煤矿用高压变频器-利德华福

合集下载

利德华福高压变频器

利德华福高压变频器

利德华福高压变频器 Document number:PBGCG-0857-BTDO-0089-PTT1998利德华福高压变频器应用范围近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。

从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。

该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。

由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。

火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等市政供水:水泵等污水处理:污水泵、净化泵、清水泵等水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、分选器风机、主吸尘风机等造纸:打浆机等制药:清洗泵等采矿行业:矿井的排水泵和排风扇、介质泵等其他:风洞试验等系统原理HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。

变频器主要由移相变压器、功率模块和控制器组成。

系统结构功率模块结构功率模块为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆变桥进行正弦PWM控制,可得到单相交流[功率单元电路结构] 输出。

利德华福高压变频器

利德华福高压变频器

利德华福高压变频器适用于各种高压电机 驱动场合,如风机、水泵、压缩机、提升 机等,能够满足不同行业的需求。
性能指标及参数设置
输出电压和频率范围
输出电压和频率可调,满足电 机的不同运行需求。
效率
高效率转换,降低电机运行成 本。
输入电压范围
适应宽范围的三相高压交流输 入,如3kV、6kV、10kV等。
控制技术
随着控制理论的不断发展和计算机技术的进步,高压变频 器的控制技术将越来越智能化和网络化。
拓扑结构
拓扑结构的创新是高压变频器技术发展的重要方向之一, 如多电平拓扑、矩阵式拓扑等新型拓扑结构将进一步提高 高压变频器的性能和可靠性。
新型材料
新型电力电子器件和散热材料的不断涌现,将为高压变频 器的设计制造提供更多选择和可能性。
用。
市场需求与应用领域
随着工业自动化程度的不断提 高,高压变频器市场需求不断 增长。
高压变频器在电力、冶金、石 油、化工、建材、市政等领域 具有广泛的应用。
未来,随着新能源、智能制造 等新兴产业的快速发展,高压 变频器的市场需求和应用领域 将进一步扩大。
02
技术原理与特点
高压变频器工作原理
交-直-交变换
THANKS
感谢观看
注塑机、挤塑机、造粒机 等塑料机械高压电机拖动 系统。
各类工业炉窑鼓风机、引 风机等高压电机拖动系统 。
压缩机、鼓风机、引风机 等空分装置高压电机拖动 系统。
各类油泵、水泵等高压电 机拖动系统。
06
市场前景与发展趋势
高压变频器市场前景分析
01
市场规模
随着工业领域对能源效率和电机控制精度要求的提高,高压变频器市场
利德华福高压变频器

利德华福变频器操作介绍

利德华福变频器操作介绍

一、利德华福变频器操作及显示面板如下图:1、急停开关该开关按下后自己锁定。

变频器运行情况下,按下急停开关,变频器立即封锁输出,同时控制高压真空断路器跳闸。

停机情况下急停开关按下,变频器不能启动。

在任何情况下,急停开关按下后就立即生效。

拔除开关帽,解除锁定状态。

2、本机控制/远程控制控制方式选择开关,当开关处于“本机控制”位置时,可以通过触摸屏的软件界面进行控制。

如果处于“远程控制”位置,则变频器的控制权交给上位机、用户操作台或DCS系统,触摸屏的启动、停机按钮无效。

3、系统复位系统复位按钮用于在变频器停机情况下对主控板发出复位命令,用于解除主控板死机等比较严重的系统故障,或者清除故障锁存状态。

变频器运行时,“系统复位”按钮无效。

4、报警解除报警解除按钮用于清除变频器故障时发出的报警音响。

报警解除后,变频器如果又发生新的故障,或者原故障消失后又重新出现,系统将重新提供音响报警,而用户仍然可以用“报警解除”按钮将报警音响清除。

二、主控制界面功能及介绍:主界面提供变频器当前控制方式、运行方式、运行数据显示,通过主界面用户可以完成变频器的功能设定、参数设定、波形显示、运行记录、故障查询。

在本控方式下,用户可以通过主界面对变频器直接进行启动、设定运行频率、停机、急停和复位等操作。

向变频器发出停机命令。

如果“远控/本控”选择开关选择为“远控”,则此按钮不起作用。

本控时,用户用急停按钮发出停机命令后,高压变频调速系统立即停止输出,负载电机按其自身惯性以及现场实际工况减速直至停机。

变频器处于待机状态时,该按钮为灰色无效状态。

向变频器发出停机命令。

如果“远控/本控”选择开关选择为“远控”,则此按钮不起作用。

本控时,用户用停机按钮发出停机命令后,变频器将按设定的减速时间减速停机。

在电机减速过程中,用户随时可以用启动按钮使变频器从当前速度重新恢复启动运行。

变频器处于停车状态或待机状态时,该按钮为灰色无效状态向变频器发出启动命令。

北京利德华福高压变频调速系统介绍

北京利德华福高压变频调速系统介绍

工业现场
模拟量
RS485
I/O
单个模块旁路技术
1
3 2
8个模块串联时,旁路一个功率模块, 电压输出能力为95.6%,比原来的方 法有所提高。
A
正常运行时
每相5个功率单元 串联,正常运行
A5
A4
A3
A2
VAC
A1 120 o TYP. B1 B2
VBA
C1 C2 C3 C4
N
B3

高压变频器全中文监控系统

采用标准软件,同上一代产品操作方式完全一致 用户可以现场设定现实参数及控制逻辑 操作权限分级,保证设备的可靠运行
功率单元旁路功能
功率模块故障时可降额运行,切换时间仅为50ms
10KV 移相变压器
UA1
TV1 TV2 M
UA2
10KV 光纤
控制单元
工控机
PLC
以8级串联为例,旁路一级后,系统电压 下降1/8,即电压为87.5%;
功率模块输出波形叠加技术
T
单个功率模块逆变 输出的正弦PWM波形
错位叠加后变频器 输出的相电压波形

T
1) R ef A :
2 0 0 V o lt
5 m s
T

1 ) R ef
A :
2 0 0
V o lt
5
m s
高压变频器主要器件一览表
品 名 EUEPC IXYS MCD IXYS MDD 产 地 IGBT(绝缘门控双级晶体管) Thyristor (可控硅) 旁路桥

