轴的正方向建立平面直角坐标系,则A (0,0),B (1,0),C (1,1),D (0,1),设E (t,0),t ∈[0,1],则DE →=(t ,-1),CB →=(0,-1),所以DE →·CB →=(t ,-1)·(0,-1)=1.因为DC →=(1,0),所以DE →·DC →=(t ,-1)·(1,0)=t ≤1,故DE →·DC →的最大值为1.法二:由图知,无论E 点在哪个位置,DE →在CB →方向上的投影都是CB =1,所以DE →·CB →=|CB →|·1=1,当E 运动到B 点时,DE →在DC →方向上的投影最大,即为DC =1, 所以(DE →·DC →)max =|DC →|·1=1.考点二、平面向量的夹角与垂直【例2】(1)已知向量a =(-2,3),b =(3,m ),且a ⊥b ,则m =________. (2)已知平面向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,且(a +λb )⊥(2a -b ),则实数λ的值为( )A .-7B .-3C .2D .3(3)若向量a =(k ,3),b =(1,4),c =(2,1),已知2a -3b 与c 的夹角为钝角,则k 的取值范围是________.[答案] (1)2 (2)D (3)⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3[解析] (1)由题意,得-2×3+3m =0,∴m =2.(2)依题意得a ·b =2×1×cos 2π3=-1,(a +λb )·(2a -b )=0,即2a 2-λb 2+(2λ-1)a ·b =0,则-3λ+9=0,λ=3.(3)∵2a -3b 与c 的夹角为钝角,∴(2a -3b )·c <0, 即(2k -3,-6)·(2,1)<0,解得k <3.又若(2a -3b )∥c ,则2k -3=-12,即k =-92. 当k =-92时,2a -3b =(-12,-6)=-6c ,即2a -3b 与c 反向.综上,k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-92∪⎝ ⎛⎭⎪⎫-92,3.【类题通法】1.根据平面向量数量积的性质:若a ,b 为非零向量,cos θ=a ·b|a ||b |(夹角公式),a ⊥b ⇔a ·b =0等,可知平面向量的数量积可以用来解决有关角度、垂直问题.2.数量积大于0说明不共线的两向量的夹角为锐角,数量积等于0说明不共线的两向量的夹角为直角,数量积小于0且两向量不共线时两向量的夹角为钝角.【对点训练】1.已知向量a =(1,m ),b =(3,-2),且(a +b )⊥b ,则m =( ) A .-8 B .-6 C .6 D .8[答案] D[解析] 法一:因为a =(1,m ),b =(3,-2),所以a +b =(4,m -2). 因为(a +b )⊥b ,所以(a +b )·b =0,所以12-2(m -2)=0,解得m =8. 法二:因为(a +b )⊥b ,所以(a +b )·b =0,即a·b +b 2=3-2m +32+(-2)2=16-2m =0,解得m =8.2.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________. [答案] -2[解析] ∵|a +b |2=|a |2+|b |2+2a·b =|a |2+|b |2, ∴a·b =0.又a =(m,1),b =(1,2),∴m +2=0,∴m =-2.3.已知非零向量a ,b 满足|b |=4|a |,且a ⊥(2a +b ),则a 与b 的夹角为( ) A .π3 B .π2 C .2π3 D .5π6 [答案] C[解析] ∵a ⊥(2a +b ),∴a ·(2a +b )=0, ∴2|a |2+a ·b =0,即2|a |2+|a ||b |cos 〈a ,b 〉=0.∵|b |=4|a |,∴2|a |2+4|a |2cos 〈a ,b 〉=0, ∴cos 〈a ,b 〉=-12,∴〈a ,b 〉=2π3.4.已知向量BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,则∠ABC =( )A .30°B .45°C .60°D .120°[答案] A[解析] 因为BA →=⎝ ⎛⎭⎪⎫12,32,BC →=⎝ ⎛⎭⎪⎫32,12,所以BA →·BC →=34+34=32.又因为BA →·BC →=|BA →||BC →|cos ∠ABC =1×1×cos ∠ABC ,所以cos ∠ABC =32. 