2018年高考数学(文)一轮复习文档高考零距离9概率 Word版含答案

合集下载

2018届高三数学一轮复习模拟试题精选概率 Word版含答案

2018届高三数学一轮复习模拟试题精选概率 Word版含答案

概率一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).某中学高考数学成绩近似地服从正态分布,则此校数学成绩在分的考生占总人数的百分比为( ).﹪.﹪.﹪.﹪【答案】.下列是随机变量ξ的分布列则随机变量ξ的数学期望是( )....条件不足【答案】.有个数字,其中一半是奇数,一半是偶数,从中任取两个数,则所取的两数之和为偶数的概率是( )....【答案】.已知是△所在平面内一点,,现将一粒黄豆随机撒在△内,则黄豆落在△内的概率是( )....【答案】.在每一试验中事件发生的概率均为,则在次试验中恰好发生次的概率为( )( ).-..-.【答案】.以表示标准正态总体在区间内取值的概率,若随机变量服从正态分布,则概率( )....【答案】.若,则的值使得过可以做两条直线与圆相切的概率等于( )....不确定【答案】.用随机数表法从名学生(男生人)中抽选人进行评教,某男学生被抽到的机率是( ) ....【答案】.设函数,若是从,,,四数中任取一个,是从,,,,五数中任取一个,那么恒成立的概率为( )....【答案】.已知集合,从中任取两个元素分别作为点的横坐标与纵坐标,则点恰好落入圆内的概率是( )....【答案】.在长为的线段上任取一点,并且以线段为边的正方形,则这正方形的面积介于与之间的概率为( )....【答案】.甲、乙两人在相同条件下进行射击,甲射中目标的概率为,乙射中目标的概率为,两人各射击次,那么甲、乙同时射中目标的概率为( )....【答案】二、填空题(本大题共个小题,每小题分,共分,把正确答案填在题中横线上).设随机变量~,~,若,则【答案】.从这四个数中一次随机地取两个数,和为的概率是.【答案】。

2018届高三数学理一轮复习课后作业第9章 第4节 随机事

2018届高三数学理一轮复习课后作业第9章 第4节 随机事

课时作业 A 组 基础对点练1.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件解析:因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件. 答案:B2.(2017·铜川模拟)做抛掷两颗骰子的试验,用(x ,y )表示结果,其中x 表示第一颗骰子正面朝上的点数,y 表示第二颗骰子正面朝上的点数,则x +y >10的概率是( ) A.25 B .512 C.16D .112解析:(x ,y )的所有基本事件共有6×6=36(个),事件“x +y >10”包含(5,6),(6,5),(6,6),共3个基本事件.根据古典概型的概率计算公式可知,x +y >10的概率是112,故选D. 答案:D3.(2017·云南统一检测)在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( ) A.34 B .58C.12D .14解析:分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12. 答案:C4.(2017·河北三市联考)袋子中装有大小相同的5个小球,分别有2个红球、3个白球.现从中随机抽取2个小球,则这2个小球中既有红球也有白球的概率为( ) A.34 B .710 C.45D .35解析:设2个红球分别为a 、b,3个白球分别为A 、B 、C ,从中随机抽取2个,则有(a ,b ),(a ,A ),(a ,B ),(a ,C ),(b ,A ),(b ,B ),(b ,C ),(A ,B ),(A ,C ),(B ,C ),共10个基本事件,其中既有红球也有白球的基本事件有6个,则所求概率为P =610=35. 答案:D5.已知向量a =(x ,y ),b =(1,-2),从6张大小相同、分别标有号码1、2、3、4、5、6的卡片中,有放回地抽取两张,x 、y 分别表示第一次、第二次抽取的卡片上的号码,则满足a·b >0的概率是( ) A.112 B .34 C.15D .16解析:设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有6×6=36个.a·b >0,即x -2y >0,满足x -2y >0的基本事件有(3,1)、(4,1)、(5,1)、(6,1)、(5,2)、(6,2),共6个,所以所求概率P =636=16.故选D. 解析:D6.(2017·长沙长郡中学检测)在所有的两位数10~99中,任取一个数,则这个数能被2或3整除的概率是__________.解析:所有两位数共有90个,其中2的倍数有45个,3的倍数有30个,6的倍数有15个,所以能被2或3整除的共有45+30-15=60(个),所以所求概率是6090=23. 答案:237.抛掷一粒骰子,观察掷出的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知P (A )=12,P (B )=16,则“出现奇数点或2点”的概率为________. 解析:因为事件A 与事件B 是互斥事件,所以P (A ∪B )=P (A )+P (B )=12+16=23. 答案:238.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39、32、33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是______,他属于不超过2个小组的概率是________.解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是 P =1-86+7+8+8+10+10+11=1315.答案:35 13159.(2017·河北“五个一名校联盟”质量监测)某校高三学生体检后,为了解高三学生的视力情况,该校从高三六个班的300名学生中以班为单位(每班学生50人),每班按随机抽样方法抽取了8名学生的视力数据.其中高三(1)班抽取的8名学生的视力数据与人数见下表:(2)已知其余五个班学生视力的平均值分别为4.3、4.4、4.5、4.6、4.8.若从这六个班中任意抽取两个班学生视力的平均值作比较,求抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率.解析:(1)高三(1)班学生视力的平均值为4.4×2+4.6×2+4.8×2+4.9+5.18=4.7,故估计高三(1)班学生视力的平均值为4.7.(2)从这六个班中任意抽取两个班学生视力的平均值作比较,所有的取法共有15种,而满足抽取的两个班学生视力的平均值之差的绝对值不小于0.2的取法有:(4.3,4.5),(4.3,4.6),(4.3, 4.7),(4.3,4.8),(4.4,4.6),(4.4,4.7),(4.4,4.8),(4.5, 4.7),(4.5,4.8),(4.6,4.8),共有10种,故抽取的两个班学生视力的平均值之差的绝对值不小于0.2的概率为P=1015=23.10.(2017·昆明两区七校调研)某校高三共有900名学生,高三模拟考之后,为了了解学生学习情况,用分层抽样方法从中抽出若干学生此次数学成绩,按成绩分组,并制成如下的频率分布表.(1)确定表中a,b(2)为了了解数学成绩在120分以上的学生的心理状态,现决定在第六、七、八组中用分层抽样方法抽取6名学生,在这6名学生中又再随机抽取2名与心理老师面谈,求第七组中至少有一名学生被抽到与心理老师面谈的概率;(3)估计该校本次考试的数学平均分.解析:(1)因为频率和为1,所以b=0.18,因为频率=频数/样本容量,所以c=100,a=15.(2)第六、七、八组共有30个样本,用分层抽样方法抽取6名学生,第六、七、八组被抽取的样本数分别为3,2,1.将第六组、第八组被抽取的样本分别用A,B,C,D表示,第七组抽出的样本用E,F表示.从这6名学生中随机抽取2个的方法有AB、AC、AD、AE、AF、BC、BD、BE、BF、CD、CE、CF、DE、DF、EF,共15种.其中至少含E或F的取法有9种,则所求概率为3 5.(3)估计平均分为75×0.06+85×0.04+95×0.22+105×0.2+115×0.18+125×0.15+135×0.1+145×0.05=110.B组能力提速练1.(2016·高考北京卷)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则()A.乙盒中黑球不多于丙盒中黑球B.乙盒中红球与丙盒中黑球一样多C.乙盒中红球不多于丙盒中红球D.乙盒中黑球与丙盒中红球一样多解析:通过随机事件直接分析出现情况的可能性.取两个球往盒子中放有4种情况:①红+红,则乙盒中红球数加1;②黑+黑,则丙盒中黑球数加1;③红+黑(红球放入甲盒中),则乙盒中黑球数加1;④黑+红(黑球放入甲盒中),则丙盒中红球数加1.因为红球和黑球个数一样多,所以①和②的情况一样多,③和④的情况完全随机. ③和④对B 选项中的乙盒中的红球数与丙盒中的黑球数没有任何影响. ①和②出现的次数是一样的,所以对B 选项中的乙盒中的红球数与丙盒中的黑球数的影响次数一样. 综上,选B. 答案:B2.如图,在A ,B 两点间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4,现从中任取三条且使每条网线通过最大信息量,则选取的三条网线由A 到B 可通过的信息总量为6的概率是( )A.14 B .13 C.12D .23解析:设这6条网线从上到下分别是a ,b ,c ,d ,e ,f ,任取3条有:(a ,b ,c ),(a ,b ,d ),(a ,b ,e ),(a ,b ,f ),(a ,c ,d ),(a ,c ,e ),(a ,c ,f ),(a ,d ,e ),(a ,d ,f ),(a ,e ,f ),(b ,c ,d ),(b ,c ,e ),(b ,c ,f ),(b ,d ,e ),(b ,d ,f ),(b ,e ,f ),(c ,d ,e ),(c ,d ,f ),(c ,e ,f ),(d ,e ,f ),共20个不同的取法,选取的三条网线由A 到B 可通过的信息总量为6的取法有:(a ,b ,f ),(a ,c ,e ),(a ,d ,e ),(b ,c ,e ),(b ,d ,e ),共5个不同的取法,所以选取的三条网线由A 到B 可通过的信息总量为6的概率是14. 答案:A3.(2017·泉州质检)一个三位自然数百位、十位、个位上的数字依次为a ,b ,c ,当且仅当a >b ,b <c 时,称该三位自然数为“凹数”(如213,312等),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“凹数”的概率是( ) A.16 B .524 C.13D .724解析:由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理由1,2,4组成的三位自然数共6个;由1,3,4组成的三位自然数也是6个;由2,3,4组成的三位自然数也是6个.所以共有6+6+6+6=24(个).当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.所以这个三位数为“凹数”的概率P=6+224=13.答案:C4.同时掷两枚质地均匀的骰子,则(1)向上的点数相同的概率为________;(2)向上的点数之和小于5的概率为________.解析:(1)同时掷两枚骰子共有36种情况,其中向上点数相同的有6种情况,其概率为636=1 6;(2)向上点数之和小于5的有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种情况,其概率为636=1 6.答案:(1)16(2)165.(2017·兰州诊断)从2本不同的数学书和2本不同的语文书中任意抽出2本书(每本书被抽中的机会相等),求抽出的书是同一学科的概率.解析:从2本不同的数学书和2本不同的语文书中任意抽出2本书共有6种不同的取法,其中抽出的书是同一学科的取法共有2种,因此所求的概率等于26=13.。

2018高考一轮北师大版数学(文)教师用书:第十章 概率17-18版 第10章 第2节 古典概型 Word版含解析

2018高考一轮北师大版数学(文)教师用书:第十章 概率17-18版 第10章 第2节 古典概型 Word版含解析

第二节古典概型[考纲传真] 1.理解古典概型及其概率计算公式.2.会用列举法计算一些随机事件所包含的基本事件数及事件发生的概率.1.古典概型具有以下两个特征的随机试验的数学模型称为古典概型(古典的概率模型).(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.2.古典概型的概率公式P(A)=事件A包含的可能结果数试验的所有可能结果数=mn.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.()(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.()[答案](1)×(2)×(3)√(4)×2.(教材改编)下列试验中,是古典概型的个数为()①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.A.0B.1C.2D.3B[由古典概型的意义和特点知,只有③是古典概型.]3.(2016·全国卷Ⅲ)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.815B.18C.115D.130C[∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},∴事件总数有15种.∵正确的开机密码只有1种,∴P=115.]4.(2015·全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.310B.15C.110D.120C[从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C.]5.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.13[甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.而同色的有(红,红),(白,白),(蓝,蓝),共3种.所以所求概率P=39=13.]简单古典概型的概率(1)(2017·佛山质检)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为()A.0.4B.0.6C.0.8 D.1(2)(2016·全国卷Ⅰ)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.13B.12C.23D.56(1)B(2)C[(1)记3件合格品分别为A1,A2,A3,2件次品分别为B1,B2,从5件产品中任取2件,有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10种可能.其中恰有一件次品有6种可能,由古典概型得所求事件概率为610=0.6.(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P=46=23,故选C.][规律方法] 1.计算古典概型事件的概率可分三步,(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率P.2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.[变式训练1](1)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于...该正方形边长的概率为()A.15B.25C.35D.45(2)(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是____.(1)C(2)56[(1)设正方形的四个顶点分别是A,B,C,D,中心为O,从这5个点中,任取两个点的事件分别为AB,AC,AD,AO,BC,BD,BO,CD,CO,DO,共有10种,其中只有顶点到中心O的距离小于正方形的边长,分别是AO,BO,CO,DO,共有4种.所以所求事件的概率P=1-410=35.(2)将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A=“出现向上的点数之和小于10”,其对立事件A=“出现向上的点数之和大于或等于10”,A包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P(A)=636=16,所以P(A)=1-16=56.]复杂古典概型的概率动.参加活动的儿童需转动如图10-2-1所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:图10-2-1①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.[解]用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以基本事件总数n=16. 3分(1)记“xy≤3”为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516. 5分(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的基本事件数共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4),所以P(B)=616=38. 8分事件C包含的基本事件数共5个,即(1,4),(2,2),(2,3),(3,2),(4,1). 10分所以P(C)=516.因为38>5 16,所以小亮获得水杯的概率大于获得饮料的概率. 12分[规律方法] 1.本题易错点有两个:(1)题意理解不清,不能把基本事件列举出来;(2)不能恰当分类,列举基本事件有遗漏.2.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.[变式训练2](2017·潍坊质检)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(1)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【导学号:66482463】[解](1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,2分故至少参加上述一个社团的共有45-30=15人,所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P=1545=13. 5分(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个. 8分根据题意,这些基本事件的出现是等可能的.事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个. 10分因此A1被选中且B1未被选中的概率为P=215. 12分古典概型与统计的综合应用,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);图10-2-2(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.[解](1)两地区用户满意度评分的茎叶图如下:2分通过茎叶图可以看出,A地区用户满意度评分的平均值高于B地区用户满意度评分的平均值;A地区用户满意度评分比较集中,B地区用户满意度评分比较分散. 5分(2)记C A1表示事件:“A地区用户的满意度等级为满意或非常满意”;C A2表示事件:“A地区用户的满意度等级为非常满意”;C B1表示事件:“B地区用户的满意度等级为不满意”;C B2表示事件:“B地区用户的满意度等级为满意”;则C A1与C B1独立,C A2与C B2独立,C B1与C B2互斥,且C=C B1C A1+C B2C A2.∴P(C)=P(C B1C A1∪C B2C A2)=P(C B1C A1)+P(C B2C A2)=P(C B1)P(C A1)+P(C B2)P(C A2). 8分又根据茎叶图知P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820. 10分因此P(C)=1020×1620+820×420=1225=0.48. 12分[规律方法] 1.本题求解的关键在于作出茎叶图,并根据茎叶图准确提炼数据信息,考查数据处理能力和数学应用意识.2.有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,准确从题中提炼信息是关键.[变式训练3]海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.[解](1)因为样本容量与总体中的个体数的比是650+150+100=150,2分所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别为1,3,2. 5分(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2} ,{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个. 8分每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个. 10分所以这2件商品来自相同地区的概率P(D)=415. 12分[思想与方法]1.古典概型计算三步曲第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件的方法(1)当基本事件总数较少时,可列举计算;(2)列表法、树状图法.3.较复杂事件的概率可灵活运用互斥事件、对立事件的概率公式简化运算.[易错与防范]古典概型的重要特征是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是否是等可能的.。

(完整word版)2018年高考数学总复习概率及其计算

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图第一节 概率及其计算考纲解读1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式。

