小学六年级奥数题及答案-经典.doc

合集下载

小学六年级必学奥数题集锦及答案.doc

小学六年级必学奥数题集锦及答案.doc

小学六年级经典必学奥数题集锦及答案工程问题1.甲乙两个水管独自开,注满一池水,别离需求 20 小时,16 小时.丙水管独自开,排一池水要 10 小时,若水池没水,一同翻开甲乙两水管,5 小时后,再翻开排水管丙,问水池注满仍是要多少小时?解:1/20+1/16 =9/80表明甲乙的作业效率9/80 × 5=45/8表0 示 5 小时后进水量1-45/80 =35/80表明还要的进水量35/80 ÷( 9/80-1/10 )=表明3 5还要 35 小时注满答:5 小时后还要 35 小时就能将水池注满。

2.修一条水渠,独自修,甲队需求 20 天完结,乙队需求 30 天完成。

假如两队协作,由于互相施工有影响,他们的作业效率就要降低,甲队的作业效率是原本的五分之四,乙队作业效率只需原本的十分之九。

现在方案 16 天修完这条水渠,且要求两队协作的天数尽或许少,那么两队要协作几天?解:由题意得,甲的工效为 1/20 ,乙的工效为1/30 ,甲乙的协作工效为 1/20*4/5+1/30*9/10 =7/100 ,可知甲乙协作工效 >甲的工效乙的工效。

又由于,要求“两队协作的天数尽或许少”,所以应该让做的快的甲多做,16 天内真实来不及的才应该让甲乙协作完结。

只需这样才干“两队协作的天数尽或许少”。

设协作时刻为 x 天,则甲独做时刻为( 16-x )天1/20* (16-x )+7/100*x =1x=10答:甲乙最短协作 10 天3.一件作业,甲、乙合做需 4 小时完结,乙、丙合做需 5 小时完成。

现在先请甲、丙合做 2 小时后,余下的乙还需做 6 小时完结。

乙独自做完这件作业要多少小时?解:由题意知, 1/表4 示甲乙协作 1 小时的作业量, 1表/5示乙丙协作 1小时的作业量(1/4+1/5 )× 2=9 /表10示甲做了 2 小时、乙做了 4 小时、丙做了2 小时的作业量。

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】

小学六年级奥数题100道及答案_小学六年级奥数练习题及答案【五篇】【第一篇:桥长】一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?求解:火车过桥所用的时间就是2分后5秒=125秒,共行的路程就是(8×125)米,这段路程就是(200米+桥长),所以,桥长为8×125-200=800(米)请问:大桥的长度就是800米。

【第二篇:列车长】一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开到桥至车尾返回桥共须要3分钟。

这列于火车短多少米?解:火车3分钟所行的路程,就是桥长与火车车身长度的和。

(1)火车3分钟行多少米?900×3=2700(米)(2)这列火车长多少米?2700-2400=300(米)highcut综合算式900×3-2400=300(米)答:这列火车长300米。

【第三篇:街道长度】甲、乙、丙三人步行的速度分别是:每分钟甲走90米,乙走75米,丙走60米。

甲、丙从某长街的西头、乙从该长街的东头同时出发相向而行,甲、乙相遇后恰好4分钟乙、丙相遇,那麽这条长街的长度是多少米?答案与解析:甲、乙碰面后4分钟乙、丙碰面,表明甲、乙碰面时乙、丙还差4分钟的路程,即为还差4×(75+60)=540米;而这540米也就是甲、乙碰面时间里甲、丙的路程高,所以甲、乙碰面=540÷(90-60)=18分钟,所以长街短=18×(90+75)=2970米。

【第四篇:相遇次数】甲,乙两人在一条长100米的直路上往复跑步,甲的速度3米/秒,乙的速度2米/秒。

如果他们同时分别从直路的两端启程,当他们走了10分钟后,共碰面多少次?答案与解析:10分钟两人共跑了(3+2)×60×10=3000米3000÷100=30个全程。

我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上)1、3、5、7。

小学六年级奥数题及答案(全)

小学六年级奥数题及答案(全)

小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每若干元,现在每降低3元出售,观众增加一半,收入增加五分之一,一电影票原价多少元?解:设一电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款.解答:解:设乙存款x元,则甲存款是9600-x元,由题意得:(9600-x)(1-40%)x=(1-40%)x+2×120,5760-60%x=60%x+240,60%x+60%x=5760-240,1.2x=5520,x=4600;答:乙的存款4600元.点评:解答此题的关键是根据题意设出未知数,另一个未知数用设出的字母表示,再根据数量关系等式:甲存款的(1-40%)等于乙存款的(1-40%)加上2个120元,列出方程解决问题.4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

(完整word版)六年级奥数题及答案解析

(完整word版)六年级奥数题及答案解析

济南小学六年级奥数题及答案解析:浓度问题1. 浓度问题金規合金的重量是250®.就在水中称重时,重壘减轻了 16S ,卿僉在水中养 重重裱轻存 戡在水中称重童减轻新 求这块合金中金、很各含多少克?【分析】役巧[»克告金中,金有疋克,塑舉M <^0-r )丸 储题惠亠X ) =15*-1校乘法分配律展开! 轉含的项杪到右边:所旳 丄x+15-—芝=16杠1? 1025-16 =丄Y —丄〜10 19 7=二 H*1P0址=19血盯(|_丁=点心2. 浓度应用题乙两只装满硫酸溶液的容器,甲容器中装有浓度为8%的硫酸溶液600千克,乙容器中装有浓度为 40%的硫酸溶液400千克.各取多少千克分别放入对方容器中,才能使这两个容器中的硫酸溶液的浓度一样?由题意知,从甲、乙两容器中各取出一定量的溶液放入对方容器中,最终要达到两容器中溶液的浓度相等,在这个 变化过程中,两容器中溶液的重量并没有改变。

