化工原理知识点总结

合集下载

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多。

连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。

拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。

欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。

定态流动流场中各点流体的速度u 、压强p不随时间而变化。

轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。

流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。

系统与控制体系统是采用拉格朗日法考察流体的。

控制体是采用欧拉法考察流体的。

理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。

粘性的物理本质分子间的引力和分子的热运动。

通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主。

气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。

总势能流体的压强能与位能之和。

可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。

有关的称为可压缩流体,无关的称为不可压缩流体。

伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。

平均流速流体的平均流速是以体积流量相同为原那么的。

动能校正因子实际动能之平均值与平均速度之动能的比值。

均匀分布同一横截面上流体速度相同。

均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度, 故沿该截面势能分布应服从静力学原理。

层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。

稳定性与定态性稳定性是指系统对外界扰动的反响。

定态性是指有关运动参数随时间的变化情况。

边界层流动流体受固体壁面阻滞而造成速度梯度的区域。

边界层别离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。

化工原理知识点总结复习重点(完美版)图文

化工原理知识点总结复习重点(完美版)图文

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/sm S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

化工原理整理知识点

化工原理整理知识点

第一章 流体传递现象流体受力:表面力和体积力体积力/场力/质量力:为非接触力,大小与流体的质量成正比表面力:为接触力,大小与和流体相接触的物体(包括流体本身)的表面积成正比, 流场概念:场和流场;矢量场和标量场;梯度第一节 流体静力学1-1-2 压力流体垂直作用于单位面积上的力,称为流体的静压强,又称为压力。

在静止流体中,作用于任意点不同方向上的压力在数值上均相同。

压力的单位(1) 按压力的定义,其单位为N/m 2,或Pa ;(2) 以流体柱高度表示,如用米水柱或毫米汞柱等。

标准大气压的换算关系:1atm = 1.013×105Pa =760mmHg =10.33m H 2O 压力的表示方法表压 = 绝对压力-大气压力 真空度 = 大气压力-绝对压力 1-1-3 流体静力学基本方程 静力学基本方程:压力形式 :)(2112z z g p p -+=ρ能量形式 :gz p g z p 2211+=+ρρ适用条件:在重力场中静止、连续的同种不可压缩流体。

(1)在重力场中,静止流体内部任一点的静压力与该点所在的垂直位置及流体的密度有关,而与该点所在的水平位置及容器的形状无关。

(2)在静止的、连续的同种液体内,处于同一水平面上各点的压力处处相等。

液面上方压力变化时,液体内部各点的压力也将发生相应的变化。

(3)物理意义:静力学基本方程反映了静止流体内部能量守恒与转换的关系,在同一静止流体中,处在不同位置的位能和静压能各不相同二者可以相互转换,但两项能量总和恒为常量。

应用:1. 压力及压差的测量 (1)U 形压差计:gR p p )(021ρρ-=- 若被测流体是气体,可简化为:021ρRg p p ≈-U 形压差计也可测量流体的压力,测量时将U 形管一端与被测点连接,另一端与大气相通,此时测得的是流体的表压或真空度。

(2)倒U 形压差计 ρρρRg Rg p p ≈-=-)(021(3)双液体U 管压差计)(21C A Rg p p ρρ-=- 2. 液位测量3. 液封高度的计算第二节 流体动力学1-2-1 流体的流量与流速 一、流量体积流量V S 单位时间内流经管道任意截面的流体体积, m 3/s 或m 3/h 。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结一、化工原理的概念和基本原理1. 化工原理的概念化工原理是指研究化工过程中各种物质变化和能量变化规律的科学。

化工原理是化学工程学科的基础,它研究化工过程中的化学反应、物质传递、热力学、流体力学等基本原理和规律。

2. 化工原理的基本原理化工原理的基本原理包括热力学、化学反应动力学、物质传递和流体力学等方面的基本原理。

(1)热力学热力学是研究物质的能量转化规律和能量平衡的科学。

在化工过程中,热力学原理适用于研究热平衡、热力学循环、热力学分析等方面的问题。

(2)化学反应动力学化学反应动力学是研究化学反应速率和影响因素的科学。

化工过程中的化学反应速率、反应机理、反应平衡等问题都需要运用化学反应动力学的原理进行分析和研究。

(3)物质传递物质传递是指物质在不同相之间的传递过程,包括物质的扩散、对流,以及传质设备的设计和运行原理等问题。

(4)流体力学流体力学是研究流体运动规律和流体性质的科学。

在化工过程中,很多问题都需要用到流体力学原理,如管道输送、泵的选择和设计、流体混合等方面的问题。

这些基本原理是化工原理研究的基础,它们为化工过程的设计、优化和运行提供了理论支持和技术指导。

二、化工过程的热力学分析1. 化学平衡在化工过程中,化学反应是一个重要的环节,化学反应的平衡状态对于产品的质量和产率有很大的影响。

因此,分析化学平衡是化工过程设计和运行中的重要内容。

2. 热力学循环热力学循环是指利用热力学原理设计和运行的热力系统,如蒸汽发电系统、制冷系统等。

热力学循环的分析和设计对于提高能量利用率和节能减排具有重要意义。

3. 热力学分析热力学分析是指利用热力学原理对化工过程中的能量转化和热平衡进行分析。

热力学分析通常包括能量平衡、热效率、热损失等方面的内容,它是化工过程优化和节能改造的重要手段。

三、化工过程的化学反应动力学分析1. 反应速率反应速率是指化学反应中物质的转化速率,其大小受到温度、浓度、压力等因素的影响。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结1. 流体力学- 流体静力学:压力的概念、流体静力学平衡、马里奥特原理、流体静压力的测量。

- 流体动力学:连续性方程、伯努利方程、动量守恒、流动类型(层流与湍流)、雷诺数。

- 管道流动:管道摩擦损失、达西-韦斯巴赫方程、摩擦因子的确定、管道网络分析。

2. 传热学- 热传导:傅里叶定律、导热系数、热阻、稳态与非稳态导热。

- 对流热传递:对流热流密度、牛顿冷却定律、对流给热系数。

- 辐射传热:斯特藩-玻尔兹曼定律、黑体辐射、角系数、有效辐射面积。

- 热交换器:热交换器类型、效能-NTU方法、传热强化技术。

3. 物质分离- 蒸馏:基本原理、平衡曲线、麦卡布-锡尔比法、塔板理论、塔内设备。

- 萃取:液-液萃取、固-液萃取、溶剂萃取、萃取平衡、萃取过程设计。

- 过滤与沉降:沉降原理、过滤操作、离心分离、膜分离技术。

- 色谱与电泳:色谱原理、色谱柱、电泳分离、毛细管电泳。

4. 化学反应工程- 化学反应动力学:反应速率、速率方程、活化能、催化剂。

- 反应器设计:批式反应器、半连续反应器、连续搅拌槽式反应器(CSTR)、管式反应器。

- 反应器分析:稳态操作、非稳态操作、反应器的稳定性分析。

- 催化反应工程:催化剂特性、催化剂制备、催化剂失活与再生。

5. 质量传递- 扩散现象:菲克定律、扩散系数、分子扩散与对流扩散。

- 质量传递原理:质量守恒、质量传递微分方程、边界条件。

- 吸收与解吸:气液平衡、吸收塔操作、解吸过程。

- 干燥过程:湿空气系统、干燥过程分析、干燥器设计。

6. 过程控制- 控制系统基础:控制系统组成、开环与闭环系统、控制器类型。

- 控制器设计:PID控制器、串级控制系统、比值控制系统。

- 过程动态分析:拉普拉斯变换、传递函数、系统稳定性分析。

- 先进控制策略:模糊控制、自适应控制、预测控制。

7. 化工热力学- 热力学第一定律:能量守恒、热力学过程、热力学循环。

- 热力学第二定律:熵的概念、熵增原理、卡诺循环。

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率v :考虑流量泄漏所造成的能量损失;水力效率H :考虑流动阻力所造成的能量损失;机械效率m :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m31atm =101325Pa====760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点(完美版)————————————————————————————————作者:————————————————————————————————日期:ﻩ第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=-倾斜液柱压差计 微差压差计ﻩ ﻩﻩﻩ ﻩﻩ二、流体动力学● 流量质量流量 m S kg /s m S =V S ρ体积流量 V S m3/s质量流速 G kg/m2s (平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

(完整版)化工原理知识点总结整理

(完整版)化工原理知识点总结整理

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy ,(F :剪应力;A :面积;μ:粘度;du/dy :速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C 。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d ,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re ,湍流时λ=F(Re ,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g ,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率ηv :考虑流量泄漏所造成的能量损失;水力效率ηH :考虑流动阻力所造成的能量损失;机械效率ηm :考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度1.29 kg/m31atm =101325Pa=101.3kPa=0.1013MPa=10.33mH2O=760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

化工原理知识点总结复习总结重点(完美版)

化工原理知识点总结复习总结重点(完美版)

