小升初六年级奥数专题经典 最值问题答案

合集下载

小学六年级奥数第25讲 最大最小问题(含答案分析)

小学六年级奥数第25讲 最大最小问题(含答案分析)

第25讲 最大最小问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。

最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。

二、精讲精练【例题1】a 和b 是小于100的两个不同的自然数,求a -ba+b的最大值。

根据题意,应使分子尽可能大,使分母尽可能小。

所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a -b a+b 的最大值是99-199+1 =4950 答:a -b a+b 的最大值是4950 。

练习1:1、 设x 和y 是选自前100个自然数的两个不同的数,求x -yx+y的最大值。

2、 a 和b 是小于50的两个不同的自然数,且a >b ,求a -ba+b的最小值。

3、 设x 和y 是选自前200个自然数的两个不同的数,且x >y ,①求x+yx -y的最大值;②求x+yx -y的最小值。

【例题2】有甲、乙两个两位数,甲数27等于乙数的23。

这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。

由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56 答:这两个两位数的差最多是56。

练习2:1.有甲、乙两个两位数,甲数的310等于乙数的45。

这两个两位数的差最多是多少?2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。

这两个两位数的和最小是多少?3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?【例题3】如果两个四位数的差等于8921,就是说这两个四位数组成一个数对。

问:这样的数对共有多少个?在这些数对中,被减数最大是9999,此时减数是9999-8921=1078,被减数和剑术同时减去1后,又得到一个满足题意条件的四位数对。

小学数学六年级奥数《最值问题(2)》练习题(含答案)

小学数学六年级奥数《最值问题(2)》练习题(含答案)

小学数学六年级奥数《最值问题(2)》练习题(含答案)一、填空题1.下面算式中的两个方框内应填 ,才能使这道整数除法题的余数最大. □÷25=104…□2.在混合循环小数 2.718281的某一位上再添上一个表示循环的圆点,使新产生的循环小数尽可能大.写出新的循环小数:3.一个整数乘以13后,乘积的最后三位数是123,那么这样的整数中最小的是 .4.将37拆成若干个不同的质数之和,使得这些质数的乘积尽可能大,那么,这个最大乘积等于 .5.一个五位数,五个数字各不同,且是13的倍数.则符合以上条件的最小的数是 .6.把1、2、3、4...、99、100这一百个数顺序连接写在一起成一个数. Z =1234567891011 (9899100)从数Z 中划出100个数码,把剩下的数码顺序写成一个Z ',要求Z '尽可能地大.请依次写出Z '的前十个数码组成一个十位数 .7.用铁丝扎一个空心的长方体,为了使长方体的体积恰好是216cm 3,长方体的长,宽,高各是 cm 时,所用的铁丝长度最短.8.若一个长方体的表面积为54平方厘米,为了使长方体的体积最大,长方体的长,宽,高各应为 厘米.9.把小正方体的六个面分别写上1、2、3、4、5、6.拿两个这样的正方体,同时掷在桌子上.每次朝上的两个面上的数的和,最小可能是 .最大可能是 ,可能出现次数最多的两个面的数的和是 .10.将进货的单价为40元的商品按50元售出时,每个的利润是10元,但只能卖出500个,已知这种商品每个涨价1元,其销售量就减少10个.为了赚得最多的利润,售价应定为 .二、解答题11.王大伯从家(A 点处)去河边挑水,然后把水挑到积肥潭里(B 点处).请帮他找一条最短路线,在下图表示出来,并写出过程.12.某公共汽车线路上共有15个车站(包括起点站和终点站),公共汽车从起点站到终点站的行驶过程中,每一站(包括起点站)上车的人中恰好在以后的各站都各有1人下车,要使汽车在行驶中乘客都有座位,那么在车上至少要安排乘客A B ·· 河座位多少个?13.有一块长24厘米的正方形厚纸片,如果在它的四个角各剪去一个小正方形,就可以做成一个无盖的纸盒,现在要使做成的纸合容积最大,剪去的小正方形的边长应为几厘米?14.某公司在A,B两地分别库存有某机器16台和12台,现要运往甲乙两家客户的所在地,其中甲方15台,乙方13台.已知从A地运一台到甲方的运费为5百元,到乙方的运费为4百元,从B地运一台到甲方的运费为3百元,到乙方的运费为6百元.已知运费由公司承担,公司应设计怎样的调运方案,才能使这些机器的总运费最省?———————————————答案——————————————————————1. 2426和24因为除数是25,余数最大应是24,所以被除数为25⨯104+24=2426.算式应为2624÷25=104…24.2. 1.2871283. 471设这个整数为1000K+123,其中K是整数.因1000K+123=(1001K+117)+(K-6),1001K和117都是13的倍数,因而(K-6)是13的倍数,K的最小值是6,这个数为6123,6123÷13=471.4. 2618因37=17+11+7+2,它们的积为17⨯11⨯7⨯2=2618.5. 10257五位数字各不相同的最小的五位数是10234.10234÷13=787…3.故符合题意的13的最小倍数为788.验算:13⨯788=10244有两个重复数字,不合题意,13⨯789=10257符合题意.6. 9999978956由计算可知,Z共有192位数,去掉100位数码,还剩92个数字,所以Z'是92位数.对Z'来说,前面的数字9越多,该数越大.因此Z'中开头应尽可能多保留9.在Z中先划去第一个9前的8个数码,再分别划去第二个9、第三个9、第四个9、第五个9前各19个数码,这时共划去了84个数,这时得到的数是: 99999505152535455565758596061……还需要划去16个数码,第六个9前面有19个小于9的数码,划掉7以前的6和6以下的所有数码,这样又划掉16个数码,还剩下7、8、5等3个数码,新组成的数为:999997859606162…99100,前十个数码组成的十位数是9999978596.7.6,6,6设长方体的长、宽、高分别为xcm,ycm和zcm.则有xyz=216.铁丝长度之和为(4x+4y+4z)cm,故当x=y=z=6时,所用铁丝最短.8.3,3,3设长、宽、高分别为x、y、z厘米,体积为V厘米3,则有2(xy+yz+zx)=54,从而xy +yz +zx =27.因V 2=(xyz )2=(xy )(yz )(zx ),故当xy =yz =zx 即x =y =z =3时, V 2有最大值,从而V 也有最大值.9. 7每次朝上的两个面上的和,最小可能是2,这时两个面都出现1,最大可能是12.以朝上的两个面上的数为加数,依次列出的加法算式共有6⨯6=36个,其中和为7的算式共有6个:6+1,5+2,4+3,3+4,2+5,1+6.故每次朝上的两个面上的数的和,可能出现的次数最多是7.10. 20元设每个商品售价为(50+x )元,则销量为(500-10x )个,总共可获利(50+x -40) ⨯(500-10x )=10⨯(10+x )⨯(50-x )元.因(10+x )+(50-x )=60为一定值.故当10+x =50-x ,即x =20时,它们的积最大.11. 以河流为轴,取A 点的对称点C ,连结BC 与河流相交于D 点,再连续AD .则王大伯可沿着AD 走一条直线去河边D 点挑水,然后再沿DB 走一条直线到积肥潭去.这就是一条最短路线.12. 从第一站开始,车上人数为1⨯14,到第二站时,车上人数为2⨯13,依次可算出以下各站车上人数为3⨯12、4⨯11、5⨯10、6⨯9、7⨯8、8⨯6…车上最多的人数为56人,故车上至少应安排乘客座位56个.13. 如图,设剪去的小正方形边长为x 厘米,则纸盒容积为:V =x (24-2x )(24-2x )=2⨯2x (12-x )(12-x )因2x +(12-x )+(12-x )=24是一个定值,故当2x =12-x 时,即x =4时,其乘积最大从而纸盒容积也最大.14. 设由A 地运往甲方x 台,则A 地运往乙方(16-x )台,B 地运往甲方 (15-x )台,B 地运往乙方(x -3)台.于是总运价为(单位:元):S =500x +400(16-x )+300(15-x )+600(x -3)=400x +9100.显然x 满足不等式153≤≤x .故当x =3时,总运费最省,为400⨯3+9100=10300(元).A B D 河流x。

