圆周运动习题
圆周运动典型基础练习题大全
1.甲、乙两物体都做匀速圆周运动,其质量之比为1 :2,转动半径之比为1 :2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1 :4B. 2 :3C. 4 :9D. 9 :162.如图所示,有一质量为M的大圆环,半径为R,被一轻杆固定后悬挂在。
点,有"‘夕'两个质量为m的小环(可视为质点),同时从大环两侧的对称位置由静止滑下。
两小厂―-弋环同时滑到大环底部时,速度都为v,则此时大环对轻杆的拉力大小为()(,1A. (2m+2M)gB. Mg一2mv2/R \/C. 2m(g+v2/R)+MgD. 2m(v2/R-g)+Mg 13.下列各种运动中,属于匀变速运动的有()A.匀速直线运动B.匀速圆周运动C.平抛运动D.竖直上抛运动4.关于匀速圆周运动的向心力,下列说法正确的是()A.向心力是指向圆心方向的合力,是根据力的作用效果命名的B.向心力可以是多个力的合力,也可以是其中一个力或一个力的分力C.对稳定的圆周运动,向心力是一个恒力D.向心力的效果是改变质点的线速度大小5. 一物体在水平面内沿半径R = 20cm的圆形轨道做匀速圆周运动,线速度v = 0.2m/s ,那么,它的向心加速度为m/s2 ,它的周期为s。
6.在一段半径为R = 15m的圆孤形水平弯道上,已知弯道路面对汽车轮胎的最大静摩擦力等于车重的u = 0.70倍,则汽车拐弯时的最大速度是______ m/s7.在如图所示的圆锥摆中,已知绳子长度为L ,绳子转动过程中与竖直一可—方向的夹角为0,试求小球做圆周运动的周期。
:"\8如图所示,质量m = 1 kg的小球用细线拴住,线长l=0.5 m,细线所受拉力达到F =18 N时就会被拉断。
当小球从图示位置释放后摆到悬点的正下方时,细线恰好被拉断。
若此时小球距水平地面的高度h = 5 m,重力加速度g =10 m/s2,求小球落小地处到地面上P 点的距离?求落地速度? S点在悬点的正下方)20.如图所示,半径为R,内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同速率进入管内,A 通过最高点C 时,对管壁上部的压力为3mg, B 通过最高点C 时,对管壁下部的压力为0. 75mg.求A 、B 两球落地点间的距离.21、如图所示,将一质量为m 的摆球用长为L 的细绳吊起,上端固定,使摆球在水平面内 做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆。
第六章 圆周运动 章节复习题-2022-2023学年高一下学期物理人教版(2019)必修第二册
第六章圆周运动章节复习题一、单选题(下列各题均有4个选项,其中只有一个是正确的,请将正确选项的字母代号写在答题卷的相应位置,多选、错选或不选,该小题不得分,每小题3分,共24分)1、下列关于圆周运动的说法中正确的是()A.向心加速度的方向始终指向圆心B.匀速圆周运动是匀变速曲线运动C.在匀速圆周运动中,向心加速度是恒定的D.在匀速圆周运动中,线速度和角速度是不变的2、如图,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮半径的2倍,它们之间靠摩擦传动,接触面不打滑。
下列说法正确的是()A.A与B线速度大小相等 B.B与C线速度大小相等C.A的角速度是C的2倍 D.A与B角速度大小相等3、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是()A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受重力和向心力的作用D.摆球A受拉力和重力的作用4、如图四幅图中,做圆周运动的物体,描述正确的是()A.图甲中,汽车通过拱形桥最高点时,车速越大,车对桥面的压力越大B.图乙中,做圆锥摆运动的物体,转速越大,摆线与竖直方向的夹角越大C.图丙中,火车转弯速度较大时,火车内侧的车轮轮缘挤压内轨D.图丁中,洗衣机脱水时衣物附着在桶内壁上,转速越大,衣物所受筒壁的静摩擦力越大5、如图所示,半径为r的圆筒,绕竖直中心轴OO'转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使小物块a不下滑,则圆筒转动的角速度ω至少为()A.grμB.gμ C.grDgrμ6、如图,A、B两小球沿倒置的光滑圆锥内侧在水平面内做匀速圆周运动。
则()A.A球质量大于B球 B.A球线速度大于B球C.A球转动周期小于B球 D.A球向心加速度小于B球7、智能呼啦圈轻便美观,深受大众喜爱,如图甲,腰带外侧带有轨道,将带有滑轮的短杆(大小忽略不计)穿入轨道,短杆的另一端悬挂一根带有配重的轻绳,其简化模型如图乙所示,可视为质点的配重质量为0.5kg,绳长为0.5m,悬挂点P到腰带中心点O的距离为0.2m,水平固定好腰带,通过人体微小扭动,使配重随短杆做水平匀速圆周运动,绳子与竖直方向夹角为θ,运动过程中腰带可看成不动,重力加速度g取10m/s2,下列说法正确的是()A.若使用者觉得锻炼不够充分,决定增大转速,腰带受到的合力变大B.当使用者掌握好锻炼节奏后能够使θ稳定在37°,此时配重的角速度为5rad/s C.使用者使用一段时间后成功减肥,再次使用时将腰带调小,若仍保持转速不变则θ变小D.当用力转动使θ从37°增加到53°时,配重运动的周期变大8、如图,叠放在水平转台上的物体A、B、C都能随转台一起以角速度ω匀速转动,A、B、C 的质量分别为3m、2m、m,A与B、B与转台间的动摩擦因数为μ,C与转台间的动摩擦因数为2μ,A和B、C离转台中心的距离分别为r、1.5r。
(完整版)圆周运动习题及答案
《圆周运动》练习(二)1.如图所示,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是()A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg2.如图所示,一质量为M的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g.当小环滑到大环的最低点时,大环对轻杆拉力的大小为()A.Mg-5mg B.Mg+mgC.Mg+5mg D.Mg+10mg3.如图所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M点出发经P点到达N点,已知弧长MP大于弧长PN,质点由M点运动到P点与从P点运动到N点所用的时间相等.则下列说法中正确的是()A.质点从M到N过程中速度大小保持不变B.质点在这两段时间内的速度变化量大小相等,方向相同C.质点在这两段时间内的速度变化量大小不相等,但方向相同D.质点在M、N间的运动不是匀变速运动4.如图所示,质量相同的钢球①、②分别放在A、B盘的边缘,A、B两盘的半径之比为2∶1,a、b 分别是与A盘、B盘同轴的轮,a、b轮半径之比为1∶2.当a、b两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为()A.2∶1 B.4∶1C.1∶4 D.8∶15.利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图所示,用两根长为L的细线系一质量为m的小球,两线上端系于水平横杆上的A、B两点,A、B两点相距也为L,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为()A.23mg B.3mgC .2.5mg D.73mg26.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( ) A. 5 rad/s B. 3 rad/s C .1.0 rad /s D .0.5 rad/s7.如图所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.8.如图所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求: (1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.9.如图所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R )10.如图所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m /s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内(取重力加速度g =10 m/s 2)?11.半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v 的方向相同,如图所示.若小球与圆盘只碰一次,且落在A点,重力加速度为g,则小球抛出时距O的高度h=________,圆盘转动的角速度大小ω=________.12.一长l=0.80 m的轻绳一端固定在O点,另一端连接一质量m=0.10 kg的小球,悬点O距离水平地面的高度H=1.00 m.开始时小球处于A点,此时轻绳拉直处于水平方向上,如图所示.让小球从静止释放,当小球运动到B点时,轻绳碰到悬点O正下方一个固定的钉子P时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g=10 m/s2.求:(1)当小球运动到B点时的速度大小;(2)绳断裂后球从B点抛出并落在水平地面上的C点,求C点与B点之间的水平距离;(3)若OP=0.6 m,轻绳碰到钉子P时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案1. 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa=kgl;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb = kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b =mω2·2l ,f a <f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω= 2kg 3l 时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误. 2. 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误. 3. 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误. 4. 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误. 5. 答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3T -mg =m v 2232L ③联立①②③得,T =23mg 故A 正确,B 、C 、D 错误. 6. 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.7. 审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围. 解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2 小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l因此钉子所在位置的范围为76l ≤x ≤54l .答案 (1)7mg (2)76l ≤x ≤54l8. 解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m /s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v yv 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为N .则由向心力公式得:N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821 m9. 答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得 v B =2gR ③从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩10. 答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:T +mg sinα=m v 21l ①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°.11. 答案 gR 22v 2 2n πvR(n =1,2,3,…)解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR (n =1,2,3,…)12. 答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s (2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离 x =v B2(H -l )g=0.80 m (3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
高中物理圆周运动练习题