不妨设从甲、乙两容器中各取出硫酸溶液x 千克放入对方容器中,可使甲、乙两容器中硫酸溶液的浓度相等.这时甲容器中硫酸的重量可表示为( 600-x )X 8% + x • 40% =48+ 32%・x.甲容器中溶液的浓AS -I- 32^* 家:eoo乙春器中硫酸旳重呈为〔理0O —富〉-40%^ + x *8?^ =160-32^不艮捣题意歹■!右程彳吊:亠-48 +弓之沁•盟160 — 32^*孟SOO=-400X —240 <1 于1 克O 4答:应从两容器中各取出 240千克溶液放入对方容器中,才能使两容器中硫酸溶液的浓度相同。

上述问题还可以这样考虑:由于交换前后两容器中溶液的重量均没有改变,而交换一定量的硫酸溶液其目的是将原来两容器中溶液的浓度由不同变为相同,而且交换前后两容器内溶液的重量之和也没有改变,根据这个条件我们可以先计算出两容器中的溶液浓度 达到相等时的数值,从而再计算出应交换的溶液的量:甲容器中纯硫酸的重量为 600X 8% =48 (千克);乙容器中纯硫酸的重量为 400X 40% =160 (千克); 两容器中纯硫酸的重量和为 48+160=208千克,硫酸溶液的重量和为 600+400=1000千克。

小学六年级奥数题及答案(三篇)

小学六年级奥数题及答案(三篇)

小学六年级奥数题及答案(三篇)篇一原计划用24个工人挖一定数量的土方,按计划工作5天后,因为调走6人,于是剩下的工人每天比原定工作量多挖1方土才能如期完成任务,原计划每人每天挖土()方。

答案:方法一:调走6人还剩18人,那么18个人还干24个人的活,即3个人干4个人的活,每个人要多干原来的三分之一的活,而多三分之一就是要多挖1方土,所以每个人要挖3方土;方法二:假设每人每天挖x方,完成任务的天数为y天,那么共有24xy方土需要挖,5天内挖了24×5x方土,5天后剩下24x(y-5)方土没挖,这时只有24-6=18人了,则有24x(y-5)=18(x+1)×(y-5),解此不定方程即可。

解:方法一:调走人后每人每天多干原来的几分之几:24÷(24-6)-1=1/3,原计划每人每天挖土的方数:1÷(1/3)=3(方)。

方法二:设每人每天挖x方,完成任务的天数为y天,则共有24xy方土需要挖,5天内挖了24×5x方土,所以24x(y-5)=18(x+1)×(y-5),根据题意得出y必须大于5,所以24x=18x+186x=18x=3答:原计划每人每天挖土3方。

故答案为:3。

篇二甲、乙、丙三人用擂台赛形式进行乒乓球训练,每局2人进行比赛,另1人当裁判。

每一局的输方去当下一局的裁判,而由原来的裁判向胜者挑战。

半天训练结束时,发现甲共打了15局,乙共打了21局,而丙共当裁判5局。

那么整个训练中的第3局当裁判的是_______。

答案:本题是一道逻辑推理要求较高的试题。

首先应该确定比赛是在甲乙、乙丙、甲丙之间进行的。

那么可以根据题目中三人打的总局数求出甲乙、乙丙、甲丙之间的比赛进行的局数。

⑴丙当了5局裁判,则甲乙进行了5局;⑵甲一共打了15局,则甲丙之间进行了15-5=10局;⑶乙一共打了21局,则乙丙之间进行了21-5=16局;所以一共打的比赛是5+10+6=31局。

六年级十道奥数题及答案

六年级十道奥数题及答案

六年级十道奥数题及答案1. 题目一:一个数的3倍加上10等于这个数的5倍减去8,求这个数是多少?答案:设这个数为x,根据题意可得方程:3x + 10 = 5x - 8。

解这个方程,我们可以得到2x = 18,所以x = 9。

2. 题目二:一个班级有45名学生,其中1/3是男生,1/4是女生,剩下的是双胞胎。

求班级中有多少对双胞胎?答案:男生人数为45 * 1/3 = 15人,女生人数为45 * 1/4 = 11.25,但人数不能为小数,所以女生人数为11人。

剩下的人数为45 - 15 - 11 = 19人。

因为双胞胎是两人一组,所以有19 / 2 = 9.5对双胞胎,但双胞胎的对数不能是小数,所以班级中有9对双胞胎。

3. 题目三:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的体积。

答案:长方体的体积是长、宽、高的乘积,即10 * 8 * 6 = 480立方厘米。

4. 题目四:一个数的平方加上它的两倍等于这个数的5倍,求这个数。

答案:设这个数为x,根据题意可得方程:x^2 + 2x = 5x。

简化得到x^2 - 3x = 0,提取x得到x(x - 3) = 0,所以x = 0或x = 3。

5. 题目五:一个数的1/5加上这个数的1/4等于这个数的1/3,求这个数。

答案:设这个数为x,根据题意可得方程:x/5 + x/4 = x/3。

解这个方程,我们可以得到12x + 15x = 20x,即27x = 20x,所以x = 0。

但是题目中通常不涉及0,所以可能是题目有误。

6. 题目六:一个圆的半径是5厘米,求这个圆的周长和面积。

答案:圆的周长是2πr,所以周长为2 * π * 5 = 10π ≈ 31.42厘米。

圆的面积是πr^2,所以面积为π * 5^2 = 25π ≈ 78.54平方厘米。

7. 题目七:一个数的3/4加上另一个数的1/2等于这两个数的和的1/3,求这两个数的和。

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)