基于单片机的中文人机界面(标准配置)
超大24行全中文界面 直接按键式操作 具有键盘锁定功能,防

利德华福高压变频操作规程及注意事项

利德华福高压变频操作规程及注意事项
(一)对操作人员的基本素质要求
1、具有基本的电工基础知识; 2、具有高压电工执业许可证书; 3、经过北京利德华福公司组织的理论和实际操作培训并合格。
三、操作注意事项
(二)日常操作
1、变频器为高压危险装臵,任何操作人员必须按照操作规程进行操作; 2、需要给变频器送电时,必须先送控制电源,变频器自检正常后给出“高压合闸允许”信 号后,方可给变频器送高压电 ; 3、需要切断变频器电源时,应先断高压电,再断控制电; 4、切断控制电源后,要把UPS开关同时关掉,否则UPS过度放电将导致UPS损坏 ; 5、使用液晶屏时,只需用手指轻触即可,严禁使劲敲击或用硬物点击,并严禁任何无关人 员任意指点液晶屏,以防产生误操作 ; 6、变频器出现轻故障(比如冷风机故障、控制电源掉电等)时,虽然不会立即停机,但必 须及时处理,否则会演变成重故障,导致停机 ; 7、严格保证变频器运行的环境温度不超过40℃,否则会影响变频器的寿命,运行安全不能 保证 ; 8、变频器所有参数在设备交付运行前都已进行合理设臵,用户不得随意更改。如果确需要 更改,请事先和北京利德华福电气技术有限公司技术工程人员联系。
11、电机通过变频器启动,对风机、水泵、电机、开关及电网的冲击都很小,只要 满足以上条件,启动次数及时间间隔没有限制 ;
12、工频旁路情况下,要启动电机,直接将高压真空开关合闸即可。
三、操作注意事项
(四)调频操作
1、变频器正常运行时,请将挡板或阀门开度调节到100%,以充分减少截流损耗,达 到最好的节能效果 ; 2、对于风机或水泵并联运行的工况,要注意负载的平衡情况,调速过程中注意变频 器的输出电流不要超过电机电流额定值 ; 3、用自动控制系统的计算机设定电机转速(变频器运行频率)时,按回车键以前, 请核实数据的正确性,防止输入过大或过小的异常数据 ; 4、对风机负载,手动调节转速时,减速必须缓慢进行,过快减速容易导致变频器单 元过压停机; 5、对于水泵负载,注意不要设定过小的频率值。在并联运行情况下,调速水泵速度 过低,将影响水泵出水。

利德华福高压变频器在双机拖动提升机上的应用

利德华福高压变频器在双机拖动提升机上的应用

利德华福高压变频器在双机拖动提升机上的应用北京利德华福电气技术有限公司供稿摘要:变频改造是矿井提升领域提高工艺水平和安全技改的主要手段。

本文对高压变频调速系统的原理、结构进行分析,结合龙田煤业变频改造的现场,介绍HARSVERT-FVA系列能量回馈型高压变频器在双机拖动矿井提升系统上的应用情况。

关键词:双机拖动、矿井提升机、高压变频器、矢量控制、能量回馈、一、引言在煤矿生产中,矿井提升机起着非常重要的作用,它是矿山生产的关键设备。

提升机电控装置的技术性能,既直接影响矿山生产的效率及安全,又代表着矿井提升机发展的整体水平。

因此,要求矿井提升机拖动系统具有安全可靠,运行高效且定位准确的能力。

传统的矿井提升中,80%左右是用交流绕线式电机转子串电阻调速的方式,此调速方式技术相对落后,无效功耗过大,结构复杂,且运行效果不理想。

为了获得较高性能的提升系统部分采用直流传动方案,但直流电机结构复杂,在功率范围受到一定的限制的同时,运行过程中又给用户带来了高昂的维护费用。

随着电力电子与电机控制技术的发展,采用变频调速的方法具备了大转矩、高精度、宽调速、低维护的特点,从根本上解决了其他调速方式的弊端,是目前矿井提升机电气传动的首选方案。

二、用户简介辉县市龙田煤业有限公司成立于2006年4月,是由深圳市潜龙实业集团有限公司控股的现代化股份制企业,拥有一座年产95万吨的矿井——程村矿井,主产三号优质无烟煤,服务年限49年,矿井于2008年投产,税收在新乡市排名前10位。

如图1所示图1、龙田煤业一角三、改造背景及方案确定煤矿主、副井提升机系统在建井时部分设计为两台相同或不同容量的电动机一台工作、一台备用的拖动方式,即单机拖动方式。

随着矿井生产能力的提高,往往会出现单台电动机工作无法满足生产需要的情况。

如重新购置容量较大的电动机就要将原有电动机淘汰,造成浪费。

这时,可考虑在不更换设备的情况下,将单机拖动改为双机同时拖动。

利德华福高压变频器调试方案

利德华福高压变频器调试方案

利德华福高压变频器调试方案利德华福高压变频器调试方案签字页:批准:审核:会签:编制:利德华福高压变频器调试方案一、调试前的准备工作:检查所有控制电缆、动力电缆、柜内接线、地线的正确性以及螺丝的松紧。