又0°≤∠ABC ≤180°,所以∠ABC =30°.故选A.考点三、平面向量的模及其应用【例3】(1)已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=________. (2)已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|P A →+3PB →|的最小值为________.[答案] (1) 23 (2) 5[解析] (1)|a +2b |2=(a +2b )2=|a |2+2|a |·|2b |·cos 60°+(2|b |)2=22+2×2×2×12+22=4+4+4=12,∴|a +2b |=12=2 3.(2)以D 为原点,分别以DA ,DC 所在直线为x 轴,y 轴建立如图所示的平面直角坐标系,设DC =a ,DP =x (0≤x ≤a ),∴D (0,0),A (2,0),C (0,a ),B (1,a ),P (0,x ).P A →=(2,-x ),PB →=(1,a -x ),∴P A →+3PB →=(5,3a -4x ),|P A →+3PB →|2=25+(3a -4x )2≥25,当x =3a 4时取等号.∴|P A →+3PB →|的最小值为5.【类题通法】1.求向量的模的方法:(1)公式法,利用|a |=a ·a 及(a ±b )2=|a |2±2a ·b +|b |2,把向量的模的运算转化为数量积运算;(2)几何法,利用向量的几何意义,即利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解.2.求向量模的最值(范围)的方法:(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解.【对点训练】1.已知平面向量a 与b 的夹角等于π3,若|a |=2,|b |=3,则|2a -3b |=( ) A .57 B .61 C .57 D .61 [答案] B[解析] 由题意可得a ·b =|a |·|b |cos π3=3,所以|2a -3b |=(2a -3b )2=4|a |2+9|b |2-12a ·b =16+81-36=61,故选B.2.已知正△ABC 的边长为23,平面ABC 内的动点P ,M 满足|AP →|=1,PM →=MC →,则|BM →|2的最大值是________.[答案] 494[解析] 建立平面直角坐标系如图所示,则B (-3,0),C (3,0),A (0,3),则点P 的轨迹方程为x 2+(y -3)2=1. 设P (x ,y ),M (x 0,y 0),则x =2x 0-3,y =2y 0, 代入圆的方程得⎝ ⎛⎭⎪⎫x 0-322+⎝ ⎛⎭⎪⎫y 0-322=14,所以点M 的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -322=14,它表示以⎝ ⎛⎭⎪⎫32,32为圆心,以12为半径的圆,所以|BM →|max =⎝ ⎛⎭⎪⎫32+32+⎝⎛⎭⎪⎫32-02+12=72,所以|BM →|2max =494.。
平面向量数量积的坐标运算与量公式
uur uur ABgAC=0,1
2+3k=0,
k=-
2 3
.
若B
uur 90o,则BA
uur BC,
uur uur BAgBC=0,-1
1+(-3)(k-3)=0,
k=
8 3
.
uur uur uur uur 若C 90o,则CA CB,CAgCB=0,-2 (1)+(-k)(3-k)=0,
k=1要或2注. 意分类讨论!
的坐标表示 a b 呢?
a x1 i y1 j
bx i y j
2
2
y A(x1,y1)
a
b
(x1
i
ry21
j)( x2 i
yr2
j)
r
x1x2 i x1 y2 i j
rr
r2
B(x2,y2)
a bj
oi
x
x2 y1 j i y1 y2 j
a b x1 x2 y1 y2
两个向量的数量积等于它们对应坐标的乘积的和
a b x1x2 y1 y2 0
(2)平行
设a (x1, y1), b (x2 , y2 ), 则
a//b x1 y2 x2 y1 0
注意:与向量垂直的坐标表示区别清楚
学点一:数量积的坐标运算的应用 -
r
r
练习:(1) 已知a (1, 2 3),b (1,1),
rrr rr r
4
求k的值.
答案:(1)b
(
3
,
4
)或b
(
3
,
4
).
55
55
(2)( 2,2 2)或( 2, 2 2);(3)k 5.
