人教版-数学-八年级上册--16.3 分式方程 第一课时 教案
人教版八年级上册数学《 分式方程》(优质教案)
人教版八年级上册数学《分式方程》(优质教案)一. 教材分析人教版八年级上册数学《分式方程》这一章节是在学生已经掌握了分式的基础知识,如分式的概念、分式的运算等基础上进行讲解的。
本章主要内容是让学生了解分式方程的定义、解法以及应用。
通过本章的学习,学生应能理解分式方程的概念,掌握解分式方程的基本方法,并能够将分式方程应用于解决实际问题。
二. 学情分析学生在学习本章内容之前,已经掌握了分式的基本知识,具备了一定的逻辑思维能力和问题解决能力。
但学生在解分式方程时,可能会遇到理解上的困难,如分式方程的转化、求解过程中的运算等。
因此,在教学过程中,教师需要关注学生的学习情况,及时进行引导和帮助。
三. 教学目标1.了解分式方程的定义,理解分式方程与一般方程的区别。
2.掌握解分式方程的基本方法,能够熟练地求解分式方程。
3.能够将分式方程应用于解决实际问题,提高解决实际问题的能力。
四. 教学重难点1.分式方程的定义及其与一般方程的区别。
2.分式方程的解法及其应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,从而掌握分式方程的知识;通过案例分析,让学生了解分式方程在实际问题中的应用;通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:制作有关分式方程的PPT,内容包括:分式方程的定义、解法及应用。
2.案例材料:收集一些实际问题,用于教学过程中的案例分析。
3.练习题:准备一些分式方程的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用PPT展示分式方程的定义,引导学生思考:什么是分式方程?分式方程与一般方程有什么区别?2.呈现(15分钟)通过PPT呈现分式方程的解法,主要包括:去分母、去括号、移项、合并同类项、化简等步骤。
同时,结合实际问题,让学生了解分式方程在生活中的应用。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,解答学生的疑问。
人教版八年级上册数学《 分式方程》(优质教学设计)
人教版八年级上册数学《分式方程》(优质教学设计)一. 教材分析人教版八年级上册数学《分式方程》这一节内容,是在学生已经掌握了方程和等式的基本性质的基础上进行教学的。
本节课主要让学生了解分式方程的概念,学会解分式方程的方法,并能够应用分式方程解决实际问题。
教材通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
二. 学情分析八年级的学生已经具备了一定的数学基础,对方程和等式有一定的了解。
但是,学生对分式方程的理解和应用还比较薄弱。
因此,在教学过程中,需要通过具体的例子,引导学生理解分式方程的概念,掌握解分式方程的方法,并能够应用分式方程解决实际问题。
三. 教学目标1.让学生了解分式方程的概念,理解分式方程的意义。
2.引导学生掌握解分式方程的方法,并能够熟练运用。
3.通过解决实际问题,培养学生的应用能力。
四. 教学重难点1.重点:分式方程的概念,解分式方程的方法。
2.难点:解分式方程的步骤和技巧。
五. 教学方法采用问题驱动法,通过具体的例子,引导学生探究分式方程的解法,并总结解分式方程的一般步骤。
同时,运用小组合作学习法,让学生在小组内讨论和分享解题经验,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例题和练习题。
2.准备课件,用于展示和解题过程。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入分式方程的概念。
例如,某商店举行打折活动,原价为100元的商品打八折后,顾客实际支付了72元,求打折的力度。
让学生尝试用方程来解决这个问题,从而引出分式方程的概念。
2.呈现(10分钟)展示几个分式方程的例子,让学生观察和分析。
例如:(1)(=2)(2)(=3)引导学生总结解分式方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1。
3.操练(10分钟)让学生独立完成一些分式方程的练习题,检验学生对分式方程的理解和掌握程度。
教师可适时给予提示和指导。
4.巩固(10分钟)学生进行小组讨论,分享解题经验,总结解分式方程的技巧。
数学人教版八年级上册分式方程第一课时说课
《分式方程第一课时》说课稿竹山县擂鼓镇中心学校邵秀文尊敬的各位老师,大家好!今天,我说课的内容是人教版八年级上册第十五章第三节第一课时《分式方程及解法》。
下面,我将从教材、学情、目标、重点、难点、教法及学法、教学过程、板书设计这八个方面来进行说课,不足之处敬请各位老师加以指正批评。
说教材:本节课的内容处在《分式》这章的后半部。
《分式》这章内容安排如下的:首先介绍分式及分式的基本性质,接着进行分式的加、减、乘、除的运算,之后是根据实际问题列出分式方程(但未求解)。
紧跟其后的是本节课内容——解分式方程,最后一节是根据实际问题列出分式方程并求解。
由此可见《解分式方程》涵盖了本章前面的内容,是本章知识的综合与提高。
学习好这部分内容,不但掌握了初二阶段有关分式方程的内容,也为初三学习可化为一元二次的分式方程打下了良好的基础。
通过将分式方程转化为整式方程(一元一次方程)渗透了一种重要的数学思想——转化思想,即将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题。
说学情:我所任教的学生大多头脑聪明,在老师适当的引导下,有一定的探求新知识的能力。
但计算容易出错、考虑问题不够严谨等。
另外在学习本节课之前,已经学习过《解一元一次方程》。
对于《解一元一次方程》大部分同学已经掌握,但由于是在七年级学习,有一定的时间间隔,部分同学可能已经遗忘,给上本节课留下少许的困难。
但估计绝大部分同学稍加回忆,应能接近以前的水平。
说教学目标:1.知识目标:(1)掌握解分式方程的步骤。
(2)理解解分式方程时验根的必要性。
2.能力目标:会按照解分式方程的步骤解分式方程。
