生物化学酶化学
生物化学-酶化学
酶化学(一)名词解释1.全酶(holoenzyme)与酶蛋白(apoenzyme)2.米氏常数(K m值,Michaelis constant)3.底物专一性(substrate specificity)4.绝对专一性(absolute specificity)、相对专一性与立体异构专一性(stereospecificity)5.辅基(prosthetic group)与辅酶(coenzyme)6.单体酶(monomeric enzyme)7.寡聚酶(oligomeric enzyme)8.多酶体系(multienzyme system)9.激活剂(activator)10.抑制剂(inhibitor inhibiton)11.酶的失活与抑制12.可逆抑制(reversible inhibition)与不可逆抑制(irreversible inhibition)13.竞争性抑制(competitive inhibition)与非竞争性抑制(noncompetitive inhibition)14.变构酶(allosteric enzyme)15.同工酶(isozyme)16.诱导酶(induced enzyme)17.酶原(zymogen或proenzyme)与酶原的激活(proenzyme activation)18.酶反应的初速度(initial speed)19.酶活力(enzyme activity)与酶的比活力(enzymatic compare energy)20.活性中心(active center)21.酶的转换数k cat(turnover number)22.核酶(ribozyme)23.抗体酶(abzyme)24.固定化酶(immobilized enzyme)(二)英文缩写符号1.NAD+(nicotinamide adenine dinucleotide)2.FAD(flavin adenine dinucleotide)3.THFA(tetrahydrofolic acid)4.NADP+(nicotinamide adenine dinucleotide phosphate)5.FMN(flavin mononucleotide)6.CoA(coenzyme A)7.PLP(pyridoxal phosphate)8.BCCP(biotin carboxyl carrier protein)9.ACP(acyl carrier protein)(三)填空题1.酶是产生的,具有催化活性的。
生物化学课件第六章 酶(化学)
相对专一性
酶的专一性
结构专一性
(表6-3)
绝对专一性
立体异构专一性
7
相对专一性(relative specificity)
①族专一性(基团专一性) A — B 作用于一类或一些结构很相似的底物。
②键专一性 CAH2—OHB
α-葡萄糖
5
OH
苷酶
OHO
O
1
O
R
+H2O
OH
酯酶:R—C—O—R′ + H2O
脂肪(:水)水解酶
16
(二)酶的命名
2、惯用名: 通常只取一个较重要的底物名称和作用方式。
乳酸:NAD+氧化还原酶
乳酸脱氢酶
对于催化水解反应的酶一般在酶的名称上省去反应类 型。如水解蛋白的酶称蛋白酶,水解淀粉的酶叫??
有时为了区分同一类酶还在前面加上来源。 如胃 蛋白酶、胰蛋白酶、木瓜蛋白酶等
17
氧转水 裂异合
12
(一)酶的分类:
1. 氧化还原酶:催化氧化还原反应的酶。
AH2 + B
A + BH2
(1)脱氢酶类:催化直接从底物上脱氢的反应。
(2)氧化酶类 ①催化底物脱氢,氧化生成H2O2: ②催化底物脱氢,氧化生成H2O:
(3)过氧化物酶
(4)加氧酶(双加氧酶和单加氧酶)
13
(一)酶的分类
1个 Fe3+ 每秒能催化6×10-4个 H2O2的分解
同一反应,酶催化反应的速度比一般催化剂的反应
速度要大106~1013倍(表6-1)。
6
2.酶的特性:——生物催化剂
(1)催化效率极高
(2)高度的专一性:
酶对底物具有严格的选择性称为酶的专一(特异)性。 如:蛋白酶只能催化蛋白质的水解,酯酶?? 淀粉酶??
生物化学 第3章 酶
生物化学第3章酶生物化学第3章酶第3章酶自学建议1.掌握酶及所有相关的概念、酶的结构与功能的关系、酶的工作原理、酶促反应动力学特点、意义及应用。
2.熟识酶的分子共同组成与酶的调节。
3.了解酶的分类与命名及酶与医学的关系。
基本知识点酶是对其特异底物起高效催化作用的蛋白质。
单纯酶是仅由氨基酸残基组成的蛋白质,融合酶除所含蛋白质部分外,还所含非蛋白质辅助因子。
辅助因子就是金属离子或小分子有机化合物,后者称作辅酶,其中与酶蛋白共价紧密结合的辅酶又称辅基。
酶分子中一些在一级结构上可能相距很远的必需基团,在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物,这一区域称为酶的活性中心。
同工酶就是指催化剂相同化学反应,酶蛋白的分子结构、化学性质乃至免疫学性质相同的一组酶,就是由相同基因编码的多肽链,或同一基因mRNA分解成的相同mrna所译者的相同多肽链共同组成的蛋白质。
酶促反应具有高效率、高度特异性和可调节性。
酶与底物诱导契合形成酶-底物复合物,通过邻近效应、定向排列、表面效应使底物容易转变成过渡态。
酶通过多元催化发挥高效催化作用。
酶促反应动力学研究影响酶促反应速率及其影响因素,后者包括底物浓度、酶浓度、温度、ph、抑制剂和激活剂等。
底物浓度对反应速率的影响可用米氏方程表示。
v?vmax[s]km?[s]其中,km为米氏常数,其值等同于反应速率为最小反应速率一半时的底物浓度,具备关键意义。
vmax和km需用米氏方程的双倒数作图去求得。
酶在拉沙泰格赖厄县ph和拉沙泰格赖厄县温度时催化活性最低,但拉沙泰格赖厄县ph和拉沙泰格赖厄县温度不是酶的特征性常数,受到许多因素的影响。
酶的抑制作用包含不可逆遏制与对称遏制两种。
对称遏制中,竞争抑制作用的表观km值减小,vmax维持不变;非竞争抑制作用的km值维持不变,vmax增大,反竞争抑制作用的km值与vmax均增大。
在机体内酶活性与含量的调节是代谢调节的重要途径。
生物化学 6 酶化学
目前将酶定义为:具有高效性和专一性的生物 催化剂。分为两类:蛋白酶、核酶
(或酶是一类由活细胞产生的,具有高效性和专一性以 蛋白质为主要成分的生物催化剂。)
6.1 酶的概念与特点 6.1.2 酶的特点
酶和一般催化剂的共同点: 1.在反应前后没有质和量的变化; 2.只能催化热力学上允许进行的化学反应; 3.只能加速可逆反应的进程,而不改变平衡点。 酶和一般催化剂的不同点(即酶的重要特点): 1.酶具有高效性; 2.酶具有高度专一性; 3.酶促反应条件温和(对外界环境高度敏感性); 4.酶活力可调节控制(可调性)。
6.5 酶的作用机制 酶的催化作用与活化分子
任何反应都需要一定的能量,有了能量分子就能活化
成活化分子。
1. 活化分子:能量达到或高于分子平均能量的分子。
2. 活化能:分子由基态到活化态所需的能量。
在一个反应体系中,反应所需的活化能越高,活化分子越少, 反应速度越慢;相反,反应所需的活化能越低,活化分子越多, 反应速度越快 。 酶促反应中所需活化能是高还是低?