第一章、流体流动「一、流体静力学J二、流体动力学I三、流体流动现象、四、流动阻力、复杂管路、流量计一、流体静力学:•压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力)真空度=大气压强-绝对压«电解大气压皎大气压力、绝对压力、表压力(或真空度)之间的关系•流体静力学方程式及应用:戈力形式P2 = pλ + pg{zλ -z2)备注:1)在静止的、连续的同一液体内,处于同一Y能量形式-^ + z l g = -^ + z2g水平面上各点压力都相等。

P P此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计p1-p2 =(∕70-p)gR倾斜液柱压差计微差压差计二、流体动力学•流量质量流量ms kg/s i πis=VsP、体积流量v s m3∕sʃm s=GA= π∕4d i G质量流速G kg∕rn2s [ V s=uA= π∕4d u(平均)流速u m/s ʃ G=up•连续性方程及重要引论:•一实际流体的柏努利方程及应用(例题作业题)以单位质量流体为基准:Z i g+-u^λ +-^ + W e =z2g+-u^ +^ + ΣW f J/kg2 p 2 p以单位重量流体为基准:z1+ɪwɪ2+^ + H e =z2+ɪw/ +⅛ + ΣΛ, J∕N=m2g pg 2g - Pg输送机械的有效功率:N e = m s W eN输送机械的轴功率:N =。

(运算效率进行简单数学变换)应用解题要点:1、作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、截面的选取:两截面均应与流动方向垂直;3、基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、两截面上的压力:单位一致、表示方法一致;5、单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:•流体流动类型及雷诺准数:(1)层流区Re<2000(2)过渡区200(X Re<4000(3)湍流区Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)
管截面速度大小分布:
无论是层流或揣流,在管道任意截面上,流体 质点的速度均沿管径而变化,管壁处速度为零,离 开管壁以后速度渐增,到管中心处速度最大。
层流:1、呈抛物线分布;2、管中心最大速度 为平均速度的2倍。
湍流:1、层流内层;2、过渡区或缓冲区;3、 湍流主体
湍流时管壁处的速度也等于零,靠近管壁的流 体仍作层流流动,这-作层流流动的流体薄层称为 层流内层或层流底层。自层流内层往管中心推移, 速度逐渐增大,出现了既非层流流动亦非完全端流 流动的区域,这区域称为缓冲层或过渡层,再往中
出上、下游界面;
2、 截面的选取:两截面均应与流动方向垂直;
3、 基准水平面的选取:任意选取,必须与地面平
行,用于确定流体位能的大小;
4、 两截面上的压力:单位一致、表示方法一致;
5、 单位必须一致:有关物理量的单位必须一致相
匹配。
三、流体流动现象:
流体流动类型及雷诺准数:
(1)层流区
Re<2000
离心泵:电动机 流体(动能)转化 静压能
一、离心泵的结构和工作原理:
离心泵的主要部件:

心泵的的启动流程:


吸液(管泵,无自吸能力)
泵壳
液体的汇集与能量的转换
转能


排放
密封 填料密封 机械密封(高级)
叶轮 其作用为将原动机的能量直接传给液体,
以提高液体的静压能与动能(主要为静压能)。
泵壳 具有汇集液体和能量转化双重功能。
(2)过渡区
2000< Re<4000
(3)湍流区
Re>4000
本质区别:(质点运动及能量损失区别)层流与端
流的区分不仅在于各有不同的Re 值,更重要的是