平面向量数量积的坐标
平面向量数量积的坐标平面向量数量积是向量的一种重要运算,通常用来计算向量之间的夹角和长度。
在坐标系中,向量可以表示成有序数对 (x, y),因此向量的数量积也可以用坐标表示出来。
以下是平面向量数量积的坐标公式:设有向量 A = (x1, y1),B = (x2, y2),则向量 A 和向量 B 的数量积为:A·B = x1x2 + y1y2这里“·”表示数量积运算,即点乘。
为了更好地理解平面向量的数量积,我们可以通过几何直观来解释。
几何意义:向量的数量积可以理解为向量 A 在向量 B 上的投影乘以向量 B 的长度,也可以理解为向量 B 在向量 A 上的投影乘以向量 A 的长度。
如果两个向量的数量积为0,则它们垂直。
如果两个向量的数量积为正,则它们之间的夹角为锐角;如果两个向量的数量积为负,则它们之间的夹角为钝角。
数学性质:向量的数量积具有以下基本性质:1. 交换律:A·B = B·A2. 结合律:(kA)·B = k(A·B) = A·(kB)3. 分配律:A·(B+C) = A·B + A·C4. 平行四边形法则:(A+B)·(C+D) = A·C + A·D + B·C + B·D应用:通过向量的数量积,可以计算两个向量之间的夹角和长度。
夹角的计算公式为:cosθ = (A·B) / (|A||B|)其中,θ表示向量 A 和向量 B 之间的夹角,|A|和|B|表示向量 A 和向量B 的长度。
如果知道两个向量的长度和它们之间的夹角,也可以用数量积来求出向量的坐标。
综上所述,平面向量的数量积是向量的一项基本运算,可以帮助我们计算向量之间的夹角和长度,进而解决各种几何问题。
平面向量数量积的坐标运算
uuu r 变式: 变式: 在∆ABC中,设 AB = (2,3) 变形: uuur AC = (1, k ), 且∆ABC是直角三 角形,k的值.
已知a=(1, 0),b=(2, 1),当k为何实数时, 为何实数时, 例3. 已知 , , 为何实数时 向量ka- 与 ;(2)垂直。 向量 -b与a+3b (1)平行;( )垂直。 )平行;( 解:ka-b=(k-2, -1), a+3b=(7, 3), - - (1)由向量平行条件得 -2)+7=0, )由向量平行条件得3(k- 1 所以k= 所以 − 3 (2)由向量垂直条件得 -2) -3=0, )由向量垂直条件得7(k-
2 2
x2 + y2
2
2
(2)a ⊥ b ⇔ x1 x2 + y1 y2 = 0
: (2)a ⊥ b ⇔ x1 x2 + y1 y2 = 0 与 a // b ⇔ x 1 y 2 − x 2 y1 = 0
的区别。 的区别。
例1.设a = (3, −1),b = (1, −2),求a⋅b,|a|,|b|, 设 , , ⋅ , , , 和a, b的夹角 的夹角 θ 解: a⋅b = (3, −1) (1, −2)=3+2=5. ⋅ |a|= |b|=
5 x=± 5 解得 y = m 2 5 5
4 x + 2 y = 0 2 2 x + y =1
5 2 5 5 2 5 所求向量为 ( ,− ) 或( − , ) 5 5 5 5
四、演练反馈 r
A. 63 65 B. 33 65
r r r 1、若a = (−3,4), b = (5,12), 则 a 与 b 夹角的余弦值 为 ( B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标运算与度量公式
北
A
45°
东 B
复习引入
(1) a b a b cos ( 2) a a a 或 a
2
a a; a b a b .
a b a b 0; cos
练习已知a (1, 3), b (1,0), 求a与b的夹角 .
若C 90 ,则CA CB, CA CB=0,-2 (1)+(-k)(3-k)=0, k=1或2.
要注意分类讨论!
四、逆向及综合运用
例3 (1)已知 a =(4,3),向量 b是 垂直于 a 的单位向量,求 b .
(2)已知a 10, b (1,2),且a // b,求a的坐标.
3 (3)已知a (3,0), b (k ,5),且a与b的夹角为 , 4 求k的值.
3 4 3 4 答案:( 1 ) b ( , )或b ( , ). 5 5 5 5 (2)( 2, 2 2)或( 2, 2 2);(3)k 5.
提高练习
1、已知OA (3,1), OB (0,5),且 AC // OB, BC AB ,则点C的坐标为
a x1 i y1 j
2
b x2 i y2 j
b
y
B(x2,y2)
j
A(x1,y1)
a
i
a b (x1 i y1 j ) ( x 2 i y2 j )
x1 x2 i x1 y2 i j x2 y1 j i y1 y2 j
2
o
x
a b x1 x 2 y1 y2
O
A x
练习3:在ΔABC中,设 AB=(1,3),AC =(2,k), 且 ΔABC是直角三角形,求k的值.