1.关于物体做匀速圆周运动的速度,下列说法中正确的是()A.速度大小和方向都变更 B.速度的大小和方向都不变C.速度的大小不变,方向变更 D.速度的大小变更,方向不变2.一只小狗拉着雪橇在水平冰面上沿着圆弧形的道路匀速行驶,如图所示为雪橇所受的牵引力F与摩擦力的示意图,其中正确的是( )A.B.C.D.3.一个做匀速圆周运动的物体,假如半径不变,而速率增加到原来速率的3倍,其向心力增加了64 N,则物体原来受到的向心力的大小是( )A. 16 N B. 12 N C. 8 N D. 6 N4.下列对圆锥摆的受力分析正确的是( )A. B. C. D.5.如图所示,用细绳系一小球,使小球在水平面内做匀速圆周运动,不计空气阻力,关于小球的受力正确的是( )A.只受重力 B.只受绳子拉力 C.受重力、绳子拉力 D.受重力、绳子拉力和向心力6.如图所示,圆盘上叠放着两个物块A和B,当圆盘和物块绕竖直轴匀速转动时,物块与圆盘始终保持相对静止,则( )A.物块A不受摩擦力作用B.物块B受5个力作用C.当转速增大时,A所受摩擦力增大,B所受摩擦力减小D.A对B的摩擦力方向沿半径指向转轴7.如图所示,质量为m的物块从半径为R的半球形碗边向碗底滑动,滑到最低点时的速度为v,若物块滑到最低点时受到的摩擦力是,则物块与碗的动摩擦因数为( )A. B. C. D.8.如图所示,物块P置于水平转盘上随转盘一起运动,图中c方向沿半径指向圆心,a方向与c方向垂直.当转盘逆时针转动时,下列说法正确的是( )A.当转盘匀速转动时,P受摩擦力方向为cB.当转盘匀速转动时,P不受转盘的摩擦力C.当转盘加速转动时,P受摩擦力方向可能为aD.当转盘减速转动时,P受摩擦力方向可能为b9.如图所示,某物体沿光滑圆弧轨道由最高点滑到最低点过程中,物体的速率渐渐增大,则( )A.物体的合外力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合外力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)10.如图,一圆盘可绕一通过圆心且垂直于盘面的竖直轴转动,在圆盘上放一块橡皮,橡皮块随圆盘一起转动(俯视为逆时针).某段时间圆盘转速不断增大,但橡皮块仍相对圆盘静止,在这段时间内,关于橡皮块所受合力F的方向的四种表示(俯视图)中,正确的是()A. B. C. D.11.一质量为m的物体,沿半径为R的向下凹的半圆形轨道滑行,如图所示,经过最低点时的速度为v,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )A.μ B. C.μm(g+) D.μm(g-)12.如图所示,地球可以看成一个巨大的拱形桥,桥面半径R=6400 ,地面上行驶的汽车重力G=3×104N,在汽车的速度可以达到须要的随意值,且汽车不离开地面的前提下,下列分析中正确的是( )A.汽车的速度越大,则汽车对地面的压力也越大B.不论汽车的行驶速度如何,驾驶员对座椅压力大小都等于3×104NC.不论汽车的行驶速度如何,驾驶员对座椅压力大小都小于他自身的重力D.假如某时刻速度增大到使汽车对地面压力为零,则此时驾驶员会有超重的感觉13.火车在水平轨道上转弯时,若转弯处内外轨道一样高,则火车转弯时( )A.对外轨产生向外的挤压作用B.对内轨产生向外的挤压作用C.对外轨产生向内的挤压作用D.对内轨产生向内的挤压作用14.(多选)匀速圆周运动的向心力公式有多种表达形式,下列表达中正确的是( )A.= B.=2r C.=ω D.=mω2r15.(多选)如图所示,A、B两球穿过光滑水平杆,两球间用一细绳连接,当该装置绕竖直轴′匀速转动时,两球在杆上恰好不发生滑动.若两球质量之比∶=2∶1,则关于A、B两球的下列说法中正确的是( )A.A、B两球受到的向心力之比为2∶1B.A、B两球角速度之比为1∶1C.A、B两球运动半径之比为1∶2D.A、B两球向心加速度之比为1∶216.(多选)如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速渐渐增加时( ).A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2C.随转速渐渐增加,m1先起先滑动D.随转速渐渐增加,m2先起先滑动17.(多选)如图所示,将一质量为m的摆球用长为L的细绳吊起,上端固定,使摆球在水平面内做匀速圆周运动,细绳就会沿圆锥面旋转,这样就构成了一个圆锥摆,下列说法正确的是( )A.摆球受重力、拉力和向心力的作用B.摆球受重力和拉力的作用C.摆球运动周期为2πD.摆球运动的转速为θ18.(多选)如图所示,有一固定的且内壁光滑的半球面,球心为O,最低点为C,有两个可视为质点且质量相同的小球A和B,在球面内壁两个高度不同的水平面内做匀速圆周运动,A球的轨迹平面高于B球的轨迹平面,A、B两球与O点的连线与竖直线间的夹角分别为α=53°和β=37°,则( 37°=0.6)( )A.A、B两球所受支持力的大小之比为4∶3B.A、B两球运动的周期之比为2∶C.A、B两球的角速度之比为2∶D.A、B两球的线速度之比为8∶319.(多选)马路急转弯处通常是交通事故多发地带.如图,某马路急转弯处是一圆弧,当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势.则在该弯道处( )A.路面外侧高、内侧低B.车速只要低于v0,车辆便会向内侧滑动C.车速虽然高于v0,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v0的值变小20.长为L的细线,拴一质量为m的小球,细线上端固定,让小球在水平面内做匀速圆周运动,如图所示,求细线与竖直方向成θ角时:(重力加速度为g)(1)细线中的拉力大小;(2)小球运动的线速度的大小.21.如图所示,有一质量为m1的小球A与质量为m2的物块B通过轻绳相连,轻绳穿过光滑水平板中心的小孔O.当小球A在水平板上绕O点做半径为r的匀速圆周运动时,物块B刚好保持静止.求:(重力加速度为g)(1)轻绳的拉力.(2)小球A运动的线速度大小.22.如图所示,用一根长为l=1 m的细线,一端系一质量为m=1 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为.(g取10 2,结果可用根式表示)求:(1)若要小球离开锥面,则小球的角速度ω0至少为多大.(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大.23.长为L的细线,一端固定于O点,另一端拴一质量为m的小球,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,摆线与竖直方向的夹角为α,求:(1)线的拉力大小;(2)小球运动的线速度的大小;(3)小球运动的周期.答案解析1.【答案】C【解析】匀速圆周运动指速度大小不变的圆周运动,线速度的方向时刻在变,故C正确.2.【答案】C【解析】雪橇运动时所受摩擦力为滑动摩擦力,方向与运动方向相反,与圆弧相切.又因为雪橇做匀速圆周运动时合力充当向心力,合力方向必定指向圆心.综上可知,C项正确.3.【答案】C【解析】依据向心力公式得:F1=m,当速率增加为原来的3倍时有:F2=,由题有:F2-F1=64 N,联立以上三式:64=8·m,m=8 N,解得:F1=8 N,C正确.4.【答案】D【解析】圆锥摆向心力由合外力供应,方向指向圆周运动的圆心,D对.5.【答案】C【解析】该小球在运动中受到重力G和绳子的拉力F,拉力F和重力G的合力供应了小球在水平面上做匀速圆周运到的向心力;向心力是沿半径方向上的全部力的合力,所以受力分析时,不要把向心力包括在内.C正确.6.【答案】B【解析】物块A受到的摩擦力充当向心力,A错;物块B受到重力、支持力、A对物块B的压力、A对物块B沿半径向外的静摩擦力和圆盘对物块B沿半径向里的静摩擦力,共5个力的作用,B正确;当转速增大时,A、B所受摩擦力都增大,C错误;A对B的摩擦力方向沿半径向外,D错误.故选B.7.【答案】B【解析】物块滑到最低点时受竖直方向的重力、支持力和水平方向的摩擦力三个力作用,依据牛顿其次定律得-=m,又=μ,联立解得μ=,选项B正确.8.【答案】A【解析】转盘匀速转动时,物块P所受的重力和支持力平衡,摩擦力供应其做匀速圆周运动的向心力,故摩擦力方向指向圆心O点,A项正确,B项错误;当转盘加速转动时,物块P做加速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a方向的切向力,使线速度大小增大,两方向的合力即摩擦力可能指向b,C项错误;当转盘减速转动时,物块P做减速圆周运动,不仅有沿c方向指向圆心的向心力,还有指向a相反方向的切向力,使线速度大小减小,两方向的合力即摩擦力可能指向d,D项错误.9.【答案】D【解析】物体做加速曲线运动,合力不为零,A错;物体做速度大小变更的圆周运动,合力不指向圆心,合力沿半径方向的分力等于向心力,合力沿切线方向的分力使物体速度变大,即除在最低点外,物体的速度方向与合力的方向夹角为锐角,合力与速度不垂直,B、C错,D对.10.【答案】C【解析】橡皮块做加速圆周运动,合力不指向圆心,但肯定指向圆周的内侧;由于做加速圆周运动,动能不断增加,故合力与速度的夹角小于90°;11.【答案】C【解析】在最低点由向心力公式得:-=m,得=+m,又由摩擦力公式有=μ=μ(+m),C选项正确.12.【答案】C【解析】对汽车探讨,依据牛顿其次定律得:-=m,则得=-m,可知,速度v越大,地面对汽车的支持力越小,则汽车对地面的压力也越小,故A错误.由上可知,汽车和驾驶员都具有向下的加速度,处于失重状态,驾驶员对座椅压力大小都小于他自身的重力,而驾驶员的重力未知,所以驾驶员对座椅压力范围无法确定,故B错误,C正确.假如某时刻速度增大到使汽车对地面压力为零,驾驶员具有向下的加速度,处于失重状态,故D错误.故选C.13.【答案】A【解析】火车在水平轨道上转弯时,做圆周运动,须要有力供应指向圆心的向心力,即方向指向内侧,此时外轨对火车的压力供应向心力,依据牛顿第三定律可知,火车对外轨产生向外的压力作用.故选A.14.【答案】【解析】15.【答案】【解析】两球的向心力都由细绳的拉力供应,大小相等,两球都随杆一起转动,角速度相等,A错,B对.设两球的运动半径分别为、,转动角速度为ω,则ω2=ω2,所以运动半径之比为∶=1∶2,C正确.由牛顿其次定律F=可知∶=1∶2,D正确.16.【答案】【解析】m1的角速度设为ω1,则有ω1r甲=ω2r乙,所以有ω1∶ω2=1∶2,选项A错.m1的向心加速度a1=2rω,同理m2的向心加速度a2=rω,所以发觉相对滑动前a1∶a2=1∶2,选项B对.随着转盘渐渐滑动,静摩擦力供应向心力,当起先发生相对滑动时,对m1有μm1g=m12rω1′2,可得此时角速度ω1′=,此时m2的角速度ω2′=2ω1′=2,此时,m2的向心力m2rω2′2=2μm2g,此时已经大于最大静摩擦力μm2g,即m2早于m1起先发生相对滑动,选项C错,D对.17.【答案】【解析】摆球受重力和绳子拉力两个力的作用,设摆球做匀速圆周运动的周期为T,则:θ=,r=θ,T=2π,转速n==,B、C正确,A、D错误.18.【答案】【解析】小球在运动的过程中受到的合力沿水平方向,且恰好供应向心力,依据平行四边形定则得,=,则==,故A正确.小球受到的合外力:θ=,r=θ,解得T=,则==,故B错误.依据公式θ=mω2r,所以ω==,所以==,故C正确.θ=m,得v=,则==,故D正确.19.【答案】【解析】当汽车行驶的速率为v0时,汽车恰好没有向马路内外两侧滑动的趋势,即不受静摩擦力,此时由重力和支持力的合力供应向心力,所以路面外侧高、内侧低,选项A正确;当车速低于v0时,须要的向心力小于重力和支持力的合力,汽车有向内侧运动的趋势,受到的静摩擦力向外侧,并不肯定会向内侧滑动,选项B错误;当车速高于v0时,须要的向心力大于重力和支持力的合力,汽车有向外侧运动的趋势,静摩擦力向内侧,速度越大,静摩擦力越大,只有静摩擦力达到最大以后,车辆才会向外侧滑动,选项C正确;由θ=m 可知,v0的值只与路面与水平面的夹角和弯道的半径有关,与路面的粗糙程度无关,选项D 错误.20.【答案】(1)(2)【解析】(1)小球受重力与细线的拉力两力作用,如图所示,竖直方向:θ=,故拉力=.(2)小球做圆周运动的半径r=θ,向心力=θ=θ,而=m,故小球的线速度v=.21.【答案】1)m2g(2)【解析】(1)物块B受力平衡,故轻绳拉力=m2g(2)小球A做匀速圆周运动的向心力等于轻绳拉力,依据牛顿其次定律m2g=m1解得v=.22.【答案】1)(2)2【解析】(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,如图所示.小球做匀速圆周运动的轨迹圆在水平面内,故向心力水平,运用牛顿其次定律与向心力公式得:θ=mωθ解得:ω=即ω0==.(2)当细线与竖直方向成60°角时,由牛顿其次定律与向心力公式得:α=mω′2α解得:ω′2=,即ω′==2.23.【答案】对小球受力分析如图所示,小球受重力和线的拉力作用,这两个力的合力α指向圆心,供应向心力,由受力分析可知,细线拉力=.由=m=mω2R=m=α,半径R=α,得v==α,T=2π.【解析】。
高考物理圆周运动经典练习题
圆周运动水平圆周运动【例题】如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑动。