化工原理各章节知识点总结

化工原理各章节知识点总结

第一章流体流动质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程却要大得多.连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质.拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数如位移、速度等与时间的关系.欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化.定态流动流场中各点流体的速度u、压强p不随时间而变化.轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果.流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果.系统与控制体系统是采用拉格朗日法考察流体的.控制体是采用欧拉法考察流体的.理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零. 粘性的物理本质分子间的引力和分子的热运动.通常液体的粘度随温度增加而减小,因为液体分子间距离较小,以分子间的引力为主.气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主.总势能流体的压强能与位能之和.可压缩流体与不可压缩流体的区别流体的密度是否与压强有关.有关的称为可压缩流体,无关的称为不可压缩流体.伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变. 平均流速流体的平均流速是以体积流量相同为原则的.动能校正因子实际动能之平均值与平均速度之动能的比值.均匀分布同一横截面上流体速度相同.均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上的流体没有加速度,故沿该截面势能分布应服从静力学原理.层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性.稳定性与定态性稳定性是指系统对外界扰动的反应.定态性是指有关运动参数随时间的变化情况.边界层流动流体受固体壁面阻滞而造成速度梯度的区域.边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象.雷诺数的物理意义雷诺数是惯性力与粘性力之比.量纲分析实验研究方法的主要步骤:①经初步实验列出影响过程的主要因素;②无量纲化减少变量数并规划实验;③通过实验数据回归确定参数及变量适用范围,确定函数形式.摩擦系数层流区,λ与Re成反比,λ与相对粗糙度无关;一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大;充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大.完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻力损失的影响时,称为水力光滑管.Re很大,λ与Re无关的区域,称为完全湍流粗糙管.同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管.局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度.毕托管特点毕托管测量的是流速,通过换算才能获得流量.驻点压强在驻点处,动能转化成压强称为动压强,所以驻点压强是静压强与动压强之和.孔板流量计的特点恒截面,变压差.结构简单,使用方便,阻力损失较大.转子流量计的特点恒流速,恒压差,变截面.非牛顿流体的特性塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动.假塑性与涨塑性:随剪切率增高,表观粘度下降的为假塑性.随剪切率增高,表观粘度上升的为涨塑性.触变性与震凝性:随剪应力t作用时间的延续,流体表观粘度变小,当一定的剪应力t所作用的时间足够长后,粘度达到定态的平衡值,这一行为称为触变性.反之,粘度随剪切力作用时间延长而增大的行为则称为震凝性.粘弹性:不但有粘性,而且表现出明显的弹性.具体表现如:爬杆效应、挤出胀大、无管虹吸.第二章流体输送机械管路特性方程管路对能量的需求,管路所需压头随流量的增加而增加.输送机械的压头或扬程流体输送机械向单位重量流体所提供的能量J/N. 离心泵主要构件叶轮和蜗壳.离心泵理论压头的影响因素离心泵的压头与流量,转速,叶片形状及直径大小有关.叶片后弯原因使泵的效率高.气缚现象因泵内流体密度小而产生的压差小,无法吸上液体的现象.离心泵特性曲线离心泵的特性曲线指He~qV,η~qV, Pa~qV.离心泵工作点管路特性方程和泵的特性方程的交点.离心泵的调节手段调节出口阀,改变泵的转速.汽蚀现象液体在泵的最低压强处叶轮入口汽化形成气泡,又在叶轮中因压强升高而溃灭,造成液体对泵设备的冲击,引起振动和侵蚀的现象.必需汽蚀余量NPSHr泵入口处液体具有的动能和压强能之和必须超过饱和蒸汽压强能多少离心泵的选型类型、型号①根据泵的工作条件,确定泵的类型;②根据管路所需的流量、压头,确定泵的型号.正位移特性流量由泵决定,与管路特性无关.往复泵的调节手段旁路阀、改变泵的转速、冲程.离心泵与往复泵的比较流量、压头前者流量均匀,随管路特性而变,后者流量不均匀,不随管路特性而变.前者不易达到高压头,后者可达高压头.前者流量调节用泵出口阀,无自吸作用,启动时关出口阀;后者流量调节用旁路阀,有自吸作用,启动时开足管路阀门.通风机的全压、动风压通风机给每立方米气体加入的能量为全压Pa=J/m3,其中动能部分为动风压.真空泵的主要性能参数①极限真空;②抽气速率.第三章液体的搅拌搅拌目的均相液体的混合,多相物体液液,气液,液固的分散和接触,强化传热.搅拌器按工作原理分类搅拌器按工作原理可分为旋桨式,涡轮式两大类.旋桨式大流量,低压头;涡轮式小流量,高压头.混合效果搅拌器的混合效果可以用调匀度、分隔尺度来度量.宏观混合总体流动是大尺度的宏观混合;强烈的湍动或强剪切力场是小尺度的宏观混合.微观混合只有分子扩散才能达到微观混合.总体流动和强剪切力场虽然本身不是微观混合,但是可以促进微观混合,缩短分子扩散的时间.搅拌器的两个功能产生总体流动;同时形成湍动或强剪切力场.改善搅拌效果的工程措施改善搅拌效果可采取增加搅拌转速、加挡板、偏心安装搅拌器、装导流筒等措施.第四章流体通过颗粒层的流动非球形颗粒的当量直径球形颗粒与实际非球形颗粒在某一方面相等,该球形的直径为非球形颗粒的当量直径,如体积当量直径、面积当量直径、比表面积当量直径等.形状系数等体积球形的表面积与非球形颗粒的表面积之比.分布函数小于某一直径的颗粒占总量的分率.频率函数某一粒径范围内的颗粒占总量的分率与粒径范围之比.颗粒群平均直径的基准颗粒群的平均直径以比表面积相等为基准.因为颗粒层内流体为爬流流动,流动阻力主要与颗粒表面积的大小有关.床层比表面单位床层体积内的颗粒表面积.床层空隙率单位床层体积内的空隙体积.数学模型法的主要步骤数学模型法的主要步骤有①简化物理模型②建立数学模型③模型检验,实验确定模型参数.架桥现象尽管颗粒比网孔小,因相互拥挤而通不过网孔的现象.过滤常数及影响因素过滤常数是指 K、qe.K与压差、悬浮液浓度、滤饼比阻、滤液粘度有关;qe与过滤介质阻力有关.它们在恒压下才为常数.过滤机的生产能力滤液量与总时间过滤时间和辅助时间之比.最优过滤时间使生产能力达到最大的过滤时间.加快过滤速率的途径①改变滤饼结构;②改变颗粒聚集状态;③动态过滤.第五章颗粒的沉降和流态化曳力表面曳力、形体曳力曳力是流体对固体的作用力,而阻力是固体壁对流体的力,两者为作用力与反作用力的关系.表面曳力由作用在颗粒表面上的剪切力引起,形体曳力由作用在颗粒表面上的压强力扣除浮力的部分引起.自由沉降速度颗粒自由沉降过程中,曳力、重力、浮力三者达到平衡时的相对运动速度.离心分离因数离心力与重力之比.旋风分离器主要评价指标分离效率、压降.总效率进入分离器后,除去的颗粒所占比例.粒级效率某一直径的颗粒的去除效率.分割直径粒级效率为50%的颗粒直径.流化床的特点混合均匀、传热传质快;压降恒定、与气速无关.两种流化现象散式流化和聚式流化.聚式流化的两种极端情况腾涌和沟流.起始流化速度随着操作气速逐渐增大,颗粒床层从固定床向流化床转变的空床速度.带出速度随着操作气速逐渐增大,流化床内颗粒全被带出的空床速度.气力输送利用气体在管内的流动来输送粉粒状固体的方法.第六章传热传热过程的三种基本方式直接接触式、间壁式、蓄热式.载热体为将冷工艺物料加热或热工艺物料冷却,必须用另一种流体供给或取走热量,此流体称为载热体.用于加热的称为加热剂;用于冷却的称为冷却剂.三种传热机理的物理本质传导的物理本质是分子热运动、分子碰撞及自由电子迁移;对流的物理本质是流动流体载热;热辐射的物理本质是电磁波. 间壁换热传热过程的三个步骤热量从热流体对流至壁面,经壁内热传导至另一侧,由壁面对流至冷流体.导热系数物质的导热系数与物质的种类、物态、温度、压力有关.热阻将传热速率表达成温差推动力除以阻力的形式,该阻力即为热阻.推动力高温物体向低温传热,两者的温度差就是推动力.流动对传热的贡献流动流体载热.强制对流传热在人为造成强制流动条件下的对流传热.自然对流传热因温差引起密度差,造成宏观流动条件下的对流传热.自然对流传热时,加热、冷却面的位置应该是加热面在下,制冷面在上,这样有利于形成充分的对流流动.努塞尔数、普朗特数的物理意义努塞尔数的物理意义是对流传热速率与导热传热速率之比.普朗特数的物理意义是动量扩散系数与热量扩散系数之比,在α关联式中表示了物性对传热的贡献.