碳纳米管结构性质以及其制备方法

合集下载

碳纳米管在超级电容器中的应用

碳纳米管在超级电容器中的应用

碳纳米管在超级电容器中的应用在现代科技中,储存和转换电能的需求越来越高,超级电容器由于其高功率密度和长寿命等优点而备受瞩目。

其中,碳纳米管材料是超级电容器中理想的电极材料之一。

本文将从碳纳米管的结构特点、制备方法以及在超级电容器中的应用等方面进行探讨。

一、碳纳米管的结构特点碳纳米管是由若干层具有六元环结构的碳原子构成的管状结构,其直径通常在1~100纳米之间。

碳纳米管的特殊结构赋予其独特的电学、光学、力学和导热等性质,其中主要包括以下几个方面:1.良好的导电性:碳纳米管具有良好的电导率和电子迁移率,可用于制备高性能电子器件。

2.优异的力学性能:碳纳米管具有极高的模量和强度,较好的韧性和弹性,可用于制备高性能纳米机械器件。

3.优异的光学性能:碳纳米管在红外波段具有良好的透光性,可用于制备高效率的光电器件。

二、碳纳米管的制备方法目前,碳纳米管主要有化学气相沉积法、电弧等离子体放电法、激光热解法、电化学方法等多种制备方法。

这些方法各有特点,但都需要一定的设备和技术条件。

1.化学气相沉积法:该方法是通过在高温下一定气氛下沉积碳原子来制备碳纳米管,其优点是操作简便,但缺点是制备的碳纳米管质量不高。

2.电弧等离子体放电法:该方法是利用直流电弧等离子体在高温下沉积碳原子制备碳纳米管,其优点是制备出来的碳纳米管质量高,但设备复杂,成本较高。

3.激光热解法:该方法是利用激光加热碳源来制备碳纳米管,其优点是制备出的纳米管尺寸分布较小,质量高,但设备复杂,制备周期长。

4.电化学方法:该方法是通过在电解质溶液中加入碳源,利用外加电压在电极上沉积碳纳米管。

该方法简单易行,无需高温高压,但制备出的纳米管尺寸分布不均匀。

三、碳纳米管材料可用于制备超级电容器的电极材料,主要有两种方法:一种是利用碳纳米管的高表面积制备电极材料;另一种是将碳纳米管与其他电极材料复合制备电极材料。

1.利用碳纳米管的高表面积制备电极材料:碳纳米管单层结构的表面积相对较大,可以提高电极材料的活性表面积,从而提高电容器的能量密度和功率密度。

碳纳米管的制备及其性能研究

碳纳米管的制备及其性能研究

碳纳米管的制备及其性能研究碳纳米管是一种非常有前景的纳米材料,其特异的电学、热学和力学特性具有广泛的应用前景。

因此,研究碳纳米管的制备方法和性能具有重要意义。

本文将对碳纳米管的制备方法和性能进行探讨。

一、碳纳米管的制备方法1、电弧放电法电弧放电法是最早被用于碳纳米管制备的方法。

该方法是利用两根导电杆在惰性气氛下进行电弧放电,使原料石墨蒸汽按照一定的温度梯度沉积在导电杆上。

在导电杆上形成的沉积物就是碳纳米管。

电弧加热的方法可以实现高温、高压、高速度的碳化过程,产生高纯度的碳纳米管。

但是,该方法的缺点是需要高温条件,且碳纳米管的单一性不够理想。

2、化学气相沉积法化学气相沉积法是在一个加热炉中,将碳源和催化剂共同加热,以高温下在惰性气氛下产生的热化学反应来制备碳纳米管。

该方法的优点是制备过程可以控制,且可以获得高纯度、高晶化度的碳纳米管。

缺点是需要特殊设备,成本较高。

3、化学还原法化学还原法是通过还原剂将金属盐还原成金属颗粒,并在一定的热环境下,用碳源产生化学反应制备碳纳米管。

该方法简单、操作方便,但设备要求不高,成本较低,但碳纳米管质量不够理想。

二、碳纳米管的性能研究1、导电性碳纳米管具有极高的导电性,因为其结构本身就是高度有序的纳米管状结构。

碳纳米管有丝状、多层、单层等多种不同的结构形式,不同的结构形式的导电性也不同。

2、力学性碳纳米管具有极高的力学性能,因为其具有极高的强度和韧性。

碳纳米管的力学性质研究为制备高强度、高韧性的材料提供了新的思路。

同时,碳纳米管的强度和韧性也与其结构有密切关系。

3、热学性碳纳米管的热学性质是基于其导热性和比热容来描述的。

由于碳纳米管有着极小的截面积和长的长度,因此具有极高的导热性。

同时,其比热容也相对较小,使其能够很快地从高温状态回复到室温状态。

四、结论总之,制备碳纳米管是非常有前景的研究领域,其有着广泛的应用前景。

本文就碳纳米管的制备方法和性能进行了简要介绍,但是由于篇幅有限,还未涉及到其许多其他的应用领域。

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。

本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。

一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。

化学气相沉积法是制备碳纳米管最常用的方法之一。

该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。

这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。

电化学沉积法是一种较为简单和经济的制备方法。

通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。

这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。

电弧放电法是一种高温高压条件下制备碳纳米管的方法。

通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。

这种方法制备出的碳纳米管尺寸较大,结构较不规则。

碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。

这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。

二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。

碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。

此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。

另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。

碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。

三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。

碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。

此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。

碳纳米管的合成和应用

碳纳米管的合成和应用

碳纳米管的合成和应用碳纳米管(Carbon Nanotubes, CNTs)是由纯碳构成的一种纳米材料,以其独特的物理和化学性质,在材料科学、生物医学等众多领域都有重要的应用和研究价值。

本文将从碳纳米管的合成方法、结构特征以及应用等方面进行讨论。

一、碳纳米管的合成方法碳纳米管最早是由日本科学家Sumio Iijima于1991年发现,并提出了一种制备碳纳米管的方法——电弧放电法。

该方法是通过电弧放电在高温下制备,得到的碳纳米管平均直径为10-20nm。

随后,人们发现在碳纳米管形成的高温条件下,化学气相沉积法(Chemical Vapor Deposition, CVD)也可以用来合成碳纳米管。

通过CVD法合成的碳纳米管平均直径可以达到数纳米级别。

此外,离子束辅助CVD、体积扩散法、等离子炮击法等方法也被用来合成碳纳米管。

这些方法各有优缺点,可以根据具体应用需求选择合适的方法。

二、碳纳米管的结构特征碳纳米管分为单壁碳纳米管(Single-Walled Carbon Nanotubes, SWNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes, MWNTs)两种。