当圆筒的角速度增大以后,下列说法正确的是( D )A 、物体所受弹力增大,摩擦力也增大了B 、物体所受弹力增大,摩擦力减小了C 、物体所受弹力和摩擦力都减小了D 、物体所受弹力增大,摩擦力不变【例题】如图为表演杂技“飞车走壁”的示意图.演员骑摩托车在一个圆桶形结构的内壁上飞驰,做匀速圆周运动.图中a 、b 两个虚线圆表示同一位演员骑同一辆摩托,在离地面不同高度处进行表演的运动轨迹.不考虑车轮受到的侧向摩擦,下列说法中正确的是( B )A .在a 轨道上运动时角速度较大B .在a 轨道上运动时线速度较大C .在a 轨道上运动时摩托车对侧壁的压力较大D .在a 轨道上运动时摩托车和运动员所受的向心力较大【例题】长为L 的细线,拴一质量为m 的小球,一端固定于O 点,让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图所示,当摆线L 与竖直方向的夹角是α时,求:(1)线的拉力F ;(2)小球运动的线速度的大小; (3)小球运动的角速度及周期。
★解析:做匀速圆周运动的小球受力如图所示,小球受重力mg 和绳子的拉力F 。
因为小球在水平面内做匀速圆周运动,所以小球受到的合力指向圆心O 1,且是水平方向。
由平行四边形法则得小球受到的合力大小为mgtanα,线对小球的拉力大小为F=mg/cosα由牛顿第二定律得mgtanα=mv 2/r 由几何关系得r=Lsinα 所以,小球做匀速圆周运动线速度的大小为an sin v gLt αα=a bLα O小球运动的角速度小球运动的周期2cos 2L T gπαπ==ω点评:在解决匀速圆周运动的过程中,弄清物体圆形轨道所在的平面,明确圆心和半径是一个关键环节,同时不可忽视对解题结果进行动态分析,明确各变量之间的制约关系、变化趋势以及结果涉及物理量的决定因素。
1、竖直平面内:(1)、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即rmv mg 2临界=⇒rg =临界υ(临界υ是小球通过最高点的最小速度,即临界速度)。
高中物理必修二第6章_圆周运动练习题含答案
高中物理必修二第6章圆周运动练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某活动中有个游戏节目,在水平地面上画一个大圆,甲、乙两位同学(图中用两个点表示)分别站在圆周上两个位置,两位置的连线为圆的一条直径,如图所示,随着哨声响起,他们同时开始按图示方向沿圆周追赶对方.若甲、乙做匀速圆周运动的速度大小分别为v1和v2,经时间t乙第一次追上甲,则该圆的直径为()A.t(v2−v1)πB.2t(v2−v1)πC.t(v1+v2)πD.2t(v1+v2)π2. 如图所示,光滑水平面上,小球在绳拉力作用下做匀速圆周运动,若小球运动到P 点时,绳突然断裂,小球将()A.将沿轨迹Pa做离心运动B.将沿轨迹Pb做离心运动C.将沿轨迹Pc做离心运动D.将沿轨迹Pd做离心运动3. 如图所示,用长为l的细绳拴着质量为m的小球在竖直平面内做圆周运动,则下列说法中正确的是()A.小球在圆周最高点时所受的向心力一定为小球的重力B.小球在最高点时绳子的拉力可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为零D.小球过最低点时绳子的拉力一定等于小球重力4. 如图所示,一个小球绕圆心O做匀速圆周运动,已知圆周半径为r,该小球运动的角速度大小为ω,则它运动线速度的大小为()A.ωrB.ωr C.ω2rD.ωr25. 关于做圆周运动的物体,下列说法中正确的是()A.所受合力一定指向圆心B.汽车通过凹形桥时处于超重状态C.汽车水平路面转弯时由重力提供向心力D.物体做离心运动是因为物体运动过慢6. 下列关于离心运动的说法错误的是()A.汽车转弯时限制速度,铁路转弯处轨道的外轨高于内轨都是为了更好地做离心运动B.脱水机的脱水原理是对离心原理的应用C.游乐场中高速转动磨盘把人甩到边缘上去是属于离心现象D.把低轨道卫星发射发射到高轨道上去,需要加速,是应用了离心原理7.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细线相连的质量相等的两个物体A和B,它们与盘面间的动摩擦因数相同.当匀速转动的圆盘转速恰为两物体刚好未发生滑动时的转速,烧断细绳,则两物体的运动情况将是()A.两物体沿切线方向滑动B.两物体沿半径方向滑动,离圆盘圆心越来越远C.两物体仍随圆盘一起做匀速圆周运动,不发生滑动D.物体A仍随圆盘一起做匀速圆周运动,物体B发生滑动,离圆盘圆心越来越远8. 如图所示,一偏心轮绕O点做匀速转动.偏心轮边缘上A、B两点的()A.线速度大小相同B.角速度大小相同C.向心加速度大小相同D.向心加速度方向相同9. 下列关于圆周运动的说法正确的是()=k,公式中的k值对所有行星和卫星都相等A.开普勒行星运动的公式R3T2B.做匀速圆周运动的物体,其加速度一定指向圆心C.在绕地做匀速圆周运动的航天飞机中,宇航员对座椅产生的压力大于自身重力D.相比较在弧形的桥底,汽车在弧形的桥顶行驶时,陈旧的车轮更不容易爆胎10. 甲、乙做匀速圆周运动的物体,它们的半径之比为3:1,周期之比是1:2,则()A.甲与乙的线速度之比为1:3B.甲与乙的线速度之比为6:1C.甲与乙的角速度之比为6:1D.甲与乙的角速度之比为1:211. 请对下列实验探究与活动进行判断,说法正确的题后括号内打“√”,错误的打“×”.(1)如图甲所示,在“研究滑动摩擦力的大小”的实验探究中,必须将长木板匀速拉出________(2)如图乙所示的实验探究中,只能得到平抛运动在竖直方向的分运动是自由落体运动,而不能得出水平方向的运动是匀速直线运动________(3)如图丙所示,在“研究向心力的大小与质量、角速度和半径之间的关系”的实验探究中,采取的主要物理方法是理想实验法________.12. 物体以4m/s的速度在半径为8m的水平圆周上运动,它的向心加速度是________m/s2,如果物体的质量是5kg,则需要________N的向心力才能维持它在圆周上的运动.13. 如图所示,A、B为啮合传动的两齿轮,已知R A=2R B,则A、B两轮边缘上两点角速度之比ωA:ωB=________,向心加速度之比a A:a B=________.14. 某中学的高一同学在学习了圆周运动的知识后,设计了一个课外探究性的课题,名称为:快速测量自行车的骑行速度.自行车的结构如图所示,他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度.经过骑行,他得到如下的数据:在时间t秒内踏脚板转动的圈数为N,那么脚踏板转动的角速度=________;为了推算自行车的骑行速度,这位同学还测量自行车的半径为R,计算了牙盘的齿数为m,飞轮齿数为n,则自行车骑行速度的计算公式可用以上已知数据表示为v=________.15. 一质点做半径为1m的匀速圆周运动,在1s的时间内转过30∘,则质点的角速度为________,线速度为________,向心加速度为________.16. 如图所示,在“用圆锥摆验证向心力表达式”的实验中,若测得小球质量为m,圆半径为r,小球到悬点大竖直高度为ℎ,则小球所受向心力大小为________.17. 汽车过平直桥、拱形桥、凹形桥,分别画出受力分析示意图并列出方程.18. 摩托车手在水平地面转弯时为了保证安全,将身体及车身倾斜,车轮与地面间的动摩擦因数为μ,车手与车身总质量为M,转弯半径为R.为不产生侧滑,转弯时速度应不大于________;设转弯、不侧滑时的车速为v,则地面受到摩托车的作用力大小为________.19. 自行车的大齿轮、小齿轮、后轮是相互关联的三个转动部分,三个轮子的半径不一样,它们的边缘有三个点分别为A、B、C,如图所示,当自行车运动时A、B、C三点中角速度最小的是________,向心加速度最大的是________.20. 某兴趣小组用如图甲所示的装置与传感器结合验证向心力表达式.实验时用手拨动旋臂产生圆周运动,力传感器和光电门固定在实验器上,实时测量角速度和向心力.(1)电脑通过光电门测量挡光杆通过光电门的时间,并由挡光杆的宽度d、挡光杆通过光电门的时间Δt、挡光杆做圆周运动的半径r自动计算出砝码做圆周运动的角速度,则其计算角速度的表达式为________.(2)图乙中取①②两条曲线为相同半径、不同质量下向心力与角速度的关系图线,由图可知.曲线①对应的砝码质量________(填“大于”或“小于”)曲线②对应的砝码质量.21. 如图所示,竖直平面内粗糙水平轨道AB与光滑半圆轨道BC相切于B点,一质量m1=1kg的小滑块P(视为质点)在水平向右的力F作用下,从A点以v0=0.5m/s的初速度滑向B点,当滑块P滑到AB正中间时撤去力F,滑块P运动到B点时与静止在B点的质量m2=2kg的小滑块Q(视为质点)发生弹性碰撞(碰撞时间极短),碰撞后小滑块Q恰好能滑到半圆轨道的最高点C,并且从C点飞出后又恰好落到AB的中点,小滑块P恰好也能回到AB的中点.已知半圆轨道半径R=0.9m,重力加速度g=10m/s2,求:(1)与Q碰撞前的瞬间,小滑块P的速度大小;(2)力F所做的功.22. 如图所示,长为L的轻绳下端连着质量为m的小球,上端悬于天花板上。
《圆周运动》练习题 (附解析)
在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。
一、选择题1.下列有关洗衣机中脱水筒的脱水原理的说法正确的是( )A.水滴受离心力作用而背离圆心方向甩出B.水滴受到向心力,由于惯性沿切线方向甩出C.水滴受到的离心力大于它受到的向心力,而沿切线方向甩出D.水滴与衣服间的附着力小于它所需要的向心力,于是水滴沿切线方向甩出2.关于铁道转弯处内外铁轨间的高度关系,下列说法中正确的是( )A.内、外轨一样高,以防列车倾倒造成翻车事故B.因为列车在转弯处有向内倾倒的可能,故一般使内轨高于外轨,以防列车翻倒C.外轨比内轨略高,这样可以使列车顺利转弯,减少车轮与铁轨的挤压D.以上说法均不正确3.在世界一级方程式锦标赛中,赛车在水平路面上转弯时,常常在弯道上冲出跑道,其原因是( )A.是由于赛车行驶到弯道时,运动员未能及时转动方向盘造成的B.是由于赛车行驶到弯道时,没有及时加速造成的C.是由于赛车行驶到弯道时,没有及时减速造成D.是由于在弯道处汽车受到的摩擦力比在直道上小造成的4.在光滑的轨道上,小球滑下经过圆弧部分的最高点A时,恰好不脱离轨道,此时小球受到的作用力是( )A.重力、弹力和向心力B.重力和弹力C.重力和向心力D.重力5.用长为L的细绳拴着质量为m的小球在竖直平面内做圆周运动,正确的说法是( )A.小球在圆周最高点时所受的向心力一定为重力B.小球在最高点时绳子的拉力有可能为零C.若小球刚好能在竖直平面内做圆周运动,则其在最高点的速率为0D.小球过最低点时绳子的拉力一定大于小球的重力6.在高速公路的拐弯处,路面建造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧的要高一些,路面与水平面间的夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,θ应等于( )A.sin θ=B.tan θ=C.sin 2θ=D.cot θ=7.长为l的轻杆,一端固定一个小球,另一端固定在光滑的水平轴上,使小球在竖直面内做圆周运动,关于最高点的速度v,下列说法正确的是( )A.v的极小值为B.v由零逐渐增大,向心力也增大C.当v由逐渐增大时,杆对小球的弹力逐渐增大D.当v由逐渐减小时,杆对小球的弹力逐渐增大二、非选择题8.一根长l=0.625 m的细绳,一端拴一质量m=0.4 kg 的小球,使其在竖直平面内绕绳的另一端做圆周运动,g取10 m/s2,求:(1)小球通过最高点时的最小速度;(2)若小球以速度v=3.0 m/s通过圆周最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动?参考答案1.D [根据离心运动的特点知,水滴的离心现象是由于水滴与衣服间的附着力小于水滴运动所需要的向心力,即提供的向心力不足,所以水滴沿切线方向甩出,正确选项为D.]2.C [铁道转弯处外轨比内轨略高,从而使支持力的水平方向分力可提供一部分向心力,以减少车轮与铁轨的挤压避免事故发生,C对,A、B、D错.]3.C [赛车在水平弯道上行驶时,摩擦力提供向心力,而且速度越大,需要的向心力越大,如不及时减速,当摩擦力不足以提供向心力时,赛车就会做离心运动,冲出跑道,故C正确.]4.D [小球在最高点恰好不脱离轨道时,小球受轨道的弹力为零,而重力恰好提供向心力,向心力并不是小球受到的力,而是根据力的作用效果命名的,故D正确,A、B、C均错误.]5.BD [设在最高点小球受的拉力为F1,最低点受到的拉力为F2,当在最高点v1>时,则F1+mg=m,即向心力由拉力F1与mg的合力提供,A错;当v1=时,F1=0,B对;v1=为球经过最高点的最小速度,即小球在最高点的速率不可能为0,C错;在最低点,F2-mg=m,F2=mg+m,所以经最低点时,小球受到绳子的拉力一定大于它的重力,D对.]6.B[当车轮与路面的横向摩擦力等于零时,汽车受力如图所示,则有:Nsin θ=m,Ncos θ=mg,解得:tan θ=,故B正确.]7.BCD [由于是轻杆,即使小球在最高点速度为零,小球也不会掉下来,因此v 的极小值是零;v由零逐渐增大,由F=可知,F也增大,B对;当v=时,F==mg,此时杆恰对小球无作用力,向心力只由其自身重力来提供;当v由增大时,则=mg+F′F′=m-mg,杆对球的力为拉力,且逐渐增大;当v由减小时,杆对球为支持力.此时,mg-F′=,F′=mg-,支持力F′逐渐增大,杆对球的拉力、支持力都为弹力,所以C、D也对,故选B、C、D.]8.(1)2.5 m/s(2)1.76 N 平抛运动解析(1)小球通过圆周最高点时,受到的重力G=mg必须全部作为向心力F向,否则重力G中的多余部分将把小球拉进圆内,而不能实现沿竖直圆周运动.所以小球通过圆周最高点的条件应为F向≥mg,当F向=mg时,即小球受到的重力刚好全部作为通过圆周最高点的向心力,绳对小球恰好没有力的作用,此时小球的速度就是通过圆周最高点的最小速度v0,由向心力公式有:mg=m解得:G=mg=mv0== m/s=2.5 m/s.(2)小球通过圆周最高点时,若速度v大于最小速度v0,所需的向心力F向将大于重力G,这时绳对小球要施加拉力F,如图所示,此时有F+mg=m解得:F=m-mg=(0.4×-0.4×10) N=1.76 N若在最高点时绳子突然断了,则提供的向心力mg小于需要的向心力m,小球将沿切线方向飞出做离心运动(实际上是平抛运动).。
