《反比例函数的图像和性质》测试题
(完整word版)反比例函数的图象与性质练习题
反比例函数的图象与性质练习题一、填空题(每小题3分,共30分)1、近视眼镜的度数y (度)与镜片焦距x 成反比例.已知400度近视眼镜片的焦距为0.25米,则眼镜度数y 与镜片焦距x 之间的函数关系式是 .2、如果反比例函数xk y =的图象过点(2,-3),那么k = . 3、已知y 与x 成反比例,并且当x=2时,y=-1,则当y=3时,x 的值是 .4、已知y 与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y 的值是 .5、若点A (6,y 1)和B (5,y 2)在反比例函数x y 4-=的图象上,则y 1与y 2的大小关系是 . 6、已知函数xy 3=,当x <0时,函数图象在第 象限,y 随x 的增大而 . 7、若函数12)1(---=m m x m y 是反比例函数,则m 的值是 .8、直线y=-5x+b 与双曲线xy 2-=相交于 点P (-2,m ),则b= .9、如图1,点A 在反比例函数图象上,过点A 作AB 垂直于x 轴,垂足为B ,若S △AOB =2,则这个反比例函数的解析式为. 图 110、如图2,函数y=-kx(k≠0)与xy 4-=的图 象交于点A 、B ,过点A 作AC 垂直于y 轴,垂足为C ,则△BOC 的面积为 . 图 2二、选择题(每小题3分,共30分)1、如果反比例函数的图象经过点P (-2,-1),那么这个反比例函数的表达式为( )A 、x y 21=B 、x y 21-=C 、xy 2= D 、x y 2-= 2、已知y 与x 成反比例,当x=3时,y=4,那么当y=3时,x 的值等于( )A 、4B 、-4C 、3D 、-33、若点A (-1,y 1),B(2,y 2),C (3,y 3)都在反比例函数xy 5=的图象上,则下列关系式正确的是( ) A 、y 1<y 2<y 3 B 、y 2<y 1<y 3 C 、y 3<y 2<y 1 D 、y 1<y 3<y 24、反比例函数xm y 5-=的图象的两个分支分别在第二、四象限内,那么m 的取值范围是( ) A 、m <0 B 、m >0 C 、m <5 D 、m >55、已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )A 、(-1,-2)B 、(-1,2)C 、(1,-2)D 、(-2,1)6、若一次函数b kx y +=与反比例函数x k y =的图象都经过点(-2,1),则b 的值是( ) A 、3 B 、-3 C 、5 D 、-57、若直线y=k 1x(k 1≠0)和双曲线xk y 2=(k 2≠0)在同一坐标系内的图象无交点,则k 1、k 2的关系是( ) A 、k 1与k 2异号 B 、k 1与k 2同号 C 、k 1与k 2互为倒数 D 、k 1与k 2的值相等8、已知点A 是反比例函数图象上一点,它到原点的距离为5,到x 轴的距离为3,若点A 在第二象限内,则这个反比例函数的表达式为( )A 、x y 12=B 、x y 12-=C 、x y 121=D 、xy 121-= 9、如果点P 为反比例函数x y 6=的图像上的一点,PQ 垂直于x 轴,垂足为Q ,那么 △POQ 的面积为( )A 、12B 、6C 、3D 、1.510、已知反比例函数xk y =(k≠0),当x >0时,y 随x 的增大而增大,那么一次函数y=kx-k 的图象经过( )A 、第一、第二、三象限B 、第一、二、三象限C 、第一、三、四象限D 、第二、三、四象限三、解答题1、(7分)如图3,点A是双曲线x k y =与直线y=-x-(k+1)在第二象限内的交点, AB⊥x 轴于B ,且S△ABO =23. (1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC 的面积.2、(7分)已知反比例函数xk y 2=和一次函数y=2x-1,其中一次函数的图象经过(a,b ),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)如图4,已知点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.。
专题01 反比例函数的概念、图像和性质(课后小练)-解析版
专题01 反比例函数的概念、图像和性质(课后小练)满分100分 时间:45分钟 姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(共24分)1.(本题4分)(2022·河南三门峡·九年级期末)下列四个关系式中,y 是x 的反比例函数的是( )A .yx =B .21y x =C .6y x =+D 1y=2.(本题4分)(2022·安徽·九年级期末)下列四个点中,不在反比例函数2y x=图象上的是( )A .()1,2--B .()2,1C .1,42æö--ç÷D .33,2æöç÷3.(本题4分)(2022·重庆市育才中学二模)按如图所示的运算程序,能使输出y 值为3的是( )A .1x =B .2x =C .3x =D .4x =4.(本题4分)(2021·江苏淮安·一模)定义运算:a ⊕b =(0)(0)ab ba b b ì>ïïíï<ï-î,例如:4⊕5=45,4⊕(-5)=45,那么函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【答案】D【分析】根据题干中新运算定义,分两种情况分别求出y =2⊕x 的解析式,进而求解.5.