2 解:若A 90 ,则AB AC, AB AC=0,1 2+3k=0, k=- . 3
8 若B 90 ,则BA BC, BA BC=0,-1 1+(-3)(k-3)=0, k= . 3
2 2 2 2
二.向量的模和和夹角的坐标表示 3.两向量垂直和平行的坐标表示 (1)垂直 a b a b
0
设a (x1 , y1 ), b ( x2 , y2 ), 则 a b x1 x2 y1 y2 0
(2)平行
设a (x1 , y1 ), b ( x2 , y2 ), 则 a// b x1 y2 x2 y1 0
(2)已知a (2,3), b (2,4), 则(a b) ( a b) .
法一: a b (0,7), a b (4,1) (a b) ( a b) 0 4 7 (1) 7. 法二:(a b) ( a b) a b
29 C (3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、 D(5,8),则四边形ABCD的形状是矩形 .
b = (-3,2), a = (1,2), 若k a +2 b 与 2 a - 4 b 平行,则k =- 1.
3、已知
4.已知 a =(1, 3),b =( 3+1, 3 1), 则a与b的夹角是多少?
新课学习
一.平面向量数量积的坐标表示
如图,是 j y轴上的单位向量. i x轴上的单位向量,是
a b a b cos
y A(x ,y ) 1 1
B(x2,y2)
b
j
1 1 j j . . i i 0 i j j i .
a
o i
x
一.平面向量数量积的坐标表示 思考1:已知 a ( x1, y1 ),b ( x2 , y2 ), 怎样用 a, b 的坐标表示 a b 呢?
5.已知 a (3, 4), b (2, 1),且(a mb)( a b), 则实数m为何值?
解: a mb ( 1, 5 ) (3 2m, 4 m) a b
( a mb ) ( ab ) ( a mb ) ( ab ) 0
解:由a =(1, 3),b =( 3+1, 3 1), 有 a b 1 ( 3 1) 3 ( 3 1) 4, a 2, b 2 2,
记a与b的夹角为θ,则 cos
又∵0≤θ≤π,∴
cos
a b ab
4
评述:已知三角函数值求角时,应注意角的 范围的确定。
注意:与向量垂直的坐标表示区别清楚
三、基本技能的形成与巩固
例1 (1)已知a (1,2 3 ), b (1,1), 求a b, a b, a与b的夹角 .
解: a b 1 3, a b 2 4 2 3 2(1 3) 1 cos , 0 180 , 60 . ab 2 a b
a ( x 2 x1 ) ( y 2 y1 )
2 2
(平面内两点间的距离 公式)
二.向量的模和和夹角的坐标表示
2.两向量夹角公式的坐标运算
两非零向量 a (x1,y1 ), b (x2,y2) ,夹 角 为
cos ab ab
x1 x2 y1 y2 x1 y1 x1 y1
即( 3 ห้องสมุดไป่ตู้ 2m) 1 ( 4 m) 5 0 m 23
3
小 结
1、理解各公式的正向及逆向运用; 2、数量积的运算转化为向量的坐标运算;
3、掌握平行、垂直、夹角及距离公式,
形成转化技能。
两个向量的数量积等于它们对应坐标的乘积的和
二.向量的模和和夹角的坐标表示
aa a
2
或 a
a a;
1.向量的长度(模)
设a=(x, y), 则 a = x +y , 或 a = x +y
为 (x1,y1 ),( x 2,y 2 ),那么
2
2
2
2
2
若表示向量 a的 有 向 线 段 的 起 点 和 点 终的 坐 标 分 别
2 2 2 2
a b 13 20 7
练习1:课本P114
例2 已知A(1,2),B(2,3),C(-2,5),
试判断ABC的形状,并给出证明.
C(-2,5)
证明 : AB (2 1,3 2) (1,1)
AC (2 1,5 2) (3,3)
AB AC 1 (3) 1 3 0
y
B(2,3)
A(1,2)
x
AB AC
其他证明方 向量数量积是否为零,是判断相应两条线段或直线的重 法吗? 要方法之一
0 三角形 ABC是直角三角形思考:还有 .
练习2:以原点和A(5,2) 为两个顶点作等腰直角三角形 OAB,B=90,求点B的坐标. 3 7 y 答案:B的坐标为( , ) B 2 2 7 3 或( , ) 2 2
创设教学情境
练习已知a (1, 3), b (1,0), 求a与b的夹角 .
变式练习已知a (1, 3), b (1,1), a与b的夹角, 求cos .
同样是已知两向量的坐标,为什么练习题 中的夹角易求,而变式练习中的夹角的余 弦值不易求?
我们学过两向量的和与差可以转 化为它们相应的坐标来运算,那么怎 a和b的坐标表示a b呢? 样用