锁钥假说:象是具有刚 性结构的,酶表面具 有特定的形状。酶与 底物的结合如同一把 钥匙对一把锁一样。 诱导契合假说:该学说 认为酶表面并没有一 种与底物互补的固定 形状,而只是由于底 物的诱导才形成了互 补形状。
6.4 酶的专一性 6.4.2 酶专一性的假说
羟 肽 酶 的 诱 导 契 合 模 式
酶由活细胞产生,分胞外酶和胞内酶。与颗粒体结合分布在各个部位参 与体内的代谢,由于酶的特性,酶的催化反应受各种因素的影响与调节, 如温度、PH、抑制剂调节、共价修饰调节、反馈调节、酶原激活及激素 控制等。
6.2 酶的化学本质与组成 6.2.1 酶的化学本质
1926年J.B.Sumner首次从刀豆制备出脲酶结晶,证明其为 蛋白质,并提出酶的本质就是蛋白质的观点。 酶是蛋白质的证据:从化学组成和理化性质看。 1982年T.Cech发现了第一个有催化活性的天然RNA—— ribozyme(核酶),以后Altman和Pace等又陆续发现了 真正的RNA催化剂。 核酶的发现不仅表明酶不一定都是蛋白质,还促进了有 关生命起源、生物进化等问题的进一步探讨。
酶(生物化学)PPT课件
酶的活性中心是酶分子中具有特定空间结构的区域,能够与底物特异结合,并 通过催化反应将其转化为产物。活性中心的氨基酸残基通常是高度保守的,对 酶的催化活性至关重要。
酶的专一性
总结词
酶的专一性是指一种酶只能催化一种或一类化学反应的性质 。
详细描述
酶的专一性是酶的重要特性之一,它决定了酶在生物体内的 功能。一种酶通常只能催化一种或一类化学反应,这是因为 酶的活性中心具有特定的空间结构和化学环境,只能够与特 定的底物结合并催化相应的反应。
食品保鲜
酶可用于食品保鲜,如抑制果蔬 中酶的活性,延缓成熟和腐烂过 程;也可用于食品中农药残留的
降解。
功能性食品开发
酶可用于开发功能性食品,如通 过酶促反应生产低糖、低脂或高
纤维食品。
酶在环保领域的应用
有毒有害物质降解
酶可用于降解有毒有害物质,如重金属离子、有机溶剂和农药等, 降低其对环境和生物体的危害。
的诊断。
药物生产
酶可用于药物的生产和制造过程中, 如抗生素、激素和蛋白质药物等, 通过酶促反应提高生产效率和纯度。
生物治疗
酶在某些生物治疗过程中起到关键 作用,如基因疗法和细胞疗法中, 酶可促进特定基因的表达或改变细 胞代谢。
酶在食品工业中的应用
食品加工
酶在食品加工过程中起到重要作 用,如淀粉的改性、蛋白质的水 解和油脂的加工等,可改善食品 的口感、营养价值和加工性能。
计算机辅助设计
计算机辅助设计是一种利用计算 机模拟技术来预测和优化酶性能
的方法。
通过计算机模拟,可以预测酶的 催化机制、反应路径和动力学行
为,从而指导酶的优化设计。
计算机辅助设计与其他技术结合, 如量子化学计算和分子动力学模 拟,可进一步提高酶优化效率。
生物化学之酶篇
一、酶1、活化能:在一定温度下1mol底物全部进入活化态所需要的自由能,单位为kJ/mol.2、酶作为生物催化剂的特点:(1)酶易失活(酶所催化反应都是在比较温和的常温、常压和接近中性酸碱条件下进行)。
(2)酶具有很高的催化效率。
用酶的转换数(TN,等于催化常数k cat)来表示酶的催化效率,是指在一定条件下每秒钟每个酶分子转换底物分子数,或每秒钟每微摩尔酶分子转换底物的微摩尔数。
转换数变化范围为1到104。
(3)酶具有高度专一性所谓高度专一性是指酶对催化反应和反应物有严格的选择性。
酶往往只能催化一种或一类反应,作用于一种或一类物质。
(4)酶活性受到调节和控制a、调节酶的浓度一种是诱导或抑制酶的合成;一种是调节酶的降解。
b、通过激素调节酶活性激素通过与细胞膜或细胞受体相结合一起一系列生物学效应,以此来调节酶活性。
c、反馈抑制调节酶活性许多小分子物质的合成是由一连串的反应组成的,催化物质生产的第一步的酶,往往被它的终产物抑制——反馈抑制。
d、抑制剂和激活剂对酶活性的调节e、其他调节方式通过别构调控、酶原激活、酶的可逆共价修饰和同工酶来调节酶活性。
3、酶的化学本质:除有催化活性的RNA之外几乎都是蛋白质。
注:酶的催化活性依赖于它们天然蛋白质构象的完整性,假若一种酶被变性或解离成亚基就失活。