SWNTs是由一个或几个碳原子层叠而成的单层碳纳米管,直径在1-2nm左右;MWNTs则是由多层碳原子管叠加在一起构成的,直径在10-30nm左右。

SWNTs的结构主要包括芳香环、周边的螺旋结构以及端部的官能团等。

SWNTs具有高比表面积和高机械性能,同时还有超疏水性、高导电性和热导率等重要的物理和化学性质。

MWNTs的壁层数越多,直径越大,内壁和外壁之间的距离也越大。

MWNTs的直径越大,其比表面积也越小,但其机械性能就越强。

MWNTs和SWNTs相比,其电导率、热导率和力学性能都要略低。

同时,MWNTs相较于SWNTs更便于分散处理,应用更为广泛。

除了单壁和多壁两种结构外,根据碳纳米管的管径、手性和烯结构等进一步可将碳纳米管细分为不同类型,如外径为几百纳米的纳米线状碳纳米管和手性控制的带有特定电学性质的碳纳米管等。

碳纳米管简介

碳纳米管简介

加强基础研究和创新能力
深入研究结构与性能关系
进一步揭示碳纳米管的微观结构和性 能之间的关联,为新应用提供理论支 持。
探索新的合成方法
加强跨学科合作
与化学、物理、生物等学科进行交叉 合作,拓展碳纳米管的应用领域。
开展新合成方法的研究,实现碳纳米 管的绿色合成和可控合成。
建立产业联盟和创新平台
促进产学研合作
导电材料
碳纳米管具有优异的导电性能,可作为复合材料的导电填料,提高材料的导电性能。
半导体领域
晶体管
碳纳米管具有优异的半导体性能,可 用于制造高性能晶体管,提高集成电 路的性能和集成度。
传感器
碳纳米管具有较高的化学敏感性和光 电响应性,可用于制造高性能传感器 ,用于环境监测、生物医学等领域。
纳米电子领域
碳纳米管的应用领域
电池领域
电池电极材料
碳纳米管具有优异的导电性能和比表 面积,可作为高性能电池电极材料, 提高电池的能量密度和充放电效率。
电池隔膜材料
碳纳米管具有较高的机械强度和化学 稳定性,可用于制造高性能电池隔膜 ,提高电池的安全性和稳定性。
复合材料领域
增强材料
碳纳米管具有优异的力学性能和化学稳定性,可作为复合材料的增强剂,提高材料的强度和韧性。
化学反应性
碳纳米管具有较高的化学反应性,可以在高温下与多种氧化剂反应,也可以在催化剂的作 用下进行加氢反应。此外,碳纳米管还可以通过表面修饰改性来提高其化学反应性和相容 性。
表面基团
碳纳米管的表面可以含有多种基团,如羧基、羟基、羰基和环氧基等。这些基团的存在会 影响碳纳米管的化学反应性和相容性。
稳定性
碳纳米管简介
汇报人: 2023-12-15

碳纳米管的制备和应用

碳纳米管的制备和应用

碳纳米管的制备和应用碳纳米管是一种形态特殊的纳米材料,具有很大的特殊性能和广泛的应用前景。

它有着极高的强度、韧性、导电性和热稳定性,可以应用于电子、材料、生物等多个领域。

本文将从碳纳米管制备方法、特性和应用方面进行较全面的探讨。

一、碳纳米管制备方法目前,碳纳米管的制备方法主要分为两类:一类是化学气相沉积(Chemical Vapor Deposition,CVD)法,另一类是电化学沉积法。