小学六年级奥数 第十五章 最值问题

小学六年级奥数 第十五章 最值问题

第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。

当两个数相等时,它们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

3.把一个数拆分成若干个自然数之和,如果要使这若干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。

典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况:13=0+13,0×13=0; 13=1+12,1×12=12;13=2+11,11×2=22; 13=3+10,3×10=30;13=4+9,4×9=36; 13=5+8,5×8=40;13=6+7,6×7=42。

由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。

解13÷2=6……1,6×(6+1)=42。

答:这两个整数分别为6和7。

例2 比较下面两个乘积的大小。

A=57128463×87596512 B=57128470×87596505点拨要比较A与B的大小,用计算的方法求积会很麻烦。

仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比较每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。

解 A组两个因数的差:87596512-57128463=30468049,B组两个因数的差:87596505-57128470=30468035。

因为30468049>30468035,所以B>A。

例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况:50=50×1,50+1=51;50=25×2,25+2=27;50=10×5,10+5=15。

六年级奥数考点:极值问题

六年级奥数考点:极值问题

考点:极值问题一、知识要点人们碰到的各种优化问题、高效低耗问题,最终都表现为数学上的极值问题,即小学阶段的最大最小问题。

最大最小问题设计到的知识多,灵活性强,解题时要善于综合运用所学的各种知识。

二、精讲精练【例题1】a和b是小于100的两个不同的自然数,求a-ba+b的最大值。

根据题意,应使分子尽可能大,使分母尽可能小。

所以b=1;由b=1可知,分母比分子大2,也就是说,所有的分数再添两个分数单位就等于1,可见应使所求分数的分数单位尽可能小,因此a=99a-b a+b 的最大值是99-199+1=4950答:a-ba+b的最大值是4950。

练习1:1、(课后)设x和y是选自前100个自然数的两个不同的数,求x-yx+y的最大值。

99 1012、a和b是小于50的两个不同的自然数,且a>b,求a-ba+b的最小值。

1 973、设x和y是选自前200个自然数的两个不同的数,且x>y,①求x+yx-y的最大值;②求x+yx-y的最小值。

(1)399 (2)201 199【例题2】有甲、乙两个两位数,甲数27等于乙数的23。

这两个两位数的差最多是多少?甲数:乙数=23:27=7:3,甲数的7份,乙数的3份。

由甲是两位数可知,每份的数量最大是14,甲数与乙数相差4份,所以,甲、乙两数的差是14×(7-3)=56答:这两个两位数的差最多是56。

练习2:1.(课后)有甲、乙两个两位数,甲数的310等于乙数的45。

这两个两位数的差最多是多少?甲、乙两数的比是8:3,甲数最大是96 ,差最大是60。

2、甲、乙两数都是三位数,如果甲数的56恰好等于乙数的14。

这两个两位数的和最小是多少?甲、乙两数的比是3:10,甲数最小是102,和最小是442。

3.加工某种机器零件要三道工序,专做第一、二、三道工序的工人每小时分别能做48个、32个、28个,要使每天三道工序完成的个数相同,至少要安排多少工人?一、二、三道工序所需的工人数的比是148:132:128=14:21:24,所以至少安排14+21+24=59个工人。

六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)

六年级小升初奥数题100例附答案(完整版)题目1:一个数的30%是15,这个数是多少?答案:15÷30% = 50题目2:比80 米多25%是多少米?答案:80×(1 + 25%) = 100 米题目3:某班男生人数是女生人数的4/5,女生比男生多5 人,男生有多少人?答案:设女生人数为x 人,则男生人数为4/5 x 人。

x - 4/5 x = 5 ,解得x = 25 ,男生人数为20 人。

题目4:一个圆的半径是4 厘米,它的面积是多少平方厘米?答案:3.14×4×4 = 50.24 平方厘米题目5:一件商品原价200 元,现打八折出售,现价是多少元?答案:200×80% = 160 元题目6:在一个比例中,两个外项互为倒数,其中一个内项是 2.5,另一个内项是多少?答案:两个外项互为倒数,积为1。