因此,蛋白质酶的空间结构对它们的催化活性是必需的。
4、酶的化学组成a、按化学组成分为单纯蛋白质和、缀合蛋白质两类。
单纯蛋白质酶类,除了蛋白质外,不含其他物质,如脲酶、蛋白酶、脂肪酶和核糖核酸酶等。
缀合蛋白质酶类,除了蛋白质外,还要结合一些对热稳定的非蛋白质小分子物质或金属离子。
前者称为脱辅酶,后者称为辅因子。
即全酶=脱辅酶+辅因子。
b、根据辅因子与脱辅酶结合的松紧程度可分为辅酶和辅基。
辅酶:指与脱辅酶结合比较松弛的小分子有机物,通过透析方法可以除去,如辅酶Ⅰ和辅酶Ⅱ等。
辅基:指以共价键和脱辅酶结合,不能通过透析除去,需要经过一定的化学处理才能与蛋白质分开,如细胞色素氧化酶中的铁卟啉等。
生物化学05.第五章 酶
时,酶原适时地转变成有活性的酶,发挥其催
化作用。
3.胃、肠黏膜及肠道寄生虫均有抵抗消化酶
的抗酶物质。
三、酶促反应的机制
(一)活化分子与活化能
1.活化能:底物分子从基态转变到活化态所需的能量。 2.活化分子:从基态转变到活化态的底物分子。
能 量 非催化反应活化能
一般催化剂催 化反应的活化能 酶促反应 活化能
底物 反应总能量改变 产物 应 过 程
反
酶促反应活化能的改变
(二)诱导契合假说
酶底物复合物
E+S
ES
E+P
酶与底物相互接近 时,其结构相互诱导、 相互变形和相互适应, 进而相互结合。这一过 程称为酶-底物结合的诱 导契合假说 。
酶的诱导契合动画
(三)邻近效应与定向排列
位于活性中心以外,维持酶活性中心应有的空间 构象所必需。
活性中心以外 的必需基团 底物
+ +
催化基团
结合基团
活性中心
二、酶原与酶原的激活
(一)酶原
有些酶在细胞 内合成或初分泌时 无活性,此无活性 前体称为酶原。
(三)激活过程
酶原
在特定 条件下
特定的肽链水解 分子构象发生改变 酶的活性中心形成
(二)酶原的激活
一些代谢物可与某些酶分子活性中心外的 某部分可逆地结合,使酶构象改变,从而改变 酶的催化活性,此种调节方式称变构调节。
1.变构酶 (allosteric enzyme) 2.变构部位 (allosteric site) 3.变构效应剂 (allosteric effector)
变构激活剂
变构抑制剂
(二) 共价修饰调节
生物化学第6章 酶化学
课外练习题一、名词解释1、酶:是活细胞产生的对其特异底物起高效催化作用的生物分子,包括蛋白质和核酸等,所以又称为生物催化剂。
2、辅酶:是结合酶的非蛋白质部分,与酶蛋白以非共价键的方式结合,结合比较疏松,可以用透析和超滤法除去。
3、酶的活性中心:在酶分子表面上由必须基团形成一定的空间结构,能与底物结合并将底物转变为产物,这个包括底物结合基团和催化基团的区域称为酶的活性中心。
4、同工酶:在同种生物体内,催化相同的化学反应,但酶本身的分子结构和理化性质不同的一组酶。
5、诱导契合:酶活性中心的某些氨基酸残基或基团可以在底物的诱导下获得正确的空间定位,以利于底物的结合与催化。
二、符号辨识1、FMN:黄素单核苷酸;2、LTPP:焦磷酸硫胺素;3、THP:四氢叶酸;4、Km:米氏常数,酶促反应速度达到最大速度一半时的底物浓度;5、IU:酶活性的国际单位;三、填空1、酶促反应具有高效性、专一性、(不稳定性)以及酶活性受到(调节和控制)的特点;2、酶作用的专一性有立体化学专一性和非立体化学专一性两种类型。
其中,立体化学专一性包括(立体异构)专一性和(几何异构)专一性,非立体化学专一性包括(键)专一性、(基团)专一性和(绝对)专一性。
3、酶的辅助因子包括(金属离子)、(小分子有机物)和(蛋白质辅酶);4、辅酶是结合酶的非蛋白质部分,与酶蛋白以(非共价键)的方式结合,结合比较(疏松),可以用透析和超滤法除去。
5、辅基是结合酶的非蛋白质部分,与酶蛋白以(共价键)的方式结合,结合比较(紧密),不能用透析和超滤法除去。
6、完全由蛋白质组成没有辅助因子的酶是(单纯酶)。