3.情感与价值观:1.培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度。
2.运用“转化”的思想,将分式方程转化为整式方程,从而获得成就感和学习数学的自信。
说教学重点:1.探索解分式方程的步骤,熟练掌握分式方程的解法。
2.体会解分式方程验根的必要性。
人教版-数学-八年级上册-16.3分式方程 课时1 教案
16.3 分式方程(1)一、教学目标1.使学生理解分式方程的意义.2.使学生掌握可化为一元一次方程的分式方程的一般解法.3.了解解分式方程解的检验方法.4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.二、教学重点和难点1.教学重点:(1)可化为一元一次方程的分式方程的解法.(2)分式方程转化为整式方程的方法及其中的转化思想.2.教学难点:检验分式方程解的原因3.疑点及分析和解决办法:解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.三、教学方法启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.四、教学手段演示法和同学练习相结合,以练习为主.五、教学过程(一)复习及引入新课1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.使方程两边相等的未知数的值,叫做方程的解.解:(1)当x=0时,右边=0,∴左边=右边,这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.(二)新课板书课题:板书:分式方程的定义.分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.练习:判断下列各式哪个是分式方程.在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.先由同学讨论如何解这个方程.在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.解:两边同乘以最简公分母2(x+5)得2(x+1)=5+x2x+2=5+xx=3.如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解.检验:把x=3代入原方程左边=右边∴x=3是原方程的解.(三)应用一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 分析:设江水的流速为v 千米/时,则轮船顺流航行的速度为(20+v )千米/时,逆流航行的速度为(20-v )千米/时,顺流航行100千米所用的时间为v 20100+小时,逆流航行60千米所用的时间为v 2060-小时。
人教版初中八年级数学上分式方程教案
15.3 分式方程第1课时 分式方程及其解法教学目标1.了解分式方程的概念.2.会解分式方程,体会化归思想和程序化思想.3.了解需要对分式方程的解进行检验的原因.教学重点利用去分母的方法解分式方程.教学难点了解产生增根的原因.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计 一、创设情景,明确目标一艘轮船在静水中的最大航速为30 km/h ,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?分析:设江水的流速为v km/h ,根据“两次航行所用时间相同”这一等量关系,得到方程9030+v =6030-v. 类似这样的方程是什么方程呢,如何解此方程呢?这就是本课所学习的主要内容.二、自主学习,指向目标1.自学教材第149至151页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 分式方程的概念活动一:方程10020+v =6020-v有何特征,你能说说和整式方程的区别吗? 展示点评:分式方程的概念;像这样________________________________________________________________________叫分式方程.小组讨论:分式方程与整式方程有何区别?反思小结:分母中含有未知数的方程叫分式方程.针对训练:见《学生用书》相应部分探究点二 分式方程的解法活动二:阅读课本:解方程:10020+v =6020-v. (1)解这个方程的基本思想是:____________________,具体做法是____________________.(2)其步骤是:________________________________________________________________________(3)此方程有根吗?阅读课本:解方程:1x -5=10x 2-25. 展示点评:(1)此方程在检验根的时候出现了什么问题?此时解出的x 的值还是方程的根吗?(2)在解分式方程时,能否和解整式方程一样,验根的步骤可省略不写?例1 解方程2x -3=3x. 解:x =9例2 解方程x x -1-1=3(x -1)(x +2). 解:无解小组讨论:解分式方程的一般步骤是什么?与解一元一次方程有什么区别?反思小结:解分式方程和解一元一次的方程有相同的地方,同样可理解为:去分母,去括号,移项,合并同类项,系数化为1,但多了一步检验,是必须的步骤.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.知识小结——(1)了解分式方程的概念,会解分式方程;(2)了解产生增根的原因.区分解分式方程与整式方程过程的异同.2.解分式方程基本思路是什么?应注意什么问题.3.思想方法小结——转化等数学思想.五、达标检测,反思目标1.下列关于x 的方程是分式方程的是( D )A.x +25-3=3+x 6B.x -17+a=3-x C.x a -a b =b a -x b D.(x -1)2x -1=1 2.解分式方程x x -2=2+3x -2,去分母后的结果是( B ) A .x =2+3 B .x =2(x -2)+3C .x(x -2)=2+3(x -2)D .x =3(x -2)+23.已知x =2y +33y -2,用x 的代数式表示y ,则y =__3x 2__.4.