六年级奥数题及答案(五篇)六年级奥数题及答案 1某造纸厂在100天里共生产2024吨纸,开始阶段,每天只能生产10吨纸.中间阶段由于改进了技术,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有几天?中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天中间阶段每天的产量:10×2=20吨,最后阶段每天的产量:20×(1+1.5)=50吨,因为在100天里共生产2024吨,*均每天产量:2024÷100=20吨,最后阶段每天可以补开始阶段(50-20=30吨),这样,最后阶段时间与开始阶段时间比是1:3最后阶段时间:(100-13÷2)÷(1+3+3/2)=17天六年级奥数题及答案 2从花城到太阳城的公路长12公里.在该路的2千米处有个铁道路口,是每关闭3分钟又开放3分钟的.还有在第4千米及第6千米有交通灯,每亮2分钟红灯后就亮3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?答案与解析:画出反映交通灯红绿情况的s-t图,可得出小糊涂的行车图像不与实线相交情况下速度最大可以是0.5千米/分钟,此时恰好经过第6千米的红绿灯由红转绿的点,所以他到达太阳城最快需要24分钟.六年级奥数题及答案 3分母不大于60,分子小于6的'最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个);(3)分子是3,分母是4~60,其中非3的倍数有57-57÷3-38(个);(4)分子是4,分母是5~60,其中非2的倍数有56-56÷2-28c个);(5)分子是5,分母是6~60,其中非5的倍数有55-55÷5―44(个).这样,分子小于6,分母不大于60的最简真分数一共有59+29+38+28+44=198(个).六年级奥数题及答案 4甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.⑴乙追上丙需:280(80-72)=35(分钟).⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的*均值,即(80+72)2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+2802)(90-76)=30(分钟).经比较,甲第一次与乙、丙的距离相等需经过30分钟.六年级奥数题及答案 5王师傅驾车从甲地开往乙地交货.如果他往返都以每小时60千米的速度行驶,正好可以按时返回甲地.可是,当到达乙地时,他发现从甲地到乙地的速度只有每小时50千米.如果他想按时返回甲地,他应以多大的速度往回开?答案与解析:本题相当于去的时候速度为每小时50千米,而整个行程的*均速度为每小时60千米,求回来的时候的速度.根据例题中的分析,可以假设甲地到乙地的路程为300千米,那么往返一次需时间__*2=10(小时),现在从甲地到乙地花费了时间__=6(小时),所以从乙地返回到甲地时所用的时间是10-6=4(小时).如果他想按时返回甲地,他应以3004=75(千米/时)的速度往回开.。

(完整word版)小学六年级奥数题50道题及解答(可直接打印)

(完整word版)小学六年级奥数题50道题及解答(可直接打印)

练习(一)姓名1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?4.李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?得分5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,两地相距多少千米?(交换乘客的时间略去不计)6.学校组织两个课外兴趣小组去郊外活动。

第一小组每小时走4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。

多长时间能追上第二小组?7.有甲乙两个仓库,每个仓库平均储存粮食32.5吨。

甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?8.甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。

甲、乙两队每天共修多少米?9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?10.一列火车和一列慢车,同时分别从甲乙两地相对开出。

快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?答案:奥数题解答参考1、想:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)

小学六年级数学奥数题100题附答案(完整版)题目1甲、乙两车分别从A、B 两地同时相向而行,在距A 地80 千米处相遇,相遇后两车继续前进,甲车到达B 地、乙车到达A 地后均立即按原路返回,第二次在距B 地60 千米处相遇。

A、B 两地相距多少千米?答案:第一次相遇时,甲、乙两车共行了A、B 两地的距离,其中甲行了80 千米。

第二次相遇时,甲、乙两车共行了A、B 两地距离的3 倍,则甲车行了80×3 = 240 千米。

此时甲行的路程是一个A、B 两地的距离加上60 千米,所以A、B 两地相距240 - 60 = 180 千米。

题目2一项工程,甲单独做12 天完成,乙单独做18 天完成。

两人合作多少天可以完成这项工程的2/3 ?答案:甲的工作效率为1/12,乙的工作效率为1/18,两人合作的工作效率为1/12 + 1/18 = 5/36 。

完成工程的2/3 需要的时间为2/3 ÷5/36 = 24/5 = 4.8 天。

题目3一个分数,分子与分母的和是68,约分后是8/9,原来这个分数是多少?答案:设分子为8x,分母为9x,则8x + 9x = 68,17x = 68,x = 4 。

分子为8×4 = 32,分母为9×4 = 36,原来的分数是32/36 。

题目4在一个周长为62.8 米的圆形花坛周围铺一条 2 米宽的小路,这条小路的面积是多少平方米?答案:花坛的半径:62.8÷3.14÷2 = 10 米加上小路后的半径:10 + 2 = 12 米小路的面积:3.14×(12²- 10²) = 138.16 平方米题目5有浓度为20%的糖水300 克,要使其浓度变为40%,需要加糖多少克?答案:原来糖水中糖的质量:300×20% = 60 克设加糖x 克,(60 + x)÷(300 + x) = 40% ,解得x = 100 克题目6一本书,第一天看了全书的1/4,第二天看了120 页,这时已看的页数与未看的页数比是2:3,这本书共有多少页?答案:已看的页数占全书的2/(2 + 3) = 2/5第二天看的占全书的2/5 - 1/4 = 3/20全书页数:120÷3/20 = 800 页题目7一个长方体的棱长总和是120 厘米,长、宽、高的比是5:3:2,这个长方体的体积是多少立方厘米?答案:一组长、宽、高的和:120÷4 = 30 厘米长:30×5/(5 + 3 + 2) = 15 厘米宽:30×3/(5 + 3 + 2) = 9 厘米高:30×2/(5 + 3 + 2) = 6 厘米体积:15×9×6 = 810 立方厘米题目8甲、乙两个仓库共存粮90 吨,其中甲仓库的存粮是乙仓库的4/5。

小学六年级奥数题100道及答案

小学六年级奥数题100道及答案

小学六年级奥数题100道及答案Part 1 warm up1.甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?解:那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(60+75)=4860米。