所以另一个内项为1÷2.5 = 0.4题目7:一项工程,甲单独做15 天完成,乙单独做20 天完成,甲乙合作几天完成?答案:1÷(1/15 + 1/20) = 60/7 天题目8:一个数除以8,商是12,余数是5,这个数是多少?答案:8×12 + 5 = 101题目9:有一堆煤,第一天用去1/3,第二天用去1/4,还剩下18 吨,这堆煤原有多少吨?答案:设这堆煤原有x 吨,x - 1/3 x - 1/4 x = 18 ,解得x = 43.2 吨题目10:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,这个长方体的体积是多少?答案:48÷4 = 12 厘米,长为12×3/(3 + 2 + 1) = 6 厘米,宽为4 厘米,高为2 厘米,体积为6×4×2 = 48 立方厘米题目11:一个圆锥形沙堆,底面周长是18.84 米,高是 2 米,每立方米沙重 1.8 吨,这堆沙重多少吨?答案:底面半径为18.84÷3.14÷2 = 3 米,体积为1/3×3.14×3×3×2 = 18.84 立方米,重18.84×1.8 = 33.912 吨题目12:甲乙两车同时从A、B 两地相对开出,3 小时相遇,甲车每小时行50 千米,乙车每小时行40 千米,A、B 两地相距多少千米?答案:(50 + 40)×3 = 270 千米题目13:小明看一本120 页的书,第一天看了全书的1/4,第二天看了全书的1/3,第三天应从第几页看起?答案:第一天看了120×1/4 = 30 页,第二天看了120×1/3 = 40 页,前两天共看了70 页,第三天从第71 页看起。

小学六年级奥数计算题及答案:最值问题

小学六年级奥数计算题及答案:最值问题

小学六年级奥数计算题及答案:最值问题
★这篇【小学六年级奥数计算题及答案:最值问题】,是特地为大家整理的,希望对大家有所帮助!
一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试( )次才能配好全部的钥匙和锁.
分析:第一把钥匙最坏的情况要试3次,把这把钥匙和这把锁拿出;剩下的3把锁和3把钥匙,最坏的情况要试2次,把这把钥匙和这把锁拿出;剩下的2把锁和2把钥匙,最坏的情况要试1次,把这把钥匙和这把锁拿出;剩下的1把锁和1把钥匙就不用试了.
解:3+2+1=6(次);
答:最多要试6次才能配好全部的钥匙和锁.
故答案为:6.。

小升初典型奥数题及详细答案

小升初典型奥数题及详细答案

小升初典型奥数题及详细答案1、一列火车长200米,通过一条长430的隧道用了42秒,以同样的速度通过某站台用25秒,这个站台长多少米?【答案解析】:(200+430)÷42×25-200=375-200=175米2、某次数学测验共20题,做对1题得5分,做错1题扣1分,不做得0分,小华得了76分,他对了多少题?【答案解析】:20-(20×5-76)÷(5+1)=16(道)3、一班有学生45人,男生2/5和女生的1/4参加了数学竞赛,参赛的共有15人,男女生各几人【答案解析】:设男生有X人,则女生有(45r)。

2∕5x+l∕4(45-χ)=152∕5x+4/45-4∕x=15x=25女生:45-25=20(人)4、一项工作,甲单独做需15天完成,乙单独做需12天完成。

这项工作由甲乙两人合做,并且施工期间乙休息7天,问几天完成?【答案解析】:设完成工作要X天,所以甲乙一起工作(X-6)天,甲单独工作6天。

根据题意可得甲单独一天可完成1/15.乙1/12,由此得式子:【答案解析】:(1/15+1/12)(X-6)+1/15X6=1解地X=IO他整个行5、本骑车前往一座城市,去时的速度为X,回来时的速度为yo程的平均速度是多少?(答案是2xy∕x+y,为什么?)【答案解析】:设总路程为S,则去时用的时间为S/X,回来的时候用的时间为S/Y那么平均速度为2S∕(S/X+S/Y)=2/(1∕X+1∕Y)=2XY∕(X+Y)6、参加数学竞赛的男生比女生多28人,女生全部优胜,男生的3/4得优胜男女生各优胜的共42人,求男女生参加竞赛的各多少人?方程:【答案解析】:设男生参赛有X人x+(x+28)×3/4=42解得x=1212+28=40算术:(42-28)/(1+3/4)=21X4/7=12(八)12+28=40(人)答:女生参赛有40人。

7、将37分为甲、乙、丙三个数,使甲、乙、丙三个数的乘积为1440,并且甲、乙两数的积比丙数多12,求甲、乙、丙各是几?【答案解析】:解:把1440分解质因数:1440=12×12×10=2×2×3×2×2×3×2×5=(2×2×2)X(3×3)×(2×2×5)如果甲、乙二数分别是8、9,丙数是20,贝U:8×9=72,20×3+12=72正符合题中条件。

小学六年级奥数 第十五章 最值问题

小学六年级奥数 第十五章 最值问题

小学六年级奥数第十五章最值问题第十五章最值问题知识要点1.如果两个整数的和一定,那么这两个整数的差越小,它们的乘积越大。

当两个数相等时,它们的乘积最大。

2.两个自然数的乘积一定时,两个自然数的差越小,这两个自然数的和也越小。

3.把一个数拆分成假设干个自然数之和,如果要使这假设干个自然数的乘积最大,那么这些自然数应全是2或3,且2的个数不超过2个。

典例巧解例1 两个自然数的和是13,要使两个整数的乘积最大,这两个整数是多少?点拨将两个自然数的和为13的所有情况都列出来,有以下7种情况: 13=0+13, 0×13=0; 13=1+12, 1×12=12; 13=2+11, 11×2=22; 13=3+10, 3×10=30; 13=4+9, 4×9=36; 13=5+8, 5×8=40; 13=6+7, 6×7=42。

由此可见,两个整数的和一定时,两个整数的差越小,它们的乘积越大。

解13÷2=6??1, 6×(6+1)=42。

答:这两个整数分别为6和7。

例2 比拟下面两个乘积的大小。

A=57128463×87596512 B=57128470×87596505点拨要比拟A与B的大小,用计算的方法求积会很麻烦。

仔细观察两组对应因数的大小,我们不难发现,两个因数的和是一定的,只要比拟每组两个因数差的大小就可以了,差大的积反而小,差小的积反而大。

解 A组两个因数的差:87596512-57128463=30468049, B组两个因数的差:87596505-57128470=30468035。

因为30468049>30468035,所以B>A。

例3 两个自然数的积是50,这两个自然数是什么值时,它们的和最小?点拨两个自然数乘积是50的,共有三种情况: 50=50×1,50+1=51; 50=25×2,25+2=27; 50=10×5,10+5=15。

小学六年级奥数题 小升初 及答案

小学六年级奥数题 小升初 及答案

小学六年级奥数题小升初及答案1、育才小学原来体育达标人数与未达标人数比是3:5,后来又有60名同学达标,这时达标人数是未达标人数的9/11,育才小学共有学生多少人?答案:原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人答:育才小学共有学生800人。