解下列方程:(1)1x -5=10x 2-25解:无解(2)7x 2+x +1x 2-x =6x 2-1解:x =3●布置作业,巩固目标教学难点1.上交作业 课本第154页第1题(1)、(2)、(7)、(8)题.2.课后作业 见《学生用书》.第2课时 分式方程的应用(一)教学目标1.会根据实际问题,分析题意找出等量关系.2.列出分式方程解决有关工作量的问题.教学重点列分式方程解应用题.教学难点会根据实际问题,分析题意找出等量关系.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标1.列方程(组)解应用题的一般步骤是什么?2.2010年春季我国西南五省持续干旱,旱情牵动着全国人民的心.“一方有难.八方支援”,某厂计划生产1800 t 纯净水支援灾区人民,为尽快把纯净水发往灾区,工人把每天的工作效率提高到原计划的1.5倍,结果比原计划提前3天完成了生产任务.求原计划每天生产多少吨纯净水?①设原计划每天生产x t 纯净水,根据题意可列出方程:②这是一个什么方程?并解这个方程,解完后应注意什么?如何应用分式方程解应用题,这就是本课所学习的主要内容.二、自主学习,指向目标1.自学教材第152页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 工程问题活动一:阅读课本P 152例3展示点评:(1)工程问题中有哪几个基本量,其关系是什么?通常把工作总量看作多少?(2)由题意可知,甲队的工作效率是多少?若设乙队独做x 天完成,则乙队的工作效率是多少?(3)此题中的等量关系是什么?你能用题中的一句话或一个等式来表示吗?小组讨论:工程类问题常用的等量关系是什么?反思小结:工程问题,若没有告诉总工作量,通常设总工作量为1;工程问题的等量关系通常根据“各分工作量之和等于总工作量”来找.针对训练:见《学生用书》相应部分探究点二 工作量问题活动二:在争创全国卫生城市的活动中,某市一“青年突击队”决定义务清运一堆重达100吨的垃圾,开工后附近居民主动参加到义务劳动中,使清运垃圾的速度比原计划提高了一倍,结果提前4小时完成,“青年突击队”原计划每小时清运垃圾多少吨?分析:此题和上例的区别是明确告诉了工作总量,如何根据等量关系设未知数列方程呢? 展示点评:设原计划每小时清运x 吨100x -1002x=4 x =12.5 针对训练:见《学生用书》相应部分小组讨论:列分式方程应用题的一般步骤是什么?关键是什么?反思小结:列分式方程应用题一般步骤为:审题、设元、列方程、解方程、检验、作答.解应用题的关键在于找出等量关系,而等量关系就是题目的一句话或几句话的浓缩.四、总结梳理,内化目标1.自主学习时,你的疑问是否得到解决?2.知识小结——(1)列方程解决实际问题的关键是:分析题意找出等量关系.(2)列出分式方程解决有关工作量的问题.3.思想方法小结——方程建模思想解决实际问题.五、达标检测,反思目标1.一个数与6的和的倒数,与这个数的倒数互为相反数,设这个数为x ,列方程得( D )A.1x +6=1xB.1x +6=-x C.1x +16+x =0 D.1x +6+1x=0 2.某化肥厂计划在x 天内生产化肥120 t ,由于采用了新技术,每天多生产化肥3 t ,实际生产180 t 与原计划生产120 t 的时间相等,根据题意列出方程__180120x+3=x __. 3.近几年高速公路建设有较大的发展,有力地促进了经济建设.欲修建的某高速公路要招标.现有甲.乙两个工程队,若甲.乙两队合作,24天可以完成,费用为120万元;若甲单独做20天后剩下的工程由乙做,还需40天才能完成,这样所需费用110万元,问:(1)甲、乙两队单独完成此项工程,各需多少天?(2)甲、乙两队单独完成此项工程,各需多少万元?解:(1)设甲单独完成要x 天 20x +(124-1x)·40=1 x =30 ∴甲独做要30天,乙独做要120天.(2)设甲独做1天要a 元,乙独做要b 元⎩⎨⎧24(a +b )=12020a +40b =110 ∴⎩⎨⎧a =4.5b =0.5 30a =30×4.5=135(万元) 120b =120×0.5=60(万元)∴甲完成要135万元,乙完成要60万元●布置作业,巩固目标教学难点1.上交作业 课本第154-155页第3、5题.2.课后作业 见《学生用书》.第3课时 分式方程的应用(二)教学目标运用分式方程解决行程问题、收费问题、销售问题.教学重点运用分式方程解决行程问题、收费问题、销售问题.教学难点能熟练的运用分式方程解决行程问题、收费问题、销售问题.教学设计一师一优课 一课一名师 (设计者: ) 教学过程设计一、创设情景,明确目标某单位将沿街的一部分房屋出租,每间房屋的租金第二年比第一年多500元,所有房屋出租金第一年为9.6万元,第二年为10.2万元.(你能找出这一情境中的等量关系吗?根据这一情境你能提出哪些问题?你利用方程求出这两年每间房屋的租金各是多少?)二、自主学习,指向目标1.自学教材第153页.2.学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标探究点一 行程问题活动一:阅读课本P 153例4展示点评:1.完成课本中的填空.2.此题的等量关系是什么?小组讨论:表达题目中的数量关系时,字母表示的意义?反思小结:表达问题时,用字母不仅可以表示未知数(量),也可表示已知数(量),根据它们所表示的实际意义可知,它们是正数.针对训练:见《学生用书》相应部分探究点二收费与销售问题活动二:某市今年1月1日起调整居民用水价格,每立方米水上涨25%.小明家去年12月份的水费是18元,而今年3月份的水费是36元,已知小明家今年3月份比去年12月份多6 m3,求该市今年居民用水价格是多少元/m3?思考:此题的等量关系是什么?如何设未知数列方程?展示点评:设去年居民用水价格是x元/m3,则有36(1+25%)x -18x=6解得:x=1.8.(1+25%)x=1.25×1.8=2.25答:今年居民用水价格是2.25元/m3.小组讨论:列分式方程解决实际问题的关键是什么?一般步骤是什么?反思小结:列分式方程解决实际问题的关键是找出题目中的相等数量关系,其一般步骤可概括为:审、找、设、列、解、检验、作答.四、总结梳理,内化目标1.