二、控制部分调试:1、排除人机界面上显示的所有故障(高压未就绪除外),变频器应显示控制器就绪。

2、将本控/远控按钮打到本控位置;在参数设置中选择不带高压调试,将高压就绪接点K0短接,界面显示系统待机;这样就可以模拟变频器的运行,进行控制部分的本机调试。

3、将本控/远控按钮打到远控位置;进行控制部分的远程调试。

若远程给定的是4~20mA模拟量信号,要注意调整模拟输入系数,使其对应0.5~50Hz。

4、高压开关联动调试:1)旁路柜选择开关手动位置a、KM1没有吸合前,变频器旁路柜电磁锁带电,隔离刀闸可以自由操作。

b、高压开关打到试验位置,小车拉出,确保不会高压突然加电。

c、KM1手动合闸,此时,电磁锁不能操作。

按下变频器控制柜柜门上的急停按钮,KM1应能分断。

d、手动合上KM2,这个时候KM3手动合不上,他们之间有电气互锁。

分开KM1,KM2,手动合上KM3。

保证KM1,KM2,KM3能正常分合闸。

下图为系统一次图:KM32)旁路柜选择开关自动位置a、变频器在人机界面上没有故障信息的情况下,变频器合上KM1,KM2后,手动分闸分不开。

b、模拟一个重故障,变频器应自动分开KM1,KM2,然后自动合上KM3。

当KM3合上后,再模拟变频器重故障,不分KM3。

是为了保证不影响工频运行。

5、DCS指示灯调试:a、在参数设置中选择不带高压调试,将高压就绪接点K0短接,界面显示系统待机。

b、就地选择开关打到本地,操作权限由本地控制。

打到远程,DCS控制信号灯亮,操作权限由DCS控制。

c、把变频器柜门打开,轻故障指示灯应变亮。

柜门闭合后,轻故障指示灯应熄灭。

把柜门打开设置成重故障,重故障指示灯应变亮。

关上柜门,按变频器界面上的复位按钮,重故障指示灯应熄灭。

利德华福能量回馈型高性能高压变频调速系统在矿井提升机上的应用

利德华福能量回馈型高性能高压变频调速系统在矿井提升机上的应用

箕斗通过机房 的双滚筒带动 ,采用两 台 80k 电机 0 W 通过减速机拖动 , 电机的调速方式采用 传统 的串电阻调速
方 式 , 调 速 方 式 属 于 落 后 技 术 , 在 以下 缺 点 : 该 存 ( ) 量 的 电能 消 耗 在 转 差 电 阻 上 , 成 了 严 重 的 能 1大 造
源浪费 , 同时电阻器 的安装需要 占用很大的空 间。
() 1 涌流抑制 : 变压器 在受 电瞬 间 , 产生激磁 涌流 , 会
() 2 控制 系统复 杂 , 导致系 统的故 障率高 , 接触 器 、 电
阻器 、 绕线 电机碳刷容易损坏 , 维护工作 量很大 , 直接影响
了生 产效 率 。
( ) 速和爬行 阶段需要依靠制动 闸皮 摩擦 滚筒实现 3低
速度控 制 , 特别是在 负载发生变 化时 , 很难 实现恒 减速控 制, 导致调 速不连续 、 速度控制性能较差。 () 4 启动和换档 冲击 电流大 , 造成 了很大 的机械冲击 , 导致 电机 的使用寿命大大降低 。 () 5 自动化程度不高 , 加了开采成本 , 响了产量 。 增 影 ( ) 电压 和低速段 的启动力矩小 , 6低 带负载能 力差 , 无

到原来蔼 压 关 榧
功率模块供 电, 移相变压器 的副边绕组分为三组 , 根据 电压
等级和模块串联级数 , 一般 由 2 、04 、8 冲系列等构成 4 3 、24 脉
l 高 开 柜 压 关 F o

多级相叠加 的整流方式 , 可以大大改善 网侧 的电流波形( 网 侧 电压 电流谐波指标满足 IE 5 9 19 E E 1— 9 2和 G f1 5 9 9 Br 4 4 — 3 的要求 ) 使其负载下的网侧功率因数接近 1 。 。由于变压器副

北京利德华福HARSVERT-A系列变频器的原理

北京利德华福HARSVERT-A系列变频器的原理

HARSVERT-A系列变频器的原理有15个(或21个)功率单元,每5个(或7个)功率单元串联构成一相。

10000V 系列有24个功率单元,每8个功率单元串联构成一相。

2.输入变压器输入侧由移相变压器给每个单元供电,移相变压器将网侧高压变换为副边的多组低压,各副边绕组在绕制时采用延边三角接法,相互之间有一定的相位差。

对3000V系列,变压器副边绕组分4级,每级电压430V,相互间移相15°,构成24脉冲整流方式;对6000V系列,变压器副边绕组分5级或7级。

对5级产品,每级电压690V,相互间移相12°,构成30脉冲整流方式。

对7级产品,每级电压490V,相互间移相8.57°,构成42脉冲整流方式;对10000V系列,变压器副边绕组分8级,每级电压720V,相互间移相7.5°,构成48脉冲整流方式;这种多级移相叠加的整流方式,消除了大部分由独立功率单元引起的谐波电流,可以大大改善网侧的电流波形,使变频器网侧电流近似为正弦波,使其负载下的网侧功率因数达到0.95以上。

另外,由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,其工作电压由各个低压绕组的输出电压来决定,工作在相对的低压状态,类似常规低压变频器,便于采用现有的成熟技术。

各功率单元间的相对电压,由变压器副边绕组的绝缘承担,避免了串联均压问题。

3.功率单元功率单元是整台变频器实现变压变频输出的基本单元,每个功率单元都相当于一台交-直-交电压型单相低压变频器。

功率单元整流侧用二极管三相全桥进行不控全波整流,中间采用电解电容滤波和储能,输出侧为4只IGBT组成的H桥,电路结构如下图所示。

在任意时刻,每个单元仅有三种可能的输出电压,如果A+和B-导通,从U 到V的输出电压将为+Ud,如果B+和A-导通,从U到V的输出电压将为-Ud,如果A+和B+或者A-和B-导通,则从U到V的输出电压为0V。