2、甲乙两地相距420千米,其中一段路面铺了柏油,另一段是泥土路.一辆汽车从甲地驶到乙地用了8小时,已知在柏油路上行驶的速度是每小时60千米,而在泥土路上的行驶速度是每小时40千米.泥土路长多少千米?答案:泥土路用了x小时,柏油路用了(8-x)小时。

40x+(8-x)60=420X=3所以3×40=120(千米)答:泥土路长120千米。

3、学校田径组原来女生人数占1/3,后来又有6名女生参加进来,这样女生就占田径组总人数的4/9。

现在田径组有女生多少人?解:设原来田径队男女生一共x人1/3x+6= 4/9(x+6)x=3030×1/3+6=16答:女生16人。

4、学校购买840本图书分给高、中、低三个年级段,高年级段分的是低年级段的2倍,中年级段分的是低年级段的3倍少120本。

三个年级段各分得多少本图书?解:设低年级段分得x本书,则高年级段分得2x本,中年级段分得(3x-120)本x+2x+3x-120=840x=160高年级段为:160×2=320(本),中年级段为:160×3-120=360(本)答:低年级段分得图书160本,中年级段分得图书360本,高年级段分得图书320本。

5、小华有连环画本数是小明6倍,如果两人各再买2本,那么小华所有本数是小明4倍,两人原来各有连环画多少本?解:设小明原来有x本书4(x+2)=6x+2x=36×3=18 (本)答:小明有3本,小华有18本。

六年级奥数第26讲:最值应用题问题

六年级奥数第26讲:最值应用题问题

最值应用问题生产和生活中有许多最值问题,需要我们结合实际,灵活地选择方法进行解答。

常用解题方法有:①逆推,②列表,③比较等。

例1、有10位小朋友,其中任意5人的平均身高不小于1.5米,那么,其中身高小于1.5米的小貊了多有几人?做一做:有四袋糖块,其中任意三袋的总和都超过60块,那么这四袋糖块的总和至少有多少块?例2、5个空瓶可以换一瓶汽水。

某班同学共喝了161瓶汽水,其中有些是用喝完的汽水瓶换来的,那么,他们至少要买多少瓶汽水?做一做:5个空瓶可以换一瓶汽水,某班同学喝了120瓶汽水,那么,他们至少要买多少瓶汽水?例3、某县农机厂金工车间共有77个工人。

已知每天每个工人平均可加工甲种部件5个,或乙种部件4个,或丙种部件3个。

每个甲种部件、1个乙种部件和9个丙种部件恰好配成一套。

问:分别安排多少个工人加工甲、乙、丙三种部件时,才能使生产出来的甲、乙、丙三种部件恰好都配套?做一做:车过河交渡费3元,马过河交渡费2元,人过河交渡费1元。

某天过河的车、马数目的比为2:9,马、人数目的比为3:7,共收得渡费945元。

问:这天渡河的车、马、人的数目各是多少?例4、小朋友们排成一行,从左面第一人开始,每隔2人发一个苹果;从右面第一人开始,每隔绝人发一个橘子,结果有10人小朋友苹果和橘子都拿到了。

那么,这些小朋友最多有多少人?做一做:有2008个小朋友排成一排,王老师从左面第一人开始发一张卡片,然后每隔2人发一张卡片;李老师从右面第一人开始发一朵红花,然后向左每隔4人发一朵红花。

问:有多少个小朋友卡片和红花都拿到了?例5、某金工工厂生产铁箱子,箱子是由一个铁框和两块铁板做成的。

这次任务由老李和小张承担,他们的技术情况不同,老李每小时生产9个铁框,或生产12块铁板;小张只能生产铁板,每小时生产10块。

现要生产63个箱子,问:至少要用多少小时?做一做:完成一套零件需要一个大零件和三个小零件组成。

新机床每小时加工8个大零件,或加工12个小零件;旧机床只能加工小零件,每小时加工10个。

六年级数学小升初奥数精华题目(带答案)

六年级数学小升初奥数精华题目(带答案)

P5 甲乙丙丁戊五位同学进行乒乓球比赛,规定每两人都要赛一场,到现在为止,甲赛了4场,乙赛了3场,丙赛了2场,丁赛了1场,那么戊赛了()场。

P13 一个圆,当沿直径截去它的一半之后,剩下部分的周长比原来少了3.42CM,那么原来这个圆的面积是()cm²。

P16 一份稿件,甲乙合打4小时完成,乙丙合打5小时完成,甲丙合打6小时完成。

如果甲乙丙三人同时打全部稿件,需要几小时?P18 有两个棱长总和相等的长方体和正方体,它们的体积()A.相等B。

长方体大C。

正方体大P24 如果把数字5写在一个数的末尾,这个数就增加了383。

原来的这个数是多少?P25 两个数相除商是3,余数是10,若被除数、除数、商和余数的和是143,被除数是(),除数是()P26 判断:10名同学进行乒乓球比赛,如果每2名同学之间都进行一场比赛,那么每个人都要赛9场。

()P29 被除数、除数和余数的和是1540,已知除数是20,余数是10,那么商是()。

P30 某钟表的分针长9cm,如果分针针尖走过12πcm,那么分针扫过的面积为()。

P40 甲乙两人骑自行车同时从西镇出发到东镇,甲每小时行15km,乙每小时行10km,甲行30分钟后,因事用原速返回西镇,在西镇耽搁了半小时,又以原速去东镇,结果比乙晚到30分钟,试问两镇的距离?P40 李叔叔到苹果产地去收购苹果,收购价为每千克0.6元,从产地到水果店距离300千米,运费为每吨每千米1.05元,其他费用为每吨30元,在批发及运输、售出的过程中,苹果的损耗是10%,李叔叔要达到20%的利润,每千克苹果应定价为多少元?P43 灌满—个水池,只打开A 管要8小时,只打开B 管要10小时,只打开C 管要15小时.开始时只打开A 管和B 管,中途关掉A 管和B 管,然后打开C 管,前后共用了10小时15分灌满了水池.那么C 管打开了几小时?P44 一只羊被7m 长的绳子拴在正五边形建筑的一个顶点上,建筑物边长3m ,旁边是草地,他能吃到多少草?π取3P45 甲乙两数的比是4:3,最大公因数与最小公倍数的和是390,甲数是( )。

最值问题(六年级奥数题及答案)

最值问题(六年级奥数题及答案)
最值问题(六年级奥数题及答案)
最值问题
阶梯教室座位有10排,每排有16个座位,当有150个人就坐时,某些排坐着的人数就一样多.我们希望人数一样的排数尽可能少,则相同人数的至少有排.
解:至少有4排.
如果排人数各不相同,那么这10排最多分别坐16、15、14、13、……、7人,则最多坐16+15+14+13+12+1பைடு நூலகம்+10+9+8+7=115
(人);
如果最多有2排人数相同,那么最多坐(16+15+14+13+12)×2=140(人);
如果最多有3排人数一样,那么最多坐(16+15+14)×3+13=148(人);
如果最多有4排人数一样,那么最多坐(16+15)×4+14×2=152(人).
由于148<150<152,所以只有3排人数一样的话将不可能坐下150个人,相同人数的至少有4排.