第六章 圆周运动复习题 -2022-2023学年高一下学期物理人教版(2019)必修第二册
圆周运动复习题(一)1.关于匀速圆周运动,下列说法中正确的是()A.匀速圆周运动就是匀速运动B.匀速圆周运动的线速度不变C.匀速圆周运动的向心加速度不变D.匀速圆周运动实质是变加速度的曲线运动2.如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况正确的是()A.受重力、支持力B.受重力、支持力和指向圆心的摩擦力C.受重力、支持力、向心力、摩擦力D.向心力、摩擦力3.如图所示,A、B两点分别位于大、小轮的边缘上,C点位于大轮半径的中点,大轮的半径是小轮的2倍,他们之间靠摩擦传动,接触面上没有滑动.下列说法正确的是()A.A、B、C三点的线速度大小关系是V A>V B>V CB.A、B、C三点的角速度大小关系是ωA=ωC<ωBC.A、B、C三点的向心加速度大小关系是a B>a A>a CD.以上说法均不正确4.如图所示,细绳的一端固定,另一端系一小球,让小球在竖直面内做圆周运动,关于小球运动到P点时的加速度方向,下列图中可能的是()A.B.C.D.5.如图所示,水平转台上放着A、B、C三个物体,质量分别为2m、m、m,离转轴的距离分别为R、R、2R,与转台间的摩擦因数相同,转台旋转时,下列说法中,正确的是()A.若三个物体均未滑动,A物体的向心加速度最大B.若三个物体均未滑动,B物体受的摩擦力最大C.转速增加,A物比B物先滑动D.转速增加,C物先滑动6.如图所示,“旋转秋千”中的两个座椅A、B质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是()A.A与B的线速度大小相等B.A与B的角速度相等C.A与B的向心加速度大小相等D.悬挂A、B的缆绳与竖直方向的夹角相等7.中国高铁是具有自主核心技术的“中国造”,随“一带一路”走出国门.在高速铁路弯道设计中,外轨略高于内轨,当列车以规定速度运行时,刚好不侧向挤压轨道,则()A.当列车的速度大于规定速度时将侧向挤压内轨B.当列车的速度大于规定速度时将侧向挤压外轨C.当列车的速度小于规定速度时将侧向挤压外轨D.当列车的速度小于规定速度时不侧向挤压轨道8.如图所示,放于竖直面内的光滑金属细圆环半径为R,质量为m的带孔小球穿于环上,同时有一长为R的细绳一端系于球上,另一端系于圆环最低点,绳的最大拉力为2mg.当圆环以角速度ω绕竖直直径转动时,发现小球受三个力作用.则ω可能为()A.3B.C.D.9.如图将悬线拉至水平无初速度释放,当小球到达最低点时,细线被一个与悬点在同一竖直线上的小钉B挡住,比较悬线被挡住前后瞬间()A.小球的动能不变B.小球的向心加速度变小C.小球的角速度变大D.悬线的张力变小10.A、B两质量相同的质点被用轻质细线悬挂在同一点O,在同一水平面上做匀速圆周运动,如图所示,则()A.A的角速度一定比B的角速度大B.A的线速度一定比B的线速度大C.A的加速度一定比B的加速度大D.A所受细线的拉力一定比B所受的细线的拉力大11.如图所示,小物块位于放于地面的半径为R的半球的顶端,若给小物块以水平的初速度v时物块对半球刚好无压力,则下列说法正确的是()A.小物块立即离开球面做平抛运动B.小物块落地时水平位移为RC.小物块沿球面运动D.物块落地时速度的方向与地面成45°角12.如图所示光滑管形圆轨道半径为R(管径远小于R),小球a、b大小相同,质量均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()A.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg B.当v=时,小球b在轨道最高点对轨道无压力C.速度v至少为,才能使两球在管内做圆周运动D.只要v≥,小球a对轨道最低点的压力比小球b对轨道最高点的压力大6mg13.如图所示,一半径为r圆筒绕其中心轴以角速度ω匀速转动,圆筒内壁上紧靠着一个质量为m的物体与圆筒一起运动,相对筒无滑动.若已知筒与物体之间的摩擦因数为μ,试求:(1)物体所受到的摩擦力大小(2)筒内壁对物体的支持力.14.如图所示,有一长为L的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在竖直面内做完整的圆周运动.已知水平地面上的C 点位于O点正下方,且到O点的距离为1.9L,重力加速度为g,不计空气阻力.(1)求小球通过最高点A时的速度v A;(2)若小球通过最低点B时,细线对小球的拉力T恰好为小球重力的6倍,且小球经过B点的瞬间让细线断裂,求小球落地点到C点的距离.15.如图所示,半径R=0.9m的光滑的半圆轨道固定在竖直平面内,直径AC竖直,下端A与光滑的水平轨道相切.一个质量m=1kg的小球沿水平轨道从A端以V A=3m/s的速度进入竖直圆轨道,后小球恰好能通过最高点C.不计空气阻力,g取10m/s2.求:(1)小球刚进入圆周轨道A点时对轨道的压力为多少?(2)小球从C点离开轨道后的落地点到A点的距离为多少?16.如图所示装置可绕竖直轴O′O转动,可视为质点的小球A与两细线连接后分别系于B、C两点,当细线AB沿水平方向绷直时,细线AC与竖直方向的夹角θ=37°.已知小球的质量m=1kg,细线AC长L=1m,(重力加速度取g=10m/s2,sin37°=0.6)(1)若装置匀速转动时,细线AB刚好被拉直成水平状态,求此时的角速度ω1.(2)若装置匀速转动的角速度ω2=rad/s,求细线AB和AC上的张力大小T AB、T AC.参考答案1.D2.B3.C4.D5.D6.B7.B8.B9. AC 10.BCD 11.AB 12.BD13.解:物体做匀速圆周运动,合力指向圆心;对物体受力分析,受重力、向上的静摩擦力、指向圆心的支持力,如图其中重力mg与静摩擦力f平衡,故有:f=mg支持力N提供向心力,由牛顿第二定律可得:N=mω2R;答:(1)物体所受到的摩擦力大小为mg(2)筒内壁对物体的支持力为mω2R.【点评】本题中要使静摩擦力与重力平衡,角速度要大于某一个临界值,即重力不能大于最大静摩擦力!14.解:(1)小球恰好能做完整的圆周运动,则小球通过A点时细线的拉力为零,根据向心力公式有:mg=m解得:V A=;(2)小球在B点时根据牛顿第二定律有:T﹣mg=m小球运动到B点时细线断裂,小球做平抛运动,有:竖直方向:1.9L﹣L=gt2水平方向:x=v B t=×=3L答:(1)小球在最高点的速度为;(2)小球落地点到C点的距离3L.【点评】小球在竖直面内圆周运动一般会和机械能守恒或动能定理结合考查,要注意临界值的应用及正确列出机械能的表达式.15.解:(1)在A点,根据向心力公式得:N﹣mg=m解得:N=60N根据牛顿第三定律得:小球对轨道的压力为60N(2)小球恰好能通过最高点C,则在C点只有重力提供向心力,mg=m解得:v C=3m/s小球从C点抛出后做平抛运动,则t=s=0.6s所以x=v C t=1.8m16.解:(1)当细线AB刚好被拉直,则AB的拉力为零,靠AC的拉力和重力的合力提供向心力,根据牛顿第二定律有:,解得.(2)若装置匀速转动的角速度ω2=rad/s,竖直方向上有:T AC cos37°=mg,水平方向上有:,代入数据解得T AC=12.5N,T AB=2.5N.答:(1)此时的角速度为rad/s.(2)细线AB和AC上的张力大小T AB、T AC分别为2.5N、12.5N.【点评】解决本题的关键知道小球向心力的来源,抓住临界状态,结合牛顿第二定律进行求解.如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R的圆周运动,以下说法正确的是()A.小球过最高点时,杆所受的弹力可以等于零B.小球过最高点时的最小速度为C.小球过最高点时,杆对球的作用力可以与球所受重力方向相反D.小球过最高点时,杆对球作用力一定与小球所受重力方向相反【考点】4A:向心力;37:牛顿第二定律.【专题】521:牛顿第二定律在圆周运动中的应用.【分析】轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,在最高点和最低点时物体的重力与杆对球的作用力的合力作为向心力.【解答】解:A、当小球在最高点恰好只有重力作为它的向心力的时候,此时球对杆没有作用力,所以A正确.B、轻杆带着物体做圆周运动,只要物体能够到达最高点就可以了,所以速度可以为零,所以B错误.C、小球在最高点时,如果速度恰好为,则此时恰好只有重力作为它的向心力,杆和球之间没有作用力,如果速度小于,重力大于所需要的向心力,杆就要随球由支持力,方向与重力的方向相反,如果速度大于,向心力大于重力,杆对小球的作用力跟重力相同,所以C正确,D错误.故选:AC。
圆周运动经典习题(带详细答案)
1. 在观看双人花样滑冰表演时,观众有时会看到女运动员被男运动员拉着离开冰面在空中做水平方向的匀速圆周运动.已知通过目测估计拉住女运动员的男运动员的手臂和水平冰面的夹角约为45°,重力加速度为g=10 m/s2,若已知女运动员的体重为35 k g,据此可估算该女运动员()A.受到的拉力约为350 2 N B.受到的拉力约为350 NC.向心加速度约为10 m/s2D.向心加速度约为10 2 m/s2图4-2-11解析:本题考查了匀速圆周运动的动力学分析.以女运动员为研究对象,受力分析如图.根据题意有G=mg=350 N;则由图易得女运动员受到的拉力约为350 2 N,A正确;向心加速度约为10 m/s2,C正确.答案:AC2.中央电视台《今日说法》栏目最近报道了一起发生在湖南长沙某区湘府路上的离奇交通事故.家住公路拐弯处的张先生和李先生家在三个月内连续遭遇了七次大卡车侧翻在自家门口的场面,第八次有辆卡车冲进李先生家,造成三死一伤和房屋严重损毁的血腥惨案.经公安部门和交通部门协力调查,画出的现场示意图如图4-2-12所示.交警根据图示作出以下判断,你认为正确的是()A.由图可知汽车在拐弯时发生侧翻是因为车做离心运动B.由图可知汽车在拐弯时发生侧翻是因为车做向心运动C.公路在设计上可能内(东)高外(西)低D.公路在设计上可能外(西)高内(东)低图4-2-12解析:由题图可知发生事故时,卡车在做圆周运动,从图可以看出卡车冲入民宅时做离心运动,故选项A正确,选项B错误;如果外侧高,卡车所受重力和支持力提供向心力,则卡车不会做离心运动,也不会发生事故,故选项C正确.答案:AC3. (2010·湖北部分重点中学联考)如图4-2-13所示,质量为m的小球置于正方体的光滑盒子中,盒子的边长略大于球的直径.某同学拿着该盒子在竖直平面内做半径为R的匀速圆周运动,已知重力加速度为g,空气阻力不计,要使在最高点时盒子与小球之间恰好无作用力,则()A.该盒子做匀速圆周运动的周期一定小于2πR gB.该盒子做匀速圆周运动的周期一定等于2πR gC.盒子在最低点时盒子与小球之间的作用力大小可能小于2mg D.盒子在最低点时盒子与小球之间的作用力大小可能大于2mg图4-2-13解析:要使在最高点时盒子与小球之间恰好无作用力,则有mg =m v 2R,解得该盒子做匀速圆周运动的速度v =gR ,该盒子做匀速圆周运动的周期为T =2πR v =2πR g.选项A 错误,B 正确;在最低点时,盒子与小球之间的作用力和小球重力的合力提供小球运动的向心力,由F -mg =m v 2R,解得F =2mg ,选项C 、D 错误.答案:B 4.图示所示, 为某一皮带传动装置.主动轮的半径为r 1,从动轮的半径为r 2.已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑.下列说法正确的是( )A .从动轮做顺时针转动B .从动轮做逆时针转动C .从动轮的转速为r 1r 2nD .从动轮的转速为r 2r 1n解析:本题考查的知识点是圆周运动.因为主动轮顺时针转动,从动轮通过皮带的摩擦力带动转动,所以从动轮逆时针转动,选项A 错误B 正确;由于通过皮带传动,皮带与轮边缘接触处的速度相等,所以由2πnr 1=2πn 2r 2n 为频率,2πn为角速度,得从动轮的转速为n 2=nr 1r 2,选项C 正确D 错误.答案:BC 5.质量为m 的石块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果摩擦力的作用使得石块的速度大小不变,如图4-2-17所示,那么( )A .因为速率不变,所以石块的加速度为零B .石块下滑过程中受的合外力越来越大C .石块下滑过程中受的摩擦力大小不变D .石块下滑过程中的加速度大小不变,方向始终指向球心图4-2-17解析:由于石块做匀速圆周运动,只存在向心加速度,大小不变,方向始终指向球心,D 对,A 错.由F 合=F 向=ma 向知合外力大小不变,B 错,又因石块在运动方向(切线方向)上合力为零,才能保证速率不变,在该方向重力的分力不断减小,所以摩擦力不断减小,C 错.答案:D6.2008年4月28日凌晨,山东境内发生两列列车相撞事故,造成了大量人员伤亡和财产损失.引发事故的主要原因是其中一列列车转弯时超速行驶.