3.掌握古典概型及其概率计算公式。

4.了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义。

命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件。

二、概率在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。

对于必然事件A ,;对于不可能事件A ,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。

四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为Aμ.()P A =AμμΩ。

五、互斥事件的概率1、互斥事件在一次实验中不能同时发生的事件称为互斥事件。

事件A 与事件B 互斥,则()()()P A B P A P B =+ 。

2、对立事件事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。

()()1P A p A =- 。

3、互斥事件与对立事件的联系对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。

2018版大一轮全国人教数学文科配套作业 第9单元 概率

2018版大一轮全国人教数学文科配套作业 第9单元 概率

课时作业(五十)1.C [解析] A 中,恰好有一件次品与全是次品不能同时发生,但能同时不发生,不是对立事件;B 中至少有一件次品与全是次品能同时发生,不是对立事件;C 中至少有一件次品与全是正品不能同时发生,也不能同时不发生,是对立事件;D 中至少有一件正品与至少有一件次品能同时发生,不是对立事件.故选C .2.D [解析] 从袋中摸一个球,摸出的球是红球,与摸出的球是白球或黑球互为对立事件,因此摸出的球是白球或黑球的概率为1-0.4=0.6.3.D [解析] 基本事件空间Ω={(正,正),(正,反),(反,正),(反,反)},M ={(正,反),(反,正)},N ={(正,正),(正,反),(反,正)},故P(M)=12,P(N)=34. 4.D [解析] 依题意,射中8环及以上的概率为0.20+0.30+0.10=0.60,故射中不够8环的概率为1-0.60=0.40.5.600 [解析] ∵在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19,∴高二年级女生人数为0.19×2000=380,∴高三年级学生的人数为2000-650-370=600.6.C [解析] 记抽检的一件产品是甲级品为事件A ,是乙级品为事件B ,是丙级品为事件C ,则所求概率P(A)=1-P(B)-P(C)=1-0.05-0.03=0.92.7.D [解析] A 错误,因为除了事件A ,B 外还可以有其他事件,故P(A)+P(B)≤1;B 错误,对立事件还必须满足P ()A ∩B =0;C 错误,“至少有一次中靶”与事件“一次都没有中靶”是对立事件.故D 正确.8.B [解析] 由题意知,此人从小区A 前往小区H 的所有最短路径为A →B →C →E →H ,A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,A →D →F →G →H ,共6条.记“此人经过市中心O ”为事件M ,则M 包含的基本事件为A →B →O →E →H ,A →B →O →G →H ,A →D →O →E →H ,A →D →O →G →H ,共4个,所以P(M)=46=23,即他经过市中心O 的概率为23. 9.B [解析] 设置随机试验:袋子中放有大小相同且标号为1~10的十个小球,从中取一球,设事件A 1为“取出球的标号为1或3”,事件A 2为“取出球的标号为1或3或5”,事件A 3为“取出球的标号为奇数”,则三个事件A 1,A 2,A 3发生的概率分别是0.2,0.3,0.5,可知A 1∪A 2与A 3不是互斥事件,A 1∪A 2∪A 3不是必然事件,P(A 2∪A 3)=0.5,P(A 1∪A 2)≤0.5(当事件A 2为“取出球的标号为5或7或9”时,P(A 1∪A 2)=0.5).故只有④正确.10.29[解析] 根据题意,个位数字与十位数字之和为奇数且不超过5的两位数有10,12,14,21,23,30,32,41,50,共9个,其中个位是1的有21,41,共2个,因此所求的概率为29. 11.解:(1)从统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2. (2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁三种商品,另有200位顾客同时购买了甲、乙、丙三种商品,其他顾客最多同时购买了两种商品,所以顾客在甲、乙、丙、丁中同时购买三种商品的概率可以估计为100+2001000=0.3.(3)顾客同时购买甲和乙的概率可以估计为2001000=0.2, 顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6, 顾客同时购买甲和丁的概率可以估计为1001000=0.1, 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.课时作业(五十一)1.D [解析] 从1,2,3,4,5中任取两个数共有10个基本事件,其中两个数的乘积为偶数包含7个基本事件,因此所求概率为710. 2.A [解析] 所有基本事件有36个,点数之和为5的基本事件有(1,4),(4,1),(2,3),(3,2),共4个,故所求概率P =436=19.3.B [解析] 如图所示,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率P =615=25. 4.A [解析] 所有的基本事件为36个,第二次出现的点数是第一次出现的点数的3倍的基本事件为(1,3),(2,6),共2个,故所求概率为118. 5.15[解析] 从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,记为(a ,b),共有15个基本事件,其中满足b>a 的(a ,b)有(1,2),(1,3),(2,3),共3个基本事件,所以b>a 的概率是15. 6.D [解析] 从五位大学毕业生中录用三位的所有基本事件为(甲,乙,丙)、(甲,乙,丁)、(甲,乙,戊)、(甲,丙,丁)、(甲,丙、戊)、(甲,丁,戊)、(乙,丙,丁)、(乙,丙,戊)、(乙,丁,戊)、(丙,丁,戊),共10个,其中甲或乙被录用包含9个基本事件,所以所求概率为910. 7.D [解析] 对函数f(x)求导可得f′(x )=x 2+2ax +b 2,由题意需满足x 2+2ax +b 2=0有两个不等实根,即Δ=4(a 2-b 2)>0,即a>b.又(a ,b)的取法共有9种,其中满足a>b 的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种,故所求的概率P =69=23. 8.C [解析] 两次投掷一枚骰子出现的点数中有5的基本事件为(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11个,其中使方程x 2+mx +n =0有实根的基本事件为(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7个.故所求概率为711.9.A [解析] 甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,不同的送法共有四种:(甲送丙,乙送丙),(甲送丙,乙送丁),(甲送丁,乙送丙),(甲送丁,乙送丁).其中甲、乙将贺年卡送给同一人的送法有两种:(甲送丙,乙送丙),(甲送丁,乙送丁).故甲、乙将贺年卡送给同一人的概率P =24=12. 10.1316[解析] 依题意,(m ,n)的所有基本事件为(1,1),(1,2),(1,3)(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.满足条件n ≥m +2的基本事件为(1,3),(1,4),(2,4),共3个,所以n ≥m +2的概率P 1=316,故n<m +2的概率为1-P 1=1-316=1316. 11.解: (1)乙厂该天生产的产品数量为5÷1498=35(件). (2)样品中优等品的频率为25,则乙厂该天生产的优等品的数量约为35×25=14(件). (3)设从乙厂抽出的5件产品分别为A ,B ,C ,D ,E ,其中优等品为A ,B.从中随机抽取2件,则有(A ,B),(A ,C),(A ,D),(A ,E),(B ,C),(B ,D),(B ,E),(C ,D),(C ,E),(D ,E),共10个基本事件,其中2件产品中至少有1件优等品的基本事件有7个,则所求概率P =710. 课时作业(五十二)1.B [解析] 依题意他等待的时间不多于15分钟的概率P =1560=14. 2.C [解析] 如图所示,阴影部分内的点到对角线AC 的距离不大于2,易知阴影部分的面积为42-22=12,而正方形ABCD 的面积为42=16,故所求概率P =1216=34.3.A [解析] 只有在5 m 绳子中间的1 m 上剪断,才能使剪得两段的长度都不小于2 m ,故所求概率P =15. 4.B [解析] 所求概率为几何概型,测度为面积,由Δ=4a 2+4b 2-4π≥0,得a 2+b 2≥π,得所求概率为1-14π·(π)2π2=34. 5.C [解析] 如图所示,阴影部分内的点到点O 的距离大于或等于1.由题意知长方形ABCD 的面积S =2×1=2,阴影部分的面积S 1=2×1-12×π×12=2-π2,故所求概率P =2-π22=1-π4.6.14[解析] 根据题意,正方形阴影区域的边长为1,面积为1,大正方形的边长为2,面积为4,故芝麻落在阴影区域内的概率为14. 7.C [解析] 设直线AC 与圆弧DE 的交点为M ,则ME 的长为π6,又DE 的长为π2,则所求概率为π6π2=13. 8.B [解析] 设扇形的半径为2R ,则扇形的面积S 0=12×2π3×(2R)2=4π3R 2,阴影部分的面积S 1=4π3R 2-12πR 2=5π6R 2,故所求概率P =S 1S 0=5π6R 24π3R 2=58. 9.B [解析] 由椭圆焦点在x 轴上,可知a>b ,由离心率小于32,即e<32,可得b>12a ,试验的全部结果对应的区域如图中矩形ABCD 所示,满足条件的事件对应的区域如图中阴影部分所示,故所求概率P =12×(1+3)×2-12×1×122×4=1532.10.B [解析] 如图所示,原正六边形为ABCDEF ,最小的正六边形为A 1B 1C 1D 1E 1F 1.设AB =a ,由已知得,∠AOB =60°,则∠AOM =12∠AOB =30°,则OM =OA·cos ∠AOM=a·cos 30°=3a 2,即中间的正六边形的边长等于3a 2.同理,最小的正六边形A 1B 1C 1D 1E 1F 1的边长等于32OM =32×3a 2=3a 4,所以种子落在最小的正六边形内的概率P =S 正六边形A 1B 1C 1D 1E 1F 1S 正六边形ABCDEF =12×3a 4·3a 4·32×612·a·a·32×6=916. 11.25 [解析] 由题意需满足|a -1|2≤2,得-1≤a ≤3,故所求概率P =3-(-1)5-(-5)=25. 12.23[解析] 由函数f(x)=log 2(1-x 2)有意义,得1-x 2>0,解得-1<x<1,由几何概型的概率计算公式可得所求概率P =1-(-1)1-(-2)=23. 13.12 [解析] 区域M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎩⎪⎨⎪⎧0<x<2,0<y<4为图中矩形OABC 的内部,区域N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪⎩⎪⎨⎪⎧x +y<4,y>x ,x>0为图中阴影区域(不包括边界),由图可知S 矩形=2×4=8,S 阴影=12×2×4=4,故所求概率P=12.14.解:(1)由题意,区域⎩⎪⎨⎪⎧-2≤x ≤2,-1≤y ≤1为图中矩形ABCD 及其内部. 由图可知,所求概率为π×122×4=π8. (2)试验的全部结果对应的区域为图中矩形ABCD 及其内部,由以(x ,y)为坐标的点到直线x +y =0的距离不大于22,得|x +y|2≤22,即|x +y|≤1,满足条件的事件对应的区域如图中阴影部分(包括边界)所示.故以(x ,y)为坐标的点到直线x +y =0的距离不大于22的概率为2×22×4=12. 15.解: (1)甲、乙到达港口的时间有(1,1),(1,2),(1,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3),共9个基本事件,其中甲、乙在同一天到达该港口的有(1,1),(3,3),共2个基本事件,故甲、乙在同一天到达该港口的概率P =29.(2)设甲、乙到达该港口的时刻分别为x ,y ,则0≤x ≤60,0≤y ≤60,试验的全部结果对应的区域为图中正方形OABC 及其内部,若后到的船必须要等待,则满足x -y ≤20或y-x ≤20,对应的区域如图中阴影部分(包括边界)所示.S 阴影=60×60-2×12×40×40=2000,S 正方形=60×60=3600,故所求概率P =20003600=59. 16.解:(1)茎叶图如图所示.从茎叶图中可以看出,乙的成绩较为集中,差异性较小,则选派乙同学参加比赛较好.(2)设事件A 为甲的成绩比12.8秒差,事件B 为乙的成绩比12.8秒差,则所求概率P =1-P(A)·P(B)=1-410×510=45.(3)设甲同学的成绩为x 秒,乙同学的成绩为y 秒,则试验的全部结果对应的区域为图中正方形ABCD 及其内部,甲、乙成成绩之差的绝对值小于0.8,即|x -y|<0.8,则-0.8+x<y<0.8+x ,对应的区域如图中阴影部分所示,其面积为4×4-3.2×3.2=5.76,5.76所以所求概率P=16=0.36.。

湖北省2018届高考冲刺第九次考试数学(文)试题Word版含答案

湖北省2018届高考冲刺第九次考试数学(文)试题Word版含答案

湖北省2018届高考冲刺第九次考试数学(文)试题一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|35}A x x =-<<,{|6}B x x m =-<<,若AB ≠∅,则实数m 的取值范围是A .[3,)-+∞B .[5,)+∞C .(5,)+∞D .(3,)-+∞2. 复数131ii-+在复平面内对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限3. 已知变量,x y ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3},则点{,}x y 在直线3y x =上的概率是 A .13B .16C .12D .144. 将函数2()3sin()43f x x ππ=+的图象上的所有点的横坐标缩短为原来的12,纵坐标不变, 再向右平移23个单位得到函数()g x 的图象,则()g x 的解析式为 A .2()3sin()83g x x ππ=+ B .()3sin()23g x x ππ=+C .()3sin()83g x x ππ=+ D .()3sin()23g x x ππ=-5.已知某几何体的三视图如图,则该几何体的体积为A .3242π-B .243π-C .24π-D .242π-6. 设5log 4a =,b =,25(log 3)c =,则,,a b c 的大小关系为A .a b c >>B .b c a >>C .a c b >>D .b a c >>7. 已知2cos()423πθ-=,则sin θ= A .79 B .19 C .19- D .798. 双曲线C :22221(0,0)x y a b a b-=>>的右焦点为F ,左顶点为A ,若线段AF 的垂直平分线与双曲线右支有两个交点,则双曲线离心率的取值范围是A .(2,)+∞B .(3,)+∞ C.)+∞ D .(4,)+∞9. 函数1()ln()f x x x=-的图象大致为A .B .C .D .10.阅读下列程序框图,若输出的函数值在区间[1,1]-上,则输入的实数x 的取值范围是A .1{|2}2x R x ∈≤≤ B .1{|2}2x R x ∈≤<C .1{|22x R x ∈≤<或0}x ≤D .1{|22x R x ∈≤<或0}x =11.方程2sin 20([2,3])21x x x π-=∈--所有根之和为 A .4B .2C .1D .32 12.若过点(,)A m m 与曲线()ln f x x x =相切的直线有两条,则实数m 的取值范围是A .(,)e -∞B .(,)e +∞C .1(0,)eD .(1,)+∞二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量(1,1)a =,(1,0)b =-,若向量ka b +与向量(2,1)c =共线,则实数k = .14.已知实数,x y 满足约束条件320,210,220,x y x y x y -+≥⎧⎪--≤⎨⎪+-≤⎩则3z x y =-的最大值为 .15.如图,已知在三棱锥P ABC -中,PC ⊥平面ABC ,AB BC ⊥,若2AB BC ==,1PC =,E 为PB 中点, 则异面直线PA 与CE 所成角的余弦值为 .16.在△ABC 中,,,a b c 分别为内角,,A B C 的对边,若2224sin sin 0a b c ab A B +-+=,则3tan 2tan tan A B C ++的最小值为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分l2分)定义12nnp p p +++为n 个正数12,,,n p p p 的“均倒数”, 已知正项数列{}n a 的前n 项的“均倒数”为141n -. (1)求证:数列{}n a 为等差数列; (2)设14n n a b +=,求数列11{}n n b b +的前n 项和n T .18.(本小题满分12分)某学校高三年级有学生750人,其中男生450人,女生300人,为了研究学生的数学成绩是 否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的 数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组,分别加以统计,得 到如图所示的频率分布直方图.(1)从样本中分数小于110分的学生中随机抽取两人,求两人性别相同的概率;(2)若规定分数不小于130分的学生为“数学尖子生”,请判断能否在犯错误的概率不超过0.1 的前提下认为“是否为数学尖子生与性别有关”.附:22()()()()()n ad bc K a b c d a c b d -=++++19.(本小题满分12分)如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,AB BP ⊥,M 为AC 的中点,N 为PD 上一点.(1)若MN ∥平面ABP ,求证:N 为PD 的中点; (2)若平面ABP ⊥平面APC ,求证:PC ⊥平面ABP .20.(本小题满分12分) 已知圆()221:14C x y -+=,一动圆与直线12x =-相切且与圆C 外切.(1)求动圆圆心P 的轨迹T 的方程;(2)若经过定点()6,0Q 的直线l 与曲线T 交于A B 、两点,M 是线段AB 的中点,过M 作x 轴的平行线与曲线T 相交于点N ,试问是否存在直线l ,使得NA NB ⊥,若存在,求出直线l 的方程,若不存在,说明理由.21.(本小题满分12分)已知函数2()ln 4f x m x x x =+-.(1)若函数()f x 存在两个极值点,求实数m 的取值范围. (2)当0m ≥时,讨论21()(3)()2g x x m x f x =+--的零点个数.请考生在第(22)、(23)题中任选一题作答,如果多做,则按所做的第一题计分。

2018届高考数学(文)一轮复习精编配套试题(配最新试题汇编)第九章《解析几何》(含答案精细解析)

2018届高考数学(文)一轮复习精编配套试题(配最新试题汇编)第九章《解析几何》(含答案精细解析)

若在 C 上存在一点 P. 使 PF1⊥PF2, 且∠ PF1F2=30°, 则 C 的离心率为 ___________.
16、( 2013 年高考辽宁卷
(文
15))已知 F 为双曲线
x2 C:
y2 1的左焦点 , P, Q 为 C 上
9 16
的点 , 若 PQ 的长等于虚轴长的 2 倍 , 点 A 5,0 在线段 PQ 上 , 则 PQF 的周长为
( C) 1 或 2 2
( D) 1 或 3 22
二、填空题 (本大题共 4 小题,每小题 5 分,共 20 分,把答案填在题中横线 上)
13.【北京市朝阳区 2013 届高三上学期期末考试数学文】已知双曲线中心在原点,一个焦
点为 F1 ( 5 ,0) ,点 P 在双曲线上,且线段 PF1的中点坐标为( 0 , 2 ),则此双曲线
的方程是
,离心率是 .
14. ( 2013 年高考江西卷(文 14)) 若圆 C 经过坐标原点和点 (4,0), 且与直线 y=1 相切 , 则圆
C的方程是 _________.
x2 y2
15、( 2013 年高考湖南(文 14)) 设 F1,F 2 是双曲线 C,
a2
b2
1 (a>0,b>0) 的两个焦点 .
____________.
三、解答题 (本大题共 6 小题,共 70 分,解答应写出文字说明、证明过程或 演算步骤 )
17. (本小题满分 10 分 ) ( 2013 年高考四川卷(文))
已知圆 C 的方程为 x2 ( y 4)2 4 , 点 O 是坐标原点 . 直线 l : y kx 与圆 C 交于
双曲线的标准方程为( )
A . x2 y2 1 3

2018年高考数学总复习概率及其计算(2021年整理)

2018年高考数学总复习概率及其计算(2021年整理)

2018年高考数学总复习概率及其计算(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学总复习概率及其计算(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学总复习概率及其计算(word版可编辑修改)的全部内容。