化学气相沉积法(CVD)是一种通过热化学反应生成碳纳米管的方法。

CVD法常常采用钛锆合金、镍、铁等金属颗粒作为催化剂,将具有碳源气体(如甲烷、乙烯等)的反应混合物通过催化剂层,在高温下发生热化学反应,生成碳纳米管。

CVD法可以制备出长而纤细的碳纳米管,且可以在生长过程中控制管径和壁厚。

但是,该法需要高温条件(800~1000℃)下进行,而且需要专业化设备,制造成本高。

电化学沉积法是利用电化学活性物质在电极上还原/氧化所生成的物质与硼酸盐(或磷酸盐)在碳电极表面转移结晶的方法,该方法可以制备高质量和大面积的碳纳米管。

但是,要制备高质量的碳纳米管需要获得良好的碳电极材料,且该方法的制备周期长,难以适应大规模工业化生产。

二、碳纳米管的特性碳纳米管具有很多特殊的物理和化学性质,这些性质导致了碳纳米管在实际应用中的广泛性。

首先,碳纳米管是一种晶体纳米管,而且是一种单元维度很小的材料。

这意味着碳纳米管具有非常好的导电性和导热性,因为碳的导电性能很好,在单个纳米管尺度下的管壁薄到几个原子层之后,其导电性能甚至可以和金属相媲美。

另外,由于碳纳米管是一维纳米结构,其表面积非常大,表面活性很强,好吸附、分散能力很强,是一种优秀的催化剂载体。

其次,碳纳米管的强度也非常高。

因为其由多层碳原子光滑地绕构成,碳原子之间共价键相互作用强,使得整个管道极硬且难以破坏,同时又柔韧兼备,可以延展。

最后,碳纳米管的热稳定性也非常出色。

由于碳原子光合并的强度高,因此管子的化学稳定性强,基本上不会遇到一些化学反应的影响。

碳纳米管材料的制备与应用

碳纳米管材料的制备与应用

碳纳米管材料的制备与应用随着科技的不断发展,人类需要的材料也越来越多样化。

其中,碳纳米管材料已经逐渐成为各个领域的研究热点。

碳纳米管是由碳原子组成的管状结构,具有优异的电学、热学和机械性能,因此在材料科学、能源、电子学、生物医学等领域都有广泛的应用。

本文将着重讨论碳纳米管的制备与应用。

一、碳纳米管的制备方法碳纳米管的制备方法分为两类:化学气相沉积(CVD)和物理气相沉积(PVD)。

其中,化学气相沉积是目前主流的制备方法。

1. CVD法CVD法是一种将碳源物质通过高温反应在衬底上形成碳纳米管的方法。

该方法在过去几十年间被广泛应用。

其原理是将在高温下分解的碳源物质(MgO、Fe、Co、Ni等金属薄膜)与甲烷(CH4)等碳源反应,生成碳纳米管。

产生的碳纳米管在金属薄膜上进行生长,成品碳纳米管可以被用于许多领域,如生物医学、电子学和机械工程。

2. PVD法PVD法是物理气相沉积法,是将高温高真空条件下的碳到金属薄膜表面,使其发生化学反应产生的碳纳米管。

PVD法和CVD法相比,能够控制制备的材料的形态,所以在某些行业中得到了广泛应用。

二、碳纳米管的应用碳纳米管可应用于生物医学、电子,机械工程等诸多领域中。

下面我们将简述几个典型应用案例。

1.生物医学碳纳米管是最有前途的纳米生物材料之一,具有良好的潜在应用前景。

例如,在体内使用碳纳米管作为药物载体能够提高药物在体内的分布,从而改善治疗效果。

同时还可以在生物医学领域中应用到组织修复等方面。

虽然在生物医学应用领域,碳纳米管还有各种缺陷需要克服,但其无疑是一个相当有前景的材料。

2. 电子碳纳米管在电子领域中的应用被认为是随着大小更小的范围的涌现而产生的。

碳纳米管的应用在电学方面主要有两个方面:体积很小时还能保持完美的电性;因其结构的高度均匀性而成本效益较高。

3. 机械工程由于碳纳米管的力学性质优异,具有较高的韧性和高强度,可以有效解决一些结构耐磨、化学稳定度和热稳定度较差、承载能力不足,同时仍具有大量不仅仅是机架化的性能的问题,也具有广泛的应用和前景。

碳纳米管的制备与应用

碳纳米管的制备与应用

碳纳米管的制备与应用碳纳米管(Carbon Nanotubes,简称CNTs)是一种由碳元素构成的纳米材料,具有优异的物理和化学性质,广泛应用于多个领域,如电子学、材料科学、能源储存等。

本文将探讨碳纳米管的制备方法以及其在各个领域的应用。

一、碳纳米管的制备方法1. 弧放电法:通过在一个单位大气压下的两个碳电极之间施加高电流和高电压,利用碳电极表面产生的高温和高热量,从而在电极上形成弧光放电,使得碳纳米管得以制备。

2. 化学气相沉积法:将碳源(如甲烷、乙腈等)和催化剂(如金属镍、铁等)同时输入到高温反应室中,通过热裂解反应,使碳源气体分解并在催化剂表面形成碳原子,最终形成碳纳米管。

3. 化学液相沉积法:将碳源和催化剂溶解在有机溶剂中,通过调节反应条件(如温度、反应时间等),使碳源中的碳原子在催化剂的作用下结晶生长为碳纳米管。

二、碳纳米管的应用领域1. 电子学:碳纳米管因其优异的电子输运性能被广泛应用于电子元件的制备。

其具有高电导率、高载流子迁移率和优异的机械强度,可用于制造高性能的场效应晶体管(FET)、集成电路、柔性电子等。

2. 材料科学:碳纳米管可以作为增强剂添加到金属基体中,提高材料的力学性能。

此外,碳纳米管还可以制备出具有高比表面积和孔隙结构的吸附材料,广泛应用于气体吸附、催化剂载体等领域。

3. 能源储存:碳纳米管作为超级电容器材料具有高比电容和长循环寿命,可广泛应用于储能装置和电动车辆中。

此外,碳纳米管还可以用于锂离子电池电极材料的改性,提高电池的能量密度和循环寿命。

4. 生物医学:碳纳米管因其良好的生物相容性和荧光性能,在生物医学领域具有广泛的应用前景。

例如,碳纳米管可以用作药物传递载体,通过改变管壁上的功能基团,实现对药物的控制释放;同时,其荧光性质还可用于生物分子探测和光热治疗等。

总结起来,碳纳米管作为一种新型纳米材料,在电子学、材料科学、能源储存和生物医学等领域具有广泛应用前景。

碳纳米管的制备与性质

碳纳米管的制备与性质

碳纳米管的制备与性质碳纳米管是一种由碳元素构成的纳米材料,可以用作制造高性能电子产品,如电池、传感器、晶体管和显示器等。

此外,碳纳米管还具有优异的力学性能和导电性能,因此在机械学和材料科学领域也具有广泛的应用。

本文将介绍如何制备碳纳米管以及它们的性质。

制备碳纳米管的方法碳纳米管的制备方法主要有两种:1.化学气相沉积(CVD)法;2.电弧放电法。

CVD法是最常用的方法,它利用化学反应将碳物质在高温下转化为纳米管状结构。

该方法的主要步骤如下:第一步:用化学气相沉积技术沉积一层Ni或Co薄膜在硅基底上,通过Ni或Co在高温下化学反应,产生碳纳米管。

第二步:将硅基底连同Ni或Co层放在高温炉中,在惰性气体氧化或空气中加热,使Ni或Co层结晶。

第三步:在高温惰性气体或空气中,对Ni或Co层进行氧化,Ni或Co与摄氏度高于1000度的碳沉淀反应开始。

第四步:化学反应过程中形成微米大小的Ni或Co碳化合物颗粒,碳近球形分布在Ni或Co颗粒外。

甚至在高度下压的情况下,碳颗粒仍然呈东西向的纤维状和圆盘状纳米管。

电弧放电法基本上是在惰性气氛下用两个碳电极作为反应器,在碳电极之间施加高电压(20-30伏),并使用相应的电流源(10-100安培),一般在自然气氛下,在它们之间形成等离子体放电。