高斯小学奥数六年级上册含答案第18讲 最值问题二

高斯小学奥数六年级上册含答案第18讲 最值问题二

第十八讲最值问题二一、最值问题中的常用方法a)极端思考在分析某些最值问题时,可以考虑把问题推向“极端”,因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解.b)枚举比较根据题目的要求,把可能的答案一一枚举出来,使题目的条件逐步缩小范围,筛选比较出题目的答案.c)分析推理根据两个事物在某些属性上都相同,猜测它们在其他属性上也有可能相同的推理方法.d)构造调整在寻求解题途径难以进展时,构造出新的式子或图形,往往可以取得出奇制胜的效果.二、求最大值和最小值的结论1.和一定的两个数,差越小,积越大;2.积一定的两个数,差越小,和越小;3.两点之间线段最短.例1.用一根长80厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?「分析」题目的限制条件是铁丝长为80厘米,要求体积的最大值,通过什么可以把这二者联系起来呢?练习1、(1)用一根长100厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?(2)有一根铁丝,它能焊接成的棱长都是整数厘米的最大长方体的体积是36立方厘米,这根铁丝的长度是多少厘米?例2.有5袋糖,其中任意3袋的总块数都超过60.这5袋糖块总共最少有多少块?「分析」每3袋的总块数都超过60,要求5袋的总块数.事实上我们以前做过类似的题:“已知三个数两两的和数,求这三个数的总和.”这样的题大家是怎么处理的呢?它的处理方法能否应用到本题中来呢?练习2、有5个学生参加暑期竞赛班,每人都拿了不少积分(所有积分都是整数).如果其中每三人的积分之和都不少于500分,那这五人的总积分最少是多少?例3.用1、2、3、4、5、6、7、8、9各一个组成3个三位数,使得它们都是9的倍数,并且要求乘积最大,请写出这个乘法算式.「分析」为了让这样的三个数的乘积最大,我们当然要让三个数的首位最大.那么首位应该是多少呢?注意到这三个数都是9的倍数,9的倍数有什么特征呢?它对这三个数提出了怎样的要求?练习3、用1、2、3、4、5、6各一个组成两个三位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.例4.把1至99依次写成一排,行成一个多位数:12349899L .从中划去99个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?「分析」要使得到的数最大,所得的数前面几位应该是什么?如果要最小呢?练习4、把1至20依次写成一排,行成一个多位数:12341920L .从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?例5.邮递员送信件的街道如图所示,每一小段街道长1千米.如果邮递员从邮局出发,必须走遍所有的街道,那么邮递员最少需要走多少千米?「分析」如果邮递员恰好没有重复地走遍所有的街道,则这样走的总路程就是最短的.那么邮递员能做到这一点吗?实际上这是一个一笔画问题,同学们回想一下,什么样的图形才能一笔画出来呢?111例6.如图,有一个长方体的柜子,一只蚂蚁要从左下角的A 点出发,沿柜子表面爬到右上角的B 点去取食物,蚂蚁爬行路线的长度最短是多少?一共有几条最短路线?请在图中表示出来.「分析」众所周知,两点之间线段最短.然而在本题中,蚂蚁是不能穿过柜子的,只能在柜子表面爬行.这样一来,我们就要在柜子表面寻找一条从A 到B 的最短路线.可是蚂蚁应该怎么走才能距离最短呢?AB3 31罐头装箱问题作业1.用一根长120厘米的铁丝焊接成一个棱长都是整数厘米的长方体框架,这个长方体的体积最大是多少立方厘米?2.高、娅、莫、萱四人各有若干块高思勋章,其中任意两人的勋章合起来都少于10块,那么这四人的勋章合起来最多有多少块?3.用1、2、3、4、5、6、7、8各一个组成两个四位数,使得它们都是3的倍数,并且要求乘积最大,请写出这个乘法算式.4.把21至40依次写成一排,行成一个多位数:212223243940L.从中划去20个数字,剩下的数字组成一个首位不是0的多位数.请问:剩下的数最大可能是多少?最小可能是多少?5.如果例题5中的街道由“土”字形变成如下所示的形状,那么邮递员从邮局出发,要走遍所有的街道,最少需要走多少千米?第十八讲最值问题二例7.答案:294详解:长方体满足:80420++=÷=长宽高厘米,要使体积最大,就应该使三边长度尽量接近.所以当三边长度分别为7厘米、7厘米和6厘米时,体积最大,为776294⨯⨯=立方厘米.例8.答案:103详解:任意3袋糖果总块数都不少于61,必能取出一袋不少于21块糖果;现在余下4袋,同样可以有糖果数超过21块的袋子,再取走这袋.现在余下三袋了,这三袋糖果总和不少于61,所以总的糖果不少于61+21+21=103块.由于5袋糖果分别有21、21、21、20、20块,是符合要求的,所以103就是最小值.例9.答案:954×873×621详解:每个数都是9的倍数,说明每个数的各位数字之和都是9的倍数.由于1到9总的数字和是45,而且每个数的各位数字之和都不超过7+8+9=24,因而三个数的各位数字之和分别为18、18和9.各位数字之和为9的数最大只能是621.其余两个数乘积要尽量大且各自的各位数字之和是18,百位取9和8,十位取7和5,个位取4和3,有最大乘积954×872,故所求的乘法算式是954×873×621.例10.答案:最大为999997585960...9899;最小是10000012345061626364 (9899)详解:(1)要使剩下的数尽量大,就要让数的最前面剩下尽可能多的9.首先,最开头的12345678这8个数字是要去掉的,留下了第一个9;然后去掉1011121314151617181共19个数字,留下了第二个9;再去掉3次的19个数,使得剩下第3、4、5个9.现在已经去掉了一共8+19×4=84个数,剩下的数前5个数字都是9,然后是50515253545556575859一直写到9899,还能再去掉15个数.但我们到下一个9要去掉19个数,到下一个8要去掉17个数,到下一个7要去掉15个数,于是最后结果的第6个数字最大是7,应该去掉的15个数字为505152535455565.所以剩下的数最大为999997585960…9899.(2)要使剩下的数尽量小,就要让数的首位是1,第二位起是尽量多的0.首位上的1取第一个数字1就行了.然后去掉234567891共9个数,留下第一个0;再去掉1112131415161718192共19个数,留下第2个0;再去掉3次的19个数,就能得到第3、4、5个0.现在一共去掉了个数,剩下的数前六个数字是1、0、0、0、0、0,余下的部分是515253545556575859一直写到9899,还能再去掉14个数.下一位取不到0了,只能去掉一个5,留下1;再下一位连1都取不到,只能去掉1个5,取2;再去掉一个5,留下3;去掉一个5,留下4.现在还能再去掉10个数字,而剩下的是55565758596061……,接下来11个数中最小的数是5,所以取一个5.然后剩下的数前11个数字为55657585960,因而我们去掉10个数字5565758596,使下一位达到最小数字0.所以最后剩下的数最小是10000012345061626364…9899.例11. 答案:26详解:如图1,由于的A 、B 两点连出的边是3条,也就是奇数条,仅当A 与B 为出发点和终点时,才能一笔画.我们不能从邮局出发一笔把这个图画出,即邮递员不能只把每条街道走一遍就回到邮局,他至少应该多走1千米街道,最小是26千米.在图2中,我们给出了邮递员走26千米走遍所有街道的一种方法.例12. 答案:最短的长度是5;4详解:为了表示方便,我们把长方体的各个顶点都标上字母,如图3.蚂蚁要从A 处爬到B 处,途中必须经过两个相邻的面,两个相邻面的交线必是EH 、HF 、FG 、GC 、CD 、DE 六条线段中的一条.一共六种情况,但由对称性,可分为三类,每类两种:交线是FG 、DE 的情形为一类,交线是HE 、GC 的情形为一类,交线是FH 、DC 的情形为一类.919485+⨯=邮局图1邮局图2情况1:如果蚂蚁所经过的两相邻面是ACGF 和FGBH ,那么我们可以沿着它们的交线FG 把这两个面展开到同一个平面上,如图4.这样蚂蚁的整个行走路线就在这一个平面上,而且以A 为起点,B 为终点.此时从A 到B 的最短连线就是A 、B 两点的连线,它恰好直角三角形ABC 的斜边.由于3AC =,314BC =+=,因此5AB =.情况2:如果两相邻面的交线是GC .同样我们也可以沿着GC ,把两个相邻面展开到同一个平面上,如图5.此时A 、B 两点的连线是直角三角形ABD 的斜边.由于3BD =,314AD =+=,因此5AB =.情况3:如果两相邻面的交线是DC .同样我们也可以沿着DC ,把两个相邻面展开到同一个平面上,如图6.此时A 、B 两点的连线是直角三角形AGB 的斜边,一定比直角边AG 长.而AG 的长度是336+=,所以AB 一定大于6.其余三种情况的最短路线与上面的情况1、2、3对应相同.所以爬行路线长度最少是5,(1)和(2)的情形都符合要求,加上与它们对应的两种,所以一共会有4条最短路线.把展开图还原到原来的图中,就是所求的最短路线(如图7).因此在长方体表面,从A 到B 的最短路线的长度是5,一共有4条满足要求.AC G33图6图7 AB 331 C DE FGH A B331C DE F GHAB331 C DE F GH 图33 图43 BA 1 C D图5练习1、答案:576简答:100425889⨯⨯=.÷==++,889576练习2、答案:834简答:总积分最少是167167500834++=,此时5人分数可以是166、167、167、167、167.练习3、答案:642×531简答:6和5分别放在两个数的百位上,结合各位数字之和是3的倍数,可得到乘积最大的算式⨯.642531练习4、答案:95617181920;10111111110简答:同例4,由于题目中数位较少枚举即可,注意计算的准确性.作业6.答案:1000简答:120430101010÷==++,1010101000⨯⨯=.7.答案:17简答:必有两人的勋章数都不多于4块,余下两人勋章数之和不多于9块,因而最多只能有44917++=块.8.答案:85327641⨯简答:首位要尽量大,取8和7,次位也尽量大,取6和5,然后是十位要尽量大,从4和3里取.也就是前三位分别取853和764能使乘积最大.但还要保证都是3的倍数,故只能是8532和7641,所⨯.求的乘法算式是853276419.答案:93333334353637383940;1012333435363738394010.答案:36简答:这个图是可以一笔画画出的,最少路程等于街道全程36千米.。