第十三章概率与统计本章知识结构图第一节概率及其计算考纲解读1。

了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。

2.了解两个互斥事件的概率的加法公式。

3。

掌握古典概型及其概率计算公式.4。

了解随机数的意义,能运用模拟方法估计概率。

5.了解几何概型的意义.命题趋势探究1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。

2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。

知识点精讲一、必然事件、不可能事件、随机事件在一定条件下:①必然要发生的事件叫必然事件;②一定不发生的事件叫不可能事件;③可能发生也可能不发生的事件叫随机事件.二、概率在相同条件下,做次重复实验,事件A发生次,测得A发生的频率为,当很大时,A发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A的概率,记作。

对于必然事件A,;对于不可能事件A,=0.三、基本事件和基本事件空间在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。

四、两个基本概型的概率公式1、古典概型条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同()(A)=()A card P A card =Ω包含基本事件数基本事件总数2、几何概型条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为A μ。

2018年高考数学文一轮复习文档:高考零距离9概率 含答案 精品

2018年高考数学文一轮复习文档:高考零距离9概率 含答案 精品

概率1.对概率的考查是高考命题的热点之一,命题形式为“一小一大”,即一道选择或填空题和一道解答题.2.选择或填空题常出现在第3~8题或第13题的位置,主要考查古典概型、几何概型,难度一般.3.解答题常出现在第18或19题的位置,多以交汇性的形式考查,交汇点主要有两种:一是两图(频率分布直方图与茎叶图)择一与频率与概率的关系、数据的数字特征相交汇来考查;二是两图(频率分布直方图与茎叶图)择一与线性回归或独立性检验相交汇来考查,难度中等.题溯源(2016·高考全国卷甲,T8)某路图②(2)根据用户满意度评分,将用户的1.(必修3 P146复习参考题B 组T3改编)鞋柜里有3双不同的鞋,随机取出2只,则取出的是一只左脚的,一只右脚的,但不成双的概率为( )A .23B .12C .35D .25D 设A 1,A 2,A 3表示左脚的,对应的右脚记为B 1,B 2,B 3,则基本事件为(A 1,A 2),(A 1,A 3),(A 1,B 1)(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 3,B 1),(A 3,B 2),(A 3,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3),共15种.所求事件包含的基本事件为(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 3),(A 3,B 1),(A 3,B 2),共6种.所以P =615=25,故选D.2. (必修3 P142习题3.3A 组T2改编)某人随机地在如图所示的正三角形及其外接圆区域内部投针(不包括三角形边界及圆的外界),则针扎到阴影区域(不包括边界)的概率为()A .3πB .334πC .34D .34πB 设正三角形的边长为a ,圆的半径为R , 则正三角形的面积为34a 2. 由正弦定理得2R =a sin 60°,即R =33a ,所以圆的面积S =πR 2=13πa 2.由几何概型的概率计算公式得概率P =34a 213πa 2=334π.故选B.3.(必修3 P79练习T3改编)2016年国庆节期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段:后得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估计值; (2)若从车速在 (1)众数的估计值为77.5.设中位数的估计值为x ,则0.01×5+0.02×5+0.04×5+0.06×(x -75)=0.5,解得x =77.5,即中位数的估计值为77.5.(2)从题图中可知,车速在 (1)从第8行第7列的数开始向右读,依次检查的编号分别为785,916(舍),955(舍),667,199,…,故最先检查的3个人的编号为785,667,199.(2)①7+9+a 100=30%,所以a =14,b =100-30-(20+18+4)-(5+6)=17. ②a +b =100-(7+20+5)-(9+18+6)-4=31.因为a ≥10,b ≥8,所以a ,b 的搭配为(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8),共14种.记a ≥10,b ≥8,数学成绩优秀的人数比及格的人数少为事件A .则事件A 包括(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),共6个基本事件.所以P (A )=614=37,所以数学成绩优秀的人数比及格的人数少的概率为37.。

2018高考数学(文)(人教新课标)大一轮复习配套文档第十章 概率 10.1 随机事件的概率 Word版含答案

2018高考数学(文)(人教新课标)大一轮复习配套文档第十章 概率 10.1 随机事件的概率 Word版含答案

第十章概率.事件与概率()了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.()了解两个互斥事件的概率加法公式..古典概型()理解古典概型及其概率计算公式.()会计算一些随机事件所含的基本事件数及事件发生的概率..随机数与几何概型()了解随机数的意义,能运用模拟方法估计概率.()了解几何概型的意义..随机事件的概率.随机事件和确定事件()在条件下,一定会发生的事件,叫做相对于条件的.()在条件下,一定不会发生的事件,叫做相对于条件的.必然事件与不可能事件统称为相对于一定条件的确定事件.()在条件下可能发生也可能不发生的事件,叫做相对于条件的.()和统称为事件,一般用大写字母,,,…表示..频率与概率()在相同的条件下重复次试验,观察某一事件是否出现,称次试验中事件出现的次数为事件出现的,称事件出现的比例()=为事件出现的频率.()对于给定的随机事件,如果随着试验次数的增加,事件发生的()稳定在某个常数上,把这个记作(),称为事件的.()在一次试验中几乎不可能发生的事件称为..事件的关系与运算(类比集合的关系与运算)系:两个事件与是互斥事件,有如下三种情况:①若事件发生,则事件就不发生;②若事件发生,则事件就不发生;③事件,都不发生.两个事件与是对立事件,仅有前两种情况.因此,互斥未必对立,但对立一定互斥..概率的几个基本性质 ()概率的取值范围:. ()必然事件的概率()=. ()不可能事件的概率()=. ()互斥事件概率的加法公式 ①如果事件与事件互斥,则(∪)=.推广:如果事件,,…,两两互斥(彼此互斥),那么事件++…+发生的概率,等于这个事件分别发生的概率的和,即(++…+)=.②若事件与事件互为对立事件,则()=.自查自纠.()必然事件 ()不可能事件 ()随机事件 ()确定事件 随机事件.()频数 ()频率 常数 概率 ()小概率事件.包含 ⊇= 或 且 ∩∩ ∪.()≤()≤ () () ()①()+() ()+()+…+() ②()()我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 石,验得米内夹谷,抽样取米一把,数得粒内夹谷粒,则这批米内夹谷约为( ).石 .石 .石. 石解:依题意,这批米内夹谷约为× ≈(石).故选. 从装有红球和绿球的口袋内任取个球(已知口袋中的红球、绿球数都大于),那么互斥而不对立的两个事件是( ).至少有一个是红球,至少有一个是绿球 .恰有一个红球,恰有两个绿球 .至少有一个红球,都是红球 .至少有一个红球,都是绿球解:选项,中两事件可以同时发生,故不是互斥事件;选项中两事件不可能同时发生,因此是互斥的,但两事件不对立;选项中的两事件是对立事件.故选.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( )解:事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,列举易知,从五位学生中选三人的基本事件个数为,“甲和乙都未被录用”只有种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率==.故选.()从一副混合后的扑克牌(张)中,随机抽取张.事件为“抽得红桃”,事件为“抽得黑桃”,则概率(∪)=(结果用最简分数表示).解:因为()=,()=,所以(∪)=()+()=+==.故填.从,,,,中任意取出两个不同的数,其和为的概率是.解:所有可能情形有(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)共种,和为的情形有(,),(,)共种,故所求概率为=.故填.。

2018高考数学一轮复习第10章概率第1节随机事件的概率教师用书文北师大版

2018高考数学一轮复习第10章概率第1节随机事件的概率教师用书文北师大版

第十章概率[深研高考·备考导航] 为教师备课、授课提供丰富教学资源 [五年考情][重点关注]综合近5年的全国卷高考试题,我们发现高考命题在本章呈现以下规律:1.从考查题型看:一般有1个客观题或1个解答题;从考查分值看,占5~17分,基础题主要考查对基础知识和基本方法的掌握,中档题主要考查应用意识、转化与化归思想及运算求解能力.2.从考查知识点看:主要考查随机事件的概率、古典概型、几何概型.3.从命题思路上看:(1)随机事件的概率与统计知识相结合考查.(2)概率的计算主要考查古典概型的应用.[导学心语]1.全面系统复习,深刻理解知识本质(1)深刻把握随机事件、互斥事件、对立事件、古典概型、几何概型的概念,复习时可以通过选择一些易错易混的小题进行强化.(2)重视古典概型概率公式、几何概型概率公式、互斥及对立事件概率公式的理解和应用,注意公式适用的条件.2.熟练掌握解决以下问题的方法与规律(1)随机事件的概率、互斥事件概率、对立事件概率的求法.(2)古典概型概率与几何概型概率的计算.利用强化训练,总结规律方法,提升认识.3.重视转化与化归思想的应用(1)需要将实际问题的概率计算转化为某概率类型进而求解.(2)将古典概型概率计算转化为计数问题;将几何概型概率计算转化为长度、面积的计算;将复杂事件的概率计算转化为互斥事件或对立事件的概率计算等.(3)将图表信息转化为概率计算需要的数量,进而求解,并重视与统计知识交汇渗透.第一节随机事件的概率[考纲传真] 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.1.概率(1)定义:在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时这个常数叫作随机事件A的概率,记作P(A),有0≤P(A)≤1.(2)频率反映了一个随机事件出现的频繁程度,但频率是随机的,而概率是一个确定的值,因此,人们用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值.2.互斥事件与对立事件(1)互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B 称作互斥事件.(2)对立事件:在每一次试验中,两个事件不会同时发生,并且一定有一个发生的事件A和A称为对立事件.3.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.(3)不可能事件的概率:P(A)=0.(4)互斥事件的概率加法公式:①P(A+B)=P(A)+P(B)(A,B互斥).②P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n)(A1,A2,…,A n彼此互斥).(5)对立事件的概率:P(A)=1-P(A).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)事件发生的频率与概率是相同的.( )(2)在大量的重复实验中,概率是频率的稳定值.( )(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )[答案] (1)× (2)√ (3)√ (4)×2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( ) A .① B .② C .③D .④B [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56 B .25 C .16D .13A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56.] 4.(2017·郑州调研)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是________.【导学号:66482459】13[从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况, 其中和为4的有两种情况(2,2),(3,1), 故所求事件的概率P =26=13.]5.一个人打靶时连续射击两次,事件“至少有一次中靶”的经斥事件是________.(填序号)①至多有一次中靶;②两次都中靶;③只有一次中靶; ④两次都不中靶④(2017·中山模拟)从1,2,3,4,5这五个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.①B.②④C.③D.①③C[从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.又①②④中的事件可以同时发生,不是对立事件.][规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.2.准确把握互斥事件与对立事件的概念.(1)互斥事件是不可能同时发生的事件,但可以同时不发生.(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.[变式训练1] 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C+E)=1;⑤P(B)=P(C).①④[当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C+E 为必然事件,④正确.由于B≠C,故P(B)≠P(C),所以⑤不正确.](2016·全国卷Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)记A 的估计值; (2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P (B )的估计值;(3)求续保人本年度平均保费的估计值.[解] (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55. 4分(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3. 8分 (3)由所给数据得10分调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 12分[规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.[变式训练2] (2017·西安质检)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:...(2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨的概率.[解] (1)由4月份天气统计表知,在容量为30的样本中,不下雨的天数是26,2分 以频率估计概率,在4月份任选一天,西安市不下雨的概率为2630=1315. 5分(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率f =1416=78. 10分以频率估计概率,运动会期间不下雨的概率为78. 12分某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).[解] (1)由题意,得⎩⎪⎨⎪⎧25+y +10=100×55%,x +30=45,解得⎩⎪⎨⎪⎧x =15,y =20.2分该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.又x =1×15+1.5×30+2×25+20×2.5+10×3100=1.9,∴估计顾客一次购物的结算时间的平均值为1. 9分钟. 5分(2)设B ,C 分别表示事件“一位顾客一次购物的结算时间分别为2. 5分钟、3分钟”.设A 表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.”7分将频率视为概率,得P (B )=20100=15, P (C )=10100=110. ∵B ,C 互斥,且A =B +C ,∴P (A )=P (B +C )=P (B )+P (C )=15+110=310,10分因此P (A )=1-P (A )=1-310=710,∴一位顾客一次购物结算时间不超过2分钟的概率为0.7. 12分[规律方法] 1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误. 2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P (A )=1-P (A )求解.当题目涉及“至多”“至少”型问题,多考虑间接法.[变式训练3] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. [解] (1)P (A )=11 000,P (B )=101 000=1100,2分 P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. 5分(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M ,则M =A +B +C .∵A ,B ,C 两两互斥,∴P (M )=P (A +B +C )=P (A )+P (B )+P (C )=1+10+501 000=611 000,8分 故1张奖券的中奖概率约为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,∴P (N )=1-P (A +B )=1-⎝ ⎛⎭⎪⎫11 000+1100=9891 000, 故1张奖券不中特等奖且不中一等奖的概率为9891 000. 12分[思想与方法]1.对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A ),即运用逆向思维(正难则反).[易错与防范]1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.正确认识互斥事件与对立事件的关系:对立事件是特殊的互斥事件,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.3.需准确理解题意,特别留心“至多……”“至少……”“不少于……”等语句的含义.。

2018届高三数学(文)教师用书:第9章概率(含答案)

2018届高三数学(文)教师用书:第9章概率(含答案)

两个事件,它是 “ 2 张全是移动卡 ” 的对立事件,故选 A.
3.对飞机连续射击两次,每次发射一枚炮弹,设
A= { 两次都击中飞机 } , B= { 两次都
没击中飞机 } ,C= { 恰有一次击中飞机 } ,D = { 至少有一次击中飞机 } ,其中彼此互斥的事件
是________,互为对立事件的是 ________.
解析: 设 I 为对飞机连续射击两次所发生的所有情况,因为
A∩ B=?,A∩C=?,B∩C
=?, B∩D = ?,故 A 与 B,A 与 C, B 与 C,B 与 D 为互斥事件.而 B∩ D= ?,B∪ D= I ,
故 B 与 D 互为对立事件.
答案 :A 与 B, A 与 C,B 与 C, B 与 D B 与 D
[小题纠偏 ] 1.甲: A1, A2 是互斥事件;乙: A1, A2 是对立事件,那么 ( )
A .甲是乙的充分但不必要条件 B.甲是乙的必要但不充分条件 C.甲是乙的充要条件 D .甲既不是乙的充分条件,也不是乙的必要条件 解析: 选 B 两个事件是对立事件,则它们一定互斥,反之不一定成立.
2.在运动会火炬传递活动中,有编号为 1,2,3,4,5 的 5 名火炬手.若从中任选 3 人,则
2.在 5 张电话卡中,有 3 张移动卡和 2 张联通卡,从中任取
移动卡”的概率是 130,那么概率是 170的事件是 (
)
2 张,若事件“ 2 张全是
A .至多有一张移动卡
B.恰有一张移动卡 C.都不是移动卡 D .至少有一张移动卡 解析:选 A 至多有一张移动卡包含 “ 一张移动卡, 一张联通卡 ” 、“ 两张全是联通卡 ”
7 ③随机事件发生的频率就是这个随机事件发生的概率. 解析: ①错,不一定是 10 件次品;②错, 3是频率而非概率;③错,频率不等于概率,