在高温高压等离子体条件下,碳原子会在电弧之间形成纤维碳,最终沉积在电极上。

该过程可以使用钨、铑、铱等惰性金属纯电极放电。

通过对电弧放电的控制和控制气体成分,可以制造不同形状和结构的碳纳米管。

碳纳米管的性质碳纳米管是由碳原子排成的蜂窝状结构组成的,具有很高的结构稳定性和热稳定性,因此具有许多独特的性质。

下面介绍一些主要的性质:1.力学性能:碳纳米管具有极高的力学强度和弹性模量,可以作为强度和刚性材料使用。

2.导电性能:碳纳米管具有优异的导电性能,可以作为高导电材料使用。

3.热传导性能:碳纳米管具有很高的热传导性能,因此在制造纳米加热器和热电极等方面具有潜在的应用价值。

碳纳米管的制备

碳纳米管的制备

碳纳米管的制备碳纳米管是一种具有独特结构和优异性能的纳米材料,广泛应用于电子器件、储能材料、传感器等领域。

本文将介绍碳纳米管的制备方法及其原理。

一、碳纳米管的制备方法碳纳米管的制备方法主要包括化学气相沉积法、电弧放电法、激光烧蚀法和碳化合物热解法等。

下面将对其中的几种常用方法进行详细介绍。

1.化学气相沉积法化学气相沉积法是目前最常用的制备碳纳米管的方法之一。

其原理是在适当的温度下,将含有碳源和催化剂的气体通过反应管,使之在催化剂表面发生化学反应,生成碳纳米管。

该方法具有制备工艺简单、成本较低等优点。

2.电弧放电法电弧放电法是一种较早被发现的碳纳米管制备方法。

其原理是在高温下,通过电弧放电使碳源蒸发,生成碳烟,进而形成碳纳米管。

该方法制备的碳纳米管质量较高,但成本较高,且产量较低。

3.激光烧蚀法激光烧蚀法是利用激光脉冲对含有碳源的固体进行瞬时加热,使之发生爆炸和蒸发,生成碳纳米管。

该方法制备的碳纳米管结构较好,但对设备要求较高,且产量较低。

4.碳化合物热解法碳化合物热解法是一种将碳源与金属催化剂一起加热至高温,使碳源在催化剂表面发生热解反应生成碳纳米管的方法。

该方法制备的碳纳米管质量较高,但对设备要求较高,且成本较高。

二、碳纳米管的制备原理无论是哪种制备方法,碳纳米管的制备都基于碳原子的重新排列和堆积。

以化学气相沉积法为例,其制备原理如下:在适当的温度下,将含有碳源和催化剂的气体通过反应管。

在催化剂表面,碳源分解生成碳原子,并在催化剂的作用下重新排列和堆积,形成碳纳米管的结构。

催化剂在碳纳米管的形成过程中起到了关键的作用。

一方面,催化剂可以提供活性位点,促使碳原子的重新排列和堆积;另一方面,催化剂还可以调控碳纳米管的直径和结构。

制备碳纳米管的温度也是一个重要的参数。

温度过高会导致碳纳米管的生长速度过快,从而影响其结构和质量;温度过低则会降低碳纳米管的生长速度。

除了制备方法和制备温度,碳源的选择也会对碳纳米管的结构和性能产生影响。

碳纳米管的制备

碳纳米管的制备

碳纳米管的制备简介碳纳米管是一种由碳原子组成的纳米材料,具有独特的结构和性质。

它们被广泛应用于电子、材料科学、生物医学等领域。

本文将介绍碳纳米管的制备方法及其影响因素。

制备方法热解法热解法是最常用的碳纳米管制备方法之一。

该方法通过热解碳源材料,使其在特定条件下产生碳纳米管。

1. 准备碳源材料和催化剂。

常用的碳源材料有天然气、乙炔等,而催化剂则通常采用金属催化剂,如铁、镍等。

2. 将碳源材料和催化剂放入热解炉中,并控制温度、压力等参数。

3. 在适当的温度下进行热解反应,使碳纳米管在反应过程中形成。

4. 收集和纯化产生的碳纳米管。

化学气相沉积法化学气相沉积法是另一种常用的制备碳纳米管的方法。

它利用化学反应在金属催化剂上形成碳纳米管。

1. 准备金属催化剂晶粒,并将其放置在反应器中。

2. 准备碳源气体,如乙炔、氨等。

3. 将反应器加热到适当的温度,并供应碳源气体。

4. 通过化学反应将碳源气体分解,并形成碳纳米管。

5. 收集和纯化产生的碳纳米管。

影响因素温度温度是制备碳纳米管的重要参数之一。

适当的温度可以促进碳原子的扩散和纳米管的生长。

不同的碳纳米管制备方法对于温度的要求也不同。

压力压力直接影响反应气氛和反应速率。

在化学气相沉积法中,较高的压力可以提高碳原子的活性,有利于碳纳米管的生长。

催化剂选择催化剂对于碳纳米管的形成至关重要。

不同的催化剂会导致不同结构和性质的碳纳米管。

常用的催化剂有镍、铁、钯等。

碳源材料选择碳源材料是影响碳纳米管制备的另一个重要因素。

不同的碳源材料会对碳纳米管的尺寸、结构等性质产生影响。

常用的碳源材料有天然气、乙炔等。