小升初六年级奥数题-20道题(中等难度)

小升初六年级奥数题-20道题(中等难度)

小升初六年级奥数题及答案20道题(中等难度)【题-001】抽屉原理有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

【题-002】牛吃草:(中等难度)一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?【题-003】奇偶性应用:(中等难度)桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。

【题-004】整除问题:(中等难度)用一个自然数去除另一个整数,商40,余数是16.被除数、除数、商数与余数的和是933,求被除数和除数各是多少?【题-005】填数字:(中等难度)请在下图的每个空格内填入1至8中的一个数字,使每行、每列、每条对角线上8个数字都互不相同.【题-006】灌水问题:(中等难度)公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙……的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲……的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲……的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用________小时.【题-007】浓度问题:(中等难度)瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的A、B两种酒精溶液,瓶中的浓度变成了14%.已知A种酒精溶液浓度是B种酒精溶液浓度的2倍,那么A种酒精溶液的浓度是百分之几?【题-008】水和牛奶:(中等难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?【题-009】巧算:(中等难度)计算:【题-010】队形:(中等难度)做少年广播体操时,某年级的学生站成一个实心方阵时(正方形队列)时,还多10人,如果站成一个每边多1人的实心方阵,则还缺少15人.问:原有多少人?【题-011】计算:(中等难度)一个自然数,如果它的奇数位上各数字之和与偶数位上各数字之和的差是11的倍数,那么这个自然数是11的倍数,例如1001,因为1+0=0+1,所以它是11的倍数;又如1234,因为4+2-(3+1)=2不是11的倍数,所以1234不是11的倍数.问:用0、1、2、3、4、5这6个数字排成不含重复数字的六位数,其中有几个是11的倍数?【题-012】分数:(中等难度)某学校的若干学生在一次数学考试中所得分数之和是8250分.第一、二、三名的成绩是88、85、80分,得分最低的是30分,得同样分的学生不超过3人,每个学生的分数都是自然数.问:至少有几个学生的得分不低于60分?某个四位数有如下特点:①这个数加1之后是15的倍数;②这个数减去3是38的倍数;③把这个数各数位上的数左右倒过来所得的数与原数之和能被10整除,求这个四位数.【题-014】行程:(中等难度)王强骑自行车上班,以均匀速度行驶.他观察来往的公共汽车,发现每隔12分钟有一辆汽车从后面超过他,每隔4分钟迎面开来一辆,如果所有汽车都以相同的匀速行驶,发车间隔时间也相同,那么调度员每隔几分钟发一辆车?【题-015】跑步:(中等难度)狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