2018届高考数学文大一轮复习检测:第九章第1讲随机事

2018届高考数学文大一轮复习检测:第九章第1讲随机事

,第1讲 随机事件的概率, [学生用书P173])1.事件的分类2.概率与频率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n An 为事件A 出现的频率.(2)对于给定的随机事件A ,由于事件A 发生的频率f n (A )随着试验次数的增加稳定于概率P (A ),因此可以用频率f n (A )来估计概率P (A ).3.事件的关系与运算4.概率的几个基本性质(1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率:P (A )=1. (3)不可能事件的概率:P (A )=0. (4)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (5)对立事件的概率若事件A 与事件B 互为对立事件,则A ∪B 为必然事件. P (A ∪B )=1,P (A )=1-P (B ).1.辨明两个易误点(1)易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数. (2)对立事件是互斥事件,是互斥中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.集合方法判断互斥事件与对立事件(1)由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.(2)事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.1.教材习题改编 总数为10万张的彩票,中奖率是11 000,下列说法中正确的是( )A .买1张一定不中奖B .买1 000张一定有一张中奖C .买2 000张一定中奖D .买2 000张不一定中奖D [解析] 由题意知,彩票中奖属于随机事件,故买1张也可能中奖,买2 000张也可能不中奖.2.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( ) A .甲是乙的充分但不必要条件 B .甲是乙的必要但不充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件B [解析] 两个事件是对立事件,则它们一定互斥,反之不一定成立.3.教材习题改编 某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”( )A .是互斥事件,不是对立事件B .是对立事件,不是互斥事件C .既是互斥事件,也是对立事件D .既不是互斥事件也不是对立事件 [答案] C4.袋中装有3个白球,4个黑球,从中任取3个球,则 ①恰有1个白球和全是白球; ②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球; ④至少有1个白球和至少有1个黑球.在上述事件中,是互斥事件但不是对立事件的为( ) A .① B .② C .③ D .④A [解析] 由题意可知,事件③④均不是互斥事件;①②为互斥事件,但②又是对立事件,满足题意只有①,故选A.5.教材习题改编 甲、乙两人下棋,两人和棋的概率是12,乙获胜的概率是13,则乙不输的概率是( )A .56B .23C .12D .13A [解析] 乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为12+13=56.随机事件的关系[学生用书P174][典例引领](1)从1,2,3,…,7这7个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是( ) A .① B .②④ C .③ D .①③(2)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡【解析】 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”“一奇一偶”“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)至多有一张移动卡包含“一张移动卡,一张联通卡”,“2张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.【答案】 (1)C (2)A事件间关系的判断方法对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.[通关练习]1.设条件甲:“事件A 与事件B 是对立事件”,结论乙:“概率满足P (A )+P (B )=1”,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [解析] 若事件A 与事件B 是对立事件,则A ∪B 为必然事件,再由概率的加法公式得P (A )+P (B )=1.设掷一枚硬币3次, 事件A :“至少出现一次正面”,事件B :“3次出现正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.2.一个均匀的正方体玩具的各个面上分别标有数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A 表示向上的一面出现奇数点,事件B 表示向上的一面出现的点数不超过3,事件C 表示向上的一面出现的点数不小于4,则( )A .A 与B 是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件D[解析] A∩B={出现点数1或3},事件A,B不互斥更不对立;B∩C=∅,B∪C =Ω,故事件B,C是对立事件.随机事件的频率与概率[学生用书P175][典例引领](2016·高考全国卷甲)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A为事件“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(2)记B为事件“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(3)求续保人本年度平均保费的估计值.【解】(1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P(B)的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.(2015·高考北京卷)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?[解] (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.互斥事件、对立事件的概率(高频考点)[学生用书P176]随机事件的概率注重对互斥事件和对立事件的概率的考查,以选择题、填空题为主,属于低档题目.高考对该部分内容的考查主要有以下两个命题角度: (1)根据互斥事件求概率;(2)利用对立事件求概率.[典例引领]某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A 、B 、C ,求:(1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.【解】 (1)P (A )=11 000, P (B )=101 000=1100, P (C )=501 000=120.故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖、一等奖、二等奖. 设“1张奖券中奖”这个事件为M ,则M =A ∪B ∪C . 因为A 、B 、C 两两互斥,所以P (M )=P (A ∪B ∪C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,所以P (N )=1-P (A ∪B )=1-⎝⎛⎭⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.[题点通关]角度一 根据互斥事件求概率1.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1C [解析] 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735.角度二 利用对立事件求概率2.某次知识竞赛规则如下:主办方预设3个问题,选手能正确回答出这3个问题,即可晋级下一轮.假设某选手回答正确的个数为0,1,2的概率分别是0.1,0.2,0.3,则该选手晋级下一轮的概率为________.[解析] 记“答对0个问题”为事件A ,“答对1个问题”为事件B ,“答对2个问题”为事件C ,这3个事件彼此互斥,“答对3个问题(即晋级下一轮)”为事件D ,则“不能晋级下一轮”为事件D 的对立事件D -,显然P (D -)=P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.1+0.2+0.3=0.6,故P (D )=1-P (D -)=1-0.6=0.4.[答案] 0.4, [学生用书P347(独立成册)])1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥事件但不是对立事件D .以上答案都不对C [解析] 由互斥事件和对立事件的概念可判断,应选C.2.设事件A ,B ,已知P (A )=15,P (B )=13,P (A ∪B )=815,则A ,B 之间的关系一定为( )A .两个任意事件B .互斥事件C .非互斥事件D .对立事件B [解析] 因为P (A )+P (B )=15+13=815=P (A ∪B ),所以A ,B 之间的关系一定为互斥事件.故选B.3.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量大于40克的概率为( )A .0.3B .0.5C .0.8D .0.2 D [解析] 由互斥事件概率加法公式知, 重量大于40克的概率为1-0.3-0.5=0.2. 4.从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( ) A .110B .310C .710D .35C [解析] “取出的2个球全是红球”记为事件A ,则P (A )=310.因为“取出的2个球不全是红球”为事件A 的对立事件,所以其概率为P (A -)=1-P (A )=1-310=710.5.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为: 162,153,148,154,165,168,172,171,173,150, 151,152,160,165,164,179,149,158,159,175. 根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5 cm ~170.5 cm 之间的概率约为( )A .25B .12C .23D .13A [解析] 从已知数据可以看出,在随机抽取的这20位学生中,身高在155.5 cm ~170.5 cm 之间的学生有8人,频率为25,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5 cm ~170.5 cm 之间的概率约为25.6.由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:则至多2人排队的概率为( ) A .0.3 B .0.43 C .0.57 D .0.27 C [解析] 记“没有人排队”为事件A ,“1人排队”为事件B ,“2人排队”为事件C ,A 、B 、C 彼此互斥.记“至多2人排队”为事件E ,则P (E )=P (A +B +C )=P (A )+P (B )+P (C )=0.11+0.16+0.3=0.57.7.某城市2016年的空气质量状况如表所示:其中污染指数T 100<T ≤150时,空气质量为轻微污染,则该城市2016年空气质量达到良或优的概率为________.[解析] 由题意可知2016年空气质量达到良或优的概率为P =110+16+13=35.[答案] 358.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,若红球有21个,则黑球有________个.[解析] 摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n 个,则0.4221=0.3n ,故n =15.[答案] 159.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8、0.12、0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________,________.[解析] 断头不超过两次的概率P 1=0.8+0.12+0.05=0.97.于是,断头超过两次的概率P 2=1-P 1=1-0.97=0.03.[答案] 0.97 0.0310.一篇关于“键盘侠”的时评引发了大家对“键盘侠”的热议(“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象).某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.[解析] 在随机抽取的50人中,持反对态度的频率为1-1450=1825,所以可估计该地区对“键盘侠”持反对态度的有9 600×1825=6 912(人).[答案] 6 91211.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.[解] (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为(2)由已知可得Y =X2+425,故P (“发电量低于490万千瓦时或超过530万千瓦时”)=P (Y <490或Y >530)=P (X <130或X >210)=P (X =70)+P (X =110)+P (X =220)=120+320+220=310.12.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.[解析] 由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以p =610=35.[答案] 3513.如图,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如下:(1)试估计40分钟内不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.[解] (1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),所以用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人, 故由调查结果得频率为(3)设A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)知P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,因为P(A1)>P(A2),所以甲应选择L1 .同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,因为P(B1)<P(B2),所以乙应选择L2.14.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.[解] (1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.。

2018高考数学(文)(人教新课标)大一轮复习配套文档第十章 概率 单元测试卷 Word版含答案

2018高考数学(文)(人教新课标)大一轮复习配套文档第十章 概率 单元测试卷 Word版含答案

一、选择题:本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的..()把红、黄、蓝、白张纸牌随机地分发给甲、乙、丙、丁四人,事件“甲分得红牌”与“乙分得红牌”是( ).对立事件.不可能事件.互斥但不对立事件.不是互斥事件解:显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给乙、丙两人,综上,这两个事件为互斥但不对立事件.故选..从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )解:记三件正品为,,,一件次品为,从中随机取出两件的基本事件为(,),(,),(,),(,),(,),(,),共个,其中取出的产品全是正品的基本事件有个,故所求概率==,故选..在区间上随机取一个数,则事件“≥”发生的概率为( )解:≥,又∈,所以≤≤π.所以所求概率==.故选..如图所示的茎叶图表示的是甲、乙两人在次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为()解:记其中被污损数字为,则甲的五次综合测评的平均成绩是(×+×+++++)=,乙的五次综合测评的平均成绩是(×+×+++++)=(+).令>(+),由此解得<,即取,,,…,时符合要求,因此所求概率为=.故选..在棱长为的正方体­内任取一点,则点到点的距离不大于的概率为( )π解:满足条件的点在以为球心,半径为的球内(含球面),所以所求概率为==.故选..点是半径为的圆上的定点,是圆周上任一点,则弦长>的概率是( )解:如图,当在优弧上时满足条件.故所求概率为.故选..将一枚骰子抛掷两次,若先后出现的点数分别为,,则方程++=有实根的概率为( )解:≥,=,=,,,,;=,=,,,;=,=,,;=,=,,;=,=,;=,=,.所以有实根共种情形.两颗骰子的点数共种情形.故选..()若∈,则的值使得过(,)可以作两条直线与圆()+=相切的概率等于( )解:点在圆外,过该点可做两条直线与圆相切.故使圆心与点的距离大于半径即可,即()+>,解得<或>,故所求∈,故所求概率==.故选..如图,一只蚂蚁在边长分别为,,的三角形区域内随机爬行,则其恰在离三个顶点的距离都大于的地方的概率为( )...解:===.故选..将号码分别为,,…,的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同.甲从袋中摸出一个球,其号码为,放回后,乙从此袋中再摸出一个球,其号码为,则使不等式+>成立的事件发生的概率等于( )解:试验发生包含的事件是两次分别从袋中摸球,共有×=种结果,满足条件的事件是使不等式+>成立,即<.当=,,,,时,各有种结果,共有种结果;当=时,有种结果;当=时,有种结果;当=时,有种结果;当=时,有种结果,所以共有++++=种结果.所以所求的概率是.故选..已知实数∈,若抛物线=在=处的切线的倾斜角为α,则α∈的概率为( )解:当α∈时,斜率≥或≤.又抛物线=在=处的切线斜率=,所以≥或≤,即≥或≤,所以所求概率==.故选..()在区间和上各取一个数,分别记为,,则方程+=表示焦点在轴上且离心率小于的椭圆的概率为( )解:方程+=表示焦点在轴上且离心率小于的椭圆,故即化简得又∈,∈,画出满足不等式组的平面区域,如图阴影部分所示,易求得阴影部分的面积为,故所求的概率==.故选.二、填空题:本大题共小题,每小题分,共分..()将本不同的数学书和本语文书在书架上随机排成一行,则本数学书相邻的概率为.解:两本不同的数学书用,表示,语文书用表示,则Ω={(,,),(,,),(,,),(,,),(,,),(,,)}.于是两本数学书相邻的情况有种,故所求概率为=.故填..()先后抛掷两枚均匀的正方体骰子,记骰子落地后朝上的点数分别为,,则=的概率为.解:根据题意,可得的情况有种,的情况也有种,则骰子朝上的点数分别为,的情况有种,若=,则=,其情况有、,、,、共种,则满足=的概率是=,故填..如图所示,图中实线围成的部分是长方体(图)的平面展开图,其中四边形是边长为的正方形.若向虚线围成的矩形内任意抛掷一质点,它落在长方体的平面展开图内的概率是,则此长方体的体积是.解:设长方体的高为,由几何概型的概率计算公式可知,质点落在长方体的平面展开图内的概率==,解得=,故长方体的体积为××=.故填..已知平面区域={(,) ,={(,)+<}.在区域内随机选取一点,若点恰好取自区域的概率为,且<≤,则的取值范围是.。