2. 小明每天早晨6:50从家出发,7:20到校,老师要求他明天提早6分钟到校。

如果小明明天早晨还是6:50从家出发,那么,每分钟必须比往常多走25米才能按老师的要求准时到校。

问:小明家到学校多远?(第六届《小数报》数学竞赛初赛题第1题)解:原来花时间是30分钟,后来提前6分钟,就是路上要花时间为24分钟。

这时每分钟必须多走25米,所以总共多走了24×25=600米,而这和30分钟时间里,后6分钟走的路程是一样的,所以原来每分钟走600÷6=100米。

总路程就是=100×30=3000米。

3. 小张与小王分别从甲、乙两村同时出发,在两村之间往返行走(到达另一村后就马上返回),他们在离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇.问他们两人第四次相遇的地点离乙村多远(相遇指迎面相遇)?解:画示意图如下.第二次相遇两人已共同走了甲、乙两村距离的3倍,因此张走了3.5×3=10.5(千米).从图上可看出,第二次相遇处离乙村2千米.因此,甲、乙两村距离是10.5-2=8.5(千米).每次要再相遇,两人就要共同再走甲、乙两村距离2倍的路程.第四次相遇时,两人已共同走了两村距离(3+2+2)倍的行程.其中张走了3.5×7=24.5(千米),24.5=8.5+8.5+7.5(千米).就知道第四次相遇处,离乙村8.5-7.5=1(千米).答:第四次相遇地点离乙村1千米.4. 哥哥有12枚5分硬币,妹妹有10枚2分硬币,哥哥给妹妹几枚5分硬币,两人的钱数相等?解答:5×12=60(分) 2×10=20(分) (60-20)÷2=20(分) 20÷5=4(枚)5.阿香去吃午饭,发现附近的中餐厅有9个,西餐厅有3个,日式餐厅有2个,他准备找一家餐厅吃饭,一共有多少种不同的选择?解答:9+3+2=14(种)6.用400个棋子摆放了5层空心方阵,最内层每边有几个棋子?解答:400÷5=80(个) 80-8-8=64(个) 64÷4+1=17(个)7.用棋子摆方阵恰好摆成每边为20的实心方阵,若改为4层空心方阵,最外层每边应放几枚?解答:20×20=400(个) 400+8×(1+2+3)=448(个)448÷4=112(个) 112÷4+1=29(个)8.一把钥匙只能开一把锁,现有10把钥匙和10把锁,最少要试验多少次就一定能使全部的钥匙和锁相匹配?解答:从最不利的情形考虑。

六年级奥数题及参考答案

六年级奥数题及参考答案

六年级奥数题及参考答案【题目一】题目:一个长方体的长、宽、高分别是10厘米、8厘米和6厘米,求这个长方体的表面积。

【参考答案】长方体的表面积计算公式为:\[ 2 \times (长 \times 宽 + 长\times 高 + 宽 \times 高) \]将题目中给出的长、宽、高代入公式,得:\[ 2 \times (10 \times 8 + 10 \times 6 + 8 \times 6) = 2\times (80 + 60 + 48) = 2 \times 188 = 376 \]所以,这个长方体的表面积是376平方厘米。

【题目二】题目:一个数列的前四项是1,1,2,4,求第五项。

【参考答案】观察数列的规律,可以发现每一项都是前一项的2倍。

因此,第五项应该是第四项的2倍,即:\[ 4 \times 2 = 8 \]所以,第五项是8。

【题目三】题目:一个圆的半径是5厘米,求这个圆的周长和面积。

【参考答案】圆的周长计算公式为:\[ 周长 = 2 \times π \times 半径 \]圆的面积计算公式为:\[ 面积= π \times 半径^2 \]将半径5厘米代入公式,得:周长:\[ 2 \times π \times 5 = 10π \]面积:\[ π \times 5^2 = 25π \]假设π取3.14,那么:周长:\[ 10 \times 3.14 = 31.4 \] 厘米面积:\[ 25 \times 3.14 = 78.5 \] 平方厘米【题目四】题目:一个班级有40名学生,其中男生占60%,女生占40%。

如果班级增加了5名男生,求新的班级中男生和女生的比例。

【参考答案】首先,计算原有男生和女生的数量:男生:\[ 40 \times 60\% = 24 \]女生:\[ 40 \times 40\% = 16 \]班级增加了5名男生后,男生数量变为:\[ 24 + 5 = 29 \]班级总人数变为:\[ 40 + 5 = 45 \]新的班级中男生比例为:\[ \frac{29}{45} \]女生比例为:\[ 1 - \frac{29}{45} = \frac{16}{45} \]【题目五】题目:一个数的1/4加上这个数的1/2等于9/10,求这个数。

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析(精选12篇)

六年级奥数试题及解析〔精选12篇〕假设干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?分析^p :设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的'盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.所以将42分拆成假设干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.解:设原来小球数最少的盒子里装有a只小球,如今增加了b只,由于小聪没有发现有人动过小球和盒子,这说明如今又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.同样,如今另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数.将42分拆成假设干个连续整数的和,因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;又因为42=14×3,故可将42:13+14+15,一共有3个加数;又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.答:一共有7只、4只或3只盒子.点评:解答此题的关键是将问题归结为把42分拆成假设干个连续整数的和.篇8:六年级奥数模拟试题六年级奥数模拟试题一、填空题。

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)

小学六年级奥数题100道及答案解析(完整版)1. 一种商品先提价10%,再降价10%,现价与原价相比()A. 提高了B. 降低了C. 不变D. 无法确定答案:B解析:假设原价为100 元,提价10%后价格为100×(1 + 10%) = 110 元,再降价10%,价格为110×(1 - 10%) = 99 元,所以现价比原价降低了。