如各种水解酶;7、酶蛋白只有一条多肽链,大多催化水解反应,这样的酶是(单体酶);8、酶蛋白由几条至几十条多肽链亚基组成,这些多肽链或相同或不同,这样的酶被称为(寡聚酶);9、由几种酶彼此嵌合形成,有利于一系列反应连续进行的复合体被称为(多酶复合酶);10、酶的系统命名法可以简单表示为:(底物)+(反应性质)+酶11、依据国际酶学委员会的规定,按催化反应的类型,酶可分为6大类,即(氧化还原酶类)、(转移酶类)、(水解酶类)、(裂合酶类)、(异构酶类)和(合成酶类)。
《生物化学》-第五章 酶化学
—CH2—·O·:
H
底物中典 型的亲电 中心包括:
磷酰基
Cys-SH
—CH2—·S·:
H
脂酰基 糖基
His-咪唑基
—CH2—C=CH
HN N:
CH
(五)金属离子催化
金属离子作为酶的辅助因子起作用的方式:
1.与酶蛋白紧密结合稳定酶的天然构象,亲电催化 2.与酶结合较弱,作为激活剂存在。 3.通过价态的可逆变化,参与氧化还原反应。
其他成分的酶:
核酶(ribozyme) :具有催化活性的天然RNA。 近年还有DNA分子具有催化活性报道。
酶的概念: 酶是生物催化剂。由活细胞产生的具有高效催化能力 和催化专一性的蛋白质、核酸或其复合体。
脲酶:专一性水解尿素。
第一个被分离提取的酶,并证明其化学本质为蛋白质。 抗体酶:是用化学反应的过渡态类似物作免疫原产生 的催化性抗体,是一种具有催化能力的蛋白质,其本 质上是免疫球蛋白。
(6)对于结合酶,辅酶、辅基往往参与酶活中心的 组成。
第二节 酶催化作用的机制
一、酶与底物的结合——中间复合物学说
该学说认为,在酶促反应中,酶(E)总是先和底 物(S)结合生成不稳定的中间复合物(ES),再 分解成产物(P),并释放出酶(E)。 ——中间复合物学说能较好的解释酶为什么能降 低反应的活化能。
实际上,底物与酶结合是一种相互作用的过程, 底物可诱导蛋白质构象改变,蛋白质必需基团也可使 底物敏感键发生变化,更好“契合” 。 3.“三点附着”模型:该模型认为底物与酶活中心的 结合有三个结合位点,只有当这三个位点都匹配的时 候,酶才会催化相应的反应。
二、酶作用高效率机制
(一)底物与酶的邻近、定向效应
1)绝对专一性
生物化学-酶学
酶的特异性/专一性
立体结构特异性(stereospecificity):酶作用于立 体异构体中的一种而表现出来的特异性。
乳酸脱氢酶只能催化L(+)乳酸脱氢转化为 丙酮酸,却不能使D(-)乳酸脱氢生成丙酮酸。
5. 酶促反应具有可调节性(可调节性) 酶促反应受多种因素的调控,以 适应机体对不断变化的内外环境和生 命活动的需要。
底物(Substrate,S):酶作用的对象即反应物 产物(Product,P):酶作用后的生成物
一.酶的结构与组成
依据酶分子中肽链的数目,分为:
单体酶(monomeric enzyme):只有一条肽 链即可构成有活性的酶,故单体酶仅具 有三级结构。 寡聚酶(oligomeric enzyme):由多个相同 或不同亚基以非共价键连接组成的酶。
甲基、甲烯基、甲炔基、 四氢叶酸 甲酰基等一碳单位
(1) 维生素PP
尼克酸和尼克酰胺,在体内转变为辅酶I
和辅酶II。 能维持神经组织的健康。缺乏时表现出 神经营养障碍,出现皮炎。
COOH N CONH2 N
(1) 维生素PP和NAD+ 和NADP+
酶功 。能
:
是 多 种 重 要 脱 氢 酶 的 辅
一些常见的必需基团
巯基 半胱氨酸 天冬酰胺 胍基 精氨酸
酰胺基
咪唑基 组氨酸 丝氨酸
羟基 天冬氨酸
羧基
1. 必需基团( essential group) 酶分子中氨基酸残基侧链的化学基团中, 一些与酶活性密切相关的化学基团,称为必需 基团。 根据其作用必需基团又分为: 结合基团:结合底物与辅酶,形成酶-底物 复合物,有利于反应的进行的化学基团 催化基团:催化底物转变成产物的化学基 团
大学生物化学 酶
异促效应
别构酶的特点
1、别构酶多为寡聚酶,由多亚基组成,包括活性部位 (结合和催化底物)与调节部位(结合效应物)。 2、具有别构效应。指酶和一个配体(底物,效应物)结 合后可以影响酶和另一个配体(底物)的结合能力。 3、别构酶大都不遵循米氏动力学。
别构酶与非调节酶动力学曲线的比较
练习题
当 一 酶 促 反 应 进 行 的 速 率 为 Vmax 的 80%时,在Km 和[S]之间有何关系?