2018年高考数学(理)一轮复习文档第九章计数原理、概率、随机变量及其分布第3讲二项式定理Word版含答案

2018年高考数学(理)一轮复习文档第九章计数原理、概率、随机变量及其分布第3讲二项式定理Word版含答案

第3讲 二项式定理)1.二项式定理 (1)定理(a +b )n=C 0n a n+C 1n a n -1b +…+C k n a n -k b k +…+C n n b n (n ∈N *).(2)通项第k +1项为:T k +1=C k n a n -k b k.(3)二项式系数二项展开式中各项的二项式系数为:C kn (k =0,1,2,…,n ). 2.二项式系数的性质1.辨明三个易误点 (1)通项T k +1=C k n an -k b k是展开式的第k +1项,不是第k 项.(2)(a +b )n与(b +a )n虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.(3)易混淆二项式中的“项”“项的系数”“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C kn (k =0,1,…,n ).2.二项展开式系数最大项的求法如求(a +bx )n(a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,从而解出k 来,即得.1.已知⎝ ⎛⎭⎪⎫x -1x 7展开式的第4项等于5,则x 等于( ) A.17 B .-17C .7D .-7B 由T 4=C 37x 4⎝ ⎛⎭⎪⎫-1x 3=5得x =-17,故选B . 2.教材习题改编 二项式⎝ ⎛⎭⎪⎫2x +1x 26的展开式中,常数项的值是( ) A .240 B .60 C .192D .180 A 二项式⎝ ⎛⎭⎪⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.3.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45A 由题意得a 8=C 81022(-1)8=180.4.(2016·高考北京卷)在(1-2x )6的展开式中,x 2的系数为________.(用数字作答) (1-2x )6的展开式的通项T r +1=C r 6(-2)r x r ,当r =2时,T 3=C 26(-2)2x 2=60x 2,所以x 2的系数为60.605.在二项式⎝ ⎛⎭⎪⎫x 2-a x 5的展开式中,x 的系数是-10,则实数a 的值为________.T r +1=C r5(x 2)5-r·⎝ ⎛⎭⎪⎫-a x r=(-a )r C r 5·x 10-3r.当10-3r =1时,r =3,于是x 的系数为(-a )3C 35=-10a 3,从而由已知得a =1. 1二项展开式中的特定项或特定项的系数(高频考点)二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择题、填空题的形式呈现,试题多为容易题或中档题.高考对二项式定理的考查主要有以下三个命题角度: (1)求展开式中的某一项;(2)求展开式中的项的系数或二项式系数; (3)由已知条件求n 的值或参数的值.(1)(x 2+2)⎝ ⎛⎭⎪⎫1x 2-15的展开式的常数项是________. (2)(2016·高考山东卷)若(ax 2+1x)5的展开式中x 5的系数是-80,则实数a =________.【解析】 (1)(x2+2)⎝ ⎛⎭⎪⎫1x 2-15=(x2+2)·⎝⎛⎭⎪⎫C 05·1x10-C 15·1x8+C 25·1x 6-C 35·1x 4+C 45·1x2-1,故它的展开式的常数项为C 45-2=3.(2)(ax 2+1x)5的展开式的通项T r +1=C r 5(ax 2)5-r·x -r2=C r 5a5-r·x 10-5r 2,令10-52r=5,得r =2,所以C 25a 3=-80,解得a =-2.【答案】 (1)3 (2)-2与二项展开式有关问题的解题策略(1)求展开式中的第n 项,可依据二项式的通项直接求出第n 项.(2)求展开式中的特定项,可依据条件写出第r +1项,再由特定项的特点求出r 值即可. (3)已知展开式的某项,求特定项的系数,可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.角度一 求展开式中的某一项1.⎝⎛⎭⎪⎫x 3-2x 4+⎝ ⎛⎭⎪⎫x +1x 8的展开式中的常数项为( )A .32B .34C .36D .38D ⎝ ⎛⎭⎪⎫x 3-2x 4的展开式的通项为T k +1=C k4(x 3)4-k·⎝ ⎛⎭⎪⎫-2x k=C k 4(-2)k x12-4k, 令12-4k =0,解得k =3,⎝ ⎛⎭⎪⎫x +1x 8的展开式的通项为T r +1 =C r8·x 8-r·⎝ ⎛⎭⎪⎫1x r=C r 8·x 8-2r,令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.角度二 求展开式中的项的系数或二项式系数2.(2017·湖北枣阳第一中学模拟)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60C (x 2+x +y )5的展开式的通项为T r +1=C r5(x 2+x )5-r·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.角度三 由已知条件求n 的值或参数的值3.若⎝⎛⎭⎪⎫ax +1x ⎝ ⎛⎭⎪⎫2x +1x 5展开式中的常数项为-40,则a =________.⎝ ⎛⎭⎪⎫2x +1x 5展开式的第r +1项为T r +1=C r 5(2x )5-r ·⎝ ⎛⎭⎪⎫1x r=C r 525-r x 5-2r,因为⎝ ⎛⎭⎪⎫ax +1x ⎝ ⎛⎭⎪⎫2x +1x 5的展开式中的常数项为-40,所以ax C 3522x -1+1xC 2523x 1=-40,所以40a +80=-40,解得a=-3.-3二项式系数的性质或各项系数和(1)在二项式⎝⎛⎭⎪⎫x 2-1x 11的展开式中,系数最大的项为第________项.(2)(2017·安徽省“江南十校”联考)若(x +2+m )9=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.【解析】 (1)依题意可知T r +1=C r 11(-1)r x22-3r,0≤r ≤11,r ∈Z ,二项式系数最大的是C 511与C 611.当r =6时,T 7=C 611x 4,故系数最大的是第七项.(2)令x =0,得到a 0+a 1+a 2+…+a 9=(2+m )9,令x =-2,得到a 0-a 1+a 2-a 3+…-a 9=m 9,所以有(2+m )9m 9=39,即m 2+2m =3,解得m =1或-3.【答案】 (1)七 (2)1或-3本例(2)变为:若(x +2+m )9=a 0+a 1(x -1)+a 2(x -1)2+…+a 9(x -1)9,且(a 0+a 2+…+a 8)2-(a 1+a 3+…+a 9)2=39,则实数m 的值为________.令x =2,得到a 0+a 1+a 2+…+a 9=(4+m )9,令x =0,得到a 0-a 1+a 2-a 3+…-a 9=(m +2)9,所以有(4+m )9(m +2)9=39,即m 2+6m +5=0,解得m =-1或-5.-1或-5赋值法的应用(1)形如(ax +b )n ,(ax 2+bx +c )m(a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n(a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.1.(1-x -5y )5的展开式中不含x 的项的系数和为______(结果化成最简形式). (1-x -5y )5的展开式中不含x 的项的系数和等于(1-5y )5的展开式的各项系数和,在(1-5y )5中,令y =1,得展开式的各项系数和为(-4)5=-1 024,所以(1-x -5y )5的展开式中不含x 的项的系数和为-1 024.-1 0242.在(1-x )3(1+x )8的展开式中,含x 2项的系数是n ,若(8-nx )n =a 0+a 1x +a 2x 2+…+a n x n,则a 0+a 1+a 2+…+a n =________.(1-x )3的展开式的前三项为T 1=C 03,T 2=-C 13x ,T 3=C 23x 2,(1+x )8展开式的前三项为P 1=C 08,P 2=C 18x ,P 3=C 28x 2,所以x 2的系数为C 03×C 28-C 13×C 18+C 23×C 08=7,所以n =7.(8-7x )7=a 0+a 1x +a 2x 2+…+a 7x 7, 令x =1得(8-7)7=1. 1二项式定理的应用设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A .0B .1C .11D .12【解析】 512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.【答案】 D(1)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式,应注意:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.(2)求余数问题时,应明确被除式f (x )与除式g (x )(g (x )≠0),商式q (x )与余式的关系及余式的范围.求证:3n >(n +2)·2n -1(n ∈N *,n >2).因为n ∈N *,且n >2,所以3n =(2+1)n展开后至少有4项.(2+1)n=2n+C 1n ·2n -1+…+C n -1n ·2+1≥2n+n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1,故3n >(n +2)·2n -1(n ∈N *,n >2).)——与二项式定理有关的交汇问题(2017·湖北省黄冈中学调研)设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫1x -2x 6,x <0,-x ,x ≥0,则x >0时,f 表达式的展开式中的常数项为________.(用数字作答)【解析】 根据题意得:当x >0时,f =⎝ ⎛⎭⎪⎫-1x +2x 6,所以其通项为T r +1=C r6(-x-12)6-r ·(2x 12)r =C r 6(-1)6-r 2r x r -3,当r =3时,得到 f 表达式的展开式中的常数项为C 36×(-1)6-3×23=-160. 【答案】 -160(1)本题为二项式定理与函数的交汇问题,解决本题的关键是当x >0时,将f 的表达式转化为二项式.(2)二项式定理作为一个工具,也常与其他知识交汇命题,如与数列、不等式、定积分交汇等.因此在一些题目中不仅仅考查二项式定理,还要考查其他知识,其解题的关键点是它们的交汇点,注意它们的联系.(2017·东北三省三校一联)设二项式⎝ ⎛⎭⎪⎫x -12n(n ∈N *)展开式的二项式系数和与各项系数和分别为a n ,b n ,则a 1+a 2+…+a nb 1+b 2+…+b n=( )A .2n -1+3 B .2(2n -1+1)C .2n +1D .1C 二项式⎝ ⎛⎭⎪⎫x -12n (n ∈N *)展开式的二项式系数和为2n,各项系数和为⎝ ⎛⎭⎪⎫1-12n=⎝ ⎛⎭⎪⎫12n ,所以a n =2n,b n =⎝ ⎛⎭⎪⎫12n ,所以a 1+a 2+…+a n b 1+b 2+…+b n =2×(1-2n)1-212×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2n +1-21-12n=2n +1,故选C.1.(2017·广东测试)⎝⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( )A .-54B .54C .-1516D .1516D T r +1=C r6(x 2)6-r⎝ ⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12rC r 6x12-3r ,令12-3r =0,解得r =4.所以常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D .2.(2017·兰州市诊断考试)(m +x )(x +1)3的展开式中x 的奇数次幂项的系数之和为16,则⎠⎛-11x md x =( )A .1B .-1C .0D .14C (m +x )(x +1)3=(m +x )(C 03x 3+C 13x 2+C 23x +C 33),所以x 的奇数次幂项的系数之和为m C 03+m C 23+C 13+C 33=16,解得m =3,所以⎠⎛-11x m d x =⎠⎛-11x 3d x =14x 4⎪⎪⎪1-1=0.3.(2017·湖北省七市(州)协作体联考)二项式⎝⎛⎭⎪⎪⎫9x -133x 9的展开式中x 的系数等于( )A .84B .24C .6D .-24A 根据二项式定理可知,T r +1=C r 9⎝ ⎛⎭⎪⎫-13r 99-r x 9-r -r3=C r 9⎝ ⎛⎭⎪⎫-13r 99-r x 9-4 r3,令9-43r =1,得r =6,所以x 的系数为C 69⎝ ⎛⎭⎪⎫-136×93=84,故选A.4.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB .3n-12C .2n +1D .3n+12D 设f (x )=(1+x +x 2)n, 则f (1)=3n=a 0+a 1+a 2+…+a 2n ,①f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.5.(2017·海口市调研测试)若(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中x 6的系数为30,则a 等于( )A.13 B .12 C .1D .2D 因为⎝ ⎛⎭⎪⎫x +1x 10展开式的通项为T r +1=C r 10·x 10-r ⎝ ⎛⎭⎪⎫1x r=C r 10x 10-2r ,所以(x 2-a )⎝ ⎛⎭⎪⎫x +1x 10的展开式中含x 6的项为x 2·C 310x 4-a C 210x 6=(C 310-a C 210)·x 6,则C 310-a C 210=30,解得a =2,故选D .6.(2017·广东肇庆三模)(x +2y )7的展开式中,系数最大的项是( ) A .68y 7B .112x 3y 4C .672x 2y 5D .1 344x 2y 5C 设第r +1项系数最大,则有⎩⎪⎨⎪⎧C r7·2r≥C r -17·2r -1,C r 7·2r ≥C r +17·2r +1, 即⎩⎪⎨⎪⎧7!r !(7-r )!·2r ≥7!(r -1)!(7-r +1)!·2r -1,7!r !(7-r )!·2r≥7!(r +1)!(7-r -1)!·2r +1,即⎩⎪⎨⎪⎧2r ≥18-r ,17-r ≥2r +1解得⎩⎪⎨⎪⎧r ≤163,r ≥133.又因为r ∈Z ,所以r =5.所以系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.7.(2016·高考天津卷)⎝ ⎛⎭⎪⎫x 2-1x 8的展开式中x 7的系数为________.(用数字作答)二项展开式的通项T r +1=C r8(x 2)8-r⎝ ⎛⎭⎪⎫-1x r=(-1)r C r 8x 16-3r,令16-3r =7,得r =3,故x 7的系数为-C 38=-56.-568.(2017·广州模拟)在⎝⎛⎭⎪⎫3x -2x 15的展开式中,x 的非负整数次幂的项的个数为________.展开式的通项为T r +1=(-1)r C r15·(3x )15-r·⎝ ⎛⎭⎪⎫2x r =(-1)r 2r C r15x 30-5r6,由题意5-56r 为非负整数,得r =0或6,所以符合要求的项的个数为2.29.(2017·广州市综合测试(一))已知⎝ ⎛⎭⎪⎫2x -1x n的展开式中的二项式系数和为32,⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x n的展开式中的各项系数的和为2,则该展开式中的常数项为________.⎝ ⎛⎭⎪⎫2x -1x n的展开式中的二项式系数和为32,所以2n=32,所以n =5.令x =1,则⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x n 的展开式中的各项系数的和为(1+a )(2-1)5=2,所以a =1,所以⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中的常数项为C 35(-1)325-3+C 25(-1)225-2=40.4010.若(2x +3)3=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3,则a 0+a 1+2a 2+3a 3=________. 令x =-2得a 0=-1.令x =0得27=a 0+2a 1+4a 2+8a 3.因此a 1+2a 2+4a 3=14.因为C 03(2x )3·30=a 3·x 3.所以a 3=8.所以a 1+2a 2+3a 3=14-a 3=6.所以a 0+a 1+2a 2+3a 3=-1+6=5.5 11.已知二项式⎝⎛⎭⎪⎫3x +1x n 的展开式中各项的系数和为256. (1)求n ;(2)求展开式中的常数项.(1)由题意,得C 0n +C 1n +C 2n +…+C nn =256,即2n =256,解得n =8.(2)该二项展开式中的第r +1项为 T r +1=C r 8(3x )8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-4r3, 令8-4r 3=0,得r =2, 此时,常数项为T 3=C 28=28.12.已知(a 2+1)n展开式中各项系数之和等于⎝ ⎛⎭⎪⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n展开式的二项式系数最大的项等于54,求a 的值. 由⎝⎛⎭⎪⎫165x 2+1x 5,得 T r +1=C r 5⎝ ⎛⎭⎪⎫165x 25-r ⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r ·C r 5·x 20-5r 2. 令T r +1为常数项,则20-5r =0,所以r =4,所以常数项T 5=C 45×165=16. 又(a 2+1)n 展开式的各项系数之和等于2n .由题意得2n=16,所以n =4.由二项式系数的性质知,(a 2+1)4展开式中二项式系数最大的项是中间项T 3,所以C 24a 4=54,所以a =± 3.13.487被7除的余数为a (0≤a <7),则⎝ ⎛⎭⎪⎫x -a x 26展开式中x -3的系数为( ) A .4 320B .-4 320C .20D .-20 B 487=(49-1)7=C 07·497-C 17·496+…+C 67·49-1,因为487被7除的余数为a (0≤a <7),所以a =6, 所以⎝ ⎛⎭⎪⎫x -6x 26展开式的通项为T r +1=C r 6·(-6)r ·x 6-3r , 令6-3r =-3,可得r =3, 所以⎝ ⎛⎭⎪⎫x -6x 26展开式中x -3的系数为C 36·(-6)3=-4 320. 14.已知(x tan θ+1)5的展开式中x 2的系数与⎝ ⎛⎭⎪⎫x +544的展开式中x 3的系数相等,则tan θ=________.⎝ ⎛⎭⎪⎫x +544的通项为T r +1=C r 4·x 4-r ·⎝ ⎛⎭⎪⎫54r ,令4-r =3,则r =1,所以⎝ ⎛⎭⎪⎫x +544的展开式中x 3的系数是C 14·54=5,(x tan θ+1)5的通项为T R +1=C R 5·(x tan θ)5-R ,令5-R =2,得R =3,所以(x tan θ+1)5的展开式中x 2的系数是C 35·tan 2θ=5,所以tan 2θ=12,所以tan θ=±22. ±2215.设(3x -1)8=a 8x 8+a 7x 7+…+a 1x +a 0,求:(1)a 8+a 7+…+a 1;(2)a 8+a 6+a 4+a 2+a 0.令x =0得a 0=1.(1)令x =1得(3-1)8=a 8+a 7+…+a 1+a 0,①所以a 8+a 7+…+a 1=28-a 0=256-1=255.(2)令x =-1得(-3-1)8=a 8-a 7+a 6-…-a 1+a 0,② 由①+②得28+48=2(a 8+a 6+a 4+a 2+a 0),所以a 8+a 6+a 4+a 2+a 0=12(28+48)=32 896. 16.若⎝ ⎛⎭⎪⎪⎫x +124x n 展开式中前三项的系数成等差数列,求: (1)展开式中x 的所有有理项;(2)展开式中系数最大的项.易求得展开式前三项的系数为1,12C 1n ,14C 2n . 据题意得2×12C 1n =1+14C 2n ⇒n =8. (1)设展开式的通项为T r +1, 由T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎪⎫124x r =⎝ ⎛⎭⎪⎫12r C r 8x 16-3r 4, 所以r 为4的倍数,又0≤r ≤8,所以r =0,4,8.故有理项为T 1=⎝ ⎛⎭⎪⎫120C 08x 16-3×04=x 4, T 5=⎝ ⎛⎭⎪⎫124C 48x 16-3×44=358x ,T 9=⎝ ⎛⎭⎪⎫128C 88x 16-3×84=1256x 2. (2)设展开式中T r +1项的系数最大,则:⎝ ⎛⎭⎪⎫12r C r 8≥⎝ ⎛⎭⎪⎫12r +1C r +18 且⎝ ⎛⎭⎪⎫12r C r 8≥⎝ ⎛⎭⎪⎫12r -1C r -18⇒r =2或r =3.故展开式中系数最大的项为T 3=⎝ ⎛⎭⎪⎫122C 28x 16-3×24=7x 52, T 4=⎝ ⎛⎭⎪⎫123C 38x 16-3×34=7x 74.。

2018届高考数学(文)第一轮总复习全程训练第九章概率天天练37Word版含答案

2018届高考数学(文)第一轮总复习全程训练第九章概率天天练37Word版含答案

天天练37算法初步一、选择题1.(2016·北京卷,3)执行如图所示的程序框图,若输入的a值为1,则输出的k值为()A.1 B.2 C.3 D.41题图2题图3题图4题图2.(2016·天津卷,4)阅读下边的程序框图,运行相应的程序,则输出S的值为()A.2 B.4 C.6 D.83.(2016·课标全国Ⅰ,9)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x4.(2016·课标全国Ⅱ,8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a为2,2,5,则输出的s=()A.7 B.12 C.17 D.345题图 6题图 7题图 8题图5.(2017·广州二模)执行如图所示的程序框图,若输出的i 的值为2,则输入的x 的最大值是( )A .5B .6C .11D .22 6.(2017·长春质检)如图所示的程序框图的功能是( )A .求⎩⎨⎧⎭⎬⎫1n 的前10项和B .求⎩⎨⎧⎭⎬⎫12n 的前10项和C .求⎩⎨⎧⎭⎬⎫1n 的前11项和D .求⎩⎨⎧⎭⎬⎫12n 的前11项和7.按照如图所示的程序框图执行,若输出的结果为15,则M 处的条件为( )A .k ≥16B .k <8C .k <16D .k ≥88.执行如图所示的程序框图,若输出结果为3,则可输入的实数x 的值的个数为( )A .1B .2C .3D .4 二、填空题 9.(2016·山东卷,11)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.9题图10题图10.已知数列{a n}中,a1=1,a n+1=a n+n,利用如图所示的程序框图输出该数列的第10项,则判断框中应填的语句是n<________(填一个整数值).11.执行如图所示的程序框图,如果输入a=1,b=2,那么输出的a的值为________.三、解答题12.某超市一个月的收入和支出总共记录了N个数据a1,a2,…,a N,其中收入记为正数,支出记为负数.该超市用下面的程序框图计算月总收入S和月净盈利V,请将程序框图补充完整,将①②③处的内容填在下面对应的横线上.(要求:画出程序框并填写相应的内容)①处应填________.②处应填________.③处应填________.1.B k =0,b =1.a =-12,k =1;a =-11-12=-2,k =2;a =-11-2=1,满足a =b .故输出k =2.易错警示:本题只是把a 的初始值赋给了b ,之后b 不再参与运算.2.B S =4,n =1;S =8,n =2;S =2,n =3;S =4,n =4,结束循环,输出S =4,故选B.3.C x =0,y =1,n =1,x =0,y =1,n =2;x =12,y =2,n=3;x =32,y =6,此时x 2+y 2>36,输出x =32,y =6,满足y =4x .故选C.4.C k =0,s =0,输入a =2,s =0×2+2=2,k =1;输入a =2,s =2×2+2=6,k =2;输入a =5,s =6×2+5=17,k =3>2,输出s =17.故选C.5.D 分析该程序框图可知⎩⎪⎨⎪⎧x 2-1>312⎝⎛⎭⎪⎫x 2-1-2≤3解得⎩⎨⎧x >8x ≤22,即8<x ≤22,所以输入的x 的最大值是22,故选D. 6.B 第一次执行循环体:S =12,n =4,k =2;第二次执行循环体:S =12+14,n =6,k =3;第三次执行循环体:S =12+14+16,n =8,k =4;第四次执行循环体:S =12+14+16+18,n =10,k =5;……;第九次执行循环体:S =12+14+16+18+…+118,n =20,k =10;第十次执行循环体:S =12+14+16+18+…+118+120,n =22,k =11,故这个程序框图的功能是计算数列⎩⎨⎧⎭⎬⎫12n 的前10项和,故选B.7.A 根据框图的循环结构依次可得S =0+1=1,k =2×1=2;S =1+2=3,k =2×2=4;S =3+4=7,k =2×4=8;S =7+8=15,k =2×8=16,根据题意此时跳出循环,输出S =15.所以M 处的条件应为k ≥16.故A 正确.8.C 由题意,知y =⎩⎪⎨⎪⎧x 2-1,x ≤2,log 2x ,x >2.当x ≤2时,由x 2-1=3,得x 2=4,解得x =±2.当x >2时,由log 2x =3,得x =8.所以可输入的实数x 的值的个数为3.9.3解析:a =1,b =8,i =2;a =3,b =6,i =3;a =6,b =3,a >b ,所以输出i =3.10.10解析:当n =9时,符合判断框中的条件,当n =10时,不符合判断框中的条件,故条件应为n <10.11.9解析:输入a =1,b =2,不满足a >8,故a =3;a =3不满足a >8,故a =5;a =5不满足a >8,故a =7;a =7不满足a >8,故a =9.满足a >8,终止循环,输出9.12.①处应填②处应填S =S +A ③处应填V =S +T2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x },若M ∪N={0,1,2,3},则x 的值为( )A .3B .2C .1D .02.如图是一个几何体的三视图,则该几何体为( )A.球B.圆柱C.圆台D.圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。