α关联式的定性尺寸、定性温度用于确定关联式中的雷诺数等准数的长度变量、物性数据的温度.比如,圆管内的强制对流传热,定性尺寸为管径d、定性温度为进出口平均温度.大容积自然对流的自动模化区自然对流α与高度h无关的区域.液体沸腾的两个必要条件过热度tw-ts、汽化核心.核状沸腾汽泡依次产生和脱离加热面,对液体剧烈搅动,使α随Δt急剧上升.第七章蒸发蒸发操作及其目的蒸发过程的特点二次蒸汽溶液沸点升高疏水器气液两相流的环状流动区域加热蒸汽的经济性蒸发器的生产强度提高生产强度的途径提高液体循环速度的意义节能措施杜林法则多效蒸发的效数在技术经济上的限制第八章气体吸收吸收的目的和基本依据吸收的目的是分离气体混合物,吸收的基本依据是混合物中各组份在溶剂中的溶解度不同.主要操作费溶剂再生费用,溶剂损失费用.解吸方法升温、减压、吹气.选择吸收溶剂的主要依据溶解度大,选择性高,再生方便,蒸汽压低损失小.相平衡常数及影响因素m、E、H均随温度上升而增大,E、H与总压无关,m 反比于总压.漂流因子P/PBm表示了主体流动对传质的贡献.气、液扩散系数的影响因素气体扩散系数与温度、压力有关;液体扩散系数与温度、粘度有关.传质机理分子扩散、对流传质.气液相际物质传递步骤气相对流,相界面溶解,液相对流.有效膜理论与溶质渗透理论的结果差别有效膜理论获得的结为k∝D,溶质渗透理论考虑到微元传质的非定态性,获得的结果为k∝.传质速率方程式传质速率为浓度差推动力与传质系数的乘积.因工程上浓度有多种表达,推动力也就有多种形式,传质系数也有多种形式,使用时注意一一对应.传质阻力控制传质总阻力可分为两部分,气相阻力和液相阻力.当mky<<kx 时,为气相阻力控制;当mky>>kx时,为液相阻力控制.低浓度气体吸收特点①G、L为常量,②等温过程,③传质系数沿塔高不变. 建立操作线方程的依据塔段的物料衡算.返混少量流体自身由下游返回至上游的现象.最小液气比完成指定分离任务所需塔高为无穷大时的液气比.NOG的计算方法对数平均推动力法,吸收因数法,数值积分法.HOG的含义塔段为一个传质单元高,气体流经一个传质单元的浓度变化等于该单元内的平均推动力.常用设备的HOG值~m.吸收剂三要素及对吸收结果的影响吸收剂三要素是指t、x2、L.t↓,x2↓,L↑均有利于吸收.化学吸收与物理吸收的区别溶质是否与液相组分发生化学反应.增强因子化学吸收速率与物理吸收速率之比.容积过程慢反应使吸收成容积过程.表面过程快反应使吸收成表面过程.第九章液体精馏蒸馏的目的及基本依据蒸馏的目的是分离液体混合物,它的基本依据原理是液体中各组分挥发度的不同.主要操作费用塔釜的加热和塔顶的冷却.双组份汽液平衡自由度自由度为2P一定,t~x或y;t一定,P~x或y;P 一定后,自由度为1.泡点泡点指液相混合物加热至出现第一个汽泡时的温度.露点露点指气相混合物冷却至出现第一个液滴时的温度.非理想物系汽液相平衡关系偏离拉乌尔定律的成为非理想物系.总压对相对挥发度的影响压力降低,相对挥发度增加.平衡蒸馏连续过程且一级平衡.简单蒸馏间歇过程且瞬时一级平衡.连续精馏连续过程且多级平衡.间歇精馏时变过程且多级平衡.特殊精馏恒沸精馏、萃取精馏等加第三组分改变α.实现精馏的必要条件回流液的逐板下降和蒸汽逐板上升,实现汽液传质、高度分离.理论板离开该板的汽液两相达到相平衡的理想化塔板.板效率经过一块塔板之后的实际增浓与理想增浓之比.恒摩尔流假设及主要条件在没有加料、出料的情况下,塔段内的汽相或液相摩尔流率各自不变.组分摩尔汽化热相近,热损失不计,显热差不计.加料热状态参数q值的含义及取值范围一摩尔加料加热至饱和汽体所需热量与摩尔汽化潜热之比,表明加料热状态.取值范围:q<0过热蒸汽,q=0饱和蒸汽,0<q<1汽液混和物,q=1饱和液体,q>1冷液.建立操作线的依据塔段物料衡算.操作线为直线的条件液汽比为常数恒摩尔流.最优加料位置在该位置加料,使每一块理论板的提浓度达到最大.挟点恒浓区的特征汽液两相浓度在恒浓区几乎不变.芬斯克方程求取全回流条件下,塔顶塔低浓度达到要求时的最少理论板数.最小回流比达到指定分离要求所需理论板数为无穷多时的回流比,是设计型计算特有的问题.最适宜回流比使设备费、操作费之和最小的回流比.灵敏板塔板温度对外界干扰反映最灵敏的塔板,用于预示塔顶产品浓度变化.间歇精馏的特点操作灵活、适用于小批量物料分离.恒沸精馏与萃取精馏的主要异同点相同点:都加入第三组份改变相对挥发度;区别:①前者生成新的最低恒沸物,加入组分从塔顶出;后者不形成新恒沸物,加入组分从塔底出.②操作方式前者可间歇,较方便.③前者消耗热量在汽化潜热,后者在显热.多组分精馏流程方案选择选择多组分精馏的流程方案需考虑①经济上优化;②物性;③产品纯度.关键组分对分离起控制作用的两个组分为关键组分,挥发度大的为轻关键组分;挥发度小的为重关键组分.清晰分割法清晰分割法假定轻组分在塔底的浓度为零,重组分在塔顶的浓度为零.全回流近似法全回流近似法假定塔顶、塔底的浓度分布与全回流时相近第十章气液传质设备板式塔的设计意图①气液两相在塔板上充分接触,②总体上气液逆流,提供最大推动力.对传质过程最有利的理想流动条件总体两相逆流,每块板上均匀错流.三种气液接触状态鼓泡状态:气量低,气泡数量少,液层清晰.泡沫状态:气量较大,液体大部分以液膜形式存在于气泡之间,但仍为连续相.喷射状态:气量很大,液体以液滴形式存在,气相为连续相.转相点由泡沫状态转为喷射状态的临界点.板式塔内主要的非理想流动液沫夹带、气泡夹带、气体的不均匀流动、液体的不均匀流动.板式塔的不正常操作现象夹带液泛、溢流液泛、漏液.筛板塔负荷性能图将筛板塔的可操作范围在汽、液流量图上表示出来. 湿板效率考虑了液沫夹带影响的塔板效率.全塔效率全塔的理论板数与实际板数之比.操作弹性上、下操作极限的气体流量之比.常用塔板类型筛孔塔板、泡罩塔板、浮阀塔板、舌形塔板、网孔塔板等. 填料的主要特性参数①比表面积a,②空隙率ε,③填料的几何形状.常用填料类型拉西环,鲍尔环,弧鞍形填料,矩鞍形填料,阶梯形填料,网体填料等.载点填料塔内随着气速逐渐由小到大,气液两相流动的交互影响开始变得比较显着时的操作状态为载点.泛点气速增大至出现每米填料压降陡增的转折点即为泛点.最小喷淋密度保证填料表面润湿、保持一定的传质效果所需的液体速度. 等板高度HETP分离效果相当于一块理论板的填料层高度.填料塔与板式塔的比较填料塔操作范围小,宜处理不易聚合的清洁物料,不易中间换热,处理量较小,造价便宜,较宜处理易起泡、腐蚀性、热敏性物料,能适应真空操作.板式塔适合于要求操作范围大,易聚合或含固体悬浮物,处理量较大,设计要求比较准确的场合.第十一章液液萃取萃取的目的及原理目的是分离液液混合物.原理是混合物各组分溶解度的不同.溶剂的必要条件①与物料中的B组份不完全互溶,②对A组份具有选择性的溶解度.临界混溶点相平衡的两相无限趋近变成一相时的组成所对应的点.和点两股流量的平均浓度在相图所对应的点.差点和点的流量减去一股流量后剩余的浓度在相图所对应的点.分配曲线相平衡的yA ~ xA曲线.最小溶剂比当萃取相达到指定浓度所需理论级为无穷多时,相应的S/F为最小溶剂比.选择性系数β=yA/yB/xA/xB.操作温度对萃取的影响温度低,B、S互溶度小,相平衡有利些,但粘度大等对操作不利,所以要适当选择.第十二章其他传质分离方法溶液结晶操作的基本原理溶液的过饱和.造成过饱和度方法冷却,蒸发浓缩.晶习各晶面速率生长不同,形成不同晶体外形的习性.溶解度曲线结晶体与溶液达到相平衡时,溶液浓度随温度的变化曲线. 超溶解度曲线溶液开始析出结晶的浓度大于溶解度,溶液浓度随温度的变化曲线为超溶解度曲线,超溶解度曲线在溶解度曲线之上.溶液结晶的两个阶段晶核生成,晶体成长.晶核的生成方式初级均相成核,初级非均相成核,二次成核.再结晶现象小晶体溶解与大晶体成长同时发生的现象.过饱和度对结晶速率的影响过饱和度ΔC大,有利于成核;过饱和度ΔC 小,有利于晶体成长.吸附现象流体中的吸附质借助于范德华力而富集于吸附剂固体表面的现象.物理吸附与化学吸附的区别物理吸附靠吸附剂与吸附质之间的范德华力,吸附热较小;化学吸附靠吸附剂与吸附质之间的化学键合,吸附热较大. 吸附分离的基本原理吸附剂对流体中各组分选择性的吸附.常用的吸附解吸循环变温吸附,变压吸附,变浓度吸附,置换吸附.常用吸附剂活性炭,硅胶,活性氧化铝,活性土,沸石分子筛,吸附树脂等. 吸附等温线在一定的温度下,吸附相平衡浓度随流体相浓度变化的曲线. 传质内扩散的四种类型分子扩散,努森扩散,表面扩散,固体晶体扩散. 负荷曲线固定床吸附器中,固体相浓度随距离的变化曲线称为负荷曲线. 浓度波固定床吸附器中,流体相浓度随距离的变化曲线称为浓度波.透过曲线吸附器出口流体相浓度随时间的变化称为透过曲线.透过点透过曲线中,出口浓度达到5%进口浓度时,对应的点称为透过点.饱和点透过曲线中,出口浓度达到95%进口浓度时,对应的点称为饱和点. 膜分离基本原理利用固体膜对流体混合物各组分的选择性渗透,实现分离.分离过程对膜的基本要求截留率,透过速率,截留分子量.膜分离推动力压力差,电位差.浓差极化溶质在膜表面被截留,形成高浓度区的现象.阴膜阴膜电离后固定基团带正电,只让阴离子通过.阳膜阳膜电离后固定基团带负电,只让阳离子通过.气体混合物膜分离机理努森流的分离作用;均质膜的溶解、扩散、解吸.第十四章固体干燥物料去湿的常用方法机械去湿、吸附或抽真空去湿、供热干燥等.对流干燥过程的特点热质同时传递.主要操作费用空气预热、中间加热. tas与tW在物理含义上的差别 tas由热量衡算导出,属于静力学问题;tW 是传热传质速率均衡的结果,属于动力学问题.改变湿空气温度、湿度的工程措施加热、冷却可以改变湿空气温度;喷水可以增加湿空气的湿度,也可以降低湿空气的湿度,比如喷的是冷水,使湿空气中的水分析出.平衡蒸汽压曲线物料平衡含水量与空气相对湿度的关系曲线.结合水与非结合水平衡水蒸汽压开始小于饱和蒸汽压的含水量为结合水,超出部分为非结合水.。