通过控制A+、A-、B+、B-四只IGBT的导通和关断状态,在U、V输出端子可以得到VO的等幅PWM波形。

利德华福高压变频器综合样本

利德华福高压变频器综合样本
䕧ܹ
ϝⳌˈ+] f
⬉㔥⊶ࡼ㣗ೈ˖f˗ ⬉㔥⬉य़䎠㨑೼ ҹ‫ݙ‬ᯊˈব乥఼䰡乱䖤㸠
ࡳ⥛಴᭄
䕧ߎ⬉य़㣗ೈ 䕧ߎ⬉⌕㣗ೈ ࡳ⥛䆒䅵㣗ೈ
䖛䕑㛑࡯ 乥⥛
ᬜ⥛ ᘏ䇤⊶⭌ব 乥⥛ߚ䕼⥛
:,1&( Ҏᴎ⬠䴶 ᯧ᥻˄H&RQ˅᪡԰䴶ᵓ
! 䋳㥋ҹϞ
11
HARSVERT高性能型尺寸选型表
电压等级3kV系列
3kV系列包括:变频器输出3kV电压等级
ᑣো
ব乥఼ൟো
খ㗗䗖䜡⬉ᴎࡳ⥛ ᆑ(W) mm ⏅(D) mm 催(H)mm 催(h) mm 䞡䞣kg
1
3/100
400kW/3kV
3350
1200
2634
2320 3060
2
3/155
630kW/3kV
*356 ᮴㒓Ӵ䕧ㄝ
‫ܝ‬㑸Ӵ䕧
$&9ˈϝⳌಯ㒓ࠊ˗$&9'&9 ᆍ䞣 N9$
‫ݙ‬㕂 3,' 䇗㡖఼ˈখ᭄ৃ䆒ᅮ
ⶀᯊᥝ⬉‫ݡ‬ਃࡼǃ䕀ⶽᦤछǃЈ⬠䗳ᑺৃ䏇䖛ǃ ㋏㒳㞾䆞ᮁǃ㋏㒳ᮕ䏃ߛᤶ ǃব乥఼ঞ⬉ᴎֱᡸǃ
ᮟ䕀ਃࡼࡳ㛑ㄝ
䖤㸠
Ѡ䈵䰤˄+9$6˅ˈಯ䈵䰤˄)9$6˅ ᴀഄ䖰⿟ˈᓔ⦃䯁⦃ ᠟ࡼ᪡԰῵ᢳ䞣㒭ᅮ ῵ᢳ䞣੠᭄ᄫ䞣䕧ߎ
䕧ߎ
N9aN9 $a$ N:aN: 乱ᅮ⬉⌕ PLQ˗乱ᅮ⬉⌕ V˗ ゟेֱᡸ
ˊa+]
෎ᴀᗻ㛑
ı ࣙ৿বय़఼೼‫ ݙ‬
⒵䎇 ,((( ੠ *%7 ᷛ‫ޚ‬
+]
᥻ࠊᮍᓣ ࡴ‫ޣ‬䗳ᯊ᥻ࠊ⬉य़ 3,' ࡳ㛑 Џ㽕᥻ࠊࡳ㛑
䖤㸠䈵䰤 ᪡԰ᮍᓣ 乥⥛㒭ᅮ ব乥఼⢊ᗕ䕧ߎ
Փ⫼എ᠔ ⏽ᑺ⑓ᑺ ᄬᬒᴵӊ
ֱᡸࡳ㛑 ໪໇䰆ᡸㄝ㑻

北京利德华福高压变频器优势全新

北京利德华福高压变频器优势全新

北京利德华福电气技术有限公司高压变频器技术优势一、单模块旁路技术(中性点漂移)目前利德华福生产的第四代Harsvert-A系列高压变频调速系统采用的是单模块旁路技术,较前三代单元模块旁路技术具备了更高的安全性能和可靠性能。

目前,我公司的单模块旁路技术是指当高压变频系统运行过程中出现一个功率单元故障时,系统可以自动旁路故障单元,同时改变三相输出电压的相位角保证线电压平衡。

从而,有效提高模块故障情况下的系统载荷;最大限度的减低因功率单元故障给生产带来的比例影响。

例如:当A相第3级功率单元发生故障时,系统将A3功率单元自动旁路;根据三相电压矢量叠加为零的原理,运用高速数字处理器增加AC相位角值,减小BC相位角,在500μS内完成相位角调整。

有效输出载荷位额定负荷的93%,对于提升机负载设备而言,几乎对生产运行不产生任何影响,大大提高了系统安全可靠性。

旁路图解见下图示。

C B700700700700777775600V56VC BA56V77777而其他企业目前采用的是同级模块旁路技术,是指当高压变频系统运行过程中出现一个功率单元故障时,系统也要同时旁路其它两相的同级两个功率单元。

例如:当A相第3级功率单元发生故障时,系统也同时将B3和C3的功率单元停止工作。

从而,保证变频器的输出三相电压平衡。

每相的有效工作电压由原来的3460V降低至2780V,三相输出的线电压最高值4800V;即,变频有效负荷降低为80%。

旁路图解见下图示。

C BC B由此可见,在6KV高压变频系统中,当一个模块故障时,单模块旁路技术仅损失了1/15功率,不会影响提升机的正常生产,利德华福高压变频允许单旁两个模块,仅做轻故障报警。

此项功能利德华福在国内是有专利的,目前全球仅有罗宾康和利德华福有此项技术。

而同级模块旁路要损失1/5功率,当发生模块故障时,无法使提升机提升重物,只能停机检修,对煤矿系统的安全生产是有隐患的。

●二、DSP无速度传感器的矢量控制技术北京利德华福高压变频器主控芯片使用的是美国高速度数字处理器DSP,而且控制系统使用的是无速度传感器矢量控制技术,不同于传统的V/F控制,在高性能控制器硬件平台上,结合先进的实用化的矢量控制技术,将电机的控制性能提高到一个新的高度。

利德华福变频器的技术参数

利德华福变频器的技术参数

高压变频器>技术参数
高压变频调速系统的型号编制方法:
额定电流(A)
电压等级(KV)
控制方式
变频调速系统
(VERT)
产品系列(s)
公司名称缩写
(HAR)
注:
1、额定输出电流为□□□A
2、电压等级:□□KV
3、控制方式:A表示异步机普通控制型,VA表示异步机矢量控制型,VS表示同步机矢量控制型。

比如:
额定电流130A
电压等级6KV
异步机
变频调速系统
正弦波系列
公司名称缩写
变频器型号A03/050~
A03/100(含
)
A03/100~
A03/175(含
)
A03/175

A03/220(含
)
A03/220~
A03/400(含
)
A03/220~
A03/610
变频器容量(KVA) 250~630 630~900 900~1150
1150~
2000
2000~3125
额定输出电流
(A)
50~100 100~175 175~220 220~400 400~610
注:设备尺寸如有变动,恕不另行通知,具体尺寸以技术协议为准。