2. 一个圆的半径扩大3 倍,它的面积扩大()倍。

A. 3B. 6C. 9D. 27答案:C解析:圆的面积= π×半径²,半径扩大3 倍,面积扩大3²= 9 倍。

3. 甲数的2/3 等于乙数的3/4,甲数()乙数。

A. 大于B. 小于C. 等于D. 无法比较答案:A解析:设甲数×2/3 = 乙数×3/4 = 1,可得甲数= 3/2,乙数= 4/3,3/2 > 4/3,所以甲数大于乙数。

4. 把20 克盐放入200 克水中,盐和盐水的比是()A. 1:10B. 1:11C. 10:1D. 11:1答案:B解析:盐20 克,盐水= 20 + 200 = 220 克,盐和盐水的比是20:220 = 1:115. 一个三角形三个内角的度数比是1:2:3,这个三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定答案:B解析:三个内角分别为180×1/(1 + 2 + 3) = 30°,180×2/(1 + 2 + 3) = 60°,180×3/(1 + 2 + 3) = 90°,是直角三角形。

6. 要反映某地气温变化情况,应绘制()统计图。

A. 条形B. 折线C. 扇形D. 以上都可以答案:B解析:折线统计图能清晰反映数据的变化情况。

7. 一个圆柱和一个圆锥等底等高,它们的体积相差18 立方厘米,圆锥的体积是()立方厘米。

六年级小学奥数题及答案【五篇】

六年级小学奥数题及答案【五篇】

六年级小学奥数题及答案【五篇】把甲的套数看作5份,乙的套数就是6份。

甲获得的利润是80%×5=4份,乙获得的利润是50%×6=3份甲比乙多4-3=1份,这1份就是10套。

所以,甲原来购进了10×5=50套。

【第二篇:两块地植树】甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?答案与解析:总棵数是900+1250=2150棵,每天能够植树24+30+32=86棵需要种的天数是2150÷86=25天甲25天完成24×25=600棵那么乙就要完成900-600=300棵之后,才去帮丙,即做了300÷30=10天之后即第11天从A地转到B地。

【第三篇:车速】一辆车从甲地开往乙地.如果把车速减少10%,那么要比原定时间迟1小时到达,如果以原速行驶180千米,再把车速提升20%,那么可比原定时间早1小时到达.甲、乙两地之间的距离是多少千米?答案与解析:原定时间是1÷10%×(1-10%)=9小时如果速度提升20%行完全程,时间就会提前9-9÷(1+20%)=3/2因为只比原定时间早1小时,所以,提升速度的路程是1÷3/2=2/3所以甲乙两第之间的距离是180÷(1-2/3)=540千米另一种解法原速度:减速度=10:9,所以减时间:原时间=10:9,所以减时间为:1/(1-9/10)=10小时;原时间为9小时;原速度:加速度=5:6,原时间:加时间=6:5,行驶完180千米后,原时间=1/(1/6)=6小时,所以形式180千米的时间为9-6=3小时,原速度为180/3=60千米/时,所以两地之间的距离为60*9=540千米【第四篇:里程碑上的数字】一辆匀速行驶的汽车从北京出发去往深圳,行驶一段时间时张杰看到里程碑上的数字是一个两位数,又过了一小时后张杰又看到另一个里程碑上数字与前面的数字的十位数字与个位数字正好颠倒了,并且发现两个数字的和为10,汽车的速度为 54km/h.你能猜出这个两位数吗?【第五篇:点蜡烛】有两支粗细不同的蜡烛,细蜡烛之长是粗蜡烛之长的2倍,细蜡烛点完需一小时,粗蜡烛点完需两小时.有一次停电,将这两支蜡烛同时点燃,来电时,发现两支蜡烛所剩下的长度一样,问停电多少时间?答案与解析:设:停电X小时,细蜡烛的长度为单位长度2,粗的为1,则细的每小时烧的长度是2,粗的是1/2,依题意列方程:2-X*2=1-X*1/2-2X+X/2=1-2-3/2X=-1X=2/3。