米氏常数的意义
Vmax·[ S] V=
Km + [ S]
(1)概念 (2)Km值是酶的特征性常数。 (3)Km值与酶和底物亲和力的关系。
Km求法
Vmax·[ S] V=
Km + [ S]
双倒数曲线
加入反竞争性抑制剂后:Km 和Vmax均变小。
练习题
举例说明竞争性抑制的特点和实际意义。
三种可逆性抑制作用的比较
影响
竞争性 非竞争性 反竞争性
抑制剂的结合组分 E
抑制程度取决于 [I]/[S]
对Vmax的影响 不变
对Km的影响
增大
E、ES [I] 减小 不变
ES [I]
减小 减小
七、酶活性的调节
举例
乳酸脱氢酶
同工酶举例
乳酸脱氢酶同工酶
HH HH
LDH1 (H4)
HH HM
LDH2 (H3M)
HH MM
LDH3 (H2M2)
HM MM
LDH4 (HM3)
MM MM
LDH5 (M4)
不同组织中LDH同工酶的电泳图 谱
LDH1(H4)
+
LDH2(H3M)
生物化学酶化学
底物与酶结合诱导酶得分子构象变化,变化得酶分 子又使底物分子得敏感键产生“张力”甚至“形 变” ,从而促使酶-底物中间产物进入过渡态。
(3)酸碱催化:
酸-碱催化可分为狭义得酸-碱催化和广义得酸-碱催化。酶 参与得酸-碱催化反应一般都就是广义得酸-碱催化方式。
广义酸-碱催化就是指通过质子酸提供部分质子,或就是通 过质子碱接受部分质子得作用,达到降低反应活化能得过程。
(1)键专一性:在键专一性中,对酶来说,重要得就是连 接A和B得键必须“正确”(酯酶)
(2)基团专一性:具有基团专一性得酶除了需要有“正 确”得化学键以外,还需要基团A和B中得一侧必须 “正确” (胰蛋白酶)
(3)绝对专一性:具有绝对专一性得酶要求底物得键 和A、B都必须严格得“正确” (脲酶)
3、酶与底物结合形成中 间络合物得方式(理论)
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
三、酶得分类及命名
1、 酶得分类(催化反应得类型) (1) 氧化-还原酶 Oxidoreductase
氧化-还原酶催化氧化-还原反应。 主要包括脱氢酶(Dehydrogenase)和氧化酶
(Oxidase)。 如,乳酸(Lactate)脱氢酶催化乳酸得脱氢反应。
合物形成得速率与酶和底物得性质有关。
4、 使酶具有高效催化得因素
(1)临近定向效应:
在酶促反应中,底物分子结合到酶得活性中心,一方 面底物在酶活性中心得有效浓度大大增加,有利于 提高反应速度;
另一方面,由于活性中心得立体结构和相关基团得 诱导和定向作用,使底物分子中参与反应得基团相 互接近,并被严格定向定位,使酶促反应具有高效率 和专一性特点。
1、立体化学专一性
生物化学-酶
酶一级结构的差别也决定了催化性质的不同, 如胰蛋白酶、 胰糜蛋白酶和弹性蛋白酶三种蛋白 酶的活性中心Ser残基附近都有一个在立体结构上 的“口袋”状结构。由于三种蛋白酶的口袋”状结 构不同,决定其与不同底物结合即有不同特异性。
酶的特异的三维空间结构是酶催化功能的基础。 酶的二、三级结构是维持酶的活性中心空间构象的 必需结构。
酶的命名包括习惯命名和系统命名,酶可分为六类。 酶与疾病发生、诊断、治疗等密切相关。
➢一、酶的概念 酶是由生物活细胞产生的具有高效催化功能
和高度专一性的一类特殊蛋白质,又叫生物催化 剂•.绝大多数的酶都是蛋白质。
酶的化学本 质是什麽?
酶的概念
• 一、相关概念 • 酶催化的生物化学反应,称为酶促反应。 • 被酶的催化的物质称为底物(S) • 反应的生成物为产物(P) • 酶所具有的催化能力称酶的活性. • 酶失去催化能力称酶的失活.
第四章 酶 (Enzymes)
内容简介
酶是具有高度催化效率及高度特异性的蛋白质。 酶通过多种机制降低反应活化能使反应速率增加。 酶分子一级结构及空间结构是催化功能的基础。 酶促反应速率受到[S]、[E]、pH、T、抑制剂及激活
剂的影响
酶活性可受到别构调节、共价修饰、酶原激活、关键 酶、多酶体系、同工酶等调节
H N C O
COOH CH
R6
氨基酸
氨基酸
消化道中各种蛋白酶的专一性
3.立体异构特异性:一些酶仅能催化一种立体异
构体进行反应,或其催化的结果只产生一种立体异
构体,酶对立体异构物的选择性称为立体异构特异
性(stereospecificity)。
L-乳酸
D-乳酸
H
H
C
OH
生物化学(酶)
二、酶的化学本质
※ 1926年美国生物化学家萨姆纳(J.B.Sumner) 等首次从刀豆的种子中分离、纯化得到了脲酶结 晶,证明其为蛋白质,并提出酶的化学本质就是 蛋白质的基本观点。
绝大多数酶是具有催化能力蛋白质的依据
1、和所有蛋白质一样,酶经酸、碱水解的产物是氨基酸。 2、凡是能够使蛋白质变性的因素也能使酶变性失活。 3、和蛋白质一样,酶同样存在等电点和两性解离的性质。 4、和蛋白质一样,酶也不能透过半透性膜。 5、具有和蛋白质相同的颜色反应。
三、酶的概念
酶是生活细胞产生的一类具有催化功能的蛋 白质,亦称为生物催化剂(Biocatalysts)绝大
多数的酶都是蛋白质。 。(狭义)
酶是生活细胞产生的一类具有催化功能的生
物大分子(包括蛋白质、核酸)。(广义)
酶所催化的生物化学反应,称为酶促反应 (Enzymatic reaction)。
在酶的催化下发生化学变化的物质,称为底 物(substrate)。
金属离子:一般不与酶蛋白直接结合,但为酶 催化活性所必需。常见酶含有的金属离子有K+、Na+、 Cu2+、Zn2+、Fe2+、和Mo2+等。