2018版高考数学文人教大一轮复习讲义 教师版文档第十

2018版高考数学文人教大一轮复习讲义 教师版文档第十

1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.2.几何概型中,事件A的概率的计算公式P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.(√)(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.(√)(4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 答案 B解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤121log ()2x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121log ()2x +≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.(2017·济南月考)一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是( ) A.π180 B.π150 C.π120 D.π90 答案 C解析 屋子的体积为5×4×3=60(立方米),捕蝇器能捕捉到的空间体积为18×43π×13×3=π2(立方米).故苍蝇被捕捉的概率是π260=π120.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________. 答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.题型一 与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310(2)(2017·太原调研)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)B (2)13解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3, P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A.13 B.12 C.23 D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n 答案 C解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB=2-142=78.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( ) A.413 B.513 C.825 D.925(2)(2015·福建)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于()A.16B.14C.38D.12 答案 (1)D (2)B解析 (1)作出平面区域D ,可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为顶点的三角形区域.当点在△AEF 区域内时,点到直线y +2=0的距离大于2. ∴P =S △AEF S △ABC =12×6×312×10×5=925.(2)由图形知C (1,2),D (-2,2),∵S 四边形ABCD =6,S 阴=12×3×1=32,∴P =326=14.题型三 与体积有关的几何概型例4 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18 B.16 C.127 D.38(2)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( ) A.78 B.34 C.12 D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.12.几何概型中的“测度”典例 (1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示解析 (1)∵∠C =90°,∠CAM =30°,∴所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a =33.(2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( )A .16.32B .15.32C .8.68D .7.68 答案 A解析 设椭圆的面积为S ,则S4×6=300-96300,故S =16.32.2.(2016·南平模拟)设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( )A.15B.25C.35D.45 答案 C解析 方程有实数根,则Δ=p 2-4≥0,解得p ≥2或p ≤-2(舍去), 故所求概率为P =5-25-0=35,故选C.3.(2016·四川宜宾筠连中学第三次月考)如图所示,在边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为( )A.43B.83C.23D.13 答案 B解析 正方形中随机撒一粒豆子,它落在阴影区域内的概率P =S 阴影S 正方形.又∵S 正方形=4,∴S 阴影=83,故选B.4.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A.1-2πB.12-1πC.2πD.1π 答案 A解析 设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2. 又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2. 所以P =π-2π=1-2π.5.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·(32)2=49π.7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π.10.(2016·湖南衡阳八中月考)随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________. 答案 1-π24解析 由题意作图,如图,则点P 应落在深色阴影部分,S △=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=1-π24.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个,故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为 ⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.*13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。

普通高等学校2018年招生全国统一考试临考冲刺卷(九)文科数学含解析

普通高等学校2018年招生全国统一考试临考冲刺卷(九)文科数学含解析

普通高等学校2018年招生全国统一考试临考冲刺卷(九)文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知a ,b 都是实数,那么“22a b >”是“22a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】D【解析】p :22a b a b >⇔>,q a b >与a b >没有包含关系,故为“既不充分也不必要条件”.故选D . 2.抛物线22(0)x py p =>的焦点坐标为( )A .,02p ⎛⎫ ⎪⎝⎭B .1,08p ⎛⎫ ⎪⎝⎭C .0,2p ⎛⎫ ⎪⎝⎭D .10,8p ⎛⎫ ⎪⎝⎭【答案】B【解析】1,08p ⎛⎫ ⎪⎝⎭.故选B . 3.下列4个图从左到右位次是四位同学甲、乙、丙、丁的五能评价雷达图:甲乙丙丁在从他们四人中选一位发展较全面的学生,则应该选择( ) A .甲 B .乙C .丙D .丁【答案】B【解析】通过雷达图不难发现乙同学没有偏弱,发展比较全面,其余同学都有不足的地方,故选B .4.设x ,y 满足约束条件36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥,则目标函数2z x y =-+的最小值为( )A .4-B .2-C .0D .2【答案】A 【解析】如图,过()2,0时,2z x y =-+取最小值,为4-.故选A .5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为( )A .5 BCD.【答案】D【解析】由三视图知:几何体是四棱锥,且四棱锥的一条侧棱与底面垂直,如图:其中PA ⊥平面ABCD ,∴3PA =,4AB CD ==,5AD BC ==,该几何体最长棱的棱长为选D . 6. )())0,π大致的图象是( )A .B .C .D .【答案】D【解析】)())0,π是偶函数,故它的图象关于y 轴对称,再由当x 趋于π时,函数值趋于零,故答案为:D . 7.函数()()sin f x xωϕ=+(ω,ϕ是常数,0ω>的部分图象如图所示,为得到函数cos y x ω=,只需将函数()()sin f x x ωϕ=+的图象( )A BCD【答案】A【解析】由图象可得,,2ω=,则()()s i n 2f x x ϕ=+,712x =π,将()f x 向左平移个单位,可得,所以为得到函数c o s y x ω=,只需将函数()()sin f x x ωϕ=+A . 8.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数a y x =,()0,x ∈+∞是增函数的概率为( )A .35B .45C .34D .37【答案】A【解析】由框图可知{}3,0,1,8,15A =-,其中基本事件的总数为5,设集合中满足“函数a y x =,[)0,x ∈+∞是增函数”为事件E ,当函数a y x =,[)0,x ∈+∞是增函数时,0a >,事件E 包含基本事件的个数为3A .开始输出y结束是否3x =-3x ≤22y x x=+1x x =+9.已知函数()321132f x ax bx x =+-(0a >,0b >)在1x =处取得极小值,则14a b+的最小值为( ) A .4B .5C .9D .10【答案】C【解析】由()321132f x ax bx x =+-,得()21f x ax bx '=+-,则()110f a b =+-=',所以1a b +=,当且仅当4b a a b =23b =时等号成立,故选C . 10.在四面体ABCD 中,若AB CD ==2AC BD ==,AD BC ==,则四面体ABCD 的外接球的表面积为( ) A .2π B .4π C .6π D .8π【答案】C【解析】如图所示,该四面体的四个顶点为长方体的四个顶点,设长、宽、高分别为a ,b ,c ,则22222254 3a b a c b c +=+=+=⎧⎪⎨⎪⎩,三式相加得:2226a b c ++=,所以该四面体的外接球直径为长方体的体对角线长,故外接球体积为:246R π=π.11.已知{}n a 的前n 项和为12n n S m +=+,且1a ,4a ,52a -成等差数列,数列{}n b 的前n 项和为n T ,则满足20172018n T >的最小正整数n的值为( ) A .8 B .9C .10D .11【答案】C【解析】114a S m ==+,当2n ≥时,12n n n n a S S -=-=,由1a ,4a ,52a -成等差数列可得41522a a a =+-,即4522422m ⨯+++-,解得2m =-,故2n n a =,则()()1111112121n n n n n n a b a a ++==-----,故2231111111111212121212121n n n n T ++⎛⎫⎛⎫⎛⎫=-+-++-=- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,由20172018n T >得1120171212018n +->-,即122019n +>,则111n +≥,即10n ≥,故n 的最小值为10. 12.已知不等式12x m x -<-在[]0,2上恒成立,且函数()e x f x mx =-在()3,+∞上单调递增,则实数m 的取值范围为( ) A .()(),25,-∞+∞ B .()(3,25,e ⎤-∞⎦C .()(2,25,e ⎤-∞⎦D .()(3,15,e ⎤-∞⎦【答案】B 【解析】x)1-不等式12x m x -<-[]0,2x ∈上恒成立,令()2m g x x =-,,由图可知,12m <或522m >,即()(),25,m ∈-∞+∞;又()e x f x m x =-在()3,+∞上单调递增,故()e 0x f x m ='-≥在()3,+∞上恒成立,3e m ∴≤,综上,()(3,25,e m ⎤∈-∞⎦.故选:B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.已知i 为虚数单位,则.14.已知等比数列{}n a 中,21a =,58a =-,则{}n a 的前6项和为_______. 【答案】212【解析】3528a q a ==-,2q =-,则2112a a q ==-,()()()661611212121122a q S q⎡⎤----⎣⎦===---.15.在矩形ABCD 中,2AB =,1BC =,E 为BC 的中点,若F 为该矩形内(含边界)任意一点,则AE AF ⋅的最大值为__________. 【答案】92【解析】如图所示:设AE 与AF 的夹角为θ,则221||||cos 2||cos AE AF AE AF AF θθ⎛⎫⋅==+ ⎪,由投影的定义知,只有点F 取点C 时,c o s AF θ取得最大1=2AE AF ⎛∴⋅ ,故填92.16.设双曲线C 1F ,过1F 的左焦点作轴的垂线交双曲线C 于M ,N 两点,其中M 位于第二象限,0,B b (),若BMN ∠是锐角,则双曲线C 的离心率的取值范围是__________. 【答案】)+∞【解析】2,b N c a ⎛⎫-- ⎪⎝⎭,∴,MB c b ⎛= 220,b MN a ⎛⎫=- ⎪⎝⎭.∵BMN ∠是锐角,∴20b MB MN ⋅=->,整理得b a >.222b a +>=故双曲线C 的离心率的取值范围是)+∞.答案:)+∞三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答. (一)必考题:60分,每个试题12分.17(1)求()f x 的最大值、最小值;(2)CD为ABC △的内角平分线,已知()max AC f x =,()min BC f x =,CD 求C ∠.【答案】(1)()max 6f x =,()min 3f x =;(2 【解析】(1······3分∵()f x ↑↓,∴()max 6f x =,()min 3f x =·······6分(2)ADC △中,,BDC △中, ∵sin sin ADC BDC ∠=∠,6AC =,3BC =, ∵2AD BD =·······9分BCD △中,ACD △中,2446822CAD =-=-,∴cos2C =······12分 18. 2016年10月9日,教育部考试中心下发了《关于2017年普通高考考试大纲修订内容的通知》,在各科修订内容中明确提出,增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.宿州市教育部门积极回应,编辑传统文化教材,在全市范围内开设书法课,经典诵读等课程.为了了解市民对开设传统文化课的态度,教育机构随机抽取了200位市民进行了解,发现支持开展的占75%,在抽取的男性市民120人中持支持态度的为80人.(1)完成22⨯列联表,并判断是否有99.9%的把握认为性别与支持与否有关? (2)为了进一步征求对开展传统文化的意见和建议,从抽取的200位市民中对不支持的按照分层抽样的方法抽取5位市民,并从抽取的5人中再随机选取2人进行座谈,求选取的2人恰好为1男1女的概率. 附:()()()()()22n ad bc K a b c d a c b d -=++++.【答案】(1)见解析;(2)25. 【解析】(1)抽取的男性市民为120人,持支持态度的为20075%150⨯=人,男性公民中持支持态度的为80人,列出22⨯列联表如下:·······3分所以()222008010407010011.1110.82815050120809κ⨯⨯-⨯==≈>⨯⨯⨯, 所以在犯错误的概率不超过0.1%的前提下,可以认为性别与支持与否有关.·····6分(2)抽取的5人中抽到的男性的人数为:405450⨯=,女性的人数为:105150⨯=·······8分记被抽取4名男性市民为A ,B ,C ,D ,1名女性市民为e ,从5人中抽取的2人的所有抽法有:AB ,AC ,AD ,Ae ,BC ,BD ,Be ,CD ,Ce ,De ,共有10种,·······10分 恰有1名女性的抽法有:Ae ,Be ,Ce ,De ,共有4种, 由于每人被抽到是等可能的, 所以由古典概型得42105m p n ===·······12分 19.在多面体C ABDE -中,ABC △为等边三角形,四边形ABDE 为菱形,平面ABC ⊥平面ABDE ,2AB =(1)求证:AB CD ⊥; (2)求点B 到平面CDE 距离.【答案】(1)见解析;(2)h =. 【解析】(1)证明:取AB 中点O ,连接CO ,DO ,DA . ∵ABC △为等边三角形,∴CO AB ⊥,·······1分∵四边形ABCD 为菱形,60DBA ∠=,∴DAB △为等边三角形, ∴DO AB ⊥,·······2分 又∵CO DO O =,∴AB ⊥面DOC ,·······4分∵DC ⊂面DOC ,∴AB CD ⊥.·······6分(2)∵面ABDE ⊥面ABC ,CO AB ⊥,面A B D E面ABC AB =,CO ⊂面ABC ,∴CO ⊥面ABDE ,∵OD ⊂面ABDE ,∴CO OD ⊥.∵OD OC ==·······7分在Rt COD △中,CD =,由(1)得AB CD ⊥, 因为ED AB ∥,ED DC ⊥,·······9分 ·10分 设点B 到面CDE 的距离为h .∵B CDE C BDE V V --=即1133h =,∴h =.·······12分20.过圆O :224x y +=上的点)1M -作圆O 的切线,过点)2作切线的垂线l ,若直线l 过抛物线E :22(0)x py p =>的焦点F .(1)求直线l 与抛物线E 的方程;(2)若直线l 与抛物线E 交于点A ,B ,点P 在抛物线E 的准线上,且3PA PB ⋅=,求PAB △的面积.【答案】(1)0x -=.212x y =;(2)见解析.【解析】(1)过点M 且与圆O 4y -=,·······1分l的斜率为-l的方程为:2y x -=,即0x -=.·······3分 令0x =,可得3y =,故F 的坐标为()0,3,∴6p =,抛物线E 的方程为212x y =;·······5分(221090y y -+=, 设()11,A x y ,()22,B x y ,则11y =,29y =,1210y y +=, 点A ,B的坐标分别为(),()-.·······7分设点P 的坐标为(),3t -,则(),4PA t =,(),12PB t =-, 则()2412PAPB t ⋅=-+⨯,解之得t =-或-·······9分 AB AF BF y ⎛=+=·······10分 则点P 到直线l的距离为d =,故2d =或2, 当2d =时,PAB △的面积为28AB = 当d =时,PAB △的面积为36AB =·······12分 21.已知()()()21e 1x f x x a x =--+,[)1,x ∈+∞.(1)讨论()f x 的单调性;(2)若()2ln f x a x -+≥,求实数a 的取值范围.【答案】(1)详见解析;(2 【解析】(1)()e 2x f x x ax'=-()e 2x x a =-,·······1分[)1,x ∈+∞,()0f x '≥.∴()f x 在[)1,+∞上单调递增;·······3分时,由()0f x '=,得()ln 2x a =. 当()()1,ln 2x a ∈时,()0f x '<;当()()ln 2,x a ∈+∞时,()0f x '>.所以()f x 在()()1,ln 2a 单调递减;在()()ln 2,a +∞单调递增.·······5分(2)令()()()21e 1ln x g x x a x x =----, 问题转化为()0g x ≥在[)1,x ∈+∞上恒成立,0.·······6分 因为21e a +>,所以()ln 211a +>,()()ln 210g a '+>,所以存在()()01,ln 21x a ∈+,使()00g x '=,当()01,x x ∈时,()0g x '<,()g x 递减,所以()()10g x g <=,不满足题意.·······9分因为1x >,()e e 11x x ⎡⎤-->⎣⎦,01x <<, 所以()0g x '>,()g x 在[)1,+∞上单调递增;所以()()10g x g =≥,满足题意.·······12分 (二)选考题(共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做第一题计分)22.选修4-4:极坐标系与参数方程(10分)在直角坐标系xOy 中,曲线1C α为参数),将曲线1C 上各点的横坐标都缩短为原的12倍,倍,得到曲线2C ,在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l(1)求直线l 和曲线2C 的直角坐标方程;(2)设点Q 是曲线2C 上的一个动点,求它到直线l 的距离的最大值.【答案】(1)40x y -+=,221x y +=(2)1【解析】(1)因为直线l所以有cos sin 40ρθρθ-+=,即直线l 的直角坐标方程为:40x y -+=·······2分因为曲线1Cα为参数),经过变换后为cos sin x y αα==⎧⎨⎩(α为参数)所以化为直角坐标方程为:221x y +=·······5分(2)因为点Q 在曲线2C 上,故可设点Q 的坐标为()cos ,sin αα, 从而点Q 到直线l······8分 由此得,,d 取得最大值,且最大值为1·······10分23.选修4-5:不等式选讲设函数()12f x x x =++-,()254g x x x =-+-.(1)求不等式()5f x ≤的解集M ;(2)设不等式()0g x ≥的解集为N ,当x M N ∈时,证明:()()3f x g x +≤.【答案】(1){|23}M x x =-≤≤(2)见解析【解析】(1则有1240x x -+⎧⎨⎩≤≥①或12 20x -<<-⎧⎨⎩≤②或2 260x x -⎧⎨⎩≥≤③·······3分 解①得21x --≤≤,解②得12x -<<,解③得23x ≤≤, 则不等式的解集为{|23}M x x =-≤≤.·······5分(2)()20540g x x x ⇔-+≥≤,解得14x ≤≤,则{|14}N x x =≤≤,所以{|13}M N x x =≤≤.当12x ≤≤时,()3f x =,()()225935424f x g x x x x ⎛⎫--=-+=--⎪⎝⎭, ,则()()3f x g x +≤成立. 当23x <≤时,()26f x x =-,,则()()3f x g x <+. 综上,()()3f x g x +≤成立.·······10分。