小学数学六年级奥数《最值问题(1)》练习题(含答案)

小学数学六年级奥数《最值问题(1)》练习题(含答案)

小学数学六年级奥数《最值问题(1)》练习题(含答案)一、填空题1.一把钥匙只能开一把锁.现在有4把钥匙4把锁,但不知哪把钥匙开哪把锁,最多要试 次才能配好全部的钥匙和锁.2.用长和宽分别是4厘米和3厘米的长方形小木块,拼成一个正方形,最少要用这样的木块 块.3.一个一位小数用四舍五入法取近似值精确到万位,记作50000.在取近似值以前,这个数的最大值是 .4.100个自然数,它们的总和是10000,在这些数里,奇数的个数比偶数的个数多,那么这些数里至多有 个偶数.5.975⨯935⨯972⨯( ),要使这个连乘积的最后四个数字都是零.在括号内最小应填 .6.有三个连续自然数,它们依次是12、13、14的倍数,这三个连续自然数中(除13外)是13倍数的那个数最小是 .7.下图九个数中取出三个数来,这三个数都不在同一横行,也不在同一纵行.问:怎样取才能使这三个数之和最大,最大数是 .8.农民叔叔阿根想用20块长2米,宽1.2米的金属网建一个靠墙的长方形鸡窝.为了防止鸡飞出,所建鸡窝的高度不得低于2米,要使鸡窝面积最大,长方形的长和宽分别应是 .9.一个三角形的三条边长是三个两位的连续偶数,它们的末位数字和能被7整除,这个三角形的最大周长等于 .10.农场计划挖一个面积为432m 2的长方形养鱼池,鱼池周围两侧分别有3m 和4m 的堤堰如图所示,要想占地总面积最小,水池的长和宽应为 .二、解答题11.下图中,已知a 、b 、c 、d 、e、f 是不同的自然数,且前面标有两个箭头的每一个数恰等于箭头起点的两数的和(如b =a +d ),那么图中c 最小应为多少?a b cd ef12.唐老鸭与米老鼠进行一万米赛跑,米老鼠的速度是每分钟125米,唐老鸭的速度是每分钟100米.唐老鸭手中掌握着一种迫使米老鼠倒退的电子遥控器,通过这种遥控器发出第n 次指令,米老鼠就以原速度的n ⨯10%倒退一分钟,然后再按原来的速度继续前进,如果唐老鸭想在比赛中获胜,那么它通过遥控器发出指令的次数至少应是多少次?13.某游泳馆出售冬季学生游泳卡,每张240元,使用规定:不记名,每卡每次只限一人,每人只限一次.某班有48名学生,老师打算组织学生集体去游泳,除需购买若干张游泳卡,每次游泳还需包一辆汽车,无论乘坐多少名学生,每次的包车费均为40元.若要使每个同学游8次,每人最少交多少钱?14.某商店需要制作如图所示的工字形架100个,每个由铝合金型材长为2.3米,1.7米,1.3米各一根组装而成.市场上可购得该铝合金型材的原料长为 6.3米.问:至少要买回多少根原材料,才能满足要求(不计损耗)?———————————————答 案——————————————————————1. 6第一把钥匙最坏的情况要试3次,第二把要试2次,第三把要试1次,共计6次.2. 12因4和3的最小公倍数为12,故最少需这样的木块12块.3. 50000.44. 48一共有100个自然数,其中奇数应多于50个,因为这100个自然数的总和是偶数,所以奇数的个数是偶数,至少有52个,因而至多有48个.5. 20因975=39⨯52,935=187⨯5,972=243⨯22,要使其积为1000的倍数,至少应乘以5⨯22=20.6. 1105因为12、13、14的公倍数分别加上12、13、14后才依次是12、13、14倍数的连续自然数,故要求是13的倍数的最小自然数,只须先求12、13、14的最小公倍数为1092,再加上13得1105.7. 20第一横行取6,第二横行取7,第三横行取7.8. 12米,6米.金属网应竖着放,才能使鸡窝高度不低于2米.如图,设长方形的长和宽分别是x 米和y 米,则有x +2y =1.2⨯20=24.长方形的面积为S =xy =()y x 221⨯.因为x 与2y 的和等于24是一个定值,故它们的乘积当它们相等时最大,此时长方形的面积S 也最大,于是有:x =12,y =6.9. 264依题意,末位数字和能被7整除的只有7、14、21等三种.但三个两位的连续偶数相加其和也一定是偶数,故符合题意的只有14.这样三个最大的两位连续偶数.它们的末位数字又能被7整除的,便是90、88、86,它们的和即三角形最大周长为90+88+86=264.10. 24m ,18m如图,设水池边长为xm ,宽为ym ,则有xy =432,占地总面积S =(x +8)(y +6)m 2 于是S =xy +6x +8y +48=6x +8y +480.因6x +8y =48⨯432为定值,故当6x =8y 时,S 最小,此时x =24,y =18.11. 依题意,d 应当取最小值1,那么a 和f 只能一个为2,另一个为4.这样,根据b =a +d ,e =d +f ,b 和e 便只能一个为3,另一个为5,而c =b +e .所以c 最小应为3+5=8.12. 米老鼠跑完全程用的时间为10000÷125=80(分),唐老鸭跑完全程的时 间为10000÷100=100(分).唐老鸭第n 次发出指令浪费米老鼠的时间为n n 1.01125%101251+=⨯⨯+. 当n 次取数为1、2、3、4…13时,米老鼠浪费时间为1.1+1.2+1.3+1.4+…+2.3=22.1(分)大于20分.因为米老鼠早到100-80=20分,唐老鸭要想获胜,必须使米老鼠浪费的时间超过20分钟,因此唐老鸭通过遥控器至少要发13次指令才能在比赛中获胜.13.设一共买了x 张卡,一共游泳y 次,则共有xy =48⨯8=384(人次),总运费为:(240x +40y )元.因240x ⨯40y =240⨯40⨯384是一定值,故当240x =40y ,即y =6x 时和最小,此时可求得x =8,y =48.总用费为240⨯8+40⨯48=3840(元),平均每人最少要交3840÷48=80(元).显然④⑤⑥三种方案损耗较小. ④⑤⑥⑦方案依次切割原材料42根、14根、29根和1根共用原材料42+14+29+1=86(根).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1.
1.有9个同学要进行象棋比赛,他们准备分成两组,不同组的人相互之间只比赛一场,同组的人之间不比赛。