羧肽酶 (黄色 圆球是 Zn2+)
双成分酶 羧基肽酶以 二价锌离子 (Zn2+)为 辅助因子
辅助因子与酶蛋白的关系:
通常一种酶蛋白必须与某一种特定的辅 助因子结合形成复合物(全酶),才能表 现出催化活性。
全酶 = 酶蛋白 + 辅因子
酶蛋白质
双成分酶
辅酶
辅助因子
↓
辅基
金属离子 小分子金属有机物 小分子有机化合物
辅酶:与酶蛋白结合较疏松(非共价键相连), 可用透析或超滤方法除去。多为一些小分子有机物, 如维生素、核苷酸等。
生物化学——第三章酶
2)高度专一性
• 酶的专一性 (Specificity)(特异性)
指酶在催化生化反应时对底物的选择性。
3)反应条件温和,对环境变化敏感
• 酶促反应一般在pH 5-8 水溶液中进行,反应温度范
围为20-40C。 • 高温或其它苛刻的物理或化学条件,将引起酶的失活。
4) 酶的催化活力受调控
如抑制剂调节、共价修饰调节、反馈调节、酶原激活 及激素控制等。
结构专一性 键专一
基团专一
1)绝对专一性
(结构专一性)
• 酶对底物的要求非常严格,只作用于一个特定的 底物。这种专一性称为绝对专一性(Absolute specificity)。
• 例:脲酶、
O
2HN-C-NH2
• 精氨酸酶
2)相对专一性(Relative Specificity)
• 酶的作用对象不是一种底物,而是一类化合物或
+ E
酶 与 中 间 产 物
3、决定酶专一性的机制
(a)锁钥学说:认为整个酶分子的天然构象是具有刚
性结构的,酶表面具有特定的形状。酶与底物的结合如
同一把钥匙对一把锁一样
(b)诱导契合学说:
酶表面并没有一种与底物互补的固定形状,但酶的活性 中心具有一定的柔性,两者相遇底物诱导酶构象发生变 化,才形成了互补形状。
(2)酸碱性基团:
CH2 H2N CH2 C
• Asp和Glu的羧基
• Lys的氨基
OH H2N
• Tyr的酚羟基
• His的咪唑基 • Cys的巯基等
活性中心的结构特点
• 只占酶分子总体积的很小一部分 • 具有三维空间结构
• 酶的活性部位和底物的辨认和结合过程,称
为诱导契合(induced-fit)
生物化学(董晓燕第三版)酶化学总结及练习
本章介绍了酶的特点、酶催化反应的类型,阐明了影响酶活性与催化高效性的主要因素及机理,并简单讨论了酶的应用。
酶是生物催化剂,具有专一性和高效性等特点。
绝大多数酶的化学本质是蛋白质,但也有以RNA为主要成分的核酶和具有催化活性的抗体酶。
酶蛋白与辅因子结合形成全酶,酶反应的专一性和高效性取决于脱辅基酶蛋白,而辅因子决定着酶催化反应的类型和性质。
酶可以用习惯命名法和国际系统命名法来命名,根据酶促反应性质不同,酶被分为六大类。
酶的活性部位由结合部位和催化部位组成,结合部位决定酶的专一性,催化部位决定酶的催化活性和效率,因而酶的活性部位是酶行使催化功能的结构基础。
酶的激活可以通过打断一个或几个特殊的肽键,使酶形成具有催化活性的三维结构,例如酶原的激活;也可采用别构剂的作用改变酶的构象,进而调节酶的活性,称为别构效应;有些酶可在其他酶的作用下,将酶结构进行共价修饰,使酶活性发生改变;在不同组织或器官中,可以通过同工酶催化相同的化学反应。
酶分子可以利用化学或分子生物学方法进行修饰。
酶分子的化学修饰包括酶蛋白侧链的修饰、酶的亲和修饰和酶的化学交联;酶分子的遗传改造分为酶分子的非理性设计和理性设计两种。
酶催化作用高效性的本质是降低了反应的活化能,其催化机理有酸碱催化、共价催化、邻近效应和定向效应、金属离子催化、静电催化及底物的形变和诱导契合。
解释酶专一性的学说有三种,其中“诱导契合”学说认为酶分子具有一定的柔软性,较好地解释了酶作用专一性的特点。
酶促反应受酶浓度、底物浓度、温度、pH值、激活剂和抑制剂的影响。
其中米氏方程是反映底物浓度与酶反应速率之间关系的动力学方程,Km是酶的特征性物理常数。
酶会发生可逆或不可逆抑制,其中竞争性抑制作用、非竞争性抑制作用和反竞争性抑制作用是常见的可逆抑制作用。
酶活力是指酶催化一定反应的能力,其单位为“IU”或“U”,可通过分光光度法、荧光法、同位素测定法等方法测定。
酶的一般分离纯化过程为:细胞破碎、酶的抽提、浓缩和纯化。
生物化学第三章酶化学
1.氧化还原酶 催化氧化还原反应,量最大的一类酶,具
氧化、产能、解毒功能。
通式:AH2+B→BH2+A
系统命名可分为19亚类,习惯上可分为4个亚类: (1)脱氢酶:受体为NAD或NADP,不需氧。
(2)氧化酶:以分子氧为受体,产物可为水或H2O2,常需黄素辅基。
(3)过氧化物酶:以H2O2为受体,常以黄素、血红素为辅基。
V max
初
c
速
b
度
v
1/2V max
a
0
Km
[S]
图5-14 底物浓度对酶促反应速度的影响
底物浓度继续增加,所有的酶分子均被底物饱和,反 应速率不再增加,此时反应速率与底物浓度的增加无 关,反应为零级反应(c),曲线出现平坦。
V max
初
c
速
b
度
v
1/2 V max
a
0
Km
[S]Biblioteka 图5-14 底物浓度对酶促反应速度的影响
2.一些酶的K2>>K3,即ES解离成E和S的 速率明显超过分解成E和P的速率,K3可
忽略不计,即此时Km近似ES的解离常
数Ks。在这种情况下Km可表示酶和和底 物的亲和力。
KmK2 [E][SK ]s K1 [ES]
3.Km值是酶的特征性常数,它与酶结构, 酶所催化的底物和反应环境如温度、pH、 离子强度等有关,而与酶浓度、底物浓 度无关。