(本题4分)(2022·全国·九年级单元测试)在平面直角坐标系中,点A (1,2)-、B (2,3)、C (6,)m -分别在三个不同的象限,若反比例函数(0)ky k x=¹的图象经过其中两点,则k 的值为( )A .2-B .6C .2-或6D .6-6.(本题4分)(2022·全国·九年级课时练习)反比例函数的图象如图所示,则这个反比例函数的表达式可能是( )A .2y x=-B .83y x=-C .3y x=-D .5y x=-【答案】B【分析】根据点A 、B 的坐标结合函数图象以及反比例函数图象上点的坐标特征,即可得出32k -<<-,再对照四个选项即可得出结论.【详解】解:观察函数图象可知:3(1)21k ´-<<-´,即32k -<<-.故选:B .【点睛】本题考查了反比例函数的图象以及反比例函数图象上点的坐标特征,观察函数图象利用反比例函数图象上点的坐标特征找出k 的取值范围是解题的关键.第II 卷(非选择题)二、填空题(共20分)7.(本题5分)(2022·浙江宁波·八年级期末)已知反比例函1k y x-=,在每个象限内y 随x 的增大而增大,则k 的取值范围为______.【答案】k <1##1>k8.(本题5分)(2022·河南·辉县市城北初级中学一模)从-1,2,-3,4这四个数中任取两个不同的数分别作为a ,b 的值,得到反比例函数aby x=,则这些反比例函数中,其图像在第二,四象限的概率是________.9.(本题5分)(2022·湖南·长沙市开福区青竹湖湘一外国语学校三模)若点M (3m -,1y )、N (2m +,2y )在双曲线ky x=(0k >)上,且12y y <,则m 的取值范围是________.【点睛】本题考查了反比例函数的图象与性质,熟练掌握反比例函数的图象与性质是解题关键.10.(本题5分)(2022·江苏泰州·八年级期末)如图,在平面直角坐标系xOy中,点A为反比例函数y=-4 x(x>0)的图象上一动点,AB⊥y轴,垂足为B,以AB为边作正方形ABCD,其中CD在AB上方,连接OA,则OA2-OC2=_______.三、解答题(共56分)11.(本题10分)(2021·广东·广州市黄埔区华实初级中学二模)如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.12.(本题10分)(2022·江苏·苏州市吴江区铜罗中学八年级期中)已知y是x的反比例函数,并且当x=2时,y=6.(1)求y关于x的函数解析式;(2)当x=4时,求y的值.13.(本题12分)(2022·河南南阳·八年级期中)如图,一次函数y=﹣x+b的图象与x轴交于A点,与y轴交于B点,与反比例函数kyx=的图象交于点E(1,5)和点F(5,1).(1)求k,b的值;(2)求△EOF的面积;(3)请根据函数图象直接写出反比例函数值大于一次函数值时x的范围.反比例函数值大于一次函数值时x的范围为:【点睛】本题考查了反比例函数与一次函数综合,待定系数法求解析式,求直线围成的三角形面积,根据函数图象交点求不等式的解集,数形结合是解题的关键.14.(本题12分)(2022·河北唐山·一模)已知反比例函数y=3mx-(m为常数,且m≠3)(1)若在其图象的每一个分支上,y随x增大而减小,求m的取值范围;(2)若点A(2,32)在该反比例函数的图象上;①求m的值;②当x<﹣1时,直接写出y的取值范围.15.(本题12分)(2022·江苏扬州·八年级期末)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.。
反比例函数的图像与性质练习题
反比例函数1.如果反比例函数k y x=的图象经过鼎足之势(-2,3),那么k 的值是 ( ) A .-6 B .32- C .23- D .6 2.若点(3,4)是反比例函数221m m y x+-=图象上一点,则此图象可能经过点( ) A .(2,6) B .(2,-6) C .(4,-3) D .(3,-4)3.已知y=y 1+y 2,其中y 1与x 成反比例,且比例系数为k 1(k 1≠0),y 2与x 成正比例,且比例系数为k 2(k 2≠0),当x=-1时,y=0,则k 1与k 2的关系是 ( )A .k 1+k 2=0B .k 1-k 2=0C .k 1 k 2=1D .k 1 k 2=-14.已知函数y=k 1x 和2k y x=,若常数k 1,k 2异号,且k 1>k 2,则它们在同一坐标系内的图象大致是(如图17-16所示) ( )5.已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是(如图17-17所示) ( )6.在同一直角坐标系中,函数y=3x 与y=-1x 的图象大致是(如图17-18所示) ( )7.反比例函数k y x=在第一象限内的图象如图17-19所示,点M 是图象上一点,MP ⊥x 轴,垂足为P.如果△MOP 的面积为1,那么k 的值是( )A .1B .2C .4D .12 8.已知反比例函数12m y x-=,当x <0时,y 随x 的增大而增大,那么m 的取值范围是 ( ) A .0m < B .12m <C .12m >D .m ≥12 9.已知y=(a-1)x a 是反比例函数,则它的图象在 ( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限10.若直线11(0)y k x k =≠和双曲线22(0)k y k x=≠在同一坐标系内无交点,则k 1和k 2的关系是 ( )A .互为倒数B .绝对值相等C .符号相反D .符号相同11.已知直线y=kx+b 与双曲线k y x=交于A (x 1,y 1),B (x 2,y 2))两点,则x 1x 2的值 ( )A .与k 有关,与b 无关B .