结论碳纳米管的制备是一项关键的研究领域。

通过合适的制备方法和优化关键参数,可以得到具有一定尺寸、结构和性质的碳纳米管。

未来研究应该继续探索新的制备方法,以满足不同应用领域的需求。

碳纳米管的制备及在催化领域的应用研究

碳纳米管的制备及在催化领域的应用研究

碳纳米管的制备及在催化领域的应用研究碳纳米管是一种由碳原子构成的管状结构,具有极高的韧性和导电性能,因此在催化领域有着广泛的应用。

本文将探讨碳纳米管的制备方法及其在催化领域的应用研究。

一、碳纳米管的制备方法碳纳米管的制备方法主要有化学气相沉积法、电化学沉积法、毛细管拉伸法等。

其中,化学气相沉积法是较为常用的一种制备方法。

1.化学气相沉积法化学气相沉积法是利用化学反应在高温下使含有碳源和催化剂的气体形成碳纳米管的方法。

这种方法制备的碳纳米管,具有高纯度、尺寸均一等优点,因此在催化领域中有着广泛的应用。

该方法具体步骤如下:首先,在高温下将含有碳源和催化剂的气体通入反应室中,使其在反应室中反应。

通常所用的反应气体为乙烯、甲烷等含碳气体,而催化剂一般采用镍、钴等金属。

在反应过程中,碳源和催化剂发生反应生成碳纳米管。

2.电化学沉积法电化学沉积法是利用电化学反应在导电表面沉积碳纳米管的方法。

该方法操作简便,但是所得到的碳纳米管质量较差,难以控制其尺寸和分布。

3.毛细管拉伸法毛细管拉伸法是利用毛细管将含有碳源和催化剂的毛细管拉长,从而形成碳纳米管的方法。

该方法制备的碳纳米管,尺寸较小,但是产量较低,故不在工业上应用。

二、碳纳米管在催化领域的应用研究碳纳米管在催化领域的应用主要分为两类:一类是作为催化剂载体,另一类是作为催化剂的组成部分。

下面将对这两种应用分别进行讨论。

1.碳纳米管作为催化剂载体碳纳米管具有极高的表面积、导电性能和化学稳定性,因此可被用作载体,将催化剂负载在其表面上,从而改善催化剂的稳定性和活性。

最常用的载体是氧化铝和二氧化硅等氧化物,但是这些载体具有一定的缺点,如活性不稳定、易磨损等。

近年来,研究者们利用碳纳米管的优异特性,将其作为载体,载入一些金属离子或氧化物,如镍、钴、氧化钨等,制备出不同的催化剂。

这些催化剂具有高催化活性、优异的选择性和较长的寿命,因此在化工及环保等领域具有重要应用。

2.碳纳米管作为催化剂的组成部分碳纳米管具有极高的导电性能和化学稳定性,在催化反应中具有广泛的应用价值。

碳纳米管的制备、性质和应用进展

碳纳米管的制备、性质和应用进展

在化学传感器和生物传感器领域,碳纳米管的敏感度高、响应速度快,可检测 多种化学物质和生物分子。例如,多壁碳纳米管可检测空气中的有害气体分子, 单壁碳纳米管可检测生物体内的病毒和细菌。这些应用为化学和生物分析提供 了新的检测手段。
在硬材料制备领域,碳纳米管因其卓越的力学性能和热导率而被用于制备高性 能复合材料和耐磨材料。例如,将碳纳米管添加到塑料或橡胶中可显著提高材 料的强度、韧性和热稳定性。此外,碳纳米管还被用于制造刀具和轴承等耐磨 器件,其高硬度和高耐磨性使得这些器件的性能得以显著提升。
谢谢观看
碳纳米管的电子结构研究表明,它们具有金属性和半导体性两种类型,具体取 决于碳纳米管的层数和手性。碳纳米管的导电性能与金属导线相似,具有高电 导率。同时,碳纳米管还具有优异的热导率,可高达6000 W/m·K,远高于铜。
碳纳米管的应用:
由于其独特的结构和性能,碳纳米管在电子、化学传感器、生物传感器和硬材 料制备等领域具有广泛的应用前景。
3、生物医学领域
在生物医学领域,碳纳米管膜也展现出广阔的应用前景。由于其生物相容性和 良好的电性能,碳纳米管膜可以作为药物载体和细胞培养基底。研究表明,将 药物包裹在碳纳米管膜内,可以实现对药物的精确控制和靶向输送。同时,碳 纳米管膜还可以作为细胞生长支架,促进细胞的黏附和增殖。
4、电子器件领域
然而,尽管碳纳米管的研究已经取得了许多成果,但仍存在一些问题需要进一 步探讨。例如,碳纳米管的制备过程中,如何实现规模化生产并降低成本;在 性质方面,如何控制碳纳米管的形貌和性能;在应用方面,如何将碳纳米管更 好地应用到实际生产和科学研究中。
同时,随着科技的不断进步和创新,碳纳米管的研究和应用前景也日益广阔。 未来,可以进一步探索碳纳米管在其他领域的应用,如能源、环保、生物医学 等。此外,随着人工智能和大数据等技术的快速发展,可以预见碳纳米管的研 究和应用将越来越受到智能化和数字化的影响,这将会为碳纳米管的研究和应 用带来更多的机遇和挑战。