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版

化工原理知识点总结复习重点完美版为了更好地进行化工原理的复习和理解,以下是一份完整的知识点总结,帮助你复习和复盘学到的重要内容。

一、化学平衡1.化学反应方程式的写法2.反应物和生成物的摩尔比例3.平衡常数的定义和计算4.浓度和活度的关系5.反应速率和速率常数的定义及计算6.动态平衡和平衡移动原理7.影响平衡的因素:温度、压力、浓度二、质量平衡1.质量守恒定律2.原料消耗和产物生成的计算3.原料和产物的流量计算4.反应含量和反应度的计算5.塔的进料和出料物质的计算三、能量平衡1.能量守恒定律2.热平衡方程及其计算3.基础能量平衡方程的应用4.燃料燃烧的能量平衡计算5.固体、液体和气体的热容和焓变计算6.直接、间接测定燃烧热的方法及其原理7.燃料的完全燃烧和不完全燃烧四、流体流动1.流体的基本性质:密度、粘度、黏度、温度、压力2.流体的流动模式:层流和湍流3.流量和速度的计算4.伯努利方程及其应用5.流体在管道中的阻力和压降6.伽利略与雷诺数的关系7.流体静力学公式的应用五、气体平衡1.理想气体状态方程的计算2.弗拉索的原理及其应用3.气体的混合物和饱和汽4.气体的传递和扩散5.气体流动和气体固体反应的应用6.气体和液体的溶解度计算六、固体粒度和颗粒分离1.颗粒的基本性质:颗粒大小、形状和密度2.颗粒分布函数和粒度分析3.颗粒分离的基本过程和方法4.难磨性颗粒的碾磨过程5.颗粒的流动性和堆积性6.各种固体分离设备的工作原理和应用领域七、非均相反应工程1.反应器的分类和基本概念2.反应速率方程的推导和计算3.反应的平均摩尔体积变化和速率方程的确定方法4.反应动力学和机理的研究方法5.混合反应和连续反应的计算6.活性物质的拟合反应速率方程7.补偿反应的控制和模拟以上是化工原理的主要知识点总结,希望能够帮助你更好地进行复习和理解。

祝你取得好成绩!。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = ● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W pu g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算X 围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

三、流体流动现象:流体流动类型及雷诺准数:(1)层流区 Re<2000 (2)过渡区 2000< Re<4000 (3)湍流区 Re>4000本质区别:(质点运动及能量损失区别)层流与端流的区分不仅在于各有不同的Re 值,更重要的是两种流型的质点运动方式有本质区别。

化工原理知识点总结复习重点(完美版)

化工原理知识点总结复习重点(完美版)

第一章、流体流动一、 流体静力学 二、 流体动力学 三、 流体流动现象四、流动阻力、复杂管路、流量计一、流体静力学:● 压力的表征:静止流体中,在某一点单位面积上所受的压力,称为静压力,简称压力,俗称压强。

表压强(力)=绝对压强(力)-大气压强(力) 真空度=大气压强-绝对压大气压力、绝对压力、表压力(或真空度)之间的关系 ● 流体静力学方程式及应用:压力形式 )(2112z z g p p -+=ρ 备注:1)在静止的、连续的同一液体内,处于同一 能量形式g z p g z p 2211+=+ρρ水平面上各点压力都相等。