如图4-2-18所示,是一种新型高速列车,当它转弯时,车厢会自动倾斜,提供转弯需要的向心力;假设这种新型列车以360 k m/h 的速度在水平面内转弯,弯道半径为1.5 k m ,则质量为75 k g 的乘客在列车转弯过程中所受到的合外力为( )A .500 NB .1 000 NC .500 2 ND .0图4-2-18解析:360 k m/h =100 m/s ,乘客在列车转弯过程中所受的合外力提供向心力F =m v 2r=75×10021.5×103N =500 N. 答案:A7.如图4-2-19甲所示,一根细线上端固定在S 点,下端连一小铁球A ,让小铁球在水平面内做匀速圆周运动,此装置构成一圆锥摆(不计空气阻力).下列说法中正确的是( )A .小球做匀速圆周运动时,受到重力、绳子的拉力和向心力作用B .小球做匀速圆周运动时的角速度一定大于g l(l 为摆长) C .另有一个圆锥摆,摆长更大一点,两者悬点相同,如图4-2-19乙所示,如果改变两小球的角速度,使两者恰好在同一水平面内做匀速圆周运动,则B 球的角速度大于A 球的角速度D .如果两个小球的质量相等,则在图乙中两条细线受到的拉力相等图4-2-19解析:如下图所示,小铁球做匀速圆周运动时,只受到重力和绳子的拉力,而向心力是由重力和拉力的合力提供,故A 项错误.根据牛顿第二定律和向心力公式可得:mg tan θ=mlω2sin θ,即ω=g /l cos θ.当小铁球做匀速圆周运动时,θ一定大于零,即cos θ一定小于1,因此,当小铁球做匀速圆周运动时角速度一定大于g /l ,故B 项正确.设点S 到点O 的距离为h ,则mg tan θ=mhω2tan θ,即ω=g /h ,若两圆锥摆的悬点相同,且两者恰好在同一水平面内做匀速圆周运动时,它们的角速度大小一定相等,即C 项错误.如右上图所示,细线受到的拉力大小为F T =mg cos θ,当两个小球的质量相等时,由于θA <θB ,即cos θA >cos θB ,所示A 球受到的拉力小于B 球受到的拉力,进而可以判断两条细线受到的拉力大小不相等,故D 项错误.答案:B8.汽车甲和汽车乙质量相等,以相等速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧.两车沿半径方向受到的摩擦力分别为Ff 甲和Ff 乙.以下说法正确的是( )A .Ff 甲小于Ff 乙B .Ff 甲等于Ff 乙C .Ff 甲大于Ff 乙D .Ff 甲和Ff 乙大小均与汽车速率无关解析:本题重点考查的是匀速圆周运动中向心力的知识.根据题中的条件可知,两车在水平面做匀速圆周运动,则地面对车的摩擦力来提供其做圆周运动的向心力,则F 向=f ,又有向心力的表达式F 向=m v 2r,因为两车的质量相同,两车运行的速率相同,因此轨道半径大的车的向心力小,即摩擦力小,A 正确.答案:A9. 在高速公路的拐弯处,通常路面都是外高内低.如图4-2-20所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于( )A. gRh LB. gRh dC. gRL hD. gRd h图4-2-20解析:考查向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二定律:F 向=m v 2R ,tan θ=h d ,解得汽车转弯时的车速v =gRh d,B 对. 答案:B10.如图4-2-24所示,一个竖直放置的圆锥筒可绕其中心OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半.内壁上有一质量为m 的小物块随圆锥筒一起做匀速转动,则下列说法正确的是( )A .小物块所受合外力指向O 点B .当转动角速度ω=2gH R时,小物块不受摩擦力作用 C .当转动角速度ω>2gH R时,小物块受摩擦力沿AO 方向 D .当转动角速度ω<2gH R时,小物块受摩擦力沿AO 方向图4-2-24解析:匀速圆周运动物体所受合外力提供向心力,指向物体圆周运动轨迹的圆心,A 项错;当小物块在A 点随圆锥筒做匀速转动,且其所受到的摩擦力为零时,小物块在筒壁A 点时受到重力和支持力的作用,它们的合力提供向心力,设筒转动的角速度为ω,有:mg tan θ=mω2·R 2,由几何关系得:tan θ=H R ,联立以上各式解得ω=2gH R,B 项正确;当角速度变大时,小物块所需向心力增大,故摩擦力沿AO 方向,其水平方向分力提供部分向心力,C 项正确;当角速度变小时,小物块所需向心力减小,故摩擦力沿OA 方向,抵消部分支持力的水平分力,D 项错.答案:BC如图4-2-25所示,一水平光滑、距地面高为h 、边长为a 的正方形MNPQ 桌面上,用长为L 的不11.如图4-2-25所示,一水平光滑、距地面高为h 、边长为a 的正方形MNPQ 桌面上,用长为L 的不可伸长的轻绳连接质量分别为m A 、m B 的A 、B 两小球,两小球在绳子拉力的作用下,绕绳子上的某点O 以不同的线速度做匀速圆周运动,圆心O 与桌面中心重合,已知m A =0.5 k g ,L =1.2 m ,L AO =0.8 m ,a =2.1 m ,h =1.25 m ,A 球的速度大小v A =0.4 m/s ,重力加速度g 取10 m/s 2,求:(1)绳子上的拉力F 以及B 球的质量m B ;(2)若当绳子与MN 平行时突然断开,则经过1.5 s 两球的水平距离;(与地面撞击后。
物理生活中的圆周运动练习题20篇含解析
物理生活中的圆周运动练习题20篇含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,在水平桌面上离桌面右边缘3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F =1.0N 作用于铁球,作用一段时间后撤去。
铁球继续运动,到达水平桌面边缘A 点飞出,恰好落到竖直圆弧轨道BCD 的B 端沿切线进入圆弧轨道,碰撞过程速度不变,且铁球恰好能通过圆弧轨道的最高点D .已知∠BOC =37°,A 、B 、C 、D 四点在同一竖直平面内,水平桌面离B 端的竖直高度H =0.45m ,圆弧轨道半径R =0.5m ,C 点为圆弧轨道的最低点,求:(取sin37°=0.6,cos37°=0.8)(1)铁球运动到圆弧轨道最高点D 点时的速度大小v D ;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小F C ;(计算结果保留两位有效数字) (3)铁球运动到B 点时的速度大小v B ; (4)水平推力F 作用的时间t 。
【答案】(1)铁球运动到圆弧轨道最高点D 5;(2)若铁球以v C =5.15m/s 的速度经过圆弧轨道最低点C ,求此时铁球对圆弧轨道的压力大小为6.3N ;(3)铁球运动到B 点时的速度大小是5m/s ; (4)水平推力F 作用的时间是0.6s 。
【解析】 【详解】(1)小球恰好通过D 点时,重力提供向心力,由牛顿第二定律可得:2Dmv mg R=可得:D 5m /s v =(2)小球在C 点受到的支持力与重力的合力提供向心力,则:2Cmv F mg R-=代入数据可得:F =6.3N由牛顿第三定律可知,小球对轨道的压力:F C =F =6.3N(3)小球从A 点到B 点的过程中做平抛运动,根据平抛运动规律有:2y 2gh v = 得:v y =3m/s小球沿切线进入圆弧轨道,则:35m/s 370.6y B v v sin ===︒(4)小球从A 点到B 点的过程中做平抛运动,水平方向的分速度不变,可得:3750.84/A B v v cos m s =︒=⨯=小球在水平面上做加速运动时:1F mg ma μ-=可得:218/a m s =小球做减速运动时:2mg ma μ=可得:222/a m s =-由运动学的公式可知最大速度:1m v a t =;22A m v v a t -= 又:222m m A v v vx t t +=⋅+⋅ 联立可得:0.6t s =2.如图所示,水平长直轨道AB 与半径为R =0.8m 的光滑14竖直圆轨道BC 相切于B ,BC 与半径为r =0.4m 的光滑14竖直圆轨道CD 相切于C ,质量m =1kg 的小球静止在A 点,现用F =18N 的水平恒力向右拉小球,在到达AB 中点时撤去拉力,小球恰能通过D 点.已知小球与水平面的动摩擦因数μ=0.2,取g =10m/s 2.求: (1)小球在D 点的速度v D 大小; (2)小球在B 点对圆轨道的压力N B 大小; (3)A 、B 两点间的距离x .【答案】(1)2/D v m s = (2)45N (3)2m 【解析】 【分析】 【详解】(1)小球恰好过最高点D ,有:2Dv mg m r=解得:2m/s D v = (2)从B 到D ,由动能定理:2211()22D B mg R r mv mv -+=- 设小球在B 点受到轨道支持力为N ,由牛顿定律有:2Bv N mg m R-=N B =N联解③④⑤得:N =45N (3)小球从A 到B ,由动能定理:2122B x Fmgx mv μ-= 解得:2m x =故本题答案是:(1)2/D v m s = (2)45N (3)2m 【点睛】利用牛顿第二定律求出速度,在利用动能定理求出加速阶段的位移,3.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤4.如图所示,水平转台上有一个质量为m 的物块,用长为2L 的轻质细绳将物块连接在转轴上,细绳与竖直转轴的夹角θ=30°,此时细绳伸直但无张力,物块与转台间动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力.物块随转台由静止开始缓慢加速转动,重力加速度为g ,求:(1)当转台角速度ω1为多大时,细绳开始有张力出现; (2)当转台角速度ω2为多大时,转台对物块支持力为零;(3)转台从静止开始加速到角速度3ω=.【答案】(1)1gLμω=(2)233g Lω=(3)132mgL ⎛ ⎝【解析】 【分析】 【详解】(1)当最大静摩擦力不能满足所需要向心力时,细绳上开始有张力:212sin mg m L μωθ=⋅代入数据得1gLμω=(2)当支持力为零时,物块所需要的向心力由重力和细绳拉力的合力提供22tan 2sin mg m L θωθ=⋅代入数据得233g Lω=(3)∵32ωω>,∴物块已经离开转台在空中做圆周运动.设细绳与竖直方向夹角为α,有23tan 2sin mg m L αωα=⋅代入数据得60α=︒转台对物块做的功等于物块动能增加量与重力势能增加量的总和即231(2sin 60)(2cos302cos60)2W m L mg L L ω=⋅+-o o o 代入数据得:1(3)2W mgL =【点睛】本题考查牛顿运动定律和功能关系在圆周运动中的应用,注意临界条件的分析,至绳中出现拉力时,摩擦力为最大静摩擦力;转台对物块支持力为零时,N=0,f=0.根据能量守恒定律求转台对物块所做的功.5.三维弹球()3DPinball 是Window 里面附带的一款使用键盘操作的电脑游戏,小王同学受此启发,在学校组织的趣味运动会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1m kg =的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 进入水平桌面BC ,从C 点水平抛出.已知半圆型轨道OA 和AB 的半径分别为0.2r m =,0.4R m =,BC 为一段长为 2.0L m =的粗糙水平桌面,小弹珠与桌面间的动摩擦因数为0.4μ=,放在水平地面的矩形垫子DEFG 的DE 边与BC 垂直,C 点离垫子的高度为0.8h m =,C 点离DE 的水平距离为0.6x m =,垫子的长度EF 为1m ,210/.g m s =求:()1若小弹珠恰好不脱离圆弧轨道,在B 位置小弹珠对半圆轨道的压力;()2若小弹珠恰好不脱离圆弧轨道,小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离;()3若小弹珠从C 点水平抛出后不飞出垫子,小弹珠被弹射装置弹出时的最大初速度.【答案】(1)6N (2)0.2m (3)26/m s 【解析】 【分析】(1)由牛顿第二定律求得在A 点的速度,然后通过机械能守恒求得在B 点的速度,进而由牛顿第二定律求得支持力,即可由牛顿第三定律求得压力;(2)通过动能定理求得在C 点的速度,即可由平抛运动的位移公式求得距离;(3)求得不飞出垫子弹珠在C 点的速度范围,再通过动能定理求得初速度范围,即可得到最大初速度. 【详解】(1)若小弹珠恰好不脱离圆弧轨道,那么对弹珠在A 点应用牛顿第二定律有2Amv mg R=, 所以,2/A v gR m s ==;那么,由弹珠在半圆轨道上运动只有重力做功,机械能守恒可得:2211222B A mv mv mgR =+,所以,2425/B A v v gR m s =+=; 那么对弹珠在B 点应用牛顿第二定律可得:弹珠受到半圆轨道的支持力26BN mv F mg N R=+=,方向竖直向上;故由牛顿第三定律可得:在B 位置小弹珠对半圆轨道的压力6N N F N ==,方向竖直向下;(2)弹珠在BC 上运动只有摩擦力做功,故由动能定理可得:221122C B mgL mv mv μ-=-,所以,2/C v m s ==;设小弹珠从C 点水平抛出后落入垫子时距左边缘DE 的距离为d ,那么由平抛运动的位移公式可得:212h gt =,0.8C x d v t v m +===, 所以,0.2d m =;(3)若小弹珠从C 点水平抛出后不飞出垫子,那么弹珠做平抛运动的水平距离0.6 1.6m s m ≤≤;故平抛运动的初速度'C s v t== 所以,1.5/'4/C m s v m s ≤≤;又有弹珠从O 到C 的运动过程只有重力、摩擦力做功,故由动能定理可得:()2201122'22C mg R r mgL mv mv μ--=-; 所以,0/v s ==,0//s v s≤≤,所以小弹珠被弹射装置弹出时的最大初速度为/s ; 【点睛】经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解.6.