自主学习时,你的疑问是否得到解决?2.知识小结——能熟练的运用分式方程解决行程问题、收费问题、销售问题.3.思想方法小结——方程建模的数学思想.五、达标检测,反思目标1.某校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( B )A.420x-420x-0.5=20 B.420x-0.5-420x=20C.420x-420x-20=0.5 D.420x-20-420x=0.52.小明买软面笔记本共用去12元,小丽买硬面笔记本共用去21元,已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同本数的笔记本吗?不能解:设小明和小丽买到的笔记本均为x本12 x=21x-1.2解得x=7.5,x不为正整数∴不能3.某校九年级两个班各为玉树地震灾区捐款1800元.已知2班比1班人均捐款多4元,2班的人数比1班的人数少10%.请你根据上述信息,就这两个班级的“人数”或“人均捐款”提出一个用分式方程....解决的问题,并写出解题过程.问题:1班人均捐款为多少元?解:设1班人均捐款x元1800x(1-10%)=错误!x=36答:1班人均捐36元.●布置作业,巩固目标教学难点1.上交作业课本第155页第6、7题.2.课后作业见《学生用书》.。
16.3分式方程教案(人教新课标八年级下)
§16.3 分式方程一、教材分析1、教学内容的地位和作用《分式方程》人教版数学八年级下册第十六章第三单元第一课时的内容,是建立在整式方程基础上的学习;分式方程是方程模型的一种,是刻画现实世界的有效模型,在数与代数中占有重要地位.分式方程与实际生活紧密联系,更能充分体现数学的科学性,体现数学的应用价值,能帮助学生从数量关系角度更准确清晰地认识、描述和把握现实世界,使学生完善知识结构,提高计算能力,获得必需的数学能力.2、教学目标基于以上分析和数学课程标准的要求,我制定了本节课的教学目标.知识技能:1.理解分式方程的意义.2.了解解分式方程的基本思路和解法.3.理解解分式方程时可能无解的原因,并掌握解分式方程的验根的方法.数学思考:能将实际问题中的相等关系用分式方程表示,体会分式方程的模型作用.解决问题:经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.情感态度:在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.3、教学重、难点重点:解分式方程的基本思路和解法.难点:理解解分式方程时可能无解的原因.二、学情分析学生在已经学习了一元一次方程、二元一次方程组的基础上,明确了解整式方程的方法步骤后来学习分式方程.初二学生已经具有了一定的类比、分析、归纳能力,但是思维的严谨性仍相对薄弱,虽然他们喜爱学习活泼的内容,并乐于用自己的方式去学习,用自己的头脑去思考,但仍需老师引导其由感性认识到理性认识.同时学生已经学习了分式的意义,这对理解分式方程可能无解这一教学难点有很大帮助.三、教学策略本节课是在七年级学过的整式方程一元一次方程基础上,介绍分式方程及其解法,我采用“以旧推新”探究式教学方法,真正体现以学生为主体,倡导“双自主学习”理念,启发引导学生发现解决问题的方法,注重知识的形成过程.教学中采用互动式学习模式,用问题做载体,通过小组合作、讨论、交流、归纳、辨析、反思、评价、质疑等活动实现互动,创设和谐民主的课堂氛围.四、教学过程设计(设计为5个环节)(一)、时间安排1、创设情境导入新课—————————7分钟2、归纳定义寻求解法—————————10分钟3、探究分析解决难点—————————15分钟4、巩固练习拓展提高—————————10分钟5、总结反思布置作业—————————3分钟(二)、板书设计:(三)、自我评价:本节教材通过章前引言中的行程问题入手,学生依据相等关系得到分式方程,教师引导学生把分式方程转化为整式方程求解,并引导学生必须进行检验,教学中突出引导学生进行比较探究,并进行充分的讨论,统一认识.用分式的基本性质和意义理解可能产生增根的原因.学生在数学活动中通过积极参与,有效参与来感悟知识的形成过程,从而保证知识与能力,过程与方法,情感、态度与价值观三个目标全面落实.。
最新初中人教版数学人教八年级上册【教学设计1】《分式方程》
《分式方程》学生在学习分式方程这节内容之前已经学习过一元一次方程及二元一次方程组等整式方程,对于整式方程的解法及其基本解题思路已经全面掌握。
分式方程就是分母中含有未知数的方程,本节主要探究可化为一元一次方程的分式方程的解法,在探究解分式方程的程序和步骤时,应弄清解法的合理性,即其中所包含的算理。
在解分式方程的过程中还要让学生体会化归思想和程序化思想等重要的数学思想。
解决分式方程的实际应用问题时,要根据具体的问题情境,认真审题、根据问题中的数量关系、有效建立等量关系从而正确列出方程,并用解分式方程的一般步骤进行求解,进而检验方程解的合理性。
学生在探索应用分式方程解决实际问题的过程中,让学生体会和掌握模型思想。
【知识与能力目标】1.了解分式方程的概念,会解分式方程。
2.会用解分式方程的知识解决实际问题,能根据具体问题的实际意义,检验方程的解是否合理。
【过程与方法目标】在解分式方程的过程中还要让学生体会化归思想和程序化思想等重要的数学思想。
【情感态度价值观目标】能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。
【教学重点】利用去分母的方法解分式方程,列分式方程解决实际问题。
【教学难点】了解产生增根的原因。
多媒体课件、教具等。
一、导入新知问题1 一艘轮船在静水中的最大航速为30 km/h ,它沿江以最大航速顺流航行90 km 所用时间,与以最大航速逆流航行60 km 所用时间相等,江水的流速为多少?分析:设江水的流速为v km/h ,根据“两次航行所用时间相同”这一等量关系,得到方程v +3090=v-3060。
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程。
类似这样的方程是什么方程呢,如何解此方程呢?这就是本课所学习的主要内容。
二、探究新知问题2 方程v +3090=v-3060有何特征,你能说说和整式方程的区别吗? 归纳:分式方程的概念:像这样________________________叫分式方程。