小学六年级奥数题及答案(可直接打印) 图文百度文库

小学六年级奥数题及答案(可直接打印) 图文百度文库

一、拓展提优试题1.如图所示的点阵图中,图①中有3个点,图②中有7个点,图③中有13个点,图④中有21个点,按此规律,图⑩中有个点.2.王老师开车从家出发去A地,去时,前的路程以50千米/小时的速度行驶,余下的路程行驶速度提高20%;返回时,前的路程以50千米/小时的速度行驶,余下的路程行程速度提高32%,结果返回时比去时少用31分钟,则王老师家与A地相距千米.3.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?4.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?5.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.6.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.7.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).8.被11除余7,被7除余5,并且不大于200的所有自然数的和是.9.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是.11.有三杯重量相等的溶液,它们的浓度依次是10%,20%,45%,如果依次将三个杯子中的溶液重量的,,倒入第四个空杯子中,则第四个杯子中溶液的浓度是%.12.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票张.13.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x=.14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.15.小丽做一份希望杯练习题,第一小时做完了全部的,第二小时做完了余下的,第三小时做完了余下的,这时,余下24道题没有做,则这份练习题共有道.16.如图,将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,这根长方体木块原来的体积是立方分米.17.甲、乙两人分别从A、B两地同时出发,相向而行,在C点相遇,若在出发时,甲将速度提高,乙将速度每小时提高10千米,二人依然在C点相遇,则乙原来每小时行千米.18.2015减去它的,再减去余下的,再减去余下的,…,最后一次减去余下的,最后得到的数是.19.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.20.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.21.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是平方厘米.22.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).23.有一口无水的井,用一根绳子测井的深度,将绳对折后垂到井底,绳子的一端高出井口9m;将绳子三折后垂到井底,绳子的一端高出井口2m,则绳长米,井深米.24.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).25.A、B、C、D四个箱子中分别装有一些小球,现将A箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是箱,其中装有小球个.26.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.27.(15分)欢欢、乐乐、洋洋参加希望之星决赛,有200位评委为他们投了票,每位评委只投一票.如果欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,那么欢欢、乐乐、洋洋各得多少票?28.一个两位数除以一位数,所得的商若是最小的两位数,那么被除数最大是.29.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.30.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是.31.如图是根据鸡蛋的三个组成部分的质量绘制的扇形统计图,由图可知,蛋壳重量占鸡蛋重量的%,一枚重60克的鸡蛋中,最接近32克的组成部分是.32.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.33.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.34.对任意两个数x,y规定运算“*”的含义是:x*y=(其中m是一个确定的数),如果1*2=1,那么m=,3*12=.35.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.36.如图所示的“鱼”形图案中共有个三角形.37.已知自然数N的个位数字是0,且有8个约数,则N最小是.38.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.39.若将算式9×8×7×6×5×4×3×2×1中的一些“×”改成“÷”使得最后的计算结果还是自然数,记为N,则N最小是.40.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.【参考答案】一、拓展提优试题1.解:根据分析得出的规律我们可以得到:图⑩中有3+(4+6+8+10+12+14+16+18+20)=3+(4+20)×9÷2=111;故答案为:111.2.解:已知去时的速度为50千米/小时,余下的路程行驶速度是50×(1+20%)=50千米/小时;返回的速度为50千米/小时,余下的路程行驶速度是50×(1+32%)=66千米/小时.设总路程为x千米,得:(x×+x×)﹣(x×+x×)=x﹣x=x=x=330答:王老师家与A地相距330千米.故答案为:330.3.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.4.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.5.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.6.解:==,答:这三个分数中最大的一个是.故答案为:.7.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.8.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.9.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.由题意得方程组,解方程组得,所以△ABC与△DEF的面积和是:AB•CM+DE•FN=×2×8+×5×6=8+15=23.故答案为:23.11.解:依题意可知:设三杯溶液的重量为a.根据浓度=×100%=×100%=20%故答案为:20%12.解:5÷()=5=45(张)答:两人共有邮票 45张.故答案为:45.13.解:设原来的分数x是,则:=则:b=3(c+a)=3c+3a①=则:4c=a+b②①代入②可得:4c=a+3c+3a4c=4a+3c则:c=4a③③代入①可得:b=3c+3a=3×4a+3a=15a所以==即x=.故答案为:.14.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.15.解:24÷(1﹣)÷(1﹣)÷(1﹣)=24÷=60(道)答:这份练习题共有 60道.故答案为:60.16.解:依题意可知:将一根长10米的长方体木块锯成6段,表面积比原来增加了100平方分米,变面积增加了10个面,那么每一个面的面积为100÷10=10平方分米.10米=100分米.体积为:10×100=1000(立方分米).故答案为:100017.解:依题意可知:根据甲乙两人的相遇点相同,那么他们的速度比例是不变的.当甲提高时,乙也同样需要提高,而乙提高的是每小时10千米.即10÷=40千米/小时.故答案为:4018.解:2015×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2015××××…×=1故答案为:1.19.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.20.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.21.解:1×2=2(平方厘米);答:六瓣花形阴影部分的面积是2平方厘米.故答案为:2.22.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.23.解:(9×2﹣2×3)÷(3﹣2),=(18﹣6)÷1,=12÷1,=12(米),(12+9)×2,=21×2,=42(米).故答案为:42,12.24.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.25.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=64个,最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,所以最后一次分配前,D中有小球64﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,所以最后一次分配前,C中有小球64﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球64﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球64﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;答:开始时装有小球最多的是A箱,其中装有33小球个;故答案为:A,33.26.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.27.解:根据欢欢与乐乐所得票数的比是3:2,乐乐与洋洋所得票数的比是6:5,可以求出欢欢、乐乐、洋洋所得票数的比9:6:5,200×=90(票)200×=60(票)200×=50(票)答:欢欢所得票数是90票,乐乐所得票数是60票,洋洋所得票数是50票.28.解:商是10,除数最大是9,余数最大是8,9×10+8=98;被除数最大是98.故答案为:98.29.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:930.解:由每个图形的数字表示该图形所含曲边的数目可得:第三幅图中的阴影部分含有5个曲边,所以阴影部分应填的数字是5,故答案为:5.31.解:(1)1﹣32%﹣53%,=1﹣85%,=15%;答:蛋壳重量占鸡蛋重量的15%.(2)蛋黄重量:60×32%=19.2(克),蛋白重量:60×53%=31.8(克),蛋壳重量:60×15%=9(克),所以最接近32克的组成部分是蛋白.答:最接近32克的组成部分是蛋白.故答案为:15,蛋白.32.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.33.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.34.解:①因为:x*y=(其中m是一个确定的数)且1*2=1所以:=18=m+6m+6=8m+6﹣6=8m=2②3*12===故答案为:2,.35.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.36.解:由一个三角形组成:14个;由两个三角形组成:8个;由三个三角形组成:8个;由四个三角形组成:4个;由六个三角形组成:1个;总共:14+8+8+4+1=35个.故共有35个三角形.故答案为:35.37.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.38.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.39.解:根据分析,先分解质因数9=3×3,8=2×2×2,6=2×3,故有:9×8×7×6×5×4×3×2×1=(3×3)×(2×2×2)×7×(3×2)×5×(2×2)×3×2×1,所以可变换为:9×8×7÷6×5÷4÷3×2×1=70,此时N最小,为70,故答案是:70.40.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.。

(完整版)小学六年级奥数题附答案

(完整版)小学六年级奥数题附答案

小学六年级奥数题1。

某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?2.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?3。

甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。

这时两人钱相等,求乙的存款4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%.再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?5。

小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!"小亮说:“你要是能给我你的1/6,我就比你多2个了。

"小明原有玻璃球多少个?6.搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时。

有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?7。

一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?8.股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6月26日以每月13.86元的价格将这些股票全部卖出,老王卖出这种股票一共赚了多少钱?9.某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2。

8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

小学六年级奥数题及答案[6篇]

小学六年级奥数题及答案[6篇]

小学六年级奥数题及答案[6篇]1.小学六年级奥数题及答案篇一1、有一份稿件,原计划是5小时打出来,实际上只用了4个小时,工作效率提高了百分之几?答案:25%解析:原计划的工作效率是1/5,实际上的工作效率是1/4,提高了(1/4-1/ 5)÷1/5=25%需要多少分钟?2、甲乙两车分别从A、B两地同时出发,相向而行,3小时相遇后,甲掉头返回A地,乙继续前行。