E+P
酶 产物
米氏方程式(Michaelis equation):
V max[S] V=
Km+ [S]
Vmax 为最大反应速率(maximum velocity ) [S]为底物浓度 Km 为米氏常数(Michaelis constant) V 为不同[S]时的反应速率
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物化学-酶化学————————————————————————————————作者:————————————————————————————————日期:ﻩ第五章酶化学一:填空题1.全酶由________________和________________组成,在催化反应时,二者所起的作用不同,其中________________决定酶的专一性和高效率,________________起传递电子、原子或化学基团的作用。
2.辅助因子包括________________,________________和________________等。
其中________________与酶蛋白结合紧密,需要________________除去,________________与酶蛋白结合疏松,可用________________除去。
3.酶是由________________产生的,具有催化能力的________________。
4.酶活力的调节包括酶________________的调节和酶________________的调节。
5.T.R.Cech和S.Altman因各自发现了________________而共同获得1989年的诺贝尔奖(化学奖)。
6.1986年,R.A.Lerner和P.G.Schultz等人发现了具有催化活性的________________,称________________。
7.根据国际系统分类法,所有的酶按所催化的化学反应的性质可以分为六大类________________,________________,________________,________________,________________和________________。
8.按国际酶学委员会的规定,每一种酶都有一个唯一的编号。
醇脱氢酶的编号是EC1.1.1.1,EC代表________________,4个数字分别代表________________,________________,________________和________________。
9.根据酶的专一性程度不同,酶的专一性可以分为________________专一性、________________专一性和________________专一性。
10.关于酶作用专一性提出的假说有________________,________________和________________等几种。
11.酶的活性中心包括________________和________________两个功能部位,其中________________直接与底物结合,决定酶的专一性,________________是发生化学变化的部位,决定催化反应的性质。
12.酶活力是指________________,一般用________________表示。
13.通常讨论酶促反应的反应速度时,指的是反应的________________速度,即________________时测得的反应速度。
14.常用的化学修饰剂DFP可以修饰________________残基,TPCK常用于修饰________________残基。
15.酶反应的温度系数一般为________________。
16.调节酶包括________________和________________等。
17.解释别构酶作用机理的假说有________________模型和________________模型两种。
18.固定化酶的优点包括________________,________________,________________等。
19.固定化酶的理化性质会发生改变,如Km________________,Vmax________________等。
20.同工酶是指________________,如________________。
21.pH影响酶活力的原因可能有以下几方面:(1)影响________________,(2)影响________________,(3)影响________________。
22.温度对酶活力影响有以下两方面:一方面________________,另一方面________________。
23.脲酶只作用于尿素,而不作用于其他任何底物,因此它具有________________专一性;甘油激酶可以催化甘油磷酸化,仅生成甘油-1-磷酸一种底物,因此它具有________________专一性。
24.酶促动力学的双倒数作图(Lineweaver-Burk作图法),得到的直线在横轴上的截距为________________,纵轴上的截距为________________。
25.磺胺类药物可以抑制________________酶,从而抑制细菌生长繁殖。
26.谷氨酰胺合成酶的活性可以被________________共价修饰调节;糖原合成酶、糖原磷酸化酶等则可以被________________共价修饰调节。