人教版初二数学上册分式方程第1课时教案
15.3 分式方程第1课时【教学目标】知识目标1. 理解分式方程的意义.2. 了解解分式方程的基本思路和解法.3. 理解解分式方程时可能无解的原因,并掌握分式方程的验根方法.能力目标经历“实际问题——分式方程——整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想,培养学生的应用意识.情感目标在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.【教学重难点】重点:解分式方程的基本思路和解法.难点:理解解分式方程时可能无解的原因.【教学过程】一、创设情境,导入新课问题:一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?分析:设江水的流速为v km/h,则轮船顺流航行的速度为(30+v) km/h,逆流航行的速度为(30-v) km/h,顺流航行90 km所用的时间为小时,逆流航行60 km所用的时间为小时•可列方程=.这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程•二、探究新知1•教师提出下列问题让学生探究:(1) 方程=与以前所学的整式方程有何不同?(2) 什么叫分式方程?(3) 如何解分式方程=呢?怎样检验所求未知数的值是原方程的解?(4) 你能结合上述探究活动归纳出解分式方程的基本思路和做法吗?(学生思考、讨论后在全班交流)2•根据学生探究结果进行归纳:(1) 分式方程的定义(板书): 分母里含有未知数的方程叫分式方程•以前学过的方程都是整式方程练习:判断下列各式哪个是分式方程•(1) x+y=5; (2)=;(3); (4)=0 在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程•(2) 解分式方程=的基本思路是:将分式方程化为整式方程•具体做法是: “去分母”,即方程两边同乘最简公分母.这也是解分式方程的一般思路和做法.3.仿照上面解分式方程的做法,尝试解分式方程=,并检验所得的解,你发现了什么?与你的同伴交流.4•思考:上面两个分式方程中,为什么=①去分母后所得整式方程的解就是①的解,而=②去分母后所得整式方程的解却不是②的解呢?学生分组讨论产生上述结果的原因,并互相交流.5.归纳:(1) 增根:将分式方程变为整式方程时,方程两边同乘以一个含有未知数的整式,并约去分母,有可能产生不适合原方程的解(或根),这种根通常称为增根.(2) 解分式方程必须进行检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.三、巩固练习1. 在下列方程中:①=8+;②=x;③=;④ x-=0.是分式方程的有( )A.①和②B.②和③C③和④D.④和①2. 解分式方程:(1)=;(2)=.四、课堂小结1. 通过本节课的学习,你有哪些收获?2. 在本节课的学习过程中,你有什么体会?与同伴交流.引导学生总结得出:解分式方程的一般步骤:(1) 在方程的两边都乘以最简公分母,约去分母,化为整式方程.(2) 解这个整式方程.(3) 把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解时,必须舍去.五、布置作业课本152页练习.第2课时【教学目标】知识目标会分析题意找出相等关系,并能列出分式方程解决实际问题.能力目标通过让学生经历分析相等关系列方程的过程,培养学生分析问题和解决实际问题的能力,进一步体会化归思想.情感目标通过学习,更加关注生活,增强用数学的意识,从而激发学习数学的热情.教学重难点】重点:列分式方程解决实际问题.难点:找出相等关系列出分式方程,将实际问题数学化【教学过程】一、复习提问1. 解分式方程的步骤(1)方程两边同乘以最简公分母,化分式方程为整式方程;(2)解整式方程;(3) 验根.2. 列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.3. 由学生讨论,我们现在所学过的应用题有几种类型?每种类型题的基本公式是什么?在学生讨论的基础上,教师归纳总结基本上有五种:(1) 行程问题:基本公式:路程=速度X时间,而行程问题中又分相遇问题、追及问题.(2) 数字问题在数字问题中要掌握十进制数的表示法.(3) 工程问题基本公式:工作量= 工时X工效•(4) 顺水逆水问题V顺水=V静水+V水,V逆水=V静水-V水•本节课我们将学习列分式方程解决实际问题•二、探究新知例1 :两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成•哪个队的施工速度快?(鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究)分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率X工作时间•这题没有具体的工作量,工作量虚拟为1,工作的时间单位为月”等量关系是:甲队单独做的工作量+两队共同做的工作量=1.甲队一个月完成总工程的,设乙队如果单独施工1个月能完成总工程的,那么甲队半个月完成总工程的,乙队半个月完成总工程的两队半个月完成总工程的+•则有++=1.(教师板书解答、检验过程)讨论:列分式方程解应用题与以前学习的列方程解应用题有什么区别?(学生讨论后回答) 区别:解方程后要检验• 归纳:列分式方程解应用题的方法和步骤如下:1•审题分析题意;2•设未知数;3. 根据题意找相等关系,列出方程;;4. 解方程,并验根(对解分式方程尤为重要);5. 写答案.例2:从2004年5月起某列列车平均提速v千米/时•用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?【分析】这是一道行程问题的应用题,基本关系是:速度三这题用字母表示已知数(量)•等量关系是:提速前所用的时间=提速后所用的时间•设提速前的平均速度为x千米/时,则提速前列车行驶s千米所用的时间为小时,提速后列车的平均速度为(x+v)千米/时,提速后列车行驶(s+50)千米所用的时间为小时•列方程得:=•(学生板书解答、检验过程,生生互相矫正完善)引导学生注意:本题的检验中利用了问题的实际意义,根据字母的含义确定其取值的范围中不含负数和0,从而确定分式方程解的情形•三、随堂练习课本154页练习•补充练习:一项工程要在限期内完成•如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?(学生独立完成后,互相交流•三名学生板演解题过程,集体矫正•)四、课堂小结通过本节课的学习,你获得了哪些解决问题的方法?谈谈你的收获和体会•温馨提示:对于列方程解应用题,一定要善于把生活语言转化为数学语言,从中找出等量关系对于我们常见的几种类型题我们要熟悉它们的基本关系式•五、布置作业课本154~155页习题15.3第3、4、5、6、7、8题•。