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R7.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =8.三维弹球(DPmb1D 是Window 里面附带的一款使用键盘操作的电脑游戏,小明同学受此启发,在学校组织的趣味班会上,为大家提供了一个类似的弹珠游戏.如图所示,将一质量为0.1kg 的小弹珠(可视为质点)放在O 点,用弹簧装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =5m 的粗糙水平面,与一倾角为45°的斜面CD 相连,圆弧OA 和AB 的半径分别为r =0.49m ,R =0.98m ,滑块与BC 段的动摩擦因数为μ=0.4,C 点离地的高度为H =3.2m ,g 取10m/s 2,求(1)要使小弹珠恰好不脱离圆弧轨道运动到B 点,在B 位置小滑块受到半圆轨道的支持力的大小;(2)在(1)问的情况下,求小弹珠落点到C 点的距离?(3)若在斜面中点竖直立一挡板,在不脱离圆轨道的前提下,使得无论弹射速度多大,小弹珠不是越不过挡板,就是落在水平地面上,则挡板的最小长度d 为多少?【答案】44.1,(2) 6.2m ;(3) 0.8m 【解析】 【详解】(1)弹珠恰好通过最高点A 时,由牛顿第二定律有:mg =m 2Av r从A 点到B 点由机械能守恒律有:mg×2R =221122B A mv mv 在B 点时再由于牛顿第二定律有:F N ﹣mg =m 2Bv R联立以上几式可得:F N =5.5N ,v B 44.1m/s ,(2)弹珠从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点 则水平方向:x =v′B t 竖直方向:y =H =212gt 又:x =y 解得:v′B =4m/s而v B >v′B =4m/s ,弹珠将落在水平地面上, 弹珠做平抛运动竖直方向:H =212gt ,得t =0.8s 则水平方向:x =v B t 421025故小球落地点距c 点的距离:s =22x H + 解得:s =6.2m(3)临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:v′B =4m/s则从C 点至挡板最高点过程中水平方向:x'=v′B t' 竖直方向:y′=2H ﹣d =212gt ' 又:x'=2H 解得:d =0.8m9.如图所示为某款弹射游戏示意图,光滑水平台面上固定发射器、竖直光滑圆轨道和粗糙斜面AB ,竖直面BC 和竖直靶板MN .通过轻质拉杆将发射器的弹簧压缩一定距离后释放,滑块从O 点弹出并从E 点进人圆轨道,绕转一周后继续在平直轨道上前进,从A 点沿斜面AB 向上运动,滑块从B 点射向靶板目标(滑块从水平面滑上斜面时不计能量损失).已知滑块质量5m g =,斜面倾角37θ=︒,斜面长25L cm =,滑块与斜面AB 之间的动摩擦因数0.5μ=,竖直面BC 与靶板MN 间距离为d ,B 点离靶板上10环中心点P 的竖直距离20h cm =,忽略空气阻力,滑块可视为质点.已知sin370.6,37cos 0.8︒︒==,取210/g m s =,求:(1)若要使滑块恰好能够到达B 点,则圆轨道允许的最大半径为多大?(2)在另一次弹射中发现滑块恰能水平击中靶板上的P 点,则此次滑块被弹射前弹簧被压缩到最短时的弹性势能为多大? (结果保留三位有效数字)(3)若MN 板可沿水平方向左右移动靠近或远高斜面,以保证滑块从B 点出射后均能水平击中靶板.以B 点为坐标原点,建立水平竖直坐标系(如图) ,则滑块水平击中靶板位置坐标(),x y 应满足什么条件?【答案】(1)0.1R m = (2) 24.0310J p E -=⨯ (3)38y x =,或38y x =,或83x y = 【解析】 【详解】(1)设圆轨道允许的半径最大值为R 在圆轨道最高点:2mv mg R= 要使滑块恰好能到达B 点,即:0B v =从圆轨道最高点至B 点的过程:21sin 2cos 02mgL mgR mgL mv θμθ-+-=-代入数据可得0.1R m =(2)滑块恰能水平击中靶板上的P 点,B 到P 运动的逆过程为平抛运动 从P 到B :t =y gt =v3sin y v v θ=代入数据可得:10m/s 3B v =从弹射至点的过程:21sin cos 02B Ep mgL mgL mv θμθ--=- 代入数据可得:24.0310J Ep -=⨯(3)同理根据平抛规律可知:1tan 372y x =︒ 即38y x = 或38y x = 或83x y =10.如图所示,光滑圆弧的圈心为O ,半径3m R =,圆心角53θ=︒,C 为圆弧的最低点,C 处切线方向水平,与一足够长的水平面相连.从A 点水平抛出一个质量为0.3kg 的小球,恰好从光滑圆弧的B 点的切线方向进人圆弧,进人圆弧时无机械能损失.小球到达圆弧的最低点C 时对轨道的压力为7.9N ,小球离开C 点进人水平面,小球与水平面间的动摩擦因数为0.2.(不计空气阻力,g 取210m/s ,sin530.8︒=,cos530.6︒=),求:(1)小球到达圆弧B 点速度的大小; (2)小球做平抛运动的初速度0v ; (3)小球在水平面上还能滑行多远.【答案】(1)5m/s B v =;(2)03m/s v =;(3)12.25x m = 【解析】 【详解】(1)对C 点小球受力分析,由牛顿第二定律可得:2Cv F mg m R-=解得7m /s c v =从B 到C 由动能定理可得:2211(1)22c B mgR cos mv mv θ-=- 解得:5m /s B v =(2)分解B 点速度0cos 3m /s B v v θ==(3)由C 至最后静止,由动能定理可得:2102c mgx mv μ-=-解得12.25m x =。
圆周运动练习题
圆周运动练习题圆周运动练习题圆周运动是我们在日常生活中经常会遇到的一种运动形式。
从行星绕太阳的运动到地球绕自转轴的运动,都可以看作是圆周运动。
本文将通过一些练习题来帮助读者更好地理解和应用圆周运动的相关概念和公式。
练习题1:地球自转速度计算地球自转一周的时间为24小时,求地球自转的角速度。
解析:角速度是指单位时间内角度的变化量。
地球自转一周的角度为360度,对应的时间为24小时。
因此,地球自转的角速度为360度/24小时,即15度/小时。
练习题2:行星公转速度计算某行星绕太阳公转一周的时间为365天,求该行星的公转角速度。
解析:与地球自转不同,行星的公转是绕太阳运动。
行星公转一周的角度为360度,对应的时间为365天。
将时间换算为小时,365天乘以24小时,即为8760小时。
因此,该行星的公转角速度为360度/8760小时。
练习题3:舞蹈演员的旋转速度某舞蹈演员在表演中以每分钟2圈的速度旋转,求演员的角速度。
解析:题目中给出的速度单位为每分钟,而角速度的单位通常为每秒。
将每分钟转换为每秒,可以将2圈/分钟转换为2圈/60秒。
由于一圈等于360度,因此该演员的角速度为2圈/60秒乘以360度/圈。
练习题4:转盘上物体的离心加速度一个半径为1.5米的转盘以每秒10转的速度旋转,求转盘上物体的离心加速度。
解析:离心加速度是指物体在圆周运动中由于受到向心力而产生的加速度。
向心力的大小与物体的质量和圆周运动的半径有关。
根据公式,离心加速度等于角速度的平方乘以半径。
题目中给出的角速度为每秒10转,转换为每秒20π弧度。
因此,转盘上物体的离心加速度为(20π)^2乘以1.5米。
练习题5:车辆转弯半径计算一辆车以每小时60公里的速度绕半径为10米的圆道路转弯,求车辆的离心加速度。
解析:离心加速度也可以通过速度和转弯半径来计算。
首先,将车辆的速度转换为米/秒,即60公里/小时乘以1000米/3600秒。
然后,根据公式,离心加速度等于速度的平方除以转弯半径。
圆周运动习题
圆周运动的应用一、火车转弯问题在铁路的弯道处,让外轨高于内轨,使火车转弯时所需的向心力恰由重力和弹力的合力提供,如图所示(注意: 火车转弯时的轨道平面是水平的).这样,铁路建成后,火车转弯时的速率v与弯道圆弧半径r 、铁轨平面与水平面间的夹角θ应满足的关系为: ________;当火车实际行驶速率大于或小于v 时,外轨道或内轨道对轮缘有侧压力.二、汽车过拱桥问题设汽车质量为m ,桥面圆弧半径为r ,汽车过桥面最高点时的速率为v ,汽车受支持力为F N ,则有mg -F N =m v 2r ;当v ≥gr 时,F N =0,汽车将脱离桥面,发生危险.汽车过凹形桥最低点时,其动力学方程为________.可以看出F N ________.这种现象是________.三、离心现象条件分析(1)做圆周运动的物体,由于本身具有惯性,总是想沿着切线方向运动.只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动,如图中C 所示.(2)当产生向心力的合外力消失,F =0,物体便沿所在位置的切线方向飞出去,如图中A 所示.(3)当提供向心力的合外力不完全消失,而只是小于应当具有的向心力,F ′<mrω2,即合外力不足以提供所需的向心力的情况下,物体沿切线与圆周之间的一条曲线运动,如图中B所示.1、如图所示,倾角30°的斜面连接水平面,在水平面上安装半径为R 的半圆竖直挡板,质量为m 的小球从斜面上高为R /2处静止释放,到达水平面恰能贴着挡板内侧运动。
不计小球体积,不计摩擦和机械能损失。
则小球沿挡板运动时对挡板的力是( )A .0.5mgB .mgC .1.5mgD .2mg2、如图所示,半径为R 的光滑圆形轨道竖直固定放置,小球m 在圆形轨道内侧做圆周运动,对于半径R 不同的圆形轨道,小球m 通过轨道最高点时都恰好与轨道间没有相互作用力。
下列说法中正确的是( )A .半径R 越大,小球通过轨道最高点时的速度越大B .半径R 越大,小球通过轨道最高点时的速度越小C .半径R 越大,小球通过轨道最低点时的角速度越大D .半径R 越大,小球通过轨道最低点时的角速度越小3、如图所示,长为L 的轻杆一端固定质量为m 的小球,另一端有固定转轴O 。
圆周运动经典练习(有答案详解)
《圆周运动》练习题(一)1.A. 线速度不变2. A 和B A. 球AB. 球AC. 球AD. 球A 3. 演,如图5A. 《B. C. D. 4.A. B. C. D. …5.如图1个质量为应为( )A. 5.2cmB. 5.3cmC. 5.0cmD. 5.4cm6. (M>m A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B 【C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A 受重力、支持力和静摩擦力,摩擦力的方向指向圆心D. 木块A 受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同9. 如图5所示,质量为m :A. B.C. D.10. 一辆质量为4t;11.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB!14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)18.^(1(2答案—1.解析:匀速圆周运动的角速度和周期是不变的;线速度的大小不变,但方向时刻变化,故匀速圆周运动的线速度是变化的,加速度不为零,答案为B 、D 。
2. 解析:对小球A 、B 受力分析,两球的向心力都来源于重力mg 和支持力N F 的合力,其合成如图4所示,故两球的向心力αcot mg F F B A ==比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
圆周运动习题(计算题)
圆周运动习题1.如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R ,OB 沿竖直方向,上端A 距地面高度为H ,质量为m 的小球从A 点由静止释放,最后落在水平地面上C 点处,不计空气阻力,求:(1)小球运动到轨道上的B 点时,对轨道的压力多大?(2)小球落地点C 与B 点水平距离s 是多少?2.如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。
不计空气阻力。
(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。
3.如图所示,被长L 的轻杆连接的球A 能绕固定点O 在竖直平面内作圆周运动,O 点竖直高度为h ,如杆受到的拉力等于小球所受重力的5倍时,就会断裂,则当小球运动的角速度为多大时,杆恰好断裂?小球飞出后,落地点与O 点的水平距离是多少?4.如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R 。
一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。
要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg (g 为重力加速度)。
求物块初始位置相对于圆形轨道底部的高度h 的取值范围。
5.游乐园“翻滚过山车”的物理原理可以用如图所示的装置演示。