碳纳米管的制备与性质研究进展

碳纳米管的制备与性质研究进展

碳纳米管的制备与性质研究进展近年来,碳纳米管作为一种新型纳米材料,引起了广泛的研究兴趣。

碳纳米管具有优异的力学性能、导电性能和热导性能,以及独特的光学性质,被认为是未来纳米科技领域的重要材料之一。

本文将从碳纳米管的制备方法和性质研究两个方面,介绍碳纳米管的研究进展。

一、碳纳米管的制备方法碳纳米管的制备方法主要有化学气相沉积法、电弧放电法、激光烧蚀法等多种。

其中,化学气相沉积法是目前应用最广泛的制备方法之一。

该方法通过将碳源气体与催化剂在高温下反应,生成碳纳米管。

不同的碳源气体和催化剂可以得到不同性质的碳纳米管。

电弧放电法则是利用电弧放电的高温和高压环境,在石墨电极上生成碳纳米管。

激光烧蚀法则是利用激光束对石墨材料进行烧蚀,生成碳纳米管。

这些制备方法各有优势和限制,研究人员正在不断探索新的制备方法,以获得更高质量的碳纳米管。

二、碳纳米管的性质研究碳纳米管具有许多独特的性质,使其在材料科学和纳米技术领域具有广泛的应用前景。

首先,碳纳米管具有优异的力学性能。

由于碳纳米管的壁厚只有几个纳米,但长度可以达到微米甚至更长,因此碳纳米管具有极高的比强度和比刚度。

其次,碳纳米管具有优异的导电性能。

碳纳米管是一种理想的导电材料,其电导率可以达到金属的水平。

此外,由于碳纳米管的几何结构和晶格结构的特殊性,使其具有独特的光学性质。

碳纳米管可以吸收和发射可见光和红外光,具有应用于光电器件和生物传感器等领域的潜力。

除了上述性质之外,碳纳米管还具有优异的热导性能。

由于碳纳米管的结构特殊,热传导沿着管轴方向非常高效,使其成为理想的热导材料。

此外,碳纳米管还具有良好的化学稳定性和生物相容性,可以应用于药物传输和组织工程等领域。

碳纳米管的这些优异性质,使其在纳米材料领域具有广泛的应用前景。

三、碳纳米管的应用前景碳纳米管的研究不仅局限于基础科学领域,还涉及到许多应用领域。

在材料科学领域,碳纳米管可以用于制备高性能复合材料、导电涂层和超级电容器等。

碳纳米管材料的性质与制备

碳纳米管材料的性质与制备

碳纳米管材料的性质与制备碳纳米管,是由纯碳原子构成的中空圆柱形微纳结构材料,具有独特的物理、化学和力学性质,因此在许多领域具有广泛的应用前景。

本文将重点介绍碳纳米管的性质与制备方法。

一、碳纳米管的性质1. 结构性质碳纳米管的结构可以分为单壁碳纳米管和多壁碳纳米管两种。

单壁碳纳米管是由一个或多个层状的石墨烯卷曲而成,多壁碳纳米管则是由许多个单壁碳纳米管套在一起形成的。

单壁碳纳米管具有较小的直径和较大的比表面积,多壁碳纳米管则具有较大的内径和较大的机械强度。

2. 电学性质碳纳米管具有良好的导电性和半导体性质,可以根据电极材料和掺杂方式调节导电性能。

其导电性能优于铜和铝,同时还具有良好的电子输运性能和电流密度承载能力。

3. 力学性质由于碳纳米管的中空结构和碳原子之间的共价键连接,使其具有优异的强度和刚性。

碳纳米管的力学性质可用于增强复合材料、制备高强度纤维等领域。

4. 热学性质碳纳米管具有出色的热导率,可高达3000-6000W/mK,在导热材料和热管理器件中具有广泛的应用潜力。

二、碳纳米管的制备方法1. 弧放电法弧放电法是碳纳米管最常用的制备方法之一。

该方法通过在高温环境下,将碳电极和反应气体(如氩气、氢气和甲烷等)放电,使碳电极表面生成碳原子团簇,进而形成碳纳米管。

2. 化学气相沉积法化学气相沉积法是另一种常用的碳纳米管制备方法。

该方法是将碳源气体(如甲烷、丙烷和乙炔等)和催化剂(如铁、镍、钼等)一起通入高温的炉管中,通过催化剂的作用,使碳源气体分解生成碳纳米管。

3. 水热合成法水热合成法是制备碳纳米管的一种简单、环保的方法。

该方法通常在高压、高温的水溶液中加入碳源和催化剂前驱体,通过水热反应,在催化剂的作用下生成碳纳米管。

4. 化学还原法化学还原法是利用化学反应还原碳源,生成碳纳米管的方法。

常见的化学还原法包括使用硼氢化钠、氨水、硝酸盐等还原剂,将碳源还原成碳纳米管。

结论碳纳米管是一种重要的纳米材料,具有独特的物理、化学和力学性质。

碳纳米管的研究和应用

碳纳米管的研究和应用

碳纳米管的研究和应用碳纳米管是由碳元素构成的管状结构,具有极高的导热和导电性、强度和轻量化等优异性能,近年来已成为纳米材料研究领域的热点话题。

本文将简要介绍碳纳米管的性质特点、制备方法以及它们在电子学、医学和能源等方面的应用。

一、碳纳米管的性质特点碳纳米管具有许多独特的性质特点,这些性质使得它们在许多领域有着广泛的应用前景。

首先是碳纳米管的导热和导电性能极高,比铜的导电性能还要好。

理论上,碳纳米管的电阻率可以达到金属的1/1000,而且能够在室温下运输电子。

这些性能几乎没有与之相媲美的材料。

其次是碳纳米管的强度极高。

碳纳米管中的碳原子排列方式可以形成类似鸟巢的纳米空腔结构,使得碳纳米管的刚度和强度远高于其他材料。

利用碳纳米管可以制备出超级强度复合材料,提高材料的强度和耐磨性能。

最后是碳纳米管的轻量化特性。

碳纳米管的质量只有同等体积下石墨材料的1/6,而且具有高表面积和大的空气孔隙结构,与其他材料相比有着更强的吸附和催化作用,因此有着良好的吸附分离和催化性能。

二、碳纳米管的制备方法碳纳米管有多种制备方法,包括化学气相沉积法、电弧放电法、激光热解法和化学还原法等。

其中,化学气相沉积法是目前应用最为普遍的一种制备方法。

化学气相沉积法是通过在高温下将碳源气体转化为碳纳米管的方法。

一般来说,碳源气体为甲烷、乙烯或乙炔等。

通过控制反应条件,可以制备出长度、直径、数量、结构等不同的碳纳米管。

与其他制备方法相比,化学气相沉积法具有制备出高质量、大量、结构比较规则的碳纳米管的优点。

三、碳纳米管的应用碳纳米管在许多领域都有着广泛的应用,以下仅列出其中的几个方面。

1. 电子学碳纳米管具有优越的导电性能和热导性能,被认为是下一代电子学元器件的有力竞争者。

碳纳米管可以作为场效应晶体管、热电元件、透明电极等电子元件,还可以应用于柔性电子、纳米电池等领域。

2. 医学碳纳米管可以作为药物输送载体,具有较大的表面积和大量表面官能团,能够帮助药物靶向传输和细胞内吸收。

碳纳米管材料的制备与性能研究

碳纳米管材料的制备与性能研究

碳纳米管材料的制备与性能研究随着科技的不断发展,新材料的研究和开发也成为了一个重要的领域。

碳纳米管材料作为一种新型材料,具有优异的物理、化学和力学性质,被广泛应用于电子、储氢、催化、生物传感、高强度材料等领域。

本文将介绍碳纳米管的制备方法及其相关性能研究。

一、碳纳米管的制备方法碳纳米管的制备方法主要有物理法、化学法和物理化学方法三种。

1、物理法物理法制备碳纳米管主要包括电弧放电法、激光烧蚀法、热裂解法、等离子体化学气相沉积法等。

电弧放电法是一种制备碳纳米管的传统方法,其原理是利用高温高压下石墨电极的放电作用,使石墨电极表面的碳被加热、蒸发、再结晶形成碳纳米管。

