2016年江苏高考数学试题(Word版-)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年江苏高考数学试题(Word 版-)

2016年江苏数学高考试题

数学Ⅰ试题

一、填空题:本大题共14个小题,每小题5分,共70分

1.已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B ________________.

2.复数(12i)(3i),z =+-其中i 为虚数单位,则z 的实部是________________.

3.在平面直角坐标系xOy 中,双曲线22

173x y -=的焦距是

________________.

4.已知一组数据4.7,4.8,

5.1,5.4,5.5,则该组数据的方差是________________.

5.函数y 2

32x x --________

10.如图,在平面直角坐标系xOy 中,F 是椭圆2222

1()x y a b a b +=>>0的右焦点,直线2b y =与椭圆交于B ,C 两点,且90BFC ∠= ,则该椭圆的离心率是________

11.设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -=,则f (5a )的值是________

12. 已知实数x ,y 满足240220

330x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩,则x 2+y 2的取值范围

是________

13.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,4BC CA ⋅=,1BF CF ⋅=-,则BE CE ⋅的值是________

14.在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan

A tan

B tan

C 的最小值是________

二、解答题 (本大题共6小题,共90分)

15.(本小题满分14分)

在ABC △中,AC =6,4πcos .54

B C , (1)求AB 的长; (2)求πcos(6A )的值.

16.(本小题满分14分)

如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且11

AC A B

⊥.

⊥,1111

B D A F

求证:(1)直线DE∥平面A1C1F;

(2)平面B1DE⊥平面A1C1F.

17.(本小题满分14分)

现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1PO 的四倍. (1)若16,PO 2,AB m m ==则仓库的容积是多少?

(2)若正四棱柱的侧棱长为6m ,则当1

PO 为多少时,仓库的容积最大?

18. (本小题满分16分)

如图,在平面直角坐标系中,已知以M 为圆心的圆M ﹕22

1214600x y x y +--+=及其上一点A(2,4)

(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;

(2)设平行于OA 的直线l 与圆M 相交于B 、C 两点,

且BC=OA,求直线l的方程;

(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得,

+=,求实数t的取值范围。

TA TP TQ

19. (本小题满分16分)

已知函数()(0,0,1,1)

x x

=+>>≠≠.

f x a b a b a b

.

(1)设a=2,b=1

2

①求方程()

f x=2的根;

②若对任意x R∈,不等式(2)f()6

≥-恒成立,求实数m的

f x m x

最大值;

(2)若01,1a b <<>,函数()()2g x f x =-有且只有1个零点,求ab 的值。

20.(本小题满分16分)

记{}1,2,100U =…,

.对数列{}()*n a n N ∈和U 的子集T ,若T =∅,定义0T S =;若{}12,,k T t t t =…,,定义12+k T t t t S a a a =++….例如:{}=1,3,66T 时,1366+T S a a a =+.现设{}()*n a n N ∈是公比为3的等比数列,且当{}=2,4T 时,=30T S .

(1)求数列{}n a 的通项公式;

(2)对任意正整数()1100k k ≤≤,若{}1,2,k T ⊆…,

,求证:1T k S a +<; (3)设,,C D C U D U S S ⊆⊆≥,求证:2C C D D

S S S +≥.

数学Ⅱ(附加题)

21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.

A.【选修4—1几何证明选讲】(本小题满分10分)

如图,在△ABC中,∠ABC=90°,BD⊥AC,D为垂足,E是BC的中点,求证:∠EDC=∠ABD.

B.【选修4—2:矩阵与变换】(本小题满分10分) 已知矩阵12,02A ⎡⎤=⎢⎥-⎣⎦矩阵B 的逆矩阵111=202B -⎡⎤-⎢⎥⎢⎥⎣⎦,求矩阵AB.

C.【选修4—4:坐标系与参数方程】(本小题满分10分) 在平面直角坐标系xOy 中,已知直线l 的参数方程为

1123x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩(θ为参

数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.

D.设a >0,∣x -1∣<3a ,∣y -2∣<3

a ,求证:∣2x +y -4∣<a.

相关文档
最新文档