2018高考数学(文)分类汇编概率及其计算 Word版含解析【 高考】

2018高考数学(文)分类汇编概率及其计算 Word版含解析【 高考】

第十二章 概率与统计 第一节 概率及其计算题型136 古典概型2013年1. (2013江西文4)集合{}2,3A =,{}1,2,3B =,,从,A B 中各取任意一个数,则这两数之和等于的概率是( ).A .23 B. 12C. 13 D.162. (2013安徽文5)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为().A.23B.25C. 35D. 9103.(2013江苏7)现在某类病毒记作n m Y X ,其中正整数m ,(7m …,9n …)可以任意选取,则n m ,都取到奇数的概率为.4.(2013浙江文12) 从三男三女名学生中任选名(每名同学被选中的概率均相等),则 名都是女同学的概率等于_________.5. (2013重庆文13)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为. 6.(2013江西文18)小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从123456,,,,,A A A A A A (如图)这个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X ,若0X >就去打球,若0X =就去唱歌,若0X <就去下棋.(1)写出数量积X 的所有可能取值 (2)分别求小波去下棋的概率和不.去唱歌的概率7.(2013山东文17)某小组共有A B C D E ,,,,五位同学,它们的身高(单位:米)及体重指标(单位:2千克/米)如下表所示:(1 (2)从该小组同学中任选人,求选到的人的身高都在1.70以上且体重指标都在[)18.523.9,中的概率.8. (2013天津文15)某产品的三个质量指标分别为x y z ,,, 用综合指标S x y z =++评价该产品的等级. 若4S …, 则该产品为一等品. 现从一批该产品中, 随机抽取10件产品作为样本,(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样品的一等品中, 随机抽取件产品, (i) 用产品编号列出所有可能的结果;(ii) 设事件B 为“在取出的件产品中, 每件产品的综合指标S 都等于”, 求事件B 发生的概率.9.(2013陕西文19)有位歌手(至号)参加一场歌唱比赛,由500名大众评委现场投票决定歌(1)为了调查评委对位歌手的支持状况,,现用分层抽样方法从各组中抽取若干评委,其中从B 组中抽取了人(2)在(1)中,若A B ,两组被抽到的评委中各有人支持号歌手, 现从这两组被抽到的评委中分别任选人,求这人都支持号歌手的概率.10.(2013辽宁文19)现有道题,其中道甲类题,道乙类题,张同学从中任取道题解答.试求: (1)所取的道题都是甲类题的概率; (2)所取的道题不是同一类题的概率.2014年1.(2014江西文3)掷两颗均匀的骰子,则点数之和为的概率等于( )A.118 B.19 C.16 D.1122.(2014陕西文6)从正方形四个顶点及其中心这个点中,任取个点,则这个点的距离小于该正方形边长的概率为( ). A.15 B.25 C. 35 D. 453.(2014大纲文7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种4.(2014湖北文5)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过的概率记为1p ,点数之和大于的概率记为2 p ,点数之和为偶数的概率记为3p ,则( ). A .123p p p << B .213p p p << C .132p p p <<D .312p p p <<5.(2014新课标Ⅱ文13)甲、已两名运动员各自等可能地从红、白、蓝种颜色的运动服中选择种,则他们选择相同颜色运动服的概率为.6.(2014浙江文14)在张奖券中有一、二等奖各张,另张无奖,甲、乙两人各抽取张,两人都中奖的概率是______________.7.(2014新课标Ⅰ文13)将2本不同的数学书和本语文书在书架上随机排成一行,则2本数学书相邻的概率为.8. (2014广东文12)从字母,,,,a b c d e 中任取两个不同字母,则取到字母的概率为________. 9.(2014江苏4)从1236,,,这个数中一次随机地取个数,则所取个数的乘积为的概率 是.10.(2014陕西文19)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表所示:(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.11. (2014山东文16)海关对同时从,,A B C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示. 工作人员用分层抽样的方法从这些商品中共抽取件样品进行检测.(1)求这件样品中来自,,A B C 各地区商品的数量;(2)若在这件样品中随机抽取件送往甲机构进行进一步检测,求这件商品来自相同地区的概率. 12.(2014福建文20)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035-4085元为中等偏下收入国家;人均GDP 为4085-12616美元为中等偏上收入国家;人均GDP 不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP 如表所示:(1)判断该城市人均GDP 是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP 都达到中等偏上收入国家标准的概率.13.(2014湖南文17)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:()()()()()()()()a b a b a b a b a b a b a b a b ,,,,,,,,,,,,,,,, ()()()()()()()a b a b a b a b a b a b a b ,,,,,,,,,,,,,. 其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给该组记分,否则记分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率. 14.(2014天津文15)某校夏令营有名男同学,,A B C 和名女同学,,X Y Z ,其年级情况如表所现从这名同学中随机选出人参加知识竞赛(每人被选到的可能性相同) (1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的人来自不同年级且恰有名男同学和名女同学”,求事件M 发生的概率.15.(2014四川文16)一个盒子里装有三张卡片,分别标记有数字,,,这三张卡片除标记的数字外完全相同.随机有放回地抽取次,每次抽取张,将抽取的卡片上的数字依次记为,,. (1)求“抽取的卡片上的数字满足a b c+=”的概率;(2)求“抽取的卡片上的数字,,不完全相同”的概率.2015年1.(2015广东文7)已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为().A.0.4B.0.6C.0.8D.1. 解析件产品中有件次品,分别记为,,有件合格品,分别记为,d,,则从这件产品中任取件,其基本事件有:(),a b,(),a c,(),a d,(),a e,(),b c,(),b d,(),b e,(),c d,(),c e,(),d e,共10种.其中恰有一件次品的基本事件,有种,设事件A为“恰有一件次品”,则()60.6 10P A==. 故选B.评注本题考查古典概型.2.(2015全国Ⅰ文4)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为().A.310B. C.110D.1202.解析由211=,222224,39,416,525====,可知只有()3,4,5是一组勾股数. 从1,2,3,4,5中任取3个不同的数,其基本事件有:()()()1,2,3,1,2,4,1,2,5,()()()1,3,4,1,3,5,1,4,5,()()()()2,3,4,2,3,5,2,4,5,3,4,5,共10种.则从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率110P=.故选C.3. (2015北京文17)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?3. 解析 (1)依题意,顾客同时购买乙和丙的概率为200110005=; (2)顾客在甲、乙、丙、丁中同时购买3种商品的概率为1002003100010+=;(3)顾客在购买了甲,同时购买乙商品的概率为2001000;顾客在购买了甲,同时购买丙商品的概率为10020030060010001000++=;顾客在购买了甲,同时购买丁商品的概率为1001000.由此,如果顾客购买了甲,该顾客同时购买丙商品的可能性最大.4.(2015湖南文16)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球1A ,2A 和1个白球B 的甲箱与装有2个红球1a ,2a 和2个白 球,2b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖. (1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.4. 解析 (1)所有可能的摸出结果是:{}{}{}{}{}1112111221,,,,,,,,,,A a A a A b A b A a{}{}{}{}{}{}{}2221221212,,,,,,,,,,,,,A a A b A b B a B a B b B b .(2)不正确,理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为:{}{}{}{}11122122,,,,,,,,A a A a A a A a 共4种,所以中奖的概率为41123=, 不中奖的概率为1211333-=>,故这种说法不正确. 5.(2015山东文16)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表所示:(单位:人).(1)从该班随机选名同学,求该同学至少参加上述一个社团的概率;(2)在既参加书法社团又参加演讲社团的名同学中,有名男同学12345A A A A A ,,,,,名女同学123B B B ,,. 现从这名男同学和名女同学中各随机选人,求1A 被选中且1B 未被选中的概率. 5. 解析 (1)作出满足题中图表的韦恩图,如图所示. 由图可知,既未参加书法社团又未参加演讲社团的有30人, 故至少参加上述一个社团的共有453015-=(人),所以从该班随机选名同学,该同学至少参加上述一个社团的概率为151453P ==. (2)从这名男同学和名女同学中各随机选人, 其一切可能的结果组成的基本事件有:{}{}{}{}{}{}{}{}{}111213212223313233,,,,,,,,,,,,,,,,,A B A B A B A B A B A B A B A B A B , {}{}{}{}{}{}414243515253,,,,,,,,,,,A B A B A B A B A B A B ,共15个.且这些基本事件出现的可能性是均等的.事件“1A 被选中且1B 未被选中”所包含的基本事件有:{}{}1213,,,A B A B ,共个.因此1A 被选中且1B 未被选中的概率为215P =.6.(2015陕西文19)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.6.解析 (1)在容量为30的样本中,从表格中得,不下雨的天数是26,以频率估计概率,月份任选一天,西安市不下雨的概率是26133015=. (2)称相邻两个日期为“互邻日期对”(如日与日,日与日等),这样在月份中,前一天为晴天的互邻日期对有16对,其中后一天不下雨的有14个, 所以晴天的次日不下雨的频率为147168=, 以频率估计概率,运动会期间不下雨的概率为78.7.(2015四川文17)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客1P ,2P ,3P ,4P ,5P 的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客1P 因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位. (1)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处).(2)若乘客1P 坐到了2号座位,其他乘客按规则就坐,求乘客1P 坐到5号座位的概率. 7. 分析本题主要考查随机事件的概率、古典概型等概念及相关计算,考查运用概率知识与方法分析和解决问题的能力,考查推理论证能力、应用意识. 解析 (1)余下两种坐法如表所示.(2)若乘客1P 坐到了2号座位,其他乘客按规则就坐. 则所有可能坐法如表所示.由表可知,所有可能得坐法共8种.设“乘客5P 坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4. 所以()4182P A ==.故乘客5P 坐到5号座位的概率为12.8.(2015天津文15)设甲、乙、丙三个乒乓球协会的运动员人数分别为27 , ,18 ,先采用分层抽样的方法从这三个协会中抽取6名运动员参加比赛. (1)求应从这三个协会中分别抽取的运动员人数;(2)将抽取的6名运动员进行编号,编号分别为123456,,,,,A A A A A A ,从这6名运动员中随机抽取2名参加双打比赛.(i )用所给编号列出所有可能的结果;(ii )设A 为事件“编号为5A ,6A 的两名运动员至少有一人被抽到”,求事件A 发生的概率. 8.解析(1)应从甲、乙、丙这三个协会中分别抽取的运动员人数分别为3,1,2; (2)(i )从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}16,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}26,A A ,{}34,A A ,{}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共15种.(ii )编号为56,A A 的两名运动员至少有一人被抽到的结果为{}15,A A ,{}16,A A , {}25,A A ,{}26,A A , {}35,A A ,{}36,A A ,{}45,A A ,{}46,A A ,{}56,A A ,共9种,所以事件A 发生的概率()93.155P A ==9.(2015福建文18)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.9. 分析(1)融合指数在[)4,5和[]7,8内的“省级卫视新闻台”共5家,从中随机抽取2家,写出所有的基本事件,共10种,其中至少有1家的融合指数在[]7,8包含的基本事件数为9个,代入古典概型的概率计算公式即可;(2)每组区间的中点乘该组的频率值再累加,得到这20家“省级卫视新闻台”的融合指数的平均数.解析(1)解法一:融合指数在[]7,8内的“省级卫视新闻台”分别记为,2A ,3A ; 融合指数在[)4,5内的“省级卫视新闻台”分别记为,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件有: {}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,21{,}A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是有:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,21{,}A B ,{}22,A B ,{}31,A B ,{}32,A B ,共个.所以所求的概率910P =. 解法二:融合指数在[]7,8内的“省级卫视新闻台”分别记为,2A ,3A ; 融合指数在[)4,5内的“省级卫视新闻台”分别记为,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件有:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,21{,}A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件有:{}12,B B ,共个. 所以所求的概率1911010P =-=. (2)这20家“省级卫视新闻台”的融合指数平均数为:28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 评注1. 考查古典概型;2. 考查平均值.2016年1.(2016全国丙文5)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,,N 中的一个字母,第二位是1,2,3,4,5,中的一个数字,则小敏输入一次密码能够成功开机的概率是( ). A.815 B.18 C.115 D.1301. C 解析 前2位共有3515⨯=种可能,其中只有1种是正确的密码,因此所求概率为115P =.故选C.2.(2016北京文6)从甲、乙等名学生中随机选出人,则甲被选中的概率为( ). A.15B. 25C. 825D.9252. B. 解析可设这5名学生分别是甲、乙、丙、丁、戊,从中随机选出2人的方法有: (甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共有10种选法,其中只有前4种是甲被选中,所以所求概率为42105=.故选B.3.(2016全国乙文3)为美化环境,从红、黄、白、紫种颜色的花中任选种花种在一个花坛中,余下的种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ). A. B.12 C. 23D. 3. C 解析 只需考虑分组即可,分组(只考虑第一个花坛中的两种花)情况为(红,黄),(红,白),(红,紫),(黄,白),(黄,紫),(白,紫),共种情况,其中符合题意的情况有4种,因此红色和紫色的花不在同一花坛的概率是23.故选C. 4.(2016江苏7)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷次,则出现向上的点数之和小于10的概率是.4.56解析将先后两次点数记为(),x y ,则基本事件共有6636⨯=(个), 其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6,共种,则点数之和小于10共有30种,所以概率为305366=. 5.(2016四川文13)从,,,任取两个不同的数值,分别记为a ,,则log a b 为整数的概率为 .5.16解析 从2,,,中任取两个数记为a ,b 作为对数的底数与真数,共有24A 12=个不同的基本事件,其中为整数的只有2log 8,3log 9两个基本事件,所以其概率21126P ==. 6.(2016上海文11)某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为. 6.16解析 假设水果编号分别为1234,,,,则甲的选择可以是 ()()()()()()12131423243,4,,,,,,,,,,,共种,乙的选择也有种,故共有基本事件6636⨯=(个); 而“甲、乙两同学各自所选的两种水果相同”共有事件个,故所求概率为61366=. 评注此题类似考查甲乙两人抛掷六面的骰子,则正面朝上的数字一样的概率为多少?2017年1.(2017全国2卷文11)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ). A.110 B.15 C.310 D.251.解析 如下表所示,表中的点横坐标表示第一次取到的数,纵坐标表示第二次取到的数.总计有25种情况,满足条件的有10种,所以所求概率为2255=.故选D. 2.(2017山东卷文16)某旅游爱好者计划从3个亚洲国家1A ,2A ,3A 和3个欧洲国家1B ,2B ,3B 中选择2个国家去旅游.(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括1A 但不包括1B 的概率. 2.解析 (1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有:()()1213,,,,A A A A ()23,,A A ()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,,A B A B A B ()()()121323,,,,,,B B B B B B 共15个,所选2个国家都是亚洲国家的事件所包含的基本事件有:()()()121323,,,,,A A A A A A ,共3个, 则所求事件的概率为31155P ==. (2) 从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有:()11,,A B ()()1213,,,,A B A B ()()()212223,,,,,,A B A B A B ()()()313233,,,,,A B A B A B ,共9个,包括1A 但不包括1B 的事件所包含的基本事件有:()()1213,,,,A B A B 共2个. 则所求事件的概率为29P =. 3.(2017天津卷文3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ). A.45 B.35 C.25 D.153.解析从这5支彩笔中任取2支不同颜色的彩笔,列举如下:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫),共10个基本事件,其中,取出的2支彩笔中含有红色彩笔的事件有(红,黄),(红,蓝),(红,绿),(红,紫),共4个基本事件,所以42105P ==.故选C . 题型137 几何概型2013年1.(2013湖南文9)已知事件“在矩形ABCD 的边CD 上随机取一点P ,使APB △的最大边是AB ” 发生的概率为12,则ADAB=( ).A.12 B.14 2.(2013湖北文15)在区间[2,4]-上随机地取一个数x ,若x 满足||x m …的概率为56,则m =. 3.(2013福建文14)利用计算机产生~之间的均匀随机数,则事件“10a -<3”发生的 概率为.2014年1.(2014湖南文5)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( ). A.45 B. 35 C.25 D.152.(2014辽宁文6)若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π3.(2014重庆文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_________(用数字作答).4.(2014福建文13)如图所示,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为.2015年1.(2015福建文8)如图所示,在矩形ABCD 中,点A 在轴上,点B 的坐标为()1,0.且点C 与点D 在函数()1,011,02x x f x x x +⎧⎪=⎨-+<⎪⎩…的图像上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( ).A .16B .14C .38D .121. 解析 设()f x 与轴的交点为.由已知可得()1,0B ,()1,2C ,()2,2D -,()0,1F , 则矩形ABCD 的面积为236⨯=,阴影部分的面积FCD S =△133122⨯⨯=.所以此点取自阴影部分的概率等于31264=.故选B.2.(2015陕西文12)设复数()()1,z x yi a y =-+∈R ,若1z …,则y x …的概率为( ) A.3142π+ B. 112π+ C. 1142π- D. 112π- 2.解析()()221i 111z x y z x y =-+⇒=⇒-+.如图所示,可求得()1,1A ,()10B ,, 阴影面积等于211π1π1114242⨯-⨯⨯=-. 若1z …,则y x …的概率为2π11142π142π-=-⨯.故选C.3.(2015湖北文8)在区间[01],上随机取两个数,,记1p 为事件“12x y …+”的概率,2p 为事件“12xy …”的概率,则( ). A .1212p p << B .2112p p << C .2112p p << D .1212p p <<3.解析123P P P 、、依次为三个图形的面积,观察知,选B.也可作如下的计算: 因为正方形的面积为,所以由图(1)得11111=2228P ⨯⨯=, 由图(2)得111212211111ln 2=1ln 222222P dx xx ⨯+=+=+⎰, 1p ,2p ,三个值比较得1212p p <<.故选D.2016年1.(2016全国甲文8)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯维持时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ). A.710 B.58C.38D.3101. B 解析 概率40155408P -==.故选B.2017年1.(2017全国1文4)如图所示,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( ). A. 14 B. π8 C. 12 D. π4(修图:黑色鱼中的圆圈是白色)1.解析 不妨设正方形边长为,由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,所求概率为221228a a ⎛⎫⨯π⨯ ⎪π⎝⎭=.故选B.D。