人教版八年级数学上册《分式方程(第1课时)》示范教学设计
分式方程(第1课时)教学目标1.理解分式方程的概念,能区分分式方程和整式方程.2.掌握解分式方程的基本思路,会解可化为一元一次方程的分式方程.3.理解分式方程无解的原因,掌握检验分式方程的解的方法.4.经历“实际问题—分式方程—整式方程”的过程,发展分析问题和解决问题的能力,渗透转化的数学思想,体会化归思想在解方程时的作用.教学重点解分式方程的基本思路和一般步骤.教学难点检验分式方程的解的原因及方法.教学过程知识回顾1.前面我们学习了什么方程?【答案】一元一次方程和二元一次方程.【师生活动】教师提示:一元一次方程和二元一次方程都是整式方程.2.什么是一元一次方程?【答案】只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程.【设计意图】带领学生复习已经学过的方程的知识,巩固基础,为本节课学习分式方程做好准备.新知探究一、探究学习【问题】1.一艘轮船在静水中的最大航速为30 km/h,它以最大航速沿江顺流航行90 km 所用时间,与以最大航速逆流航行60 km所用时间相等,江水的流速为多少?【师生活动】教师出示本章引言的问题,学生独立解决,然后教师展示学生的答案.【答案】解:设江水的流速为v km/h,根据题意,得90 30v +=6030v-.【追问】为了解决引言中的问题,我们得到了方程9030v+=6030v-.仔细观察这个方程,未知数有什么特点?【答案】未知数位于分母的位置上.【新知】方程9030v+=6030v-的分母中含未知数v,像这样分母中含未知数的方程叫做分式方程.注意:我们以前学习的方程都是整式方程,它们的未知数都不在分母中.【设计意图】从本章引言中的轮船航行问题说起,列出分母中含未知数的方程,并指出这个方程的特点,给出分式方程的概念.【练习】判断下列式子是否是分式方程?若不是,请说明理由.(1)1x=5;(2)5x=1;(3)x2-x+13=5;(4)22x-1x;(5)4x+35x=7;(6)212x-2a=1.【师生活动】教师提出问题,学生独立思考并回答.【答案】(1)(5)(6)是分式方程;(2)(3)(4)不是分式方程.理由:(2)(3)分母中不含未知数,不是分式方程;(4)不是方程.【归纳】分式方程的三个特征:①是方程;②方程中含分母;③分母中含有未知数.特别注意,判断一个式子是否为分式方程时,不能对式子进行约分、通分变形,更不能利用等式的性质对其进行变形.【设计意图】通过练习题,帮助学生巩固分式方程与整式方程的区别.【问题】2.解分式方程:9030v+=6030v-.【追问】1.如何将分式方程化为整式方程?【师生活动】教师提问,学生小组讨论后回答.【答案】通过“去分母”将分式方程化为整式方程.【追问】2.如何去分母?去分母的依据是什么呢?【答案】利用等式的性质2,可以在方程两边都乘同一个式子——各分母的最简公分母.【师生活动】教师引导学生完成问题2的作答.【答案】解:方程两边同乘(30+v)(30-v),得90(30-v)=60(30+v).解得v=6.【追问】v=6是分式方程9030v+=6030v-的解吗?你是怎样确定的?【答案】将v=6代入分式方程中,左边=52=右边,因此v=6是原分式方程的解.【归纳】解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边乘最简公分母.这也是解分式方程的一般方法.【设计意图】由分式方程的特点引出解分式方程的基本思路,即通过去分母将分式方程化为整式方程,再解出未知数.体会化繁为简,化未知为已知,化未学为已学的基本思想.【问题】3.解分式方程:15x-=21025x-.【答案】解:方程两边同乘(x-5)(x+5),得x+5=10.解得x=5.检验:将x=5代入原分式方程,发现这时分母x-5和x²-25的值都为0,相应的分式无意义.因此,x=5虽是整式方程x+5=10的解,但不是原分式方程的解.实际上,这个分式方程无解.【问题】4.上面两个分式方程中,为什么9030v+=6030v-①去分母后所得整式方程的解就是①的解,而15x-=21025x-②去分母后所得整式方程的解却不是②的解呢?【师生活动】学生分组讨论,得出结论,师生一起总结.【答案】解分式方程去分母时,方程两边要乘同一个含未知数的式子(最简公分母).方程①两边乘(30+v)(30-v),得到整式方程,它的解是v=6.当v=6时,(30+v)(30-v)≠0,这就是说,去分母时,①两边乘了同一个不为0的式子,因此所得整式方程的解与①的解相同.方程②两边乘(x-5)(x+5),得到整式方程,它的解是x=5.当x=5时,(x-5)(x+5)=0,这就是说,去分母时,②两边乘了同一个等于0的式子,这时所得整式方程的解使②出现分母为0的现象,因此这样的解不是②的解.【归纳】解分式方程产生不适合原方程的解的原因在将分式方程化为整式方程时,未知数的取值范围被扩大了.对于整式方程来说,求出的解成立;而对于原分式方程来说,当分母为0时,分式无意义,所以这个解不是原分式方程的解.【思考】你能总结出检验分式方程的解的方法吗?【师生活动】学生独立思考,进行作答.学生回答后,师生一起总结.【新知】一般地,解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应做如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.