激光烧蚀法是利用高能激光在石墨基底上瞬间烧蚀形成碳纳米管。

这种方法可以精确地制备单壁碳纳米管,是制备高质量碳纳米管的可行方法之一。

热裂解法是一种低温制备碳纳米管的方法。

该法通过在石墨表面沉积金属催化剂,然后在高温低压条件下,利用热裂解作用制备碳纳米管。

等离子体化学气相沉积法是一种新型的碳纳米管制备方法。

该法利用等离子体反应,使金属催化剂先成核、再生长,最终形成碳纳米管。

2、化学法化学法制备碳纳米管主要包括水热法、化学气相沉积法、溶胶凝胶法、氧化还原法等。

水热法是一种基于水相合成的制备碳纳米管的方法。

在高温高压下,碳源离子与金属催化剂的复合物在水热环境下形成,最终可以形成碳纳米管。

化学气相沉积法是一种常用的制备碳纳米管的方法。

利用合成气、甲烷等碳源和催化剂反应,可以在金属表面上形成碳纳米管。

溶胶凝胶法是一种利用聚集态多相反应制备碳纳米管的方法,可以制备不同形态、大小、结构的碳纳米管。

氧化还原法是一种新型的制备碳纳米管的方法。

该法利用氧化还原反应的原理,在强酸性介质中,将碳源还原成碳纳米管。

3、物理化学方法物理化学方法主要包括化学涂覆法、电化学法、微波辐射法、胶体化学法等。

化学涂覆法是一种在金属催化剂表面涂覆碳源物质的方法。

该法可以制备出高质量、高纯度的碳纳米管。

碳纳米管的制备及应用

碳纳米管的制备及应用

碳纳米管的制备及应用碳纳米管是一种结构特殊的纳米材料,由于其独特的结构和性质,被广泛应用于各个领域。

本文将从碳纳米管的制备和应用两个方面进行介绍。

一、碳纳米管的制备碳纳米管的制备方法主要有化学气相沉积法、电弧放电法、激光热解法、物理气相沉积法、化学液相法等。

其中,化学气相沉积法是目前制备碳纳米管的主要方法。

该方法是通过对一种碳源或碳和气体的反应,生成碳纳米管。

具体步骤为:1、将金属催化剂(如铁、镍、钴等)置于石英玻璃管中,加热至较高温度。

2、在金属催化剂的表面构筑碳源分子,如甲醛、乙烯等。

3、在高温下实施气相反应,生成碳纳米管。

此外,还可以利用物理气相沉积法制备碳纳米管。

该方法是利用低压下的等离子体或离子束在金属催化剂表面生成碳原子,通过控制反应温度和时间等参数,实现碳纳米管的控制生长。

化学液相法则是采用溶胶胶凝法和液相氧化法等方法在溶液中合成碳纳米管,这种方法制备的碳纳米管纯度高,可控性较好。

二、碳纳米管的应用1、电子领域由于碳纳米管具有高导电性、热稳定性和机械强度等特点,因此广泛应用于电子领域。

碳纳米管可以被用来制作场发射器、晶体管、发光二极管等电子元件,具有重要的应用价值。

2、生物医学领域由于碳纳米管具有高表面积、强光吸收、低毒性等特点,因此在生物医学领域也有广泛应用。

碳纳米管可以被用来制作药物载体、生物传感器和基因传递系统等,可以在癌症治疗、生物成像、疾病诊断等方面发挥作用。

3、制备材料领域碳纳米管可以与其他材料组合使用,制备出具有特殊性能的材料。

如与金属组合,可以制备出具有高强度、高硬度和高导电性的复合材料;与聚合物组合,可以制备出具有较高导电率和较好机械强度的聚合物复合材料。

4、油气开采领域在油气开采领域,碳纳米管可以被用作催化剂载体、油管涂层等,具有高度的应用前景。

碳纳米管可以被用来制备分离材料或改性涂料,用于地下油藏的渗透调节、油品分离、纯化和催化转化等领域。

总之,碳纳米管以其独特的结构和性质,在各个领域有着广泛的应用。

碳纳米管的合成及工作原理探究

碳纳米管的合成及工作原理探究

碳纳米管的合成及工作原理探究碳纳米管(Carbon Nanotubes,简称CNTs)是由碳原子以特定形式排列而成的纳米材料,具有极高的强度、导电性和导热性等优异性能,因而在材料科学、纳米技术和电子领域引起了广泛的关注。

本文将探究碳纳米管的合成方法和工作原理。

一、碳纳米管的合成方法当前主要的碳纳米管合成方法有化学气相沉积法(Chemical Vapor Deposition,简称CVD)、电化学沉积法、溶胶凝胶法等。

这些方法具有各自的特点和适用范围。

1. 化学气相沉积法化学气相沉积法是最常用的合成碳纳米管的方法之一。

该方法通过在高温下将碳原子气体在金属催化剂的作用下进行化学反应,使碳原子在催化剂表面形成管状结构,从而合成出碳纳米管。

2. 电化学沉积法电化学沉积法利用电解质中的电流进行沉积,通过调节电流密度和电压等参数,可以控制碳纳米管的直径、长度和构型。

这种方法操作简单、成本较低,但对于合成高质量的碳纳米管还存在一定的挑战。

3. 溶胶凝胶法溶胶凝胶法是一种将某些有机物溶解处理后得到胶体,再通过热解等处理形成纳米结构的方法。

通过控制溶胶的成分、溶胶浓度、热处理条件等因素,可以制备出具有不同形貌和结构的碳纳米管。

二、碳纳米管的工作原理碳纳米管的工作原理主要涉及其独特的晶体结构和电子性质。

1. 晶体结构碳纳米管可以分为单壁碳纳米管和多壁碳纳米管两种结构。

单壁碳纳米管由一个个碳原子以六角形排列而成的六元环构成,可以卷成管状结构。

多壁碳纳米管由多个单壁碳纳米管套在一起形成,呈层状结构。

碳纳米管的晶体结构决定了它具有特殊的电子能带结构和导电性。

2. 电子性质碳纳米管的电子性质与其晶体结构密切相关。

由于碳原子的sp2杂化,使得碳纳米管的能带结构呈现出导电性。

根据不同的晶体结构和排列方式,碳纳米管可以是导电性或者半导体性。

在导电性碳纳米管中,电子可以自由传导,呈现出金属的导电特性。

而在半导体性碳纳米管中,电子的运动受到限制,可以通过调节外界电场或引入掺杂等手段来改变其导电性质。

碳纳米管的合成与制备简述

碳纳米管的合成与制备简述

碳纳米管的合成与制备简述碳纳米管是由日本NEC公司的饭岛纯雄在1991年利用电子显微镜观察到的中空碳纤维,直径在几纳米到几十纳米之间,长度为数微米,甚至数毫米,于是将之称为“碳纳米管”。

1 碳纳米管的性质碳纳米管, 又名巴基管, 是一种具有特殊结果的一维量子材料, 其径向尺寸为纳米级轴向尺寸为微米量级, 管子两端基本上都封口。

其壁层是由C—C六元环组成,且原子之间是由SP2杂化构成共价键。

[1]实际制备的碳纳米管并不是完全笔直的,而是有许多弯曲的,而造成这些弯曲的原因就是参杂了一些五元环和七元环。

但参杂五元环的时候,碳纳米管就向外凸,而参杂七元环的时候就向内凹。

2 碳纳米管的制备2.1 电弧法它是最早用于制备碳纳米管的方法, 也是最主要的方法。

其主要工艺是: 在真空容中充满一定压力的惰性气体或氢气, 以掺有催化剂(金属镍、钴、铁等) 的石墨为电极, 在电极放电的过程中阳极石墨被蒸发消耗, 同时在阴极石墨上沉积碳纳米管, 从而生产出碳纳米管。

[2]2.2化学气相沉积法(CVD)化学气相沉积法又名催化裂解法, 是目前应用最广泛的方法之一。

其基本原理是:在中等温度下(800—1200K左右)含碳化合物(烃、金属有机化合物、CO等)在金属催化剂(过渡金属Fe、Cu、Co、Ni、V等)的作用下分解为碳原子,沉积在金属颗粒的表面,然后溶解扩散进入金属体相,最后析出生长成为碳纳米管。