斜槽轨道AB 、EF 与半径R=0.4m 的竖直圆轨道(圆心为O )相连,AB 、EF 分别与圆O 相切于B 、E 点,C 为轨道的最低点,斜轨AB 倾角为370。
质量m=0.1kg的小球从A 点由静止释放,先后经B 、C 、D 、E 到F 点落入小框。
(整个装置的轨道光滑,取g=10m/s 2, sin37°=0.6, cos37°=0.8)求:(1)小球在光滑斜轨AB 上运动的过程中加速度的大小;(2)要使小球在运动的全过程中不脱离轨道,A 点距离最低点的竖直高度h 至少多高?(3)在C 点,球对轨道的压力。
第四节圆周运动训练习题
第四节 圆周运动训练习题5分钟训练(预习类训练,可用于课前)1.从水平匀速飞行的飞机上,先落下物体a ,再经过1 s 落下物体b ,若不计空气阻力,在落地前a 物体将在( )A.b 的前方B.b 的后方C.b 的正下方D.无法确定 答案:C2.对于做匀速圆周运动的物体来说,不变的物理量是( ) A.周期 B.频率 C.角速度 D.线速度 答案:ABC3.在圆周运动中下列说法正确的是( ) A.线速度较大的物体,角速度一定也较大B.由公式ω=rv可知,做圆周运动半径大的物体,角速度一定小C.飞轮转动的角速度越大,轮上同一点的线速度也越大D.由公式r=v可知,物体转动的半径与它的线速度大小成正比答案:C4.下列关于匀速圆周运动的说法中正确的是( ) A.速度不变的运动 B.角速度不变的运动 C.角速度不断变化的运动 D.相对圆心位移不变的运动 答案:B10分钟训练(强化类训练,可用于课中)1.关于角速度、线速度和周期,下面的说法中正确的是( ) A.半径一定,角速度与线速度成反比 B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比D.不论半径等于多少,角速度与周期始终成反比答案:BD2.静止在地球上的物体都要随地球一起转动,下列说法正确的是( ) A.它们的运动周期都是相同的 B.它们的线速度都是相同的 C.它们的线速度大小都是相同的 D.它们的角速度是不同的解析:如图所示,地球绕自转轴转动时,所有地球上各点的周期及角速度都是相同的.地球表面物体做圆周运动的平面是物体所在纬度线平面,其圆心分布在整条自转轴上,不同纬度处物体做圆周运动的半径是不同的,只有同一纬度处的物体转动半径相等,线速度的大小才相等,但即使物体的线速度大小相同,方向也各不相同.答案:A3.一台准确走时的钟表上的时针、分针和秒针上的角速度之比ω1∶ω2∶ω3=___________;如果三针长度分别为L 1、L 2、L 3且L 1∶L 2∶L 3=1∶1.5∶1.5,那么三针尖端的线速度之比v 1∶v 2∶v 3=___________. 解析:钟表上三针的转动情况是,时针转一圈用时12 h ,即它的周期为T 1=12 h.分针转一圈用时1 h ,即它的周期为T 2=1 h.秒针转一圈用时1 min ,即它的周期为T 3=601 h.因为ω=T2,所以ω1∶ω2∶ω3=1∶12∶720;又因为v=ωL ,则ω1∶ω2∶ω3=1∶12∶720,v 1∶v 2∶v 3 =1∶18∶1 080.答案:1∶12∶720 1∶18∶1 0804.如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三轮的半径关系是r a =r c =2r b .若皮带不打滑,求A 、B 、C 轮边缘的a 、b 、c 三点的角速度之比和线速度之比分别为___________和___________.解析:A 、B 两轮通过皮带传动,皮带不打滑,则A 、B 两轮边缘的线速度大小相等. 即v a =v b ①由v=ωr 得ωc ∶ωb =r b ∶r a =1∶2②B 、C 两轮固定在一起绕同一轴转动,则B 、C 两轮的角速度相同,即ωb =ωc ③ 由v=ωr 得v b ∶v c =r b ∶r c =1∶2.④ 由②③得ωa ∶ωb ∶ωc =1∶2∶2. 由①④得v a ∶v b ∶v c =1∶1∶2. 答案:1∶2∶2 1∶1∶25.如图所示为测定子弹速度的装置,两个薄圆盘分别装在一个迅速转动的轴上,两盘平行.若圆盘以3 600 r/min 的转速旋转,子弹沿垂直圆盘方向射来,先打穿第一个圆盘,再打穿第二个圆盘,测得两盘相距1 m ,两盘上被子弹穿过的半径夹角为15°,则子弹的速度大小为___________m/s.解析:子弹两次穿过圆盘经过的时间t=vL,在这段时间内圆盘转过的角度φ+2kπ=ωt(k=0,1,2,3,…) 把φ=180π×15代入计算得v=k2411440+ m/s ,(k=0,1,2,3,…).答案:k2411440+ (k=0,1,2,3,…)30分钟训练(巩固类训练,可用于课后)1.关于做匀速圆周运动的物体,下面的说法正确的是( ) A.相等的时间里通过的路程相等 B.相等的时间里通过的弧长相等 C.相等的时间里发生的位移相等 D.相等的时间里转过的角度相等 答案:ABD2.甲、乙、丙三个物体,甲放在广州、乙放在上海、丙放在北京,当它们与地球一起转动时,则( )A.甲的角速度最大,乙的线速度最小B.丙的角速度最小,甲的线速度最大C.三个物体的角速度、周期和线速度都相等D.三个物体的角速度、周期一样,丙的线速度最小 答案:D3.如图所示,电风扇在闪光灯下运转,闪光灯每秒闪30次,风扇转轴O 上装有3个扇叶,它们互成120°角.当风扇转动时,观察者感觉扇叶不动,则风扇转速可能是( )A.600 r/minB.900 r/minC.1 200 r/minD.3 000 r/min解析:风扇转动时,观察者感觉扇叶不动,说明在每相邻两次闪光的时间间隔T灯内,风扇转过的角度是120°的整数倍,即31圈的整数倍.T 灯=301 s.风扇的最小转速n m in=s r30131=10 r/s=600 r/min故满足题意的可能转速n=kn m in(k=1,2,3,…).匀速圆周运动是一种周期性的运动,分析此类问题,关键是抓住周期性这一特点,得出可能的多解通式. 答案:ACD4.如图所示,当屏幕上出现一辆匀速奔跑的汽车时,观众如果注意车辆的辐条,往往会产生奇怪的感觉.设车轮上有八根对称分布的完全相同的辐条,电视画面每隔301s 更换一帧,则下列说法正确的是( )A.若在301s 内,每根辐条恰好转过45°,则观众觉得车轮是不动的 B.若在301s 内,每根辐条恰好转过360°,则观众觉得车轮是不动的C.若在301s 内,每根辐条恰好转过365°,则观众觉得车轮是倒转的 D.若在301s 内,每根辐条恰好转过355°,则观众觉得车轮是倒转的解析:若301s 内辐条正好转过45°角,则辐条转到与它相邻的那根辐条位置,因而这时若更换一帧,则会使观众看到好像车轮不动一样,因为每根辐条相同,观众区分不开辐条的变化;同理,在301s 内,若辐条转360°,观众也会认为车轮不动,因而A 、B 正确.若301s 内,辐条转过365°,则每根辐条在下一帧时出现在它转动方向前5°的位置,因而这时观众会认为在这301s 内,辐条向前转过5°,所以观众会觉得车轮向前转动;若301s 内,辐条转过355°时,则每根辐条在下一帧时,出现在与它转动方向相反的离它原位置的5°处,因此,观众会觉得车轮在倒转,所以C 错误,D 正确,故选A 、B 、D.对于这类与生活相关联的题目,我们应该认真体会.另外,错觉方面的知识(即视觉就近原则),是解决本题的关键.因而对于研究性题目,应开放式联想,充分应用各种知识和经验,从而解决问题. 答案:ABD5.为了使拖拉机在农田中较好地工作,中型拖拉机的后轮(主动轮)直径比前轮直径(从动轮)要大,某中型拖拉机前后轮直径之比为2∶5.设它在水平地面上匀速行驶时,前后轮都不打滑,则它行驶时前后轮转动的角速度之比为_________. 答案:5∶26.半径为10 cm 的转轮,每秒转5圈,则该转轮的周期T 为___________,在转轮的边沿某点A 的角速度为___________,线速度为___________.解析:根据题意,转轮每秒钟转5圈,则转一圈需要的时间为51s=0.2 s ;据公式可知,转轮的角速度为:ω=2.022ππ=T =10π rad/s ,也即转轮上某点A 的角速度,A 点的线速度的大小为:v a =ωr=10π×0.1 m/s=π m/s=3.14 m/s. 答案:0.2 s 10π rad/s 3.14 m/s7.(经典回放)如图所示为一实验中利用光脉冲测量车速和行程的装置示意图,A为光源,B 为光电接收器,A 、B 均固定在车身上,C 为小车的车轮,D 为与C 同轴相连的齿轮.车轮转动时,A 发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B 接收并转换成电信号,由电子电路记录和显示.若实验单位时间内显示的脉冲数为n ,累计脉冲数为N ,则要测出小车的速度和行程还必须测量的物理量或数据是___________;车速度的表达式v =___________;行程的表达式 s=___________.解析:因为B 在单位时间内接到的脉冲数为n ,每个间隙转动的时间t=n1,设一周有P 个齿,则有P 个间隙,周期T=Pt=n P ,据v=TRπ2,可得v=P Rn π2,所以要求车速必须测量出车轮的半径R 和齿轮数P.当脉冲总数为N 时,则经过的时间t 总=Nt=n N ,所以行程s=vt 总=PRNπ2.本题是匀速圆周运动的规律在实际生活中的应用,根据脉冲信号的次数确定车轮的周期是解决问题的关键.根据要求的结论确定还要测定的其他物理量,实际上也是开放思维的体现,也是本题能力考查的方面.答案:车轮的半径R 和齿轮数PP Rn π2 PRNπ2 8.如图所示,直径为d 的纸制圆筒,使它以角速度ω绕其中心轴O 匀速转动,然后使子弹沿直径穿过圆筒.若子弹在圆筒旋转不到半周时在圆筒上留下a 、b 两个弹孔,已知aO 、bO 夹角为φ,求子弹的速度为多大?解析:由图可知子弹穿过纸圆筒的时间内,纸圆筒转过的角度θ=π-φ,则子弹穿过圆筒的时间t=ωϕπ-;由于子弹在这段时间内的位移大小等于圆筒的直径d ,所以子弹的速度大小v=ϕπω-=d t d . 答案:v=ϕπω-d9.观察自行车的主要传动部件,了解自行车是怎样用链条传动来驱动后轮前进的,如图所示,其中右下图是链条传动的示意图,两个齿轮俗称“牙盘”.试分析并讨论:(1)同一齿轮上各点的线速度、角速度是否相同?(2)两个齿轮相比较,其边缘的线速度是否相同?角速度是否相同?转速是否相同?(3)两个齿轮的转速与齿轮的直径有什么关系?你能推导出两齿轮的转速n1、n2与齿轮的直径d1、d2的关系吗?解析:(1)同一齿轮上各点绕同一轴转动,因而各点的角速度相同;但同一齿轮上各点,因到转轴的距离不相同,由v=ωr知,其线速度不同.(2)自行车前进时,链条不会脱离齿轮打滑,因而两个齿轮边缘的线速度相同,角速度与半径成反比.角速度ω和转速n存在关系:ω=2πn,两齿轮角速度不同,转速当然也不同.(3)因两齿轮边缘线速度相同,而线速度和角速度的关系是:v=ωr,ω=2πn,故2πn1r1=2πn2r2,即n1d1=n2d2,转速与直径成反比.答案:(1)角速度相同,线速度不同;(2)线速度相同,角速度与转速不同;(3)成反比10.如图所示,在男女双人花样滑冰运动中,男运动员以自己为转动轴拉着女运动员做匀速圆周运动,若男运动员的转速为30 r/min,女运动员触地冰鞋的线速度为4.7 m/s,求:(1)女运动员做圆周运动的角速度;(2)女运动员触地冰鞋做圆周运动的半径.解析:根据男运动员的转速为30 r/min可知,女运动员的转速也是30 r/min,换算成角速度为:30 r/min=0.5 r/s=π rad/s;在女运动员绕着男运动员做圆周运动的过程中,根据公式v=ωr ,可以得到: r=srad sm v//7.4πω==1.5 m.答案:(1)π rad/s (2)1.5 m11.一把雨伞边缘的半径为r ,且高出水平地面h.当雨伞以角速度ω旋转时,雨点自伞的边缘甩出,在地面上形成一圆圈,则此圆圈的半径为多少?解析:由题意知,雨点在伞边缘的速度大小v=rω,雨点离开伞时,沿伞边缘的切线飞出,且飞出后做平抛运动.设其水平位移为s ,则雨点落地圆半径R 与伞半径r ,以及s 的关系如图所示,则由平抛运动知识可得雨点飞行时间:t=gh 2,s=vt=rωgh2由图中关系,可得:R=12222+=+gh rs r ω 答案:R=122+gh rω圆周运动导学知识梳理1.匀速圆周运动,质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动.2.线速度:质点通过的圆弧长度与所用时间的比值为线速度大小,即v=ts,方向为质点在圆周上该点的切线方向.3.角速度:半径转过的角度φ与所用时间t 的比值,用符号ω表示.4.周期:做匀速圆周运动的物体运动一周所用的时间. 知识导学匀速圆周运动:质点沿圆周运动,如果在相等的时间里通过的弧长相等,这种运动叫匀速圆周运动,可巧记为:等时走等弧,圆周运动为匀速.线速度:质点通过的弧长与通过这段弧长所用时间的比值叫线速度.线速度是矢量,用v表示,其方向就是圆周上该点的切线方向,其国际制单位是米/秒,国际符号为m/s.角速度用ω表示,其国际制单位是弧度/秒,国际符号为rad/s.疑难突破1.角速度和线速度的意义的区别剖析:每个新的物理量的引入都有其特殊的新的意义,这也反映了它们表达作用的片面性.而且有些的物理量之间存在着联系,它们在描述某一物理性质时具有相似作用.但同学们在学习的时候要注意区别体会它们的所要表达的侧重点.v与ω都是描述匀速圆周运动质点转动快慢的物理量,但两者都无法全面、准确地反映做质点的运动状态,它们都具有一定局限性.详细地说,线速度是描述线形空间位置变化快慢的,而角速度是描述角度空间位置变化快慢的.两者的关系v=ωr要准确理解,只有r一定时,v和ω才成正比;在相同的情况下,r越大,v越大;在v相同的情况下,r大的ω反而小.例如地球绕太阳的线速度是3×104 m/s,但由于地球绕太阳运行的轨道半径很大,所以它的角速度很小,只有2×10-7 rad/s.2.匀速圆周运动和匀速直线运动性质一样吗?剖析:研究物体的运动一般会涉及到速度,速度是描述物体运动的一个重要的物理参量.速度是矢量,不仅可以描述运动快慢,同时也描述运动方向.矢量是大小和方向的同一体,其方向和大小同样重要,这两者是标志矢量变与不变的两个必要因素,这两个因素只要有一个变化,就会导致矢量的变化.这两种运动形式的共同点是运动快慢保持不变,这就是所谓的匀速,即速度的大小保持不变.但仅仅以速度的大小来描述物体的运动是不全面的,我们还得研究速度的方向.匀速直线运动速度的方向是一直保持不变的,是一种速度保持不变的运动,而匀速圆周运动的速度沿圆周的切线,方向在运动过程中时刻在变,是一种变速运动.所以它们是两种截然不同的两种运动.。