与k 无关,与b 有关C .与k ,b 都有关D .与k ,b 都无关12.已知y 与x 2成反比例,并且当x=-2时,y=2,那么当x=4时,y 等于 ( )A .-2B .2C .12 D .-4 13.已知反比例函数1y x=-上有两点A (x 1,y 1),B (x 2,y 2),且x 1<x 2,那么下列结论正确的 ( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1与y 2之间的大小关系不能确定14.已知反比例函数k y x=的图象如图17-20所示,则y=kx-2的图象大致是(如图17-21所示) ( )15.已知反比例函数22(21)m y m x -=-,则m= ,函数的表达式是 .16.甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地所用时间t (小时)表示为汽车速度v (千米/时)的函数,其函数表达式为 .17.已知函数k y x=的图象经过点(-1,3),若点(2,m )在这个函数图象上,则m= . 18.如果函数k y x =的图象与直线y=2x 和y=x+1的图象过同一点,则当x >0时,这个反比例函数的函数值y 随x 的增大而 .19.已知y 1与x 成正比例系数为k 1,y 2与x 成反比例,比例系数为k 2,若函数y=y 1-y 2的图象经过点(1,2),(2,12),则8k 1+5k 2的值为 . 20.已知点P (1,a )在反比例函数k y x =的图象上,其中a=m 2+2m+3(m 不实数),则这个函数的图象在第 象限.21.已知y=y 1+y 2,y 1与x-1成正比例,y 2与x+1成反比例,池x=0时,y=-5,当x=2时,y=1时.求:(1)y 与x 的函数关系式;(2)当x=-3时,y 的值.22.已知一次函数y=kx+k 与反比例函数8y x =的图象在第一象限交于点B (4,n ),求k ,n 的值.23.如图17-22所示,已知一次函数y=kx+b 的图象与反比例函数8y x =-的图象交于A ,B 两点,且点A 的横坐标和点B 的纵坐标都是.求:(1)一次函数的表达式;(2)△AOB 的面积.24.已知反比例函数21339k k y x --=的图象在其所在的象限内,y 随x 的增大而增大,求k 的值.25.已知正比例函数y=kx 与比例函数3y x=的图象都过点A (m,1).求: (1)正比例函数的表达式;(2)正比例函数图象与反比例数图象的另一个交点的坐标.。
初中数学反比例函数图像与性质练习题(附答案)
初中数学反比例函数图像与性质练习题一、单选题1.函数14y x=-的比例系数是( ) A.4 B.4- C.14 D.14- 2.若22(1)a y a x -=+是反比例函数,则a 的取值为( )A.1B.1-C.1±D.任意实数3.若2(1)m y m x -=-是反比例函数,则m 的取值为( )A.1B.1-C.1±D.任意实数4.点()1,1A -是反比例函数1m y x +=的图象上一点,则m 的值为( ) A .1- B .2- C .0 D .15.下列函数中,表示y 是x 的反比例函数的是( )A.y =B.a y x =C.21y x =D.13y x = 6.若反比例函数k y x =的图象经过点1(,2)2A -,则一次函数y kx k =-+与在同一坐标系中的大致图象是( )A. B. C. D.7.已知反比例函数3k y x +=的图象位于第二、四象限,则k 的取值范围是( ) A.3k >-B.3k ≥-C.3k <-D.3k ≤- 8.反比例函数k y x =图象经过()()122A B n -,,,两点,则n =( ) A. 1 B. 3 C.1- D. 3-9.已知(1)A y 1,、2(3)B y ,是反比例函数9y x=图象上的两点,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .不能确定二、填空题10.判断下面哪些式子表示y 是x 的反比例函数:①12xy =-;②3y x =+;③34y x -=;④5a y x=(a 为常数且0a ≠). 其中 是反比例函数(填序号).11.把一个长、宽、高分别为3cm 、2cm 、1cm 的长方体铜块铸成一个圆柱体铜块, 则该圆柱体铜块的底面积()2cm S 与高()cm h 之间的函数关系式为________.12.已知y 是x 的函数,用列表法给出部分x 与y 的值,表中“▲“处的数可以是 .(填一个符合题意的答案)x 12 3 y▲ 6 4 参考答案1.答案:D 解析:1111444y x x x -=-=-⋅= 所以比例系数是14-.故选D. 2.答案:A解析:由题意得221a -=-,解得21a =,1a =±10a +≠,1a ∴≠-,1a ∴=,故选A.3.答案:B 解析:由题意得2110m m ⎧-=-⎪⎨-≠⎪⎩,解得1m =-,故选B. 4.答案:B解析:把点()1,1A -代入函数解析式,即可求得m 的值.解:把点()1,1A -代入函数解析式得:111m +=-, 解得:11m +=-, 2m =-. 5.答案:D解析:6.答案:D解析:7.答案:C解析:由题意知30k +<,解得3k <-8.答案:C 解析:解:反比例函数k y x=图象经过()()122A B n -,,,两点,122k n ∴=⨯=-.解得1n =-.故选:C .9.答案:A解析:0k >,图象在一三象限,0x >时,y 随x 增大而减小.故选A.10.答案:①③④ 解析:①可得12y x =-;②是一次函数;③符合题意;④符合题意,故答案是①③④. 11.答案:()60S h h=> 解析:由题意得321Sh =⨯⨯,即6Sh =,∴6S h =∴底面积S 与高h 之间的函数关系式为()60S h h=>. 12.答案:12 解析:设解析式为k y x =, 将()2,6代入解析式得12k =, 这个函数关系式为:12y x=, 把1x =代入得12y =,∴表中“▲”处的数为12,故答案为:12.。