2018届高考数学(文)第一轮总复习全程训练第九章概率天天练36Word版含答案

2018届高考数学(文)第一轮总复习全程训练第九章概率天天练36Word版含答案

天天练36统计案例一、选择题1.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=()A.660 B.720 C.780 D.8002.(2017·广东肇庆三模,3)一个总体中有100个个体,随机编号为0,1,2,…,99.依编号顺序平均分成10个小组,组号依次为1,2,…,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码的个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是() A.63 B.64 C.65 D.663.(2017·湖北七市(州)高三联考(一))为研究语文成绩和英语成绩之间是否具有线性相关关系,统计两科成绩得到如图所示的散点图(两坐标轴单位长度相同),用回归直线y^=b^x+a^近似地刻画其相关关系,根据图形,以下结论最有可能成立的是()A.线性相关关系较强,b的值为1.25B.线性相关关系较强,b的值为0.83C.线性相关关系较强,b的值为-0.87D.线性相关关系太弱,无研究价值4.(2017·西安一模)为了研究高中学生对乡村音乐的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,计算得K2=8.01,则认为“喜欢乡村音乐与性别有关系”的把握约为(5.(2016·山东卷,3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60C.120 D.1406.某学生在一门功课的22次考试中,所得分数如茎叶图所示,则此学生该门功课考试成绩的极差与中位数之和为()A.117 B.118 C.118.5 D.119.57.通过随机询问100名性别不同的大学生是否爱好踢毽子运动,得到如下的列联表:附表:.经计算,K2的观测值随机变量K2=(a+b)(c+d)(a+c)(b+d)k≈4.762,参考附表,得到的正确结论是()A.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”C.有97.5%以上的把握认为“爱好该项运动与性别有关”D.有97.5%以上的把握认为“爱好该项运动与性别无关”8.将甲、乙两名篮球运动员在5场篮球比赛中的得分制成茎叶图如图所示,若x甲,x乙分别表示甲、乙两名运动员5场比赛的平均得分,则下列结论正确的是()A.x甲>x乙,且甲队员比乙队员成绩稳定B.x甲>x乙,且乙队员比甲队员成绩稳定C.x甲<x乙,且甲队员比乙队员成绩稳定D.x甲<x乙,且乙队员比甲队员成绩稳定二、填空题9.(2017·湖北优质高中联考,13)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,由表中数据得回归直线方程y=b x+a中的b=-2,预测当气温为-4 ℃时,用电量为________.10.某调查机构就某单位1 000多名职工的月收入进行调查,现从中随机抽出100名,已知抽到的职工的月收入都在[1 500,4 500]之间,根据调查结果得出职工的月收入情况残缺的频率分布直方图如图所示,则(1)该单位职工月收入在[3 000,3 500]之间的频率是________;(2)该单位职工的月收入的平均数大约是________.11.给出下列命题:①线性相关系数r越大,两个变量的线性相关性越强,反之,线性相关性越弱;②由变量x和y的数据得出其回归直线方程l:y^=b^x+a^,则l 一定经过点P(x,y);③从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程l:y^=0.1x+10中,当自变量x每增加一个单位时,预报变量y^增加0.1个单位.其中真命题是________.(写出所有真命题的序号)三、解答题12.(2016·四川卷,16)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.1.B由已知条件,抽样比为13780=160,从而35600+780+n=160,解得n=720.故选B.2.A由题设知,若m=6,则在第7组中抽取的号码个位数字与13的个位数字相同,而第7组中数字编号依次为60,61,62,63,…,69,故在第7组中抽取的号码是63.故选A.3.B散点图里变量的对应点分布在一条直线附近,且比较密集,故可判断语文成绩和英语成绩之间具有较强的线性相关关系,且直线斜率小于1,故选B.4.C∵K2=8.01>7.879,观测值同临界值进行比较可知,有99.5%的把握认为“喜欢乡村音乐与性别有关系”.故选C.5.D由频率分布直方图知这200名学生每周的自习时间不少于22.5小时的频率为1-(0.02+0.10)×2.5=0.7,则这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140,故选D.6.B22次考试成绩最高为98分,最低为56分,所以极差为98-56=42,从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试成绩的极差与中位数之和为42+76=118,故选B.7.A由表可知,在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”,即有95%的把握认为“爱好该项运动与性别有关”.故选A.8.B根据茎叶图,知:甲的平均成绩为x甲=14+25+26+30+335=25.6乙的平均成绩为x乙=16+20+22+24+315=22.6甲的方差为s2甲=15×[(14-25.6)2+(25-25.6)2+(26-25.6)2+(30-25.6)2+(33-25.6)2]=41.84,乙的方差为s2乙=15[(16-22.6)2+(20-22.6)2+(22-22.6)2+(24-22.6)2+(31-22.6)2]=24.64;∴x甲>x乙,s2甲>s2乙,即甲运动员比乙运动员平均得分高,乙队员比甲队员成绩稳定.9.68度解析:回归直线过(x ,y ),根据题意得x =18+13+10+(-1)4=10,y =24+34+38+644=40,将(10,40)代入y ^=-2x +a ^,解得a ^=60,y ^=-2x +60,当x =-4时,y ^=(-2)×(-4)+60=68,即当气温为-4 ℃时用电量约为68度.10.(1)0.25 (2)2 900解析:(1)由频率分布直方图可得1-0.05-0.1-0.15-0.2-0.25=0.25.(2)取中间值进行估计,可得该单位职工的月收入的平均数大约是1 750×0.1+2 250×0.2+2 750×0.25+3 250×0.25+3 750×0.15+4 250×0.05=2 900.11.②④⑤解析:线性相关系数r 的绝对值越趋向于1,线性相关性越强,越趋向于0,线性相关性越弱,①错误.由回归直线一定经过中心点的性质可知②正确.从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这是等距离抽样,是系统抽样,③错误.在回归分析模型中,残差平方和越小,则模型的拟合效果越好,④正确.由回归直线方程易知⑤正确.所以真命题的序号是②④⑤.12.解:(1)由频率分布直方图知,月均用水量在[0,0.5)中的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]中的频率分别为0.08,0.20,0.26,0.06,0.04,0.02.由0.04+0.08+0.5×a +0.20+0.26+0.5×a +0.06+0.04+0.02=1,解得a =0.30.(2)由(1)知,100位居民每人的月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计全市30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000.(3)因为前6组的频率之和为0.04+0.08+0.15+0.20+0.26+0.15=0.88>0.85,而前5组的频率之和为0.04+0.08+0.15+0.20+0.26=0.73<0.85,所以2.5≤x<3.由0.30×(x-2.5)=0.85-0.73,解得x=2.9.所以,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.02.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.55.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣86.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,207.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1010.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=.12.已知1,x,9成等比数列,则实数x=.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为•15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.2016-2017学年湖南省衡阳市衡阳县四中高二(下)第一次模拟数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={0,1,2},N={x},若M∪N={0,1,2,3},则x的值为()A.3 B.2 C.1 D.0【考点】并集及其运算.【分析】根据M及M与N的并集,求出x的值,确定出N即可.【解答】解:∵集合M={0,1,2},N={x},且M∪N={0,1,2,3},∴x=3,故选:A.2.如图是一个几何体的三视图,则该几何体为()A.球B.圆柱C.圆台D.圆锥【考点】由三视图求面积、体积.【分析】由三视图可知该几何体为圆锥.【解答】解:根据三视图可知,该几何体为圆锥.故选D.3.在区间[0,5]内任取一个实数,则此数大于3的概率为()A.B.C.D.【考点】几何概型.【分析】由题意,要使此数大于3,只要在区间(3,5]上取即可,利用区间长度的比求.【解答】解:要使此数大于3,只要在区间(3,5]上取即可,由几何概型的个数得到此数大于3的概率为为;故选B.4.某程序框图如图所示,若输入x的值为1,则输出y的值是()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据题意,模拟程序框图的运行过程,即可得出正确的答案.【解答】解:模拟程序框图的运行过程,如下;输入x=1,y=1﹣1+3=3,输出y的值为3.故选:B.5.已知向量=(1,2),=(x,4),若∥,则实数x的值为()A.8 B.2 C.﹣2 D.﹣8【考点】平面向量共线(平行)的坐标表示.【分析】根据向量平行的坐标公式建立方程进行求解即可.【解答】解:∵∥,∴4﹣2x=0,得x=2,故选:B6.某学校高一、高二、高三年级的学生人数分别为600,400,800.为了了解教师的教学情况,该校采用分层抽样的方法从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别为()A.15,5,25 B.15,15,15 C.10,5,30 D.15,10,20【考点】分层抽样方法.【分析】根据分层抽样的定义,建立比例关系即可等到结论.【解答】解:∵高一、高二、高三年级的学生人数分别为600,400,800.∴从这三个年级中抽取45名学生进行座谈,则高一、高二、高三年级抽取的人数分别,高二:,高三:45﹣15﹣10=20.故选:D7.如图,在正方体ABCD﹣A1B1C1D1中,直线BD与A1C1的位置关系是()A.平行B.相交C.异面但不垂直D.异面且垂直【考点】空间中直线与直线之间的位置关系.【分析】连接AC,则AC∥A1C1,AC⊥BD,即可得出结论.【解答】解:∵正方体的对面平行,∴直线BD与A1C1异面,连接AC,则AC∥A1C1,AC⊥BD,∴直线BD与A1C1垂直,∴直线BD与A1C1异面且垂直,故选:D.8.不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2}B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1}D.{x|x>2或x <﹣1}【考点】一元二次不等式的解法.【分析】根据一元二次不等式对应方程的实数根,即可写出不等式的解集.【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.9.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【考点】圆的标准方程.【分析】求出圆心坐标和半径,因为圆的直径为线段PQ,所以圆心为P,Q的中点,应用中点坐标公式求出,半径为线段PQ长度的一半,求出线段PQ的长度,除2即可得到半径,再代入圆的标准方程即可.【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.10.如图,在高速公路建设中需要确定隧道的长度,工程技术人员已测得隧道两端的两点A、B到点C的距离AC=BC=1km,且∠ACB=120°,则A、B两点间的距离为()A.km B.km C.1.5km D.2km【考点】解三角形的实际应用.【分析】直接利用与余弦定理求出AB的数值.【解答】解:根据余弦定理AB2=a2+b2﹣2abcosC,∴AB===(km).故选:A.二、填空题:本大题共5小题,每小题4分,满分20分.11.计算:log21+log24=2.【考点】对数的运算性质.【分析】直接利用对数的运算法则化简求解即可.【解答】解:log21+log24=0+log222=2.故答案为:2.12.已知1,x,9成等比数列,则实数x=±3.【考点】等比数列.【分析】由等比数列的性质得x2=9,由此能求出实数x.【解答】解:∵1,x,9成等比数列,∴x2=9,解得x=±3.故答案为:±3.13.已知点(x,y)在如图所示的平面区域(阴影部分)内运动,则z=x+y的最大值是5.【考点】简单线性规划.【分析】利用目标函数的几何意义求最大值即可.【解答】解:由已知,目标函数变形为y=﹣x+z,当此直线经过图中点(3,2)时,在y轴的截距最大,使得z最大,所以z的最大值为3+2=5;故答案为:5.14.已知a是函数f(x)=2﹣log2x的零点,则a的值为4•【考点】函数的零点.【分析】根据函数零点的定义,得f(a)=0,从而求出a的值.【解答】解:a是函数f(x)=2﹣log2x的零点,∴f(a)=2﹣log2a=0,∴log2a=2,解得a=4.故答案为:4.15.如图1,在矩形ABCD中,AB=2BC,E、F分别是AB、CD的中点,现在沿EF 把这个矩形折成一个直二面角A﹣EF﹣C(如图2),则在图2中直线AF与平面EBCF所成的角的大小为45°.【考点】直线与平面所成的角.【分析】由题意,AE⊥平面EFBC,∠AFE是直线AF与平面EBCF所成的角,即可得出结论.【解答】解:由题意,AE⊥平面EFBC,∴∠AFE是直线AF与平面EBCF所成的角,∵AE=EF,∴∠AFE=45°.故答案为45°.三、解答题:本大题共5小题,满分40分.解答应写出文字说明、证明过程或演算步骤.16.已知,<θ<π.(1)求tanθ;(2)求的值.【考点】三角函数的化简求值.【分析】(1)由,<θ<π结合同角平方关系可求cosθ,利用同角基本关系可求(2)结合(1)可知tanθ的值,故考虑把所求的式子化为含“切”的形式,从而在所求的式子的分子、分母同时除以cos2θ,然后把已知tanθ的值代入可求.【解答】解:(1)∵sin2θ+cos2θ=1,∴cos2θ=.又<θ<π,∴cosθ=∴.(2)=.17.某公司为了了解本公司职员的早餐费用情况,抽样调査了100位职员的早餐日平均费用(单位:元),得到如图所示的频率分布直方图,图中标注a的数字模糊不清.(1)试根据频率分布直方图求a的值,并估计该公司职员早餐日平均费用的众数;(2)已知该公司有1000名职员,试估计该公司有多少职员早餐日平均费用不少于8元?【考点】频率分布直方图.【分析】(1)由频率分布直方图中各小长方形的面积之和等于1,求出a的值,频率分布直方图中最高的小长方体的底面边长的中点即是众数;(2)求出本公司职员平均费用不少于8元的频率就能求出公司有多少职员早餐日平均费用不少于8元.【解答】解:(1)据题意得:(0.05+0.10+a+0.10+0.05+0.05)×2=1,解得a=0.15,众数为:;(2)该公司职员早餐日平均费用不少于8元的有:×2=200,18.已知等比数列{a n}的公比q=2,且a2,a3+1,a4成等差数列.(1)求a1及a n;(2)设b n=a n+n,求数列{b n}的前5项和S5.【考点】数列的求和;等比数列的通项公式.【分析】(1)运用等比数列的通项公式和等差数列的中项的性质,解方程可得首项,进而得到所求通项公式;(2)求得b n=2n﹣1+n,再由数列的求和方法:分组求和,结合等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)由已知得a2=2a1,a3+1=4a1+1,a4=8a1,又a2,a3+1,a4成等差数列,可得:2(a3+1)=a2+a4,所以2(4a1+1)=2a1+8a1,解得a1=1,故a n=a1q n﹣1=2n﹣1;(2)因为b n=2n﹣1+n,所以S5=b1+b2+b3+b4+b5=(1+2+...+16)+(1+2+ (5)=+=31+15=46.19.已知二次函数f(x)=x2+ax+b满足f(0)=6,f(1)=5(1)求函数f(x)解析式(2)求函数f(x)在x∈[﹣2,2]的最大值和最小值.【考点】二次函数的性质;二次函数在闭区间上的最值.【分析】(1)利用已知条件列出方程组求解即可.(2)利用二次函数的对称轴以及开口方向,通过二次函数的性质求解函数的最值即可.【解答】解:(1)∵;(2)∵f(x)=x2﹣2x+6=(x﹣1)2+5,x∈[﹣2,2],开口向上,对称轴为:x=1,∴x=1时,f(x)的最小值为5,x=﹣2时,f(x)的最大值为14.20.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【考点】直线与圆的位置关系.【分析】(1)把圆C的方程化为标准方程,写出圆心和半径;(2)设出直线l的方程,与圆C的方程组成方程组,消去y得关于x的一元二次方程,由根与系数的关系求出的值;(3)解法一:设出直线m的方程,由圆心C到直线m的距离,写出△CDE的面积,利用基本不等式求出最大值,从而求出对应直线方程;解法二:利用几何法得出CD⊥CE时△CDE的面积最大,再利用点到直线的距离求出对应直线m的方程.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.2017年5月5日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率
.对概率的考查是高考命题的热点之一,命题形式为“一小一大”,即一道选择或填空题和一道解答题.
.选择或填空题常出现在第~题或第题的位置,主要考查古典概型、几何概型,难度一般.
.解答题常出现在第或题的位置,多以交汇性的形式考查,交汇点主要有两种:一是两图(频率分布直方图与茎叶图)择一与频率与概率的关系、数据的数字特征相交汇来考查;二是两图(频率分布直方图与茎叶图)择一与线性回归或独立性检验相交汇来考查,难度中等.
图①地区用户满意度评分的频数分布表满[,)[,)[,)[,)。

相关文档
最新文档