[3]2.3 激光蒸发法利用高能量密度激光在特定的气氛下照射含催化剂的石墨靶,激发出来的碳原子和催化剂颗粒被气流从高温区带向低温区, 在载体气体中气态碳在催化剂的作用下相互碰撞生成碳纳米管.在1437k下, THESS等采用双脉冲激光照射含Ni/Co催化剂颗粒的石墨靶, 获得较大数量和高质量的单壁碳纳米管。

[4]\2.4 离子(电子束)辐射法通过电子束蒸发覆在Si 基体上的石墨可合成直径为10~20nm的向同一方向排列的碳纳米管。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管结构性质以及其制备方法
1.3.1 碳纳米管的种类、结构与性质
由碳元素所组成的中空管状结构叫做碳纳米管[20] ,这种管可以被看成是多层或者单层石墨片(石墨六边形网格平面)沿手性矢量卷绕而成的中空的、无缝的微管。

这种管的轴向尺寸以微米量级为单位,径向尺寸以纳米量级为单位。

碳管两端碳原子的五边形封顶是一种特殊结构的一维量子材料。

它主要是由碳原子(呈六边形排列)构成的数层到数十层的同轴圆管。

每个碳纳米管侧壁上的碳原子都会与相邻的三个碳原子连接并形成六角型网格结构,然后经过SP2杂化轨道最终形成很多高度离域化的π电子. 这种结构性能决定了CNTs拥有良好的导电性,因此电子就能够通过CNTs 侧壁的共轭大π键实现高速传递。

另一方面,也因为较强的分子间作用力,碳纳米管之间容易聚集形成管束,也就导致他们在溶剂介质很难分散从而影响了对碳纳米管性质的研究和开发。

1.3.2 碳纳米管的制备方法
根据使用原理的不同CNTs 的制备方法可分为:气相沉积法、激光蒸发法、电弧放电法、(CVD 法)等,下面就是关于上述几种方法的简单介绍。

(1)电弧放电法
因为受到富勒烯这种生产工艺的启发,最早开发出来并且用于制造碳纳米管这种工艺的方法就是通过电弧放电,而这一工艺也对碳纳米管的发展具有重大意义。

要生产碳纳米管,首先不仅需要在真空放电室中加入惰性气体,还要在石墨电极之间放电产生电弧,这样,在碳原子的作用和催化下,这些结构就会在内部进行重组然后在阴极产生碳纳米管。

而通过改变催化剂的配方或者种类,或者改变气体的配比,将会极大地影响碳纳米管的形态和它的生产率。

(2)激光蒸发法
此种方法则是通过利用激光将石墨片蒸发然后生成气态的碳原子,然后在催化剂的作用下,通过控制其所在环境的温度并加入相关惰性气体,让气态碳原子
转化成CNTs。

这种方法常用于实验情况下且难以进行大面积推广,因为它所需要的设备要求高,设备庞大,因此成本也很高。

(3)气相沉积法(CVD 法)
气相沉积法也叫做催化热裂解法。

这种制作工艺主要是通过将利用催化剂Fe、Ni,将放置在600-1200℃温度里的含碳原料CO、CH4、C2H2等进行分解并制成CNTs。

由该方法的优点为:设备要求不高,简单,并且成本少,在实际的生产过程中利于连续生产和放大。

但该方法生产的CNTs 含有的杂质较多[22]。

1.3.3碳纳米管的功能化改性
非共价键改性和共价键改性是对CNTs 功能化改性的最主要方法。

其中加成、氧化和原位接枝聚合等方法属于共价键改性方法;用的最多的是氧化方法:将CNTs放在类似强酸等物质中让其表面的碳原子在氧化作用下形成羧基等官能团,然后让形成的羧基等官能团以共价键的方式再与其他功能小分子连接,因为被强酸处理过的碳纳米管会形成七边形环或五边形的缺陷,进而破坏CNTs 的部分结构并影响它的韧性、导电性、导热性和补强性能。

所以非共价键改性如离子液体大π键堆叠、表面活性剂覆盖改性等获得了越来越多的关注。

(1)共价键改性
氧化反应是最常用的共价键改性方式。

这种方式主要是利用强氧化剂对CNTs进行处理,然后在CNTs外壁上加入氧化基团或者羧基。

而氧化改性则主要是对CNTs利用混合酸(硝酸+硫酸)液或者加热浓硝酸来进行处理,这种方式可以使CNTs外壁引入氧元素时更加高效。

Kalyva [23]等人主要是通过采用酸碱滴定法去测定改性后的碳纳米管外壁上的羧基的。

这种方法主要是用磁子将加入到25ml,0.05mol/L的NaOH水溶液中的羧基化的碳纳米管持续搅拌48小时以上,从而确保NaOH和碳纳米管外壁的羧基完全发生反应。

然后我们需要利用0.05mol/L的稀HCl溶液将反应过后的混合物进行滴定以此来确定剩余NaOH的量,最终对碳纳米管中羧基的量进行确定。

徐元[24]利用硝酸修饰碳纳米管,然后将无水三氟化铁和改性后的碳纳米管合成纳米复合材料。

佟斌[25]等人发明了一种利用共价改性而得到的碳纳米管。

这种碳纳米管主
要是通过采用光敏性三联吡啶衍生物4-苯基-三联吡啶氟硼酸盐制作而成。

在进行共价改性之后,我们还需要将碳纳米管进行修饰,然后将其和各种功能基体材料以配位键的形式进行组装,最后使得基体材料和碳纳米管全共轭组装。

(2)非共价键改性
非共价键改性跟共价键改性不一样,它最大的好处就是并不会对碳纳米管侧壁上的共价结构造成破坏,也不会给碳纳米管带来本身性能的改变。

而这些优点主要是因为利用了改性化合物和碳纳米管之间的作用力,比如疏水作用力、大π键之间相互堆叠作用等。

同样,非共价改性的典型表面活性剂,阳离子、阴离子、或非离子型能够让碳纳米管在水溶液中得到良好的分散。

为了帮助碳纳米管分解在机溶剂中,王召君等[26]制作了利用多壁碳纳米管表面的非公价的大π键与CH 键和超支化聚乙烯表面制作了超支化聚乙烯-b-聚甲基丙烯酸甲酯嵌段共聚物。

相关文档
最新文档