完整版)匀速圆周运动经典练习题
完整版)匀速圆周运动经典练习题1.对于匀速圆周运动的物体,正确的说法是角速度不变,周期不变,线速度大小随半径变化而改变。
2.向心加速度描述的是向心力变化的快慢。
3.由图像可以知道,甲球运动时,线速度大小随半径变化而改变,角速度大小保持不变;乙球运动时,线速度大小保持不变,角速度大小随半径变化而改变。
4.小物体A受力情况是受重力、支持力和向心力。
5.当球第最低点P时,小球速率最大,小球加速度为重力加向心加速度的合力,小球的向心加速度保持不变,摆线上的张力保持不变。
6.小球过最高点时,杆对球的作用力一定跟小球所受重力的方向相反,此时重力大于杆对球的作用力;小球过最高点时的最小速度为√(2gR)。
7.对轨道压力的大小是3mg。
8.当火车以v的速度通过此弯路时,火车所受重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力。
9.两个质量不同的小球用长度不等的细线拴在同一点,并在同一水平面内作匀速圆周运动。
根据运动学公式,运动周期与圆周半径和角速度有关,而两个小球的圆周半径和角速度不同,因此它们的运动周期不同。
根据匀速圆周运动的定义,线速度等于圆周半径乘以角速度,因此两个小球的运动线速度不同。
根据向心加速度公式,向心加速度等于圆周半径乘以角速度的平方,再除以重力加速度,因此两个小球的向心加速度不同。
答案为(A)运动周期不同,(B)运动线速度不同,(D)向心加速度不同。
10.一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮的半径是小轮的2倍,大轮上的一点s离转动轴的距离是半径的5/20.根据匀速圆周运动的向心加速度公式,向心加速度等于圆周半径乘以角速度的平方,再除以重力加速度。
大轮上的S点和小轮上的Q点的圆周半径分别是5R/20和R,因此它们的向心加速度分别为10和40 m/s^2.答案为a_S=10m/s^2,a_Q=40 m/s^2.11.半径为r的圆筒绕竖直中心轴OO'转动,小物块A靠在圆筒的内壁上,它与圆筒的静摩擦因数为μ。
圆周运动经典习题
圆周运动习题一.选择题1.半径为R的光滑半圆球固定在水平面上(如图),顶部有一小物体A,今给它一个水平初速v0=gR,,则物体将()A.沿球面下滑至M点B.沿球面下滑至某一点N,便离开球面做斜下抛运动C.按半径大于R的新的圆弧轨道作圆周运动D.立即离开半圆球做平抛运动2.如图所示,固定在竖直平面内的光滑圆形轨道ABCD,D点为轨道最高点,DB为竖直直径,AE为过圆心的水平面,今使小球自A点正上方某处由静止释放,且从A点内侧进人圆轨道运动,只要适当调节释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后(不计空气阻力)()A、一定会落在水平面AE上B、一定会再次落到圆轨道上C、可能会落到水平面AED、可能会再次落到圆轨道上。
3.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B.b处C.c处D.d处4.地球上,赤道附近的物体A和北京附近的物体B,随地球的自转而做匀速圆周运动.可以判断()A.物体A与物体B的向心力都指向地心B.物体A的线速度的大小小于物体B的线速度的大小C.物体A的角速度的大小小于物体B的角速度的大小D.物体A的向心加速度的大小大于物体B的向心加速度的大小5.用同样材料做成的A、B、C三个物体,放在匀速转动的水平平台上,已知mA=2mB=2mc,各物体到轴的距离rc=2rA=2rB.若它们相对于平台无滑动,则下面说法中不正确的是()A.C的向心加速度最大B.B的摩擦力最小C.转速增大时,C比B先滑动D.转速增大时,B比A先滑动6.物体做匀速圆周运动的条件是()A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用7.如图所示,将完全相同的两小球A、B用长L=0.8m的细绳悬于以速度v=4m/s向右匀速运动的小车顶部,两球与小车的前、后壁接触.由于某种原因,小车突然停止,此时悬线的拉力之比FB:FA为(g取10m/s2)()A.1:1 B.1:2 C.l:3 D.1:48、如图为A、B两物体做匀速圆周运动时向心加速度随半径r变化的图线,由图可知(A)A.A物体的线速度大小不变B.A物体的角速度不变C.B物体的线速度大小不变D.B物体的角速度与半径成正比9.由上海飞往美国洛杉矶的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小和距离海面的高度均不变,则以下说法正确的是()A.飞机做的是匀速直线运动B.飞机上的乘客对座椅压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零10.甲、乙两物体都做匀速圆周运动,其质量之比为1:2,转动半径之比为1:2,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为()A. 1:4B.2:3C.4:9D.9:1611.如图1所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是()A.受重力、拉力、向心力B.受重力、拉力C.受重力D.以上说法都不正确12.冰面对溜冰运动员的最大摩擦力为运动员重力的k倍,在水平冰面上沿半径为R的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为()13.一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()A.物体的重力B.筒壁对物体的静摩擦力C.筒壁对物体的弹力D.物体所受重力与弹力的合力二、填空题14、做匀速圆周运动的物体,当质量增大到2倍,周期减小到一半时,其向心力大小是原来的______倍,当质量不变,线速度大小不变,角速度大小增大到2倍时,其向心力大小是原来的______倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动习题
二、选择题
1.质点做匀速圆周运动时,下列说法正确的是………………………………( )
A. 线速度越大,周期一定越小
B. 角速度越大,周期一定越小
C. 转速越小,周期一定越小
D. 圆周半径越大,周期一定越小
2.在匀速运动中,发生变化的物理量是( )
(A )频率 (B )周期 (C )角速度 (D )速度
3.时钟的时针、分针和秒针上每一点(除中心轴外)都作匀速圆周运动,下例陈述正确的是( )
(A )ω秒=60
1ω分 (B )ω分=60ω时 (C )ω秒=3600ω时 (D )ω秒=720ω时 4.匀速圆周运动的物体,则( )
(A )一定是受力平衡的 (B )一定是受力不平衡的
(C )受力有可能平衡 ,也可能不平衡 (D )它受到向心力一定与其他外力平衡。
5.对于作匀速圆周运动的物体,下列说法中正确的是( )
(A )物体的速度大小不变 (B )物体的速度大小和方向都变化
(C )物体的向心力大小和方向都不变化 (D )物体的向心力大小和方向都变化
6.如图所示,质量为m 的木块从半径为r 的圆弧曲面上的a 点滑到b 点.如果由于摩擦力的作用,木块运动过程中的速度大小保持不变,则在运动过程中 ( )
A .木块运动的速度保持不变.
B .木块所受得合外力为零.
C .木块的角速度不变.
D .木块处于平衡状态.
一、填空题
7.下列关于甲乙两个做圆周运动的物体的有关说法正确的是 [ ]
A.它们线速度相等,角速度一定相等
B.它们角速度相等,线速度一定也相等
C.它们周期相等,角速度一定也相等
D.它们周期相等,线速度一定也相等
8.用绳栓着一个物体,使其在光滑水平面上作匀速圆周运动,若绳子突然断裂,则物体所作的运动将会( )
A .沿半径方向接近圆心 B.沿半径方向远离圆心
C.沿切线方向作匀速直线运动
D.由于惯性,继续作圆周运动
9.甲、乙两物体分别做匀速圆周运动。
甲在t 时间里转了m 圈,乙在3t 时间里转了n 圈。
则甲和乙的周期之比为( )
A .m:n B.n:m C.n:3m D.3m:n
二、选择题
10.弹簧振子振动过程中在同一位置时可能不同的物理量是( )
(A )速度 (B )振幅 (C )加速度 (D )回复力
11.弹簧振子的周期为0.2秒,在振动过程中从平衡位置开始计时,振子肯定不在平衡位置的时刻是( )
(A )0.3秒 (B )0.4秒 (C )0.5秒 (D )0.55秒
12.对于物体所做的简谐振动的理解,正确的说法是【 】
A.简谐振动实质是一种匀速直线运动
B.简谐振动实质是一种匀加速直线运动
C. 简谐振动实质是一种匀减速直线运动
D.简谐振动是一种非匀变速运动
13.在物体刚好完成2次全振动的完整过程中,下列说法中不正确的是【】
A.物体在完成这2次全振动的过程中,平均速度一定等于零
B.物体在刚好完成这2次全振动时,速度的变化一定等于零
C 物体在这2次全振动的过程中,加速度一直保持不变
D.物体在这2次全振动的过程中,振幅和周期一直都保持不变
14.在简谐振动中,能够分别表示物体振动快慢和强弱的一组物理量是【】
A.速度和位移
B.加速度和动能
C.周期和频率
D.频率
15.把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A和B两点角速度之比为___ __,线速度之比为__ ____。
16.位于地球赤道上某一国家的一棵大树,随着地球一起自转。
若地球的半径R=6.4×103km,则这棵大树绕地轴转动的周期为s,线速度为m/s。
17.用来进行全球通讯的通讯卫星是相对地球保持静止的卫星,犹如悬在空中一样,因此,如果把它的运动看做匀速圆周运动,它的周期应该(填“大于”、“等于”或“小于”)地球自转的周期。
18.一弹簧振子拉离平衡位置平衡位置2厘米放手,第一次运动至平衡位置的时间为0.2秒,则该振子的频率为________赫兹。
若将振子拉离平衡位置平衡位置1厘米放手,该振子的频率为________赫兹。
19.一弹簧振子拉离平衡位置平衡位置4厘米放手作机械振动,振动周期为0.5秒,则弹簧振子的振幅为_______米,1秒内通过的位移为_______米,通过的路程为_______米。
20.弹簧振子从距离平衡位置5cm处,由静止释放,全振动10次所需时间为8s,则振子的振幅为cm,周期为s,频率为Hz,8s末位移大小为m。
21.甲、乙两个物体均作简谐振动。
甲在2分钟内完成了150次全振动,乙完成90次全振动需要3分钟,则甲、乙两物体振动的周期之比T1:T2= :,振动的频率之比f1:f2= :。
22.一个简谐振动的振子,先后通过a、b两个位置时的速度相同,历时0.15s的时间。
接着又历时0.15s,振子第二次经过b点,此时的速度与第一次经过b点的速度等值反向。
若该振子在这0.3s时间内通过的路程为30cm,则此振子的振幅A= m,振动的周期T= s。
23.如图所示,是用频闪照相的方法拍到的一
个弹簧振子的振动情况,甲图是振子静止在
平衡位置的照片,乙图是振子被拉至左侧距
平衡位置20 cm处放手后的频闪照片,已知
T的频闪的频率为10 Hz,则振子振动的周期为T=s;振子在通过平衡位置后
12
时间内发生的位移为cm。
24.如图所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两
轮转动中,接触点不存在打滑的现象,则两轮边缘处的线速度大小之比
等于___ ___。
两轮的转数之比等于__ ____,A轮半径中点与B轮边
缘的角速度大小之比等于____ __。
25.一个弹簧振子沿直线作简谐振动时,先后以相同的速度经过a、b两点,历时1s时间,经过b点后又经1s再次经过b点。
若振子在这2s时间内通过的总路程为6cm,求弹簧振子的周期、频率和振幅。
26.如图所示,在男女双人花样滑冰运动中,男运动员以自己为转动轴拉着女运动员作匀速圆周运动,若男运动员的转速为30r/min,女运动员触地的冰鞋的线速
度为4.7m/s,求:(1)女运动员作圆周运动的角速度(2)女运动员触地的冰
鞋作圆周运动的半径
27.如图所示,某自行车的前齿轮半径为15cm,后齿轮半径为6cm,两齿轮边缘处分别有两点A、B。
若某人在骑车过程中,每秒钟踏两圈,则A和B的线速度以及角速度分别是多少?
28.如图所示为水平放置的纸圆筒截面,半径为R,以
角速度ω顺时针方向绕其水平对称轴匀速转动,子弹水平沿直径穿过圆筒,留下a、b两个弹孔,若测得∠aOb=φ,试求子弹速度的最大值。
29.如图所示,质点P以O为圆心,r为半径作匀速圆周运动,周期为
T,当质点P经过图中位置A时,另一质量为m、初速为零的质点Q受
到沿OA方向的恒力F作用开始直线运动,为使P、Q某时刻的速度相
同,拉力F应满足条件。