注:设备尺寸如有变动,恕不另行通知,具体尺寸以技术协议为准。

注:设备尺寸如有变动,恕不另行通知,具体尺寸以技术协议为准。

北京利德华福HARSVERT-A系列变频器的原理

北京利德华福HARSVERT-A系列变频器的原理

HARSVERT-A系列变频器的原理有15个(或21个)功率单元,每5个(或7个)功率单元串联构成一相。

10000V 系列有24个功率单元,每8个功率单元串联构成一相。

2.输入变压器输入侧由移相变压器给每个单元供电,移相变压器将网侧高压变换为副边的多组低压,各副边绕组在绕制时采用延边三角接法,相互之间有一定的相位差。

对3000V系列,变压器副边绕组分4级,每级电压430V,相互间移相15°,构成24脉冲整流方式;对6000V系列,变压器副边绕组分5级或7级。

对5级产品,每级电压690V,相互间移相12°,构成30脉冲整流方式。

对7级产品,每级电压490V,相互间移相8.57°,构成42脉冲整流方式;对10000V系列,变压器副边绕组分8级,每级电压720V,相互间移相7.5°,构成48脉冲整流方式;这种多级移相叠加的整流方式,消除了大部分由独立功率单元引起的谐波电流,可以大大改善网侧的电流波形,使变频器网侧电流近似为正弦波,使其负载下的网侧功率因数达到0.95以上。

另外,由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,其工作电压由各个低压绕组的输出电压来决定,工作在相对的低压状态,类似常规低压变频器,便于采用现有的成熟技术。

各功率单元间的相对电压,由变压器副边绕组的绝缘承担,避免了串联均压问题。

3.功率单元功率单元是整台变频器实现变压变频输出的基本单元,每个功率单元都相当于一台交-直-交电压型单相低压变频器。

功率单元整流侧用二极管三相全桥进行不控全波整流,中间采用电解电容滤波和储能,输出侧为4只IGBT组成的H桥,电路结构如下图所示。

在任意时刻,每个单元仅有三种可能的输出电压,如果A+和B-导通,从U 到V的输出电压将为+Ud,如果B+和A-导通,从U到V的输出电压将为-Ud,如果A+和B+或者A-和B-导通,则从U到V的输出电压为0V。

通过控制A+、A-、B+、B-四只IGBT的导通和关断状态,在U、V输出端子可以得到VO的等幅PWM波形。

利德华福高压变频HARSVERT-A高压变频调速系统介绍

利德华福高压变频HARSVERT-A高压变频调速系统介绍
HARSVERT-A高压变频调速系统介绍
一、产品型号的意义 二、变频调速原理 三、系统结构
四、工作原理
五、变频器结构 六、产品系列 七、性能、参数指标 八、系统功能
九、特色功能
一、产品型号的意义
额定电流(A) 电压等级(KV) 控制方式 变频调速系统 (VERT) 产品系列(s) 公司名称缩写(HAR)
交流电是一个畸波电流,只有 通过电解电容对其进行平滑滤
波之后,是之有较好的直流波
形。
五、变频器结构(功率模块)
5、IGBT IGBT作为大功率电子器件,具有驱动功 在一个功率模块里有四只IGBT,他们共 统对四只IGBT开关时间的控制,以达到 改开关能耗小、工作频率高等优点。
四、工作原理
每个功率单元分别由输 入变压器的一组副边供 电。
每个单元的U、V输出端 子相互串接而成星型接 法给电机供电。无须输 出滤波器;电机不需要 降额使用,可直接用于 旧设备的改造;同时, 电机的谐波损耗大大减 少,消除了由此引起的 机械振动,减小了轴承 和叶轮的机械力。 柜内还附带输出电流和 电压检测功能,
四、工作原理
输入侧移相变压器将 网侧高压变换为副边 的多组低压,各副边 绕组在绕制时采用延 边三角接法,相互之 间有一定的相位差。
这种多级移相叠加的 整流方式,消除了大 部分由独立功率单元 引起的谐波电流,可 以大大改善网侧的电 流波形,使变频器网 侧电流近似为正弦波, 使其负载下的网侧功 率因数达到0.95以上。
五、变频器结构(功率模块)
9、旁路 该产品在每个功率单元的输出端之间 并联了一个旁路电路,当某个功率单
元故障时,封锁对应功率单元IGBT
的触发信号,然后让旁路SCR导通, 保证电机电流能通过,仍形成通路。

利德华福高压变频器手册

利德华福高压变频器手册

2
HARSVERT系列高压变频调速系统的结构图见图2-1,由移相变压器、功率单元和控制器组成(实际使用时还可以按用户要求配套旁路切换柜),3及3.3系12每46155 6.6系1861024811279kV kV 列有个功率单元,个功率单元串联构成一相;kV系列有个功率单元,每个功率单元串联构成一相;kV 列有个功率单元,每个功率单元串联构成一相;kV系列有个功率单元,每个功率单元串联构成一相;kV系列有个功率单元,每个功率单元串联构成一相。

高压变频调速系统原理
系统结构
图(A)
图(B)图(C)
图(D)
图(E)
图2-1 高压变频器调速系统结构图
图2-1(A)(B)(C)(D)(E)分别为3kV、6kV、6.6kV、10kV和11kV系列变频器的典型结构图。