此方程式只适用于静止的连通着的同一种连续的流体。

应用:U 型压差计 gR p p )(021ρρ-=- 倾斜液柱压差计 微差压差计二、流体动力学● 流量质量流量 m S kg/s m S =V S ρ体积流量 V S m 3/s 质量流速 G kg/m 2s(平均)流速 u m/s G=u ρ ● 连续性方程及重要引论:22112)(d d u u = m S =GA=π/4d 2G V S =uA=π/4d 2u● 一实际流体的柏努利方程及应用(例题作业题) 以单位质量流体为基准:f e W p u g z W p u g z ∑+++=+++ρρ222212112121 J/kg 以单位重量流体为基准:f e h gp u g z H g p u g z ∑+++=+++ρρ222212112121 J/N=m 输送机械的有效功率: e s e W m N = 输送机械的轴功率: ηeN N =(运算效率进行简单数学变换)应用解题要点:1、 作图与确定衡算范围:指明流体流动方向,定出上、下游界面;2、 截面的选取:两截面均应与流动方向垂直;3、 基准水平面的选取:任意选取,必须与地面平行,用于确定流体位能的大小;4、 两截面上的压力:单位一致、表示方法一致;5、 单位必须一致:有关物理量的单位必须一致相匹配。

化工原理总结

化工原理总结
②过渡区: 2000<Re<4000,流动类型不稳定,为安全起 见,一般按湍流计算λ 。
③ 湍 流 区 : Re≥4000 及 虚 线 以 下 的 区 域 λ =f(Re,ε /d)。Re较小,λ 集中;Re较大,λ 分散
ε /d=const:Re↑,λ ↓ ; Re=const:ε /d↑,λ ↑ ④完全湍流区:λ 仅与ε /d有关,而与Re无关。 Re 一定时, λ 随 ε /d 增大而增大,阻力损失与速度
32 lu p f 2 d
64 Re
(重点)
层流时的哈根-波谡叶方程
(4)湍流时的摩擦系数
湍流时摩擦系数是通过因次分析(量纲分析)和实验
得到与Re和相对粗糙度的关系。并绘在图上,P44, 该图可分为四个区域:
①层流区:Re≤2000,λ 与Re为直线关系,而与ε /d无 关。阻力损失与速度的一次方成正比。λ 可计算,也可 以查图。 λ =64/Re λ =f(Re)
u2 d1 2 ( ) u1 d 2 (重点)
H 称为压头或扬程,其物理意义为单位重量流体流经
泵所获得的能量,单位为m 。
u1 p2 u 2 z1 g We z 2 g hf 2 2
(非常重要) 实际流体的柏努利方程式(单位质量) We为单位质量流体流经泵所获得的能量,也称为有 效功,单位为J/kg。 有效功率:单位时间输送设备所作的有效功。以Ne 表示:
x wn
n
x wB x wn ——液体混合物中各组分的质量分数
公式应用条件:混合前后体积不变,则1kg混合液的体积
等于各组分单独存在时的体积之和。
(3)气体密度的计算
气体的密度随温度和压强而变化
当气体的压强不太高、温度不太低时,气体密度可按

化工原理知识点总结

化工原理知识点总结

化工原理知识点总结文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取。

2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率。

3.牛顿粘性定律:F=±τA=±μAdu/dy,(F:剪应力;A:面积;μ:粘度;du/dy:速度梯度)。

4.两种流动形态:层流和湍流。

流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流。

当流体层流时,其平均速度是最大流速的1/2。

5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C。

6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dg(λ:摩擦系数);层流时λ=64/Re,湍流时λ=F(Re,ε/d),(ε:管壁粗糙度);局部阻力hf=ξu2/2g,(ξ:局部阻力系数,情况不同计算方法不同)7.流量计:变压头流量计(测速管、孔板流量计、文丘里流量计);变截面流量计。

孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用。

其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定。

转子流量计的特点——恒压差、变截面。

8.离心泵主要参数:流量、压头、效率(容积效率v:考虑流量泄漏所造成的能量损失;水力效率H:考虑流动阻力所造成的能量损失;机械效率m:考虑轴承、密封填料和轮盘的摩擦损失。

)、轴功率;工作点(提供与所需水头一致);安装高度(气蚀现象,气蚀余量);泵的型号(泵口直径和扬程);气体输送机械:通风机、鼓风机、压缩机、真空泵。

9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m31atm =101325Pa====760mmHg(1)被测流体的压力 > 大气压 表压 = 绝压-大气压(2)被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳(蜗壳形)和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体。

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

化工原理的知识点总结

化工原理的知识点总结

化工原理的知识点总结一、物质的转化1. 化学反应原理化学反应是化工生产中最基本的过程之一,其原理是指通过物质之间的相互作用,原有物质的化学成分和结构发生变化,产生新的物质。

在化学反应中,往往会 Begingroup 产生热量、释放或者吸收气体以及溶解或析出固体物质。

常见的反应类型包括酸碱反应、氧化还原反应、置换反应、水解反应等。

2. 反应热力学反应热力学研究的是化学反应在不同途径下产生的能量变化规律。

反应热力学的主要内容包括热力学系统、热力学函数、热力学平衡、化学平衡等。

通过反应热力学的研究,可以预测化学反应的进行方向和速率,为化工生产提供重要的理论指导。

3. 反应动力学反应动力学研究的是化学反应速率随时间变化规律。

反应动力学的主要内容包括反应速率和反应速率常数的确定、反应速率方程和速率常数的推导等。

通过反应动力学的研究,可以基于反应速率的规律来设计和优化化工反应器,提高反应效率,减少能耗,降低生产成本。

二、传热传质1. 传热原理传热是指热量从高温物体传递到低温物体的过程。

传热原理主要包括热传导、对流传热和辐射传热三种方式。

热传导是指热量在固体物质内部传递的过程,对流传热是指热量通过流体介质传递的过程,而辐射传热是指热量通过辐射的方式传递的过程。

2. 传质原理传质是物质在空间内由高浓度区向低浓度区扩散的过程。

传质原理主要包括扩散、对流传质和表面传质。

扩散是指物质在固体、液体或气体中沿浓度梯度传输的现象,对流传质是指物质通过流体介质进行传送的过程,表面传质是指物质在表面上通过吸附和蒸发进行传递的过程。

三、流体力学1. 流体性质流体是一种无固定形态的物质,其主要特点包括不能承受剪切应力、易于流动和易于变形。

在化工过程中,流体的性质对设备设计和流体流动有重要影响。

流体的主要性质包括黏度、密度、表观黏度、流变性等。

2. 流体流动流体流动是指流体在管道或设备内部的运动过程。

流体的流动过程包括定常流动和非定常流动,同时还会受到雷诺数、流态、雷诺方程等因素的影响。

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)

化工原理重要知识点总结(五篇)第一篇:化工原理重要知识点总结一基本概念1、连续性方程2、液体和气体混合物密度求取3、离心泵特性曲线的测定4、旋风分离器的操作原理5、传热的三种基本方式6、如何测定及如何提高对流传热的总传热系数K7、重力沉降与离心沉降8、如何强化传热9、简捷法10、精馏原理11、亨利定律12、漏液13、板式塔与填料塔14、气膜控制与液膜控制15、绝热饱和温度二、核心公式第一章、流体流动与流体输送机械(1)流体静力学基本方程(例1-9)U型管压差计(2)柏努利方程的应用(例1-14)(3)范宁公式(4)离心泵的安装高度(例2-5)第二章、非均相物系的分离和固体流态化(1)重力沉降滞流区的沉降公式、降尘室的沉降条件、在降尘室中设置水平隔板(例3-3)、流型校核、降尘室的生产能力(2)离心沉降旋风分离器的压强降、旋风分离器的临界粒径、沉降流型校核(离心沉降速度、层流)、多个旋风分离器的并联(例3-5)第三章、传热(1)热量衡算(有相变、无相变)K的计算、平均温度差、总传热速率方程、传热面积的计算(判别是否合用)(例4-8)(2)流体在圆形管内作强制湍流流动时α计算式(公式、条件),粘度μ对α的影响。