甲到达A地后掉头往B行驶,半小时后和乙相遇,那么从A到B需要多少分钟?答案:432分钟解析:甲行驶2.5小时的路程,乙用了3.5小时。

所以甲乙的速度比为7:5,走相同路程的时间比是5:7。

那么乙从A到B的时间为3×7/5+3=7.2小时,即432分钟。

2.小学六年级奥数题及答案篇二1、据说人的头发不超过20万跟,如果陕西省有3645万人,根据这些数据,你知道陕西省至少有多少人头发根数一样多吗?答案与解析:人的头发不超过20万根,可看作20万个“抽屉”,3645万人可看作3645万个“元素”,把3645万个“元素”放到20万个“抽屉”中,得到3645÷20=182……5根据抽屉原则的推广规律,可知k+1=183答:陕西省至少有183人的头发根数一样多。

2、已知一个正方形的对角线长8米,求这个正方形的面积是多少?答案与解析:①做正方形的另一条对角线。

得到四个完全相同的等腰直角三角形。

②一个等腰直角三角形的面积是:8÷2=4(直角边)4×4÷2=8(平方米)③四个等腰直角三角形的面积,即正方形的面积。

8×4=32(平方米)3.小学六年级奥数题及答案篇三1、125×(17×8)×4=125×8×4×17=1000×68=680002、375×480+6250×48=480×(375+625)=4800003、25×16×125=25×2×8×125=500004、13×99=13×(100-1)=1300-13=12875、75000÷125÷15=75×1000÷125÷15=75÷15×1000÷125=5×8=406、7900÷4÷25=7900÷(4×25)=797、150×40÷50=150÷50×40=3×40=1208、5600÷(25×7)=56×100÷25÷7=56÷7×100÷25=329、210÷42×6=210÷7÷6×6=3010、39600÷25=396×100÷25=396×4=15844.小学六年级奥数题及答案篇四有三块草地,面积分别是5,15,24亩。

word完整版)六年级奥数题及答案

word完整版)六年级奥数题及答案

word完整版)六年级奥数题及答案1996-1995-1994+1993+1992-1991-1990+…+9+8-7-6+5+4-3-2+1=19923.x=64.最大结果是235.积的比是4:16.不同的放法共有18种7.最后剪得的正方形的边长是21毫米8.先到达终点的比后到达终点的快15分9.共有5种填法二、解答题:1.XXX去时用了2小时2.这个长方体的体积是173.甲追上乙需要320秒4.女生中超过85分的比男生中未超过85分的多4人文章整理:原式= (1997-1995) + (1996-1994) + (1993-1991) + (1992-1990) + … + (9-7) + (8-6) + (5-3) + (4-2) + 1 = 2+2+…+2+2因为从1至1997共1997个数,所以从2至1997共1996个数,这1996一定相等。

因此,9A+5B=23,A和B都是自然数。

先试A=1,B=1或B=2或B=3,均不成立。

再试A=2,B=1.因此,只有A=2,B=1时,成立,即:A+B=3.如图,余下的四个圆圈分别用A、B、C、D四个字母来表示,由每一条直线上三个数的关系可知:从①式中知,B比D大2,那么②式可写成:D=(8+D+2)÷2,故D=10,所以,C=(10+12)÷2=11,于是,(8+x)÷2=11,x=14.最大圆面积为:π×32=9π,所以阴影部分面积与最大圆面积之比为:A不能放在第一层,那么A只能放在第二、三、四层,有3种可能情况。

如果第一层放B,不论第二、三、四哪一层放A、C、D也就可以确定3.因此,当第一层放B时,所有可能摆放情况有以下三种:第一层第二层第三层第四层B A D CB D A CB C D A注意:C不能在第三层,D不能在第四层)。

当第一个位置放C或D时,也各有3种可能的摆放方法,因此,不同的放法共有3×3=9种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数题及答案1电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1 ,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1 ,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等2甲乙在银行存款共9600元 ,如果两人分别取出自己存款的40% ,再从甲存款中提120元给乙。

这时两人钱相等 ,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)3由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。

再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60% ,说明此时奶糖占40% ,巧克力是奶糖的60/40=1。

5倍再增加30颗巧克力,巧克力占75% ,奶糖占25% ,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6 ,我就比你多2个了。

”小明原有玻璃球多少个?答案小明说:“你有球的个数比我少1/4!” ,则想成小明的球的个数为4份,则小亮的球的个数为3份4*1/6=2/3 (小明要给小亮2/3份玻璃球)小明还剩:4-2/3=3又1/3(份)小亮现有:3+2/3=3又2/3(份)这多出来的1/3份对应的量为2 ,则一份里有:3*2=6(个)小明原有4份玻璃球,又知每份玻璃球为6个,则小明原有玻璃球4*6=24(个)搬运一个仓库的货物 ,甲需要10小时 ,乙需要12小时 ,丙需要15小时.有同样的仓库A和B ,甲在A仓库、乙在B仓库同时开始搬运货物 ,丙开始帮助甲搬运 ,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2 ,所需时间是答:丙帮助甲搬运3小时 ,帮助乙搬运5小时解本题的关键 ,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化 ,设搬运一个仓库全部工作量为 60.甲每小时搬运 6 ,乙每小时搬运 5 ,丙每小时搬运4三人共同搬完 ,需要60 × 2÷(6+ 5+ 4)= 8(小时)甲需丙帮助搬运(60- 6× 8)÷ 4= 3(小时)乙需丙帮助搬运(60- 5× 8)÷4= 5(小时)一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?答案甲乙丙3人8天完成:5/6-1/3=1/2甲乙丙3人每天完成:1/2÷8=1/16 ,甲乙丙3人4天完成:1/16×4=1/4则甲做一天后乙做2天要做:1/3-1/4=1/12那么乙一天做:[1/12-1/72×3]/2=1/48则丙一天做:1/16-1/72-1/48=1/36则余下的由丙做要:[1-5/6]÷1/36=6天答:还需要6天股票交易中,每买进或卖出一种股票都必须按成交易额的1%和2%分别交纳印花税和佣金(通常所说的手续费)。