5
8
12
HARSVERT-A系列异步电机高压变频调速系统
22。

利德华福高压变频操作规程及注意事项课件

利德华福高压变频操作规程及注意事项课件

案例一
某水泥厂高压变频器在运行过程中出 现输出电流波动异常,经过利德华福 专业技术人员的检查和维修,快速恢 复了设备的正常运行。
案例二
某煤矿企业的高压变频器在启动时出 现跳闸现象,经过利德华福专业技术 人员的排查和修复,最终找到了故障 原因并进行了有效的处理。
应用经验总结
经验一
经验三
选择合适的高压变频器型号和规格, 根据实际需求进行配置和调整,能够 更好地满足企业的生产需求和节能减 排目标。
利德华福提供专业的培训课程,包括理论知识和 实践操作,确保用户能够熟练掌握高压变频器的 操作和维护技能。
培训对象
培训课程面向所有使用利德华福高压变频器的用 户,无论您是初次接触还是资深用户,都能从中 获得有价值的信息和经验。
培训方式
培训课程采用多种方式,包括现场培训、在线培 训和集中培训等,以满足不同用户的需求。
建立完善的技术支持体系,加强与利 德华福专业技术人员的沟通和合作, 能够快速应对各种故障和问题,保障 企业的正常生产和经营。
经验二
加强设备的日常维护和保养,定期进 行检查和测试,及时发现和解决潜在 问题,能够有效地延长设备的使用寿 命和降低故障率。
CHAPTER
05
培训与支持
培训课程
1 2 3
培训课程
检查电源是否正常、控制回路是否正常、电机是否正常等,针对具体 问题进行维修或更换部件。
运行过程中出现异常声音或振动
检查电机、传动系统、负载等是否正常,针对具体问题进行维修或更 换部件。
输出电压波动或不稳定
检查传感器、控制回路等是否正常,针对具体问题进行维修或更换部 件。
出现故障代码或报警
根据故障代码或报警提示,检查相应部位,找出故障原因并处理。

利德华福HARSVERT-VA系列高压变频器

利德华福HARSVERT-VA系列高压变频器

利德华福HARSVERT-VA系列高压变频器在水泥行业的应用文/ 技术工程系统孙立强一、引言水泥工业是国民经济生产中的能源消耗大户,已被列为国家节约资源的重点领域之一。

在国务院提出加快建设节约型社会的政策环境下,提高水泥行业的节能技术和应用水平,建立节约型水泥工业体系意义重大。

在当前国内外能源供需矛盾突出的情况下,水泥生产企业必须通过各种途径降低能耗,以获得最佳的经济效益和最高的劳动生产率。

在水泥的生产中,风机大马拉小车现象严重,同时由于工况、产量的变化,系统所需求的风量也随之变化。

大部分风机采用传统做法,即调节进、出风口挡板开度大小来实现风量调节,而该方法是以增加风阻、牺牲风机的效率来达到要求的,损耗严重。

电动机负载电耗就占成本近30%,而拖动风机用的高压电动机在电机中占有很大的比重。

对于一条水泥生产线,其中有25%~30%的电能是用于拖动各种类型风机上。

风机电动机特别利用变频调速技术改变设备的运行速度,以调节风量的大小,可以既满足生产要求,又达到节约电能,同时减少因调节挡板而造成挡板和管道的磨损,从而避免经常停机检修所造成的经济损失。

目前,行业普遍认为高压风机电动机的变频调速改造是降耗增效的主要措施。

二、项目介绍河北矿峰水泥有限公司一期生产线,高温风机采用北京利德华福电气技术有限公司生产的高压变频调速系统,节能效果非常显著,用户非常认可。

于是在二期生产线中扩大使用北京利德华福电气技术有限公司变频调速系统,在生料磨循环风机、窑尾排风机、窑尾高温风机上都采用了北京利德华福电气技术有限公司变频调速系统。

(1)二期生产线窑尾排风机电机及其变频调速系统:电机2000kW,10kV(2)二期生产线高温风机电机及其变频调速系统:电机3350kW,10kV(3)二期生产线原料磨循环风机电机及其变频调速系统:电机4800kW,10kV三、利德华福高压变频器原理及特点HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属“高-高”电压源型变频器,为单元串联多电平拓扑结构,主体结构由多组功率模块串联而成,从而由各组低压叠加而产生需要的高压输出,它对电网谐波污染小,总谐波畸变小于4%,直接满足IEEE519-1992的谐波抑制标准,输入功率因数高,不必采用输入谐波滤波器和功率因数补偿装置;输出波形质量好,不存在谐波引起的电机附加发热和转矩脉动、噪音、输出dv/dt、共模电压等问题,不必加输出滤波器,就可以使用普通的异步电机, 10kV每个系统共有24个功率单元,每8个功率单元串连构成一相,其系统结构如图1所示。

利德华福高压变频器

利德华福高压变频器

利德华福高压变频器应用范围近年来,我国年工业生产总值不断提高,但是能耗比却居高不下,高能耗比已成为制约我国经济发展的瓶颈,为此国家投入大量资金支持节能降耗项目,其中高压变频调速技术已越来越广泛的应用在各行各业,它不仅可以改善工艺,延长设备使用寿命,提高工作效率等,最重要的是它可以“节能降耗”,这一点已被广大用户所认可,且深受关注。

从1998年开始,利德华福人通过一年开发,一年开局试验,一年市场考验,其研发制作的HARSVERT-A系列高压变频调速系统,完全具有自主知识产权,适合国内电网特性,符合国内用户使用习惯。

该系列高压变频调速系统自2000年投入国内市场后,在市政供水、电力、冶金、石油、石化、水泥、煤炭等行业陆续投入运行。

由于安装便捷、操作简单、运行稳定、安全可靠、维护方便,并在节能、节电、省人、省力、自动控制、远程监控等方面效果显着,以及优异的产品性价比和周到的服务,受到用户的广泛欢迎。

火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、锅炉给水泵等冶金:引风机、除尘风机、通风机、泥浆泵、除垢泵等石油、化工:主管道泵、注水泵、循环水泵、锅炉给水泵、电潜泵、卤水泵、引风机、除垢泵等市政供水:水泵等污水处理:污水泵、净化泵、清水泵等水泥制造:窑炉引风机、压力送风机、冷却器吸尘风机、生料碾磨机、窑炉供气风机、冷却器排风机、分选器风机、主吸尘风机等造纸:打浆机等制药:清洗泵等采矿行业:矿井的排水泵和排风扇、介质泵等其他:风洞试验等系统原理HARSVERT-A系列高压变频调速系统采用单元串联多电平技术,属高-高电压源型变频器,直接3、6、10KV输入,直接3、6、10KV高压输出。

变频器主要由移相变压器、功率模块和控制器组成。

系统结构功率模块结构功率模块为基本的交-直-交单相逆变电路,整流侧为二极管三相全桥,通过对IGBT逆[功率单元电路结构]变桥进行正弦PWM控制,可得到单相交流输出。