27.判断一个纯化酶的方法优劣的主要依据是酶的________________和________________。
二:是非题1.[]酶可以促成化学反应向正反应方向转移。
2.[]对于可逆反应而言,酶既可以改变正反应速度,也可以改变逆反应速度。
3.[ ]酶的化学本质是蛋白质。
4.[ ]酶活性中心一般由在一级结构中相邻的若干氨基酸残基组成。
5.[]酶只能改变化学反应的活化能而不能改变化学反应的平衡常数。
6.[ ]酶活力的测定实际上就是酶的定量测定。
7.[ ]酶反应速度一般用单位时间内底物的减少量来表示。
8.[ ]从鼠脑分离的己糖激酶可以作用于葡萄糖(Km=mol/L)或果糖(Km=mol/L)。
则己糖激酶对果糖的亲和力更高。
9.[ ]Km是酶的特征常数,只与酶的性质有关,与酶浓度无关。
10.[ ]Km是酶的特征常数,在任何条件下,Km是常数。
11.[ ]Km是酶的特征常数,只与酶的性质有关,与酶的底物无关。
12.[]一种酶有几种底物就有几种Km值。
13.[ ]当[S]>>Km时,v 趋向于Vmax,此时只有通过增加[E]来增加v。
14.[]酶的最适pH是一个常数,每一种酶只有一个确定的最适pH。
15.[ ]酶的pH~酶活性曲线均为钟罩形。
16.[ ]酶的最适温度与酶的作用时间有关,作用时间长,则最适温度高,作用时间短,则最适温度低。
17.[]酶反应的温度系数高于一般反应的温度系数。
18.[ ]金属离子作为酶的激活剂,有的可以相互取代,有的可以相互拮抗。
19.[]增加不可逆抑制剂的浓度,可以实现酶活性的完全抑制。
20.[ ]正协同效应使酶促反应速度增加。
21.[ ]正协同效应使酶与底物亲和力增加。
22.[]正协同效应使酶促反应速度对底物浓度变化越来越敏感。
23.[ ]竞争性可逆抑制剂一定与酶的底物结合在酶的同一部位。
24.[ ]由1克粗酶制剂经纯化后得到10mg电泳纯的酶制剂,那么酶的比活较原来提高了100 倍。
25.[ ]酶反应的最适pH只取决于酶蛋白本身的结构。
26.[ ]负协同性不能用MWC(齐变模型)理论来解释。
三:单选题1.[ ]利用恒态法推导米氏方程时,引入了除哪个外的三个假设?A.在反应的初速度阶段,E+P→ES可以忽略B.假设[S]>>[E],则[S]-[ES]≈[S]C.假设E+S→ES反应处于平衡状态D.反应处于动态平衡时,即ES的生成速度与分解速度相等2.[]用动力学的方法可以区分可逆、不可逆抑制作用,在一反应系统中,加入过量S和一定量的I,然后改变[E],测v,得v~[E]曲线,则哪一条曲线代表加入了一定量的可逆抑制剂?<br>A.1B.2C.3D.不可确定3.[]在一反应体系中,[S]过量,加入一定量的I,测v~[E]曲线,改变[I],得一系列平行曲线,则加入的I是:A.竞争性可逆抑制剂B.非竞争性可逆抑制剂C.反竞争性可逆抑制剂D.不可逆抑制剂E.无法确定4.[]竞争性可逆抑制剂抑制程度与下列哪种因素无关?A.作用时间B.抑制剂浓度C.底物浓度D.酶与抑制剂的亲和力的大小E.酶与底物的亲和力的大小5.[]下图中I代表了:<br>A.竞争性可逆抑制剂B.非竞争性可逆抑制剂C.反竞争性可逆抑制剂D.不可逆抑制剂E.无法确定6.[ ]哪一种情况可用增加[S]的方法减轻抑制程度?A.不可逆抑制作用B.竞争性可逆抑制作用C.非竞争性可逆抑制作用D.反竞争性可逆抑制作用E.无法确定7.[]酶的竞争性可逆抑制剂可以使:A.Vmax减小,Km减小B.Vmax增加,Km增加C.Vmax不变,Km增加D.Vmax不变,Km减小E.Vmax减小,Km增加8.[ ]下列常见抑制剂中,除哪个外都是不可逆抑制剂?A.有机磷化合物B.有机汞化合物C.有机砷化合物D.氰化物E.磺胺类药物9.[ ]溶菌酶在催化反应时,下列因素中除哪个外,均与酶的高效率有关?A.底物形变B.广义酸碱共同催化C.邻近效应与轨道定向D.共价催化E.无法确定10.[]下图中哪条曲线是负协同效应别构酶的v~[S]曲线?<br>A.1B.2C.3D.无法确定11.[ ]假定Rs=(酶与底物结合达90%饱和度时的底物浓度)/(酶与底物结合达10%饱和度时的底物浓度),则正协同效应的别构酶:A.Rs>81B.Rs=81C.Rs<81D.Rs≥81E.Rs≤8112.[ ]以Hill系数判断,则具负协同效应的别构酶:A.n>1B.n=1C.n<1D.n≥1E.n≤113.[]丙二酸对琥珀酸脱氢酶的影响属于:A.反馈抑制B.底物抑制C.竞争性可逆抑制D.非竞争性可逆抑制E.反竞争性可逆抑制14.[]酶的活化和去活化循环中,酶的磷酸化和去磷酸化位点通常在酶的哪一种氨基酸残基上?A.天冬氨酸B.脯氨酸C.赖氨酸D.丝氨酸E.甘氨酸15.[]测定酶活性时,通常以底物浓度变化小于多少时测得的速度为反应的初速度?A.0.1%B.0.5%C.1%D.2%E.5%16.[]在生理条件下,下列哪种基团既可以作为的受体,也可以作为的供体?A.His的咪唑基B.Lys的ε氨基C.Arg的胍基D.Cys的巯基E.Trp的吲哚基17.[]对于下列哪种抑制作用,抑制程度为50%时,[I]=Ki?A.不可逆抑制作用B.竞争性可逆抑制作用C.非竞争性可逆抑制作用D.反竞争性可逆抑制作用E.无法确定18.[]在一酶反应体系中,若有抑制剂I存在时,最大反应速度为,没有抑制剂I存在时,最大反应速度为,若,则I为:A.竞争性可逆抑制剂B.非竞争性可逆抑制剂C.反竞争性可逆抑制剂D.不可逆抑制剂E.无法确定四:问答题1.简述酶作为生物催化剂与一般化学催化剂的共性及其个性。