反比例函数的图像与性质训练卷
反比例函数的图像与性质训练卷一.选择题(共15小题)1.如图,正比例函数y=k1x与反比例函数y=的图象交于A(1,m)、B两点,当k1x ≤时,x的取值范围是()A.﹣1≤x<0或x≥1B.x≤﹣1或0<x≤1C.x≤﹣1或x≥1D.﹣1≤x<0或0<x≤12.已知反比例函数y=(k≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A.(4,2)B.(1,8)C.(﹣1,8)D.(﹣1,﹣8)3.若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.如图,等边三角形OAB,点B在x轴正半轴上,S△OAB=4,若反比例函数y=(k ≠0)图象的一支经过点A,则k的值是()A.B.C.D.6.如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3B.﹣3C.D.7.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.﹣1D.﹣28.点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y49.如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为()A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>110.若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3 11.如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A 作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1B.C.2D.12.反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限13.一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.14.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁15.已知一次函数y=kx+b的图象如图所示,则y=﹣kx+b与y=的图象为()A.B.C.D.二.填空题(共8小题)16.如图,反比例函数y=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x 轴上,△OCE的面积为6,则k=.17.如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.18.反比例函数y=的图象分布情况如图所示,则k的值可以是(写出一个符合条件的k值即可).19.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S (m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.20.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.21.在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.22.如图,正比例函数y=k1x和反比例函数y=图象相交于A、B两点,若点A的坐标是(3,2),则点B的坐标是.23.在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是.三.解答题(共12小题)24.已知反比例函数y=(k为常数,k≠0)的图象经过点A(﹣2,).(1)求这个函数的解析式;(2)若点B(m+2,m)在这个函数的图象上,求m的值.25.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(4,1),B(﹣2,n)两点,与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D在y轴上,且S△ABD=12,求点D的坐标;(3)当y1>y2时,自变量x的取值范围为.26.如图,一次函数y=﹣x+3的图象与反比例函数y=(x>0)的图象交于A(1,a),B两点,与x轴交于点C.(1)求反比例函数的解析式和点B的坐标;(2)根据图象,直接写出关于x的不等式﹣x+3<的解集;(3)若点P在x轴上,且S△APC=5,求点P的坐标.27.已知一次函数y=kx+b(k≠0)与反比例函数(m≠0)的图象交于A(2,3),B (﹣6,n)两点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.28.如图,一次函数y=x+5的图象与反比例函数的图象交于A、B两点,其中A(﹣1,a).(1)求k的值及点B的坐标;(2)请根据图象直接写出不等式的解集.29.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.30.如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图象与反比例函数y=(k2≠0)的图象相交于A(3,4),B(﹣4,m)两点.