每个功率模块结构及电气性能上完全一致,可以互换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能量回馈型高性能高压变频调速系统在矿井提升机上的使用2012-2-27 9:13:32一、前言龙煤集团双鸭山分公司集贤煤矿是一家从事煤炭开采多年的老矿,目前年产优质煤炭200万吨。

该煤矿的主井提升机为双筒式矿井提升机,滚筒直径为3.5米,提煤容器为箕斗,提媒工艺如下示意图:该采煤提升系统为目前中小煤矿普遍采用,采用箕斗作为提升容器,一个箕斗在井底煤仓自动装载后,被提升到地面卸载;另一箕斗由地面下降到井下煤仓处装煤。

箕斗通过机房的双滚筒带动,机房双滚筒采用两台800千瓦电机通过减速机拖动,电机的调速方式采用传统的串电阻调速方式,该调速方式属于落后技术,存在以下缺点:(1)大量的电能消耗在转差电阻上,造成了严重的能源浪费,同时电阻器的安装需要占用很大的空间。

(2)控制系统复杂,导致系统的故障率高,接触器、电阻器、绕线电机碳刷容易损坏,维护工作量很大,直接影响了生产效率。

(3)低速和爬行阶段需要依靠制动闸皮摩擦滚筒实现速度控制,特别是在负载发生变化时,很难实现恒减速控制,导致调速不连续、速度控制性能较差。

(4)启动和换档冲击电流大,造成了很大的机械冲击,导致电机的使用寿命大大降低。

(5)自动化程度不高,增加了开采成本,影响了产量。

(6)低电压和低速段的启动力矩小,带负载能力差,无法实现恒转矩提升。

目前,变频器调速系统作为当前最先进的交流电机调速系统,越来越多的使用于各种交流电机拖动场合,作为矿井提升机这种特殊行业、特殊负载,使用的案例还比较少,尤其是针对高压变频调速系统,双鸭山新立矿标新立异,敢于创新,通过多加比对,考察,决定采用北京利德华福电器技术有限公司生产的能量回馈型高性能矢量控制变频器对原系统进行改造。

二、能量回馈型高性能高压变频器系统简要介绍北京利德华福电气技术有限公司生产的能量回馈型高压变频器属于高性能具备矢量控制功能的新一代变频器,广泛使用于矿井提升机、需要快速制动的风机以及大型轧钢机负载上,其基本组成为:激磁涌流抑制柜、变压器柜、功率柜及控制柜。

设备原理如上图,现简要说明:( 1)涌流抑制:变压器在受电瞬间,会产生激磁涌流,该数值在正常额定电流的6到8倍左右,在电网容量较小的情况下,可能引起电网急剧负向波动,影响其他设备的正常运行。

为了解决该问题,北京利德华福针对该场合运行的变频器加装了激磁涌流抑制柜,其主要组成部分为高压电阻及真空接触器,二者并联。

当变频器受高压电瞬间,高压电阻串入变压器输入回路,通过电阻的限流作用降低激磁涌流,减小电网的负向波动。

延时两秒钟后,受变频器控制系统控制,并接在高压电阻的真空接触器自动吸合,切除高压电阻,变频器投入正常运行。

( 2)变压器:该变压器为移相变压器。

移相变压器给每个功率模块供电,移相变压器的副边绕组分为三组,根据电压等级和模块串联级数,一般由24、30、42、48脉冲系列等构成多级相叠加的整流方式,可以大大改善网侧的电流波形(网侧电压电流谐波指标满足IEEE519-1992和GB/T14549-93的要求)。

使其负载下的网侧功率因数接近1。

由于变压器副边绕组的独立性,使每个功率单元的主回路相对独立,类似常规低压变频器,便于采用现有的成熟技术。

(3)功率模块:功率模块是变频器中重要的组成部分,变频器输出侧由每个单元的U、V输出端子相互串接而成星型接法给电机供电,通过对每个单元的PWM波形进行重组,可得到阶梯正弦PWM波形。

这种波形正弦度好,dv/dt小,对电缆和电机的绝缘无损坏,无须输出滤波器,就可以延长输出电缆长度,可直接用于普通电机。

同时,电机的谐波损耗大大减少,消除负载机械轴承和叶片的振动。

对于能量回馈变频器的功率模块,其结构更为复杂,功率单元的输入部分不再是整流二极管,而是可控的开关器件(IGBT),并在每个功率模块中加装电流检测装置,通过对输入部分IGBT的控制,实现电流的双向流动,从而实现变频器的四象限运行功能。

当某一个功率模块出现故障时,通过控制使输出端子短路,可将此单元旁路退出系统,变频器可降额机械运行;由此可避免很多场合下停机造成的损失。

需要说明的是,上述所有功能的实现,均由变频器的大脑——主控系统来实现,北京利德华福变频器的主控系统大体由高速单片机处理器、人机界面、PLC组成。

单片机处理器利用公司具有自主知识产权的先进矢量控制技术,通过光纤通讯的方式对每个功率单元进行PWM控制。

人机操作界面解决高压变频调速系统本身和用户现场接口的问题,提供友好的全中文监控界面,使用方便、快捷,同时可以实现远程监控和网络化控制。

内置PLC则用于柜体内开关信号的逻辑处理,可以和用户现场灵活接口,满足用户的特殊需要。

三、改造方案电机参数高压变频器参数改造方案如下图:原有的串电阻调速方式继续保留,通过切换开关将高压变频器融入到原系统,保证两个系统操作的相对独立性。

当变频器投入运行时,闭合QS3、QS4,通过转子切换柜将绕线式异步电动机转子短接,则变频器投入矿井提升机系统,变频器接受主控台指令正、反转及调速指令,驱动双电机同步调速正反转运行;当原有串电阻调速系统投入运行时,QS5、QS6 闭合,通过转子切换柜将原有电阻串入绕线式异步电动机转子回路,通过切换柜的变向及串入转子电阻的逐级切换,达到变向及调速的目的。

上图中的QS3、QS4、QS5、QS6 等隔离开关相互之间保持机械互锁,且开关状态全部纳入主控台操作系统,这样,高压变频调速系统可以和原系统互为备用,增加矿井提升机运行的可靠性。