(3)实验测K(例4-9)(4)换热器操作型问题(求流体出口温度,例4-10)下册第一章蒸馏全塔物料衡算【例1-4】、精馏段、提馏段操作线方程、q线方程、相平衡方程、逐板计算法求理论板层数和进料版位置(完整手算过程)进料热状况对汽液相流量的影响下册第二章吸收吸收塔的物料衡算;液气比与最小液气比求m 【例2-8】填料层高度的计算【传质单元高度、传质单元数(脱吸因数法)】提高填料层高度对气相出口浓度的影响下册干燥湿度、相对湿度、焓带循环的干燥器物料衡算(求循环量)热量衡算(求温度)预热器热量【例5-5】第二篇:混凝土结构原理重要知识点总结1,混凝土结构是以混泥土为主要材料制成的结构,包括素混凝土结构,钢筋混凝土结构,预应力混凝土结构,和配置各种纤维筋的混凝土结构。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、流体力学及其输送1.单元操作:物理化学变化的单个操作过程,如过滤、蒸馏、萃取;2.四个基本概念:物料衡算、能量衡算、平衡关系、过程速率;3.牛顿粘性定律:F=±τA=±μAdu/dy,F:剪应力;A:面积;μ:粘度;du/dy:速度梯度;4.两种流动形态:层流和湍流;流动形态的判据雷诺数Re=duρ/μ;层流—2000—过渡—4000—湍流;当流体层流时,其平均速度是最大流速的1/2;5.连续性方程:A1u1=A2u2;伯努力方程:gz+p/ρ+1/2u2=C;6.流体阻力=沿程阻力+局部阻力;范宁公式:沿程压降:Δpf=λlρu2/2d,沿程阻力:Hf=Δpf/ρg=λl u2/2dgλ:摩擦系数;层流时λ=64/Re,湍流时λ=FRe,ε/d,ε:管壁粗糙度;局部阻力hf=ξu2/2g,ξ:局部阻力系数,情况不同计算方法不同7.流量计:变压头流量计测速管、孔板流量计、文丘里流量计;变截面流量计;孔板流量计的特点;结构简单,制造容易,安装方便,得到广泛的使用;其不足之处在于局部阻力较大,孔口边缘容易被流体腐蚀或磨损,因此要定期进行校正,同时流量较小时难以测定;转子流量计的特点——恒压差、变截面;8.离心泵主要参数:流量、压头、效率容积效率v:考虑流量泄漏所造成的能量损失;水力效率H:考虑流动阻力所造成的能量损失;机械效率m:考虑轴承、密封填料和轮盘的摩擦损失;、轴功率;工作点提供与所需水头一致;安装高度气蚀现象,气蚀余量;泵的型号泵口直径和扬程;气体输送机械:通风机、鼓风机、压缩机、真空泵;9. 常温下水的密度1000kg/m3,标准状态下空气密度 kg/m31atm =101325Pa====760mmHg1被测流体的压力 > 大气压 表压 = 绝压-大气压2被测流体的压力 < 大气压 真空度 = 大气压-绝压= -表压10. 管路总阻力损失的计算 11. 离心泵的构件: 叶轮、泵壳蜗壳形和 轴封装置离心泵的叶轮闭式效率最高,适用于输送洁净的液体;半闭式和开式效率较低,常用于输送浆料或悬浮液;气缚现象:贮槽内的液体没有吸入泵内;汽蚀现象:泵的安装位置太高,叶轮中各处压强高于被输送液体的饱和蒸汽压;原因①安装高度太高②被输送流体的温度太高,液体蒸汽压过高;③吸入管路阻力或压头损失太高各种泵:耐腐蚀泵:输送酸、碱及浓氨水等腐蚀性液体12. 往复泵的流量调节❖ 1正位移泵❖ 流量只与泵的几何尺寸和转速有关,与管路特性无关,压头与流量无关,受管路的承压能力所限制,这种特性称为正位移性,这种泵称为正位移泵;222'2e 2e 2u d l l u d l l u d l h h h f f f ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=+=∑∑∑∑∑∑ζλλζλ❖往复泵是正位移泵之一;正位移泵不能采用出口阀门来调节流量,否则流量急剧上升,导致示损坏;❖2往复泵的流量调节❖第一,旁路调节,如图2-28所示,采用旁路阀调节主管流量,但泵的流量是不变的;第二,改变曲柄转速和活塞行程;使用变速电机或变速装置改变曲柄转速,达到调节流量,使用蒸汽机则更为方便;改变活塞行程则不方便;13.流体输送机械分类14.离心泵特性曲线:O q qHH1 管路h e ~ 图2-10 离心泵的工作泵H ~ 泵 ~ ηg Pz A ρ∆+∆= A15.流体输送机械特点:•速度式流体输送机器的特点•1由于速度式流体输送机械的转动惯量小,摩擦损失小,适合高速旋转,所以速度式流体输送机械转速高、流量大、功率大;•2运转平稳可靠,排气稳定、均匀,一般可连续运转1~3年而不需要停机检修;•3速度式流体输送机械的零部件少,结构紧凑;•4由于单级压力比不高,故不适合在太小的流量或较高的压力>70MPa下工作;• 2.容积式流体输送机械的特点•1运动机构的尺寸确定后,工作腔的容积变化规律也就确定了,因此机械转速改变对工作腔容积变化规律不发生直接的影响,故机械工作的稳定性较好;•2流体的吸入和排出是靠工作腔容积变化,与流体性质关系不大,故容易达到较高的压力;•3容积式机械结构复杂,易于损坏的零件多;而且往复质量的惯性力限制了机械转速的提高;此外,流体吸入和排出是间歇的,容易引起液柱及管道的振动;16.流体体积随压力变化而改变的性质称为压缩性;二、非均相机械分离1.颗粒的沉降:层流沉降速度Vt=ρp -ρgdp2/18μ,ρp -ρ:颗粒与流体密度差,μ:流体粘度;重力沉降沉降室,H/v=L/u,多层;增稠器,以得到稠浆为目的的沉淀;离心沉降旋风分离器;2.过滤:深层过滤和滤饼过滤常用,助滤剂增加滤饼刚性和空隙率;分类:压滤、离心过滤,间歇、连续;滤速的康采尼方程:u=Δp/Lμε3/5a21-ε2,ε:滤饼空隙率;a :颗粒比表面积;L :层厚;3.过滤介质:过滤过程所用的多孔性介质称为过滤介质,过滤介质应具有下列特性:多孔性、孔径大小适宜、耐腐蚀、耐热并具有足够的机械强度;4.助滤剂:若滤浆中所含固体颗粒很小,或者所形成的滤饼孔道很小,又若滤饼可压缩,随着过滤进行,滤饼受压变形,都使过滤阻力很大而导致过滤困难;可采用助滤剂以改善滤饼的结构,增强其刚性;常用的助滤剂有:硅藻土、纤维粉末、活性炭、石棉等5. 过滤速率基本方程恒速过滤,恒压过滤 6.过滤设备:板框压滤机间歇操作,构造简单,过滤面积大而占地省,过滤压力高可达左右,便于用耐腐蚀性材料制造,便于洗涤;它的缺点是装卸、清洗劳动强度较大;、叶滤机叶滤机也是间歇操作设备,具有过滤推动力大、单位地面所容纳的过滤面积大、滤饼洗涤较充分等优点;其生产能力比板框压滤机大,而且机械化程度高,劳动力较省,密闭过滤,操作环境较好;其缺点是构造较复杂、造价较高;、厢式压滤φμr p K ∆=2)(2e q q K d dq u +==ττK qq q e =+22τ222KA VV V e=+机、转筒真空过滤机操作连续、自动7.自由沉降:单个颗粒在流体中的沉降过程称;干扰沉降:若颗粒数量较多,相互间距离较近,则颗粒沉降时相互间会干扰,称为干扰沉降;8.影响因素:当颗粒浓度增加,沉降速度减少;容器的壁和底面,沉降速度减少;非球形的沉降速度小于球形颗粒的沉降速度;9. 流态化是一种使固体颗粒通过与流体接触而转变成类似于流体状态的操作;分三个阶段:1固定床阶段:流体通过颗粒床层的表观速度u较低,使颗粒空隙中流体的真实速度u1小于颗粒的沉降速度ut,则颗粒基本上保持静止不动,颗粒层为固定床;流化床阶段:在一定的表观速度下,颗粒床层膨胀到一定程度后将不再膨胀,此时颗粒悬浮于流体中,床层有一个明显的上界面,与沸腾水的表面相似,这种床层称为流化床;散式流态化,聚式流态化;3颗粒输送阶段:如果继续提高流体的表观速度u,使真实速度u1大于颗粒的沉降速度ut,则颗粒将被气流所带走,此时床层上界面消失,这种状态称为气力输送;10. 气力输送的优点1系统封闭,避免物料飞扬,减少物料损失,改善劳动条件;2输送管路不限制,即使在无法铺设道路或安装输送机械的地方,使用气力输送更加方便;3设备紧凑,易于实现连续化、自动化操作,便于同连续化工生产相衔接;4在气力输送过程中可同时进行粉料的干燥、粉碎、冷却、加料等操作;三、传热1.传热方式:热传导傅立叶定律、对流传热牛顿冷却定律、辐射传热四次方定律;热交换方式:间壁式传热、混合式传热、蓄热体传热对蓄热体的周期性加热、冷却;2.傅立叶定律:dQ= -λdA ,Q:热传导速率;A:等温面积;λ:比例系数;:温度梯度;λ与温度的关系:λ=λ01+at,a:温度系数;3.不同情况下的热传导:单层平壁:Q=t1-t2/b/CmA=温差/热阻,b:壁厚;Cm=λ1-λ2/2;多层平壁:Q=t1-tn+1/ bi /λiA;单层圆筒:Q=t1-t2/b/λAm,A:圆筒侧面积,C= A2-A1/lnA2/A1;多层圆筒:Q=2πLt1-t n+1/ 1/λi lnri+1/ri ;4.对流传热类型:强制对流传热外加机械能、自然对流传热、温差导致、蒸汽冷凝传热冷壁、液体沸腾传热热壁,前两者无相变,后两者有相变;牛顿冷却定律:dQ=hdAΔt,Δt>0;h:传热系数;5.吸收率A+反射率R+透射率D=1;黑体A=1,镜体R=1,透热体D=1,灰体A+R=1;总辐射能E=Eλdλ,Eλ:单色辐射能;λ:波长;四次方定律:E=CT/1004=εC0T/1004,C:灰体辐射常数;C0:黑体辐射常数;ε=C/C0:发射率或黑度;两物体辐射传热:Q1-2=C1-2φAT1/1004-T2/1004,φ:角系数;A :辐射面积;C1-2=1/1/C1+1/C2-1/C06.总传热速率方程:dQ=KmdA,dQ :微元传热速率;Km :总传热系数;A :传热面积; 1/K=1/h1+bA1/λAm+A1/h2A2,h1,h2:热、冷流体表面传热系数;7.换热器:夹套换热器、蛇管式换热器、套管式换热器、列管式换热器;8、1强化传热 为了使物料满足所要求的操作温度进行的加热或冷却,希望热量以所期望的速率进行传递;2削弱传热 :为了使物料或设备减少热量散失,而对管道或设备进行保温或保冷;9.热传导 物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为热传导,又称导热;10.对流传热:对流仅发生于流体中,它是指由于流体的宏观运动使流体各部分之间发生相对位移而导致的热量传递过程 ; 11. 12.传热的基本方式:1热传导2对流传热—热对流 3辐射传热 13.影响冷凝传热的因素和冷凝传热的强化① 流体物性:冷凝液 、、 ;潜热r →② 温差:液膜层流流动时,t=ts -tW,, ③ 不凝气体:不凝气体的存在会导致1%不凝气可使60%,所以应该定期排放④ 蒸汽流速与流向u>10m/s :蒸汽与液膜同向时u,;反向时u,;u 时无论方向;因此蒸汽进口一般设在换热器上部,以避免蒸汽与液膜逆向流动使;⑤ 蒸汽过热:包括冷却和冷凝两个过程;⑥ 冷凝面的形状和⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧管内冷凝管外冷凝冷凝传热管内沸腾大容器沸腾沸腾传热有相变混合对流传热有限空间自然对流大空间自然对流自然对流传热外部流动内部流动强制对流传热无相变对流传热位置:以减少冷凝液膜的厚度并作为目的;垂直板或管:可开纵向沟槽;水平管束:可采用错列;14. 导热系数的物理意义:表示温度梯度为1K/m 或1℃/m 时,单位时间通过单位面积的热量;即:单位温度梯度下的热通量; 0为固体在0℃时的导热系数,k 为温度系数,1/℃, 对大多数金属材料为负值,对大多数非金属固体材料为正值;15.在物体边界上,传热边界条件可分为以下三类:1已知物体边界壁面的温度,称为第一类边界条件;2已知物体边界壁面的热通量值,称为第二类边界条件;已知物体壁面处的对流传热条件,称为第三类边界条件;16.准数的定义与物理意义:努塞尔准数Nusselt, Nu : 对流传热与厚度为L 的流体层内的热传导之比;努塞尔数越大,对流传热的传热强度也越大;它反映了固体壁面处的无因次温度梯度的大小;雷诺准数Reynold, Re : 惯性力与粘性力之比;雷诺数小,表示流体的粘性力起控制作用,抑制流层的扰动,随着雷诺数的增大,流体中流体微团的扰动加剧,壁面处的温度梯度增大,对流传热系数增大;普朗特准数Prandtl, Pr : 动量扩散与热量扩散之比;它表征了流体的动量传递能力与热量传递能力的格拉晓夫准数Grashof, Gr :浮升力与粘性力之比 ; )1(0kt +=λλλαLνμρuL uL =a c p νλμ=它反映了由于流体中温度差引起密度差所导致的浮升力对对流传热的影响;它在自然对流中的作用与强制对流中雷诺数的作用相当;17.