【设计意图】通过问题2和问题3,经过对比得出解分式方程时检验的必要性和具体的检验方法.让学生经历由特殊到一般的过程,认识到解分式方程时需要检验,并知道怎样检验.二、典例精讲【例1】解方程:23x -=3x. 【师生活动】学生独立完成,教师巡查,给予辅导.【答案】解:方程两边同乘x (x -3),得2x =3x -9.解得x =9.检验:当x =9时,x (x -3)≠0.所以,原分式方程的解为x =9.【例2】解方程:1x x --1=3(1)(2)x x -+. 【师生活动】学生独立完成后,教师出示答案.师生总结解分式方程的一般步骤.【答案】解:方程两边同乘(x -1)(x +2),得x (x +2)-(x -1)(x +2)=3. 解得x =1.检验:当x =1时,(x -1)(x +2)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.【归纳】解分式方程的一般步骤【设计意图】通过例2和例3,帮助学生巩固分式方程的解法,培养学生的运算能力.课堂小结板书设计一、分式方程的概念二、分式方程的解法三、分式方程无解的原因及检验方法课后任务完成教材第150页练习题,第152页练习题.。
八年级数学上册《分式方程》教案、教学设计
2.注重启发式教学,引导学生主动探究,激发学生的学习兴趣,提高学生的参与度。
3.创设贴近生活的情境,让学生在实际问题中感受分式方程的应用,提高学生的应用意识。
4.加强对分式方程求解方法的讲解与指导,帮助学生克服困难,建立信心。
5.课后阅读:阅读相关数学故事或数学家传记,了解数学发展史,提高学生的数学文化素养。
6.作业要求:
-请同学们按时完成作业,保持字迹清晰、步骤完整。
-遇到问题时,及时与同学、老师沟通交流,共同解决。
-作业完成后,认真检查,确保解答正确。
7.提交时间:作业将于下节课开始前提交,教师将及时批改并反馈。
3.互动提问:针对学生在练习中遇到的问题,进行师生互动、生生互动,共同解决问题。
(五)总结归纳
1.知识点回顾:引导学生回顾本节课所学的分式方程的定义、求解方法及注意事项。
2.课堂小结:对本节课的教学内容进行总结,强调重点和难点,巩固学生的记忆。
3.情感态度与价值观:强调数学知识在实际生活中的应用,激发学生学习数学的兴趣,培养良好的数学素养。
3.设计不同难度的练习题,让学生在独立完成练习的过程中,逐步提高解决问题的能力,培养学生分析问题、解决问题的能力。
4.引导学生总结分式方程求解的规律和技巧,培养学生的逻辑思维能力和抽象思维能力。
5.通过对实际问题的分析,让学生体会数学在实际生活中的应用,提高学生运用数学知识解决实际问题的能力。
(三)情感态度与价值观
八年级数学上册《分式方程》教案、教学设计
一、教学目标
(一)知识与技能
1.理解分式方程的定义,掌握分式方程的一般形式,能够识别并写出分式方程。
人教版八年级数学上册分式方程教学设计
6.情感关怀,营造氛围:关注学生的学习情感,营造一个温馨、支持的学习环境,让学生在轻松的氛围中学习。
-教师应以亲切的态度对待学生,鼓励学生提出疑问,给予耐心的解答和帮助。
7.创新思维,拓展视野:在教学过程中,鼓励学生思考问题的多种可能性,培养学生的创新思维和解决问题的能力。
-第3题:将以下实际情境转化为分式方程,并求解。
这些题目旨在帮助学生巩固分式方程的基本概念和求解方法。
2.提高拓展题:选择以下两题进行解答:
-第4题:比较下列分式方程的难易程度,并说明原因。
-第5题:求解一个含有两个未知数的分式方程组,并讨论其解的情况。
这些题目旨在提高学生的分析能力和解题技巧。
3.应用实践题:结合生活实际,自选一个情境,建立分式方程,并解决以下问题:
3.应用实例:结合教材中的例题,讲解分式方程在实际生活中的应用,让学生体会数学的实用性。
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,针对以下问题进行讨论:
-分式方程与整式方程的联系与区别是什么?
-分式方程在实际生活中的应用有哪些?
2.汇报交流:各小组汇报讨论成果,教师点评并总结,引导学生形成系统化的认识。
针对以上情况,教师应充分了解学生的认知水平和学习需求,采用启发式教学策略,引导学生从已知知识向新知识过渡。在教学中,注重培养学生的逻辑思维能力和问题解决能力,鼓励学生积极参与课堂讨论,提高他们的自主学习能力。同时,关注学生的情感态度,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中,更好地理解和掌握分式方程的知识。
六、课堂小结
1.让学生回顾本节课所学内容,总结分式方程的知识点。
16.3分式方程(第一课时)
)(x+5),得: ),得 解:方程两边同乘以最简公分母(x-5)( 方程两边同乘以最简公分母( )( ),
1 10 解分式方程: 解分式方程: = 2 x − 5 x − 25
x+5=10
解得: 解得:
x=5
X=5是原方 是原方 程的解吗? 程的解吗?
检验: 代入原分式方程, 检验:将x=5代入原分式方程,发现这时分 代入原分式方程 的值都为0,相应分式无意义. 母x-5和x2-25的值都为 ,相应分式无意义 和 的值都为 所以x=5不是原分式方程的解 不是原分式方程的解. 所以 不是原分式方程的解 原分式方程无解. 原分式方程无解
2 − x = −1 − 2
x 解这个方程,得:
2− x −1 −2 = 解法二: 将原方程变形为 x − 3 x−3
方程两边都乘以 x 解这个方程,得:
= 5 ;
解分式方程 必须
检验
2 − x = −1 − 2( x − 3)
− 3 ,得:
x=3 。
是原方程的解吗? 你认为 x= 3是原方程的解吗?与同伴交流。 是原方程的解吗 与同伴交流。
2 3 ( 1) = x − 3 x
x 3 ( ) −1 = 2 x −1 (x −1)(x + 2)
2 3 ( 1) = x − 3 x
解:方程两边同乘以x(x-3) 得, 2x=3x-9 解得: x=9 检验: x=9时x(x-3) ≠0 x=9是原方程的解
x 3 −1 = (2) x −1 ( x − 1)( x + 2)
热烈欢迎各位领导、 热烈欢迎各位领导、老师莅临指导
祝各位同学:生活快乐,学习进步! 祝各位同学:生活快乐,学习进步!