他们一共最多能比赛多少场?
解答:两组人数的乘积即为比赛场数,故最多比赛4×5=20(场) 2.直角三角形斜边长为10cm ,求这个直角三角形面积的最大值。

解答:设直角三角形三边长分别为a ,b ,c ,其中c 为斜边长,根据勾股定理有a 2+ b 2=c 2=100,则当a 2= b 2
=50
时,a 2× b 2
最大,为2500,所以面积a×b÷2最大为25.
3.一个边长为30的正方形,四个角减去四个正方形,剩下部分可以拼成一个无盖长方体,那么所得的长方体容积最大是多少?
解答:假设减去的正方形边长为x ,则拼成的长方体的容积为x (30-2x )(30-2x).由于4x+30-2x+30-2x=60,则当4x=30-2x=60÷3=20时,容积最大,为20×20×20÷4=2000.
4.用1、2、3、4、5、6、7、8、9这九个数字(每个数字仅用一次)组成两个多位数,那么这两个多位数的乘积最大是多少?
解答:先讨论确定两个多位数应为一个四位数和一个五位数。

再确定各个数位上的数字,高位数字越大则乘积越大。

再补上一个0(放在个位,计算出乘积后去掉),根据平均值定理:两个数和一定时,这两个数越接近,乘积越大。

可以得出最大值为:96420×87531÷10=843973902。

5.用1,3,5,7,9这5个数字组成一个三位数ABC 和一个两位数DE ,再用0,2,4,6,8这5个数字组成一个三位数FGH 和一个两位数IJ 。

求算式IJ FGH DE ABC ⨯-⨯的计算结果的最大值。

解答:为使IJ FGH DE ABC ⨯-⨯尽可能大,则要DE ABC ⨯尽可能大,IJ FGH ⨯尽可能小,后面类似例1的第4题,可得到算式的最大值为2046893751⨯-⨯=60483。

例2.
1.如图。

用12⨯和13⨯两种规格的小长方形地板砖铺满的地面,至少需要地板砖多少块?
解答:单块砖的面积越大,所用数量越少。

总面积为5×8=40,40÷3=13……1,故至少需要14块,构造如右图。

2.国际象棋的皇后可以控制她所在的横线、竖线和斜线,图中一个皇后(图中五角星)就把整个33⨯的棋盘控制了。

那么为了控制一个44⨯的棋盘至少要放几个皇后?
解答:4×4的棋盘两条对角线各有4个格,且没有重叠,一个皇后不可能同时控制这两条对角线,故至少需要2个皇后。

构造如下:
3.通过在表达式1÷2÷3中加括号,我们可以得到两个不同的值(1÷2)÷3=
61和1÷(2÷3)=2
3,现在表达式1÷2÷3÷4÷5÷6÷7÷8中加上括号,问我们所能得到的最大值是多少?
解答:添加括号的效果是将其中的“÷”变成“×”,所以将其中的“÷”尽可能多的变成“×”可以使得结果最大,其中第一个“÷”无法改变,所以最大的结果为1÷2×3×4×5×6×7×8=10080,添加括号的方法如下:1÷(2÷3÷4÷5÷6÷7÷8)
4.把14分拆成几个自然数的和,再求出这些自然数的乘积,使得到的积尽可能大,这个乘积是多少?请证明你的结论。

解答: 这个乘积是162.
(1)分拆出的自然数中,不应该有0和1. 否则,将1或0和某个分拆出的自然数相加,则有
11a a +>⨯,00a a +>⨯.
(2)如果分拆出的自然数中,有一个K ≥4,那么可以将K 再分拆成a 和b ,即K a b =+.由(1)
2, 2a b ≥≥,并且()()()1110a b K a b a b a b ⨯-=⨯-+=-⨯--≥.即:新的分拆出的自然数的乘积要大
于或等于原来分拆出的自然数的乘积.
(3)由(1)和(2),需要将14分拆为若干个2和若干个3的和,才能确保这些自然数的乘积最大.因为6=2+2+2=3+3,3×3>2×2×2. 所以,当14=2+3+3+3+3,3×3×3×3×2=162.
5.在1,3,5,……99中选取k 个数,使得它们的和为1949,那么k 的最大值是多少?
解答:显然,选的数越小,可以使选出的数的个数越多,因此考虑选1,3,5,7,…,99中n 个连续奇数之和不超过1949.
由于1+3+5+…+(2n -1)=2
n 1949≤,得
2n 1949≤.
19491936442<=,19492025452>=.
如果选取44个奇数,因为偶数个奇数的和为偶数,所以不可能选取44个奇数,使得它们的和为1949. 因为45个奇数的和不小于202589531=++++ 1949>,所以n 的最大值为43.
因为2025194976-=,且76是偶数,所以至少从1,3,5,…,89中删除两个奇数,并使它们的和为76. 如,去掉1,3,5,…,89中的两个奇数37和39,即选1,3,…,35,41,…,87,89. 易验证,135353940892025761949++++++++=-= .1+3+5+…+35+41+43+…+89=2025-(37+39)=2025-76=1949
6.A 、B 、C 、D 、E 、F 、G 、H 、I 表示9个各不相同的不为零的自然数,这9个数排成一排,如果其中任何五个相邻的数之和都大于40,那么这9个数的和最小是多少?
解答:依题意有A+B+C+D+E ≥41,E+F+G+H+I ≥41
令S= A+B+C+D+E+F+G+H+I
则有S+E≥82,即2S-(A+B+C+D+F+G+H+I)≥82
整理得2S≥82+(A+B+C+D+F+G+H+I)
所以当A+B+C+D+F+G+H+I 最小且等号成立时,2S最小。

A+B+C+D+F+G+H+I≥1+2+3+4+5+6+7+8=36,故2S 最小为82+36=118,S最小为59。

此时E=59-36=23。

构造如下:。

相关文档
最新文档