蒸汽与低于饱和温度的壁面接触时有膜状冷凝和珠状冷凝两种18. 影响沸腾传热的因素及强化途径:① 液体的性质:② 温差:③ 操作压强:④ 加热面:19.辐射:物体通过电磁波来传递能量的过程;热辐射:物体由于热的原因以电磁波的形式向外发射能量的过程;20.热辐射=反射+吸收+穿透 黑体,白体,透热体,灰体 21.物体的黑度:指同温度下物体与黑体辐射能力之比; 仅与自身特性有关;22. 斯蒂芬—波尔茨曼定律 0──黑体辐射常数,=× 10-8W/m2 .K4; 克希霍夫定律 :C0──黑体辐射系数,=m2 .K4 角系数23.气体的热辐射具有以下两个主要特点:1气体的辐射和吸收对波长具有强烈的选择性2气体的辐射和吸收是在整个容积内进行24.传热三步: 1热流体以对流传热方式将热量传给固体壁面;2热量以热传导方23223νβμρβt gL tL g ∆=∆0E E =ε4040)100(T C T E o ==σ(11f E E Eb ===αα发出的总辐射能由表面发出的辐射能上的由表面落到表面i i j ij A A A =ϕ式由间壁的热侧面传到冷侧面;3冷流体以对流传热方式将间壁传来的热量带走;25. 热量衡算方程反映了冷、热流体在传热过程中温度变化的相互关系;根据能量守恒原理,在传热过程中,若忽略热损失,单位时间内热流体放出的热量等于冷流体所吸收的热量;热量衡算方程26.传热过程的平均温差计算:恒温差传热,变温差传热27.按照冷、热流体之间的相对流动方向,流体之间作垂直交叉的流动,称为错流;如一流体只沿一个方向流动,而另一流体反复地折流,使两侧流体间并流和逆流交替出现,这种情况称为简单折流;28.不同流动排布型式的比较:进出口温度条件相同时,逆流的平均温差最大,并流的平均温差最小,对于其他的流动排布型式,其平均温差介于两者之间;在实际的换热器中应尽量采用逆流流动,而避免并流流动;但是在一些特殊场合下仍采用并流流动,以满足特定的生产工艺需要;采用折流和其他复杂流动的目的是为了提高传热系数,然而其代价是减小了平均传热温差;29.换热器传热效率e 的定义为实际传热速率Q 与理论上可能的最大传热速率Q max 之比四、质量传递基础1.质量传递简称传质是指物质从一处向另一处转移,包括相内传质和相际传质两类,前者发生在同一个相内,后者则涉及不同的两相;)()(1221c c c h h h H H m H H m Q -=-=max Q Q=ε2.1气汽-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程;解吸:为吸收的逆过程;蒸馏:不同物质在气液两相间的相互转移;气体增减湿:湿分由液相气相向气相液相转移;2液-液系统:萃取:溶质由一液相转入另一液相;这是在液体混合物中加入另一不相溶的液相物质,使原混合物组分在两液相中重新分配的过程;3气汽-液系统:吸收:混合气体中可溶组分由气相传递到液相溶剂中的过程;解吸:为吸收的逆过程;蒸馏:不同物质在气液两相间的相互转移;气体增减湿:湿分由液相气相向气相液相转移;4气-固系统:干燥:加入热量使液体气化,从固体的表面或内部转入气相;吸附:物质由气相趋附于固体表面主要是多孔性固体的内表面,吸附平衡是过程进行的极限;3.费可定律:实验表明,在二元混合物A+B中,组分的扩散通量与其浓度梯度成正比,这个关系称为费克Fick定律;4.化学反应可分为两类:一类是在整个相内均匀发生的反应,称为均相反应;另一类则是局限在某个特定区域内的反应,它可以是在相的内部,也可以在边界上,称为非均相反应;5.对流传质通常指运动流体与固体壁面或两股直接接触的流体之间间的质量传递,是相际传质的基础;一般情况下,传质设备中流体的流动形态多为湍流;6.传质过程应用的设备有多种类型,其主要功能是给传质的两相或多相提供良好的接触机会,包括增大相界面面积和增强湍动强度,主要有填料塔和板式塔;7.板式塔:有害因素:空间上的反向流动:泡沫夹带增大板间距、气泡夹带增大降液管长度;空间上的不均匀流动:气体,液体;如何提高效率:1合理选择塔板孔径和开口率造成适宜气液接触状态2设置倾斜的进气装置塔板压降:塔板上下对应位置的压力差新型:泡罩塔板、浮阀塔板、筛孔塔板、舌型塔板、网型塔板、垂直塔板8.填料塔:主要特性数据:比表面积、孔隙率、添填料的几何形状拉西环、鲍尔环、矩鞍型填料、阶梯环添料9.填料塔操作范围小,对液体负荷变化敏感;不易处理易聚合或含有固体悬浮物的物料;反应过程中需要冷却时,填料塔复杂,有侧线出料时,填料塔不如板式塔方便;板式塔设计简便安全;填料塔小时结构简单,造价低;易起泡物系、腐蚀性物系、热敏性物系,填料塔更合适;填料塔压降比板式塔小,真空操作方便;五、气体吸收1.吸收是将气体混合物与适当的液体接触,利用个组;分在液体中溶解度的差异而使气体中不同组分分离的操作;混合气体中,能够溶解于液体中的组分称为吸收质或溶质;不能溶解的组分称为惰性气体;吸收操作所用的溶剂称为吸收剂;溶有溶质的溶液称为吸收液或简称溶液;派出的气体称为吸收尾气;分物理吸收——煤气脱苯,化学吸收——二氧化碳碳酸钾2.吸收操作是气体混合物的主要分离方法,化工生产;中它有以下几种具体的应用:1.化工产品2.分离气体混合物3.从气体中回收有用组分4.气体净化原料气的净化和尾气、废气的净化5.生化工程;一个完整地吸收分离过程一般包括吸收和解吸两部分;3.溶剂的选择:1溶剂应对气体中被分离组分有较大溶解度;2溶剂对其他组分的溶解度要小3溶质在溶剂中的溶解度对温度变化敏感4容积蒸汽压低,减少回收时的损失5溶剂有较好的化学稳定性6溶剂有较低的粘度7溶剂价廉,无腐蚀性、无毒不易燃;吸收率η=mA除/mA进×100%≈ y1-y2/y1×100%,y1,y2:进塔和出塔混合气中A的摩尔分数;4..稀溶液中亨利定律:cA=HpA,cA:溶解度;H:溶解度系数;pA:气相分压;pA=ExA,xA:液相中溶质摩尔分数;E:亨利系数;y=mx,平衡常数m=E/p;E=ρs/HMs,ρs,Ms:纯溶剂密度和相对分子质量;5. 费克定律:jA=-DABdcA/dz,jA:扩散速率;DAB:组分A在组分B中的扩散系数;dcA/dz:组分A在扩散方向z上的浓度梯度;等分子扩散速率:NA= jA=DpA,1-pA,2/RTz;单向扩散:NA=DpA,1-pA,2p/RTz pB,m,p/pB,m:漂流因子,pB,m= pB,2-pB,1/lnpB,2/pB,1,即对数平均值;同理,NA=DcA,1-cA,2c/zcB,m;6. 吸收塔操作线方程:qnL/qnV=y1-y2/x1-x2,qnV:二元混合气摩尔流量;qnL:液相摩尔流量;x,y:任意一截面液气相摩尔流量;最小液气比qnL/qnVmin=y1-y2/x1-x2,qnL/qnV= — qnL/qnVmin;低浓度时填料塔高度h=qnV dy/y-y/KyaS=qnL dx/x-x/KxaS=NOGHOG=NOLHOL,K:传质系数;S:塔截面积;a:单位体积填料有效接触面积;NOG= dy/y-y:气相总传质单元数;HOG =qnV/KyaS:气相总传质单元高度;相平衡线为直线时:NOG=ln1-S’y1-mx2/y2-mx2+S’/1-S’,NOL=ln1-Ay1-mx2/y2-mx2+A/1-A,吸收因数:A=1/S’= qmV/mqmV;7.填料塔:液体上进下出,气体下进上出,其中设有液体在分布器,可使其均匀分布于填料表面,塔顶可按转除末器;填料塔是一种应用广泛的气液两相接触并进行传热、传质的塔设备,可用于吸收解吸、精馏和萃取等分离过程;填料塔不仅结构简单,而且具有阻力小和便于用耐腐蚀材料制造等优点,尤其适用于塔直径较小地情形及处理有腐蚀性的物料或要求压强较小的真空蒸馏系统,此外,对于某些液气比较大的蒸馏或吸收操作,也宜采用填料塔;气液逆流流动,增加传质推动力表征填料特性的主要参数有:1.比表面积;2.空隙度;3.单位堆体积内的填料数目n;4.堆积密度;5.干填料因子及填料因子;6.机械强度及化学稳定性8.六、蒸馏1.蒸馏分类:操作方式:连续蒸馏、间歇蒸馏;对分离的要求:简单蒸馏、平衡蒸馏闪蒸、精馏、特殊精馏精馏还包括水蒸气精馏、间歇精馏、恒沸精馏、萃取精馏、反应精馏;压力:常压蒸馏、加压蒸馏、减压蒸馏;组分:双组分蒸馏和多组分蒸馏精馏,常用精馏塔;精馏,加压提高蒸汽冷凝温度,降压降低沸点温度;2.双组分溶液气液相平衡:液态泡点方程:xA=p-pBt/pAt-pBt,xA:液态组分A的摩尔分数;p t:压强关于温度的函数;气态露点方程:yA=pA/p=pAt/p×p-pBt/pAt-pBt;平衡常数KA=yA/xA ,理想溶液:KA=p°A/p,即组分饱和蒸气压和总压之比;挥发度:υA=pA/xA,相对挥发度:αAB=υA/υB,最终可导出气液平衡方程:y=αx/1+a-1x;气液平衡相图:p-x图等温、t-xy图等压、x-y图;3.平衡蒸馏:qnF,xF加热至泡点以上tF,减压气化,温度达到平衡温度te,两相平衡qnD,yD和qnW,xW;物料衡算:yD=qxW/q-1-xF/q-1,液化率:q=qnW/qnF;热量衡算:tF=te+1-qγ/Cp,m,Cp,m:原液的摩尔定压热容;γ:原液的摩尔气化潜热;平衡关系:yD=αxW/1+α-1xW;4.简单蒸馏:持续加热至釜液组成和馏出液组成达到规定时停止;关系式:lnnF/nW= {lnxF/xW-αln1-xF/1-xW}/α-1;总物料衡算:nF=nW+nD;易挥发组分衡算:nFxF =nWxW+nDxD;推出:xD= nFxF-nWxW/nF-nW;5.精馏:多次部分气化部分冷凝连续、间歇,泡点不同采取不同的压力操作,塔板数从上至下记;塔顶易挥发组分回收率:ηD=qnDxD/qnFxF×100%,釜中不易挥发组分回收率:ηW=qnW1-xW/qnF1-xF×100%;精馏段总物料衡算:qnV=qnD+qnL;精馏段易挥发组分衡算:qnVyn+1=qnDxD+qnLxn;V:各层上升蒸汽量;D:塔顶馏出液量;L:各板下降的液量;yn+1:第n+1块板上升的蒸汽中易挥发组分的摩尔分数;xn:第n块板下降的液体中易挥发组分的摩尔分数,精馏段操作线方程:yn+1=Rxn/R+1 +xD/R+1,回流比R= qnL/qnD;提馏段总物料衡算:qnL’=qnV’+qnW;提馏段易挥发组分衡算:qnL’x’m=qnV’y’m+1 +qnWxW ;W:釜液量,提馏段操作线方程:y’m+1= qnL’x’m/qnV’-qnWxW/qnV’;总的物料衡算:qnF+qnV’+qnL=qnV+qnL’,乘上各焓值Hx即为热量衡算,qnV=qnV’+1-nF,精馏进料热状态参数q=HV-HF/HV-HL,即单位原料液变为饱和蒸汽所需要的热量与单位原料液潜热之比;进料方程:y=qx/q-1-xF/q-1;理论塔板的计算逐板法和图解法,回流比R增大理论塔板数减小,解析法:全回流理论塔板数Nmin={lgxD1-xw/xw1-xD}/lgam-1,am:全塔平均挥发度;最小回流比Rmin=xD-yq/yq-xq,xq,yq:进料时,R实=— Rmin;全塔效率ET为理论塔板数与实际塔板数之比;间歇精馏:分批精馏,一次进料待釜液达到指定组成后,放出残液,再次加料,用于分离量少而纯度要求高的物料,每批精馏气化物质的量nV = R+1nD,所需时间τ=nV/qnV;特殊精馏:恒沸精馏加第三组分,形成新的低恒沸物,增大相对挥发度、萃取精馏加第三组分,增大相对挥发度、加盐萃取精馏、分子蒸馏针对高分子量、高沸点、高粘度、热稳定性极差的有机物;6.根据溶液的蒸汽压偏离拉乌尔定律的方向,一般可将非理想溶液分成两大类:1、正偏差溶液,2、负偏差溶液7.精馏回流中,下降也体重的轻组分向气相传递,上升正其中的重组分向液相传递,塔下半部分完成了重组分的提浓,叫做提馏段;完整的精馏塔包括精馏段和提馏段;增加回流量,提高了上升蒸汽的量,但增加了能耗,突出最小回流比,回流比是塔顶回流量比塔顶产品量的比值;板式塔加料位置在第五块板效率最高;只有提馏段没有精馏段的叫回收塔;8.加入第三组分和原溶液中的某一组份形成最低恒沸物,以新恒沸物的形式从塔顶蒸出叫做恒沸蒸馏糠醛-水,若加入的第三组分仅改变各组分的相对挥发度叫做萃取精馏乙醇-水;恒沸精馏的挟带剂要符合能与混合组分钟至少一个形成最低恒沸物,新形成的恒沸物要便于分离,恒沸物中挟带剂的含量要少;萃取精馏添加剂要选择性高、挥发性小,与原溶液可以很好的互溶;相比较,萃取精馏添加剂的选择范围广,不用形成汽化物从塔顶蒸出能耗少,但其需要连续不断的加入,不能用于间歇精馏;9.多组分精馏,获得n个产物需要n+1个塔;。

相关文档
最新文档