变频器本体部分说明如下:(1)高压变频器采用单元串联多电平拓补结构,输入谐波小,功率因数高;(2)高压变频器为可以四象限运行的能量回馈型变频器,采用最先进的矢量控制技术,加速时可以实现最大的转矩输出,加速时间缩小至最短,而减速时,可以控制电机在四象限运行,输出制动转矩,减速时间缩至最短,同时,将势能转化为电能,回馈至电网,从而达到节能的目的;(3)考虑到矿用电网容量较小,变频器配备激磁涌流柜,在变频器送电初期,将激磁涌流抑制电阻投入主回路,延时两秒后,通过自动切换回路,切除激磁涌流抑制电阻,通过此种技术方案,降低变压器激磁涌流,保证变频器瞬间投入时不对电网造成电压波动;(4)单台变频器直接拖动两台电机,简化控制手段,降低故障风险。

四、变频器在矿井提升机系统中的使用上图为双鸭山集贤煤矿立井双箕斗提升系统主要组成部分,系统中包括:电机、高压变频器、主控台、液压站、润滑站、高压开关柜、减速机、联轴器、双滚筒、箕斗、天轮及原串电阻调速系统,因本文主要讲述高压变频器在矿井提升机系统中的使用,关于串电阻调速系统则在本文中不再详述。

图中,高压变频器作为动力调速装置,在整个提升系统中起着举足轻重的作用,下面则对此进行详细说明。

变频器通过高压开关柜受高压电,并且通过变频器控制系统检测高压电的相序,电压等一系列参数,如果参数超出变频器正常范围,则利用变频器自身的保护功能对变频器实施保护,为了降低变压器初期受电的激磁电流,避免受电时电网波动对其他运行设备的影响,该变频器配备了激磁涌流抑制柜,降低激磁电流,降低电网波动的幅度。

变频器和主控台的接口主要如下:变频器接受主控台的正转、反转、急停以及转速给定等指令,变频器反馈给主控台的信号有:待机、运行、轻故障、重故障、旁路故障、输出转速及输出电流等。

变频器受高压电后,主控台通过检测电机的待机信号,判断变频器已经可以运行,主控台在自动模式下,通过控制变频器,实现矿井提升机运行的5段速度曲线,即启动加速段、匀速段、一次减速段、匀速爬行段和二次减速制动段,下面一一说明。

(1) 启动加速段:主控台接受井下操作人员的打点命令,对变频器输出正转或反转命令,变频器按照预先设定的加速时间运行至最低频率,将运行信号反馈给主控台,此时作用于双滚筒上的抱闸系统处于抱闸状态,滚筒静止,拖动滚筒的电机处于堵转状态。

主控台接收到变频器运行信号后,判断变频器输出电流,当检测电流达到电机额定电流后(双电机系统,额定电流为单电机额定电流的二倍),证明电机已经获得了足够的励磁转矩,因液压站液压阀的机械特性有时会发生微小变化,为了避免溜车现象的发生,主控台在此稍做了延时,一秒钟后主控台驱动液压站液压阀,液压阀再驱动滚筒抱闸系统,松开抱闸系统,电机堵转结束,开始旋转,通过减速机,滚筒开始运行,从而通过钢绳拖动两只箕斗上下运行。

变频器接受主控台转速给定信号,逐步提高运行频率,按照预先设定的加速时间逐步提高运行频率,滚筒转速逐步提高;(2)匀速段:当转速给定指令提高至50赫兹,变频器运行至50赫兹时,进入匀速段,此阶段,变频器维持最大输出,滚筒运行至最高速度,拖动箕斗在最高速度下运行;(3)一次减速段:主控台通过立井系统的位置传感器接收箕斗运行位置信号,当到达一次减速区间的时候,主控台按照预先设定的程序减小转速给定指令数值,变频器接收到新的转速给定数值后,执行,开始降低运行频率,拖动电机及滚筒减速运行。

此时因箕斗之前还处于高速运行,突然降速后,由于惯性作用,电机进入发电状态,开始向变频器注入能量,变频器则利用自身的能量回馈功能,将此部分能量通过逆变回馈至电网,同时根据预先设定的降速曲线,对电机实施反作用力,达到快速降速的目的;(4)匀速爬行段:主控台通过箕斗的位置传感信号,通过预设数值,给定变频器低转速数值,变频器在此转速信号下维持低频率输出不变,箕斗低速运行,进入匀速爬行段;(5)二次减速制动段:主控台通过箕斗的位置传感信号,判断箕斗即将进入预定停斗位置后,给变频器更低转速信号,变频器运行至最低频率,当箕斗即将到达预定位置后,主控台发出急停指令,变频器停止驱动电机,同时控制液压站,关断液压阀,从而驱动滚筒抱闸系统,经过二级制动,抱闸系统抱死,滚筒静止,箕斗停运,执行卸煤及装载流程。

需要说明的是,当主控台发急停指令的时候,变频器通过自身编程延时0.5秒停止频率输出,此种技术手段是为了保证在滚筒抱闸系统已经起作用的时候,变频器仍有短时间力矩输出,防止抱闸系统抱闸瞬间变频器力矩输出为零,引起溜车现象,经现场反复运行,证明了该方案的可行性。

当然,在变频器运行的各个阶段,主控台通过轴编码器,分别监测电机、滚筒的转速,除了显示箕斗运行速度、实时深度等数值,还通过多个速度监测结果综合判断系统运行是否正常,另外,通过立井位置传感器、绳索、润滑站、液压站、电机过热保护器等系列参数,实现矿井提升机系统的上过卷、下过卷、松绳、润滑油油压过低或过高(润滑站主要是给减速机润滑)、液压站油压过高或过低、电机过载、绞车过速等一系列保护功能。

变频器的加减速时间设置很重要,其设置根本原则有两个方面,第一,尽可能利用变频器自身的快速响应功能,加减速时间尽量短,提高箕斗的运行速度,提高生产效率;第二,最大加速度不允许超过国家安标,防止安全事故,基于以上两点考虑,实际使用中,变频器从0至50赫兹的加速时间设置为12秒,从50赫兹至0赫兹的减速时间设置为9.7秒,经现场实际运行,完全满足现场运行要求。

相关文档
最新文档