老王10月8日以股票10.65元的价格买进一种科技股票3000股,6某书店老板去图书批发市场购买某种图书,第一次购书用100元,按该书定价2.8元出售,很快售完。

第二次购书时,每本的批发价比第一次增多了0.5元,用去150元,所购数量比第一次多10本,当这批书售出4/5时出现滞销,便以定价的5折售完剩余图书。

试问该老板第二次售书是赔钱还是赚钱,若赔,赔多少,若赚,赚多少答案(100+40)/2.8=50本100/50=2 150/(2+0.5)=60本60*80%=48本48*2.8+2.8*50*12-150=1.2 盈利1.2元一件工程原计划40人做,15天完成.如果要提前3天完成,需要增加多少人解: 设需要增加x人(40+x)(15-3)=40*15x=10所以需要增加10了仓库有一批货物,运走的货物与剩下的货物的质量比为2:7.如果又运走64吨,那么剩下的货物只有仓库原有货物的五分之三。

仓库原有货物多少吨?解:第1次运走:2/(2+7)=2/9.64/(1-2/9-3/5)=360吨。

答:原仓库有360吨货物。

育才小学原来体育达标人数与未达标人数比是3:5 ,后来又有60名同学达标,这时达标人数是未达标人数的9/11 ,育才小学共有学生多少人?答案原来达标人数占总人数的3÷(3+5)=3/8现在达标人数占总人数的9/11÷(1+9/11)=9/20育才小学共有学生60÷(9/20-3/8)=800人小王,小李,小张三人做数学练习题,小王做的题数的一半等于小李的1/3,等于小张的1/8,而且小张比小王多做了72道,小王,小张,小李各做多少道?答案设小王做了a道,小李做了b道,小张做了c道由题意1/2a=1/3b=1/8cc-a=72解得a=24 b=36 c=96甲乙二人共同完成242个机器零件。

甲做一个零件要6分钟,乙做一个零件要5分钟。

完成这批零件时,两人各做了多少个零件?答案设甲做了X个,则乙做了(242-X)个6X=5(242-X)X=110242-110=132(个)答:甲做了110个,乙做了132个某工会男女会员的人数之比是3:2 ,分为甲乙丙三组 ,已知甲乙丙三组人数之比是10:8:7 ,甲组中男女比是3:1 ,乙组中男女比是5:3。

求丙组男女人数之比答案设男会员是3N ,则女会员是2N ,总人是:5N甲组有:5N*10/[10+8+7]=2N ,其中:男:2N*3/4=3N/2 ,女:2N*1/4=N/2乙级有:5N*8/25=8/5N ,其中男:8/5N*5/8=N ,女:8/5N*3/8=3/5N丙级有:5N*7/25=7/5N丙级中男有:3N-3N/2-N=N/2 ,女有:2N-N/2-3/5N=9/10N那么丙组中男女之比是:N/2:9/10N=5:9甲乙丙三个村合修一条水渠,修完后,甲乙丙村可灌溉的面积比是8:7:5原来三个村计划按可灌溉的面积比派出劳力,后来因为丙村抽不出劳力,经协商,丙村应抽出的劳力由甲乙两村分担,丙村付给甲乙两村工钱1350元,结果,甲村共派出60人,乙村共派出40人,问甲乙两村各应分得工钱多少元?答案根据甲乙丙村可灌溉的面积比算出总份数:8+7+5=20份每份需要的人数:(60+40)÷20=5人甲村需要的人数:8×5=40人,多出劳力人数:60-40=20人乙村需要的人数:7×5=35人,多出劳力人数:40-35=5人丙村需要的人数:5×5=25人或20+5=25人每人应得的钱数:1350÷25=54元甲村应得的工钱:54×20=1080元乙村应得的工钱:54×5=270元p16619题李明的爸爸经营已个水果店,按开始的定价,每买出1千克水果,可获利0.2元。

后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。

问:每千克水果降价多少元?答案设以前卖出X 降价a 那么0.2X * (1+0.5)=(0.2-a) * 2x则0.1X=2aX a=0.05.哈利.波特参加数学竞赛,他一共得了68分。

评分的标准是:每做对一道得20分,每做错一道倒扣6分。

已知他做对题的数量是做错题的两倍,并且所有的题他都做了,请问这套试卷共有多少道题?解:设哈利波特答对2X题,答错X题20×2X-6X=6840X-6X=6834X=68X=2答对:2×2=4题共有:4+2=6题爸爸妈妈和奶奶乘飞机去旅行,三人所带行李的质量都超过了可免费携带行李的质量,要另付行李费,三人共付了4元,而三人行李共重150千克,如果这些行李让一个人带,那么除了免费部分,应另付行李费8元,求每人可免费携带行李的质量。

答案设可免费携带的重量为x kg ,则:(150-3x)/4=(150-x)/8 //等式两边非免费部分单价相同;解方程:x=30一队少先队员乘船过河 ,如果每船坐15人 ,还剩9人 ,如果每船坐18人 ,刚好剩余1只船 ,求有多少只船?答案解法一:设船数为X ,则(15X+9)/18=X-115X+9=18X-1827=3XX=9答:有9只船。

解法二:(15+9)÷(18-15)=8只船--每船坐18人时坐了8只船8+1=9只船建筑工地有两堆沙子,一堆比2堆多85吨,两堆沙子各用去30吨后,一堆剩的是2堆的2倍,两堆沙子原来各有多少吨?答案设2堆为X吨,则一堆为X+85吨X+85-30=2(X-30)。

相关文档
最新文档