最新人教版八年级数学上册《第1课时分式方程及其解法》优质教案
15.3分式方程第1课时分式方程及其解法一、新课导入1.导入课题:前面我们探讨了分式的有关性质及其运算,在分式的研究中,还有一个重要的内容就是分式方程,今天我们一起走进分式方程.2.学习目标:(1)知道分式方程的概念,(2)会解分式方程.3.学习重、难点:重点:分式方程及其解法.难点:分式方程产生增根的原因.二、分层学习1.自学指导:(1)自学内容:教材第149页到第150页的内容.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,认真阅读课本.重点词句或不理解的地方做上记号.(4)自学参考提纲:①什么样的方程叫分式方程?分母中含有未知数的方程叫分式方程.②解分式方程的基本思路是什么?将分式方程化为整式方程.③将分式方程化成整式方程的关键步骤是什么?去分母,即方程两边乘最简公分母.2.自学:请同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否认识分式方程的特点和分式方程的解法.②差异指导:指导个别学生正确找出最简公分母.(2)生助生:学生之间相互交流帮助.4.强化:(1)判断分式方程的方法是:看分母是否含有未知数.(2)分式方程的关键步骤是去分母,难点是找最简公分母.(3)下列方程哪些是分式方程?④⑤.(4)指出下列方程中各分母的最简分母,并写出去分母后得到的整式方程.解:①最简公分母2x(x+3),去分母得x+3=4x;②最简公分母x2-1,去分母,得2(x+1)=4;③最简公分母3x+3,去分母,得3x=2x+3x+3.1.自学指导:(1)自学内容:教材第150页“思考”到第151页的内容.(2)自学时间:8分钟.(3)自学方法:认真阅读课本,思考去分母后化成的整式方程的解,为什么有的是原分式方程的解,有的不是?对照课本中的例子想想理由.归纳解分式方程的基本步骤.(4)自学参考提纲:①说说为什么解分式方程一定要检验?因为得到的解可能会导致最简公分母为0,即分母为0.②说说解分式方程的检验方法.将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解③解分式方程的一般有哪些步骤? 去分母,解整式方程,检验.④某生在解例2时去分母得x(x+2)-1=3,你认为他错在哪里? 漏乘了最简公分母. ⑤试解方程23511x x =--; 解:去分母,得3(x+1)=5x=53-1=23检验:当x=23时,(x+1)(x-1)≠0, 所以,原分式方程的解为x=23. 32122x x x =--- 解:去分母,得2x=3-2(2x-2) 去括号得2x=3-4x+4 移项6x=7 系数化为1,x=76检验:当x=76时,2(x-1)≠0. 所以原分式方程的解为x=762.自学:同学们结合自学指导进行自学.3.助学: (1)师助生:①明了学情:观察学生在解分式方程过程中易产生错误的环节或步骤. ②差异指导:对学生出现的错误进行分类指导. (2)生助生:交流提纲④,对⑤互相批改、纠错. 4.强化:(1)解分式方程的一般步骤. (2)分式方程的验根方法.(3)分式方程无解的条件.检验:当x=12时,4x2-1=0,因此x=12不是原分式方程的解.所以,原分式方程无解.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、情感、方法、成果及不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):在本课的教学过程中,应从这样的几个方面入手:(1)分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件:①方程式里必须有分式,②分母中含有未知数.这两个条件是判断一个方程是否为分式方程的必要条件.同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就是原方程的增根.正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验.(2)分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分渗透这种化归思想.(3)解分式方程时,如果分母是多项式,应先写出将分母进行因式分解的步骤,从而让学生准确无误地找出最简公分母.另外,对分式方程可能产生增根的原因,要启发学生认真思考和讨论.一、基础巩固(每题10分,共60分)1.下列式子是分式方程的是(C)2.把分式方程两边同乘(x-1),约去分母后,得(D)3.分式方程的解是(D)A.x=1B.x =-1C.x=-14D.无解解:(1)去分母,3x-6+4(x+2)=16去括号,合并同类项7x=14系数化为1,x=2检验:当x=2时,(x+2)(x-2)=0,因此x=2不是原分式方程的解.所以,原分式方程无解.(2)去分母得,(x+1)(x+2)=x(x+4)去括号,合并同类项,得3x+2=4x移项,x=2检验:当x=2时,x(2+x)≠0,所以,原分式方程的解为x=2.二、综合应用(20分)7.已知关于x的方程有增根,求该方程的增根和k的值.解:去分母,得3x+3-(x-1)=x2+kx,整理,得x2+(k-2)x-4=0.因为有增根,所以增根为x=0或x=1.当x=0时,代入方程得-4=0,所以x=0不是方程的增根;当x=1时,代入方程,得k=5,所以k=5时方程有增根x=1.三、拓展延伸(20分)8.解方程:学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.3 分式方程(1)
一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法.
3.了解解分式方程解的检验方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
二、教学重点和难点
1.教学重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
2.教学难点:检验分式方程解的原因
3.疑点及分析和解决办法:
解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.
三、教学方法
启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.
四、教学手段
演示法和同学练习相结合,以练习为主.
五、教学过程
(一)复习及引入新课
1.提问:什么叫方程?什么叫方程的解?
答:含有未知数的等式叫做方程.
使方程两边相等的未知数的值,叫做方程的解.
解:(1)当x=0时,
右边=0,
∴左边=右边,
这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程.
(二)新课
板书课题:
板书:分式方程的定义.
分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程.
练习:判断下列各式哪个是分式方程.
在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程.
先由同学讨论如何解这个方程.
在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母.
解:两边同乘以最简公分母2(x+5)得
2(x+1)=5+x
2x+2=5+x
x=3.
如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解. 检验:把x=3代入原方程
左边=右边
∴x=3是原方程的解.
(三) 应用
一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少? 分析:设江水的流速为v 千米/时,
则轮船顺流航行的速度为(20+v )千米/时,逆流航行的速度为(20-v )千米/时,顺流航行100千米所用的时间为
v 20100+小时,逆流航行60千米所用的时间为v 2060-小时。
可列方程v 20100+=v
2060- 解方程得:v =5
检验:v =5为方程的解。
所以水流速度为5千米/时。
(四)总结
解分式方程的一般步骤:
1.在方程的两边都乘以最简公分母,约去分母,化为整式方程.
2.解这个方程.
3.把整式方程的根代入最简公分母,看结果是不是零;使最简公分母为零的根不是原方程的解,必须舍去.
(五)练习
补充练习:
解1:方程两边同乘x(x-2),
5(x-2)=7x
5x-10=7x
2x=10
x=5.
检验:把x=-5代入最简公分母
x(x-2)≠0,
∴x=-5是原方程的解.
方程两边同乘最简公分母(x-2),
1=x-1-3(x-2).(-3这项不要忘乘)
1=x-1-3x+6
2x=4
x=2.
检验:把x=2代入最简公分母(x-2)=0,
∴原方程无解.
六、作业
七、板书设计。