(1)求一次函数和反比例函数的解析式;(2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.31.如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.(1)求k的值;(2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.32.已知反比例函数y=(k≠0)的图象的一支如图所示,它经过点(3,﹣2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.33.如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.34.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.35.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
初三数学反比例函数的图像和性质试题
初三数学反比例函数的图像和性质试题1.已知一次函数与反比例函数的图象都经过点A(m,1).求:(1)正比例函数的解析式;(2)正比例函数与反比例函数的图象的另一个交点的坐标.【答案】(1)(2)(-3, -1)【解析】解:(1)因为反比例函数的图象经过点A(m,1),所以将A(m,1)代入中,得m=3.故A点坐标为(3,1).将A(3,1)代入,得,所以正比例函数的解析式为.(2)由方程组解得所以正比例函数与反比例函数的图象的另一个交点的坐标为(-3, -1).2.如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为,已知△的面积为1.(1)求反比例函数的解析式;(2)如果为反比例函数在第一象限图象上的点(点与点不重合),且点的横坐标为1,在轴上求一点,使最小.【答案】(1)(2)【解析】解:(1)设A点的坐标为(,),则.∴.∵,∴.∴.∴反比例函数的解析式为.(2) 由得或∴ A为.设A点关于轴的对称点为C,则C点的坐标为.如要在轴上求一点P,使PA+PB最小,即最小,则P点应为BC和x轴的交点,如图所示.令直线BC的解析式为.∵ B为(,),∴∴∴ BC的解析式为.当时,.∴ P点坐标为.3.若函数的图象在第一、三象限,则函数y=kx-3的图象经过( )A.第二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第一、三、四象限【答案】D【解析】先根据函数的图象在第一、三象限可得,再根据一次函数的性质即可判断.函数的图象在第一、三象限∴∴函数y=kx-3的图象经过第一、三、四象限故选D.【考点】反比例函数的性质,一次函数的性质点评:函数图象的性质是初中数学的重点和难点,因而是中考的热点,尤其在压轴题中极为常见,一般难度不大,需熟练掌握.4.若反比例函数的图象在第二、四象限,则 m 的取值范围是 .【答案】【解析】反比例函数:当时,图象位于第一、三象限;当时,图象位于第二、四象限.由题意得,解得【考点】反比例函数的性质点评:本题是反比例函数的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5.反比例函数的图象的两个分支关于 _______ 对称.【答案】原点【解析】根据反比例函数的图象的性质即可判断.反比例函数的图象是双曲线,两个分支关于原点对称.【考点】反比例函数的性质点评:函数图象的性质是初中数学的重点和难点,因而是中考的热点,尤其在压轴题中极为常见,一般难度不大,需熟练掌握.6.某个反比例函数的图象如图所示,根据图象提供的信息,求反比例函数的解析式.【答案】【解析】设反比例函数的解析式为,根据图象过点(-1,2)即可根据待定系数法求得反比例函数的解析式.设反比例函数的解析式为图象过点(-1,2)∴∴反比例函数的解析式为【考点】待定系数法求函数关系式点评:待定系数法求函数关系式是函数问题中极为重要的方法,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.7.反比例函数经过(-3,2),则图象在象限.【答案】二、四【解析】先根据待定系数法求得函数关系式,再根据反比例函数的性质即可得到结果.∵反比例函数经过(-3,2)∴∴图象在二、四象限.【考点】反比例函数的性质点评:待定系数法求函数关系式是函数问题中极为重要的方法,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.8.若反比例函数图像位于第一、三象限,则k .【答案】【解析】反比例函数:当时,图象位于第一、三象限;当时,图象位于第二、四象限.由题意得,解得【考点】反比例函数的性质点评:本题是反比例函数的性质的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.9.若反比例函数图象经过点(-1,2),试问点(4,-2)是否在这个函数的图象上?为什么?【答案】不在【解析】设反比例函数解析式为,先由图象经过(-1,2)根据待定系数法求得函数关系式,再把点(4,-2)代入即可判断.设反比例函数解析式为∵图象经过点(-1,2)∴∴当时,∴点(4,-2)不在这个函数的图象上.【考点】反比例函数的性质点评:待定系数法求函数关系式是函数问题中极为重要的方法,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.10.老师在同一直角坐标系中画了一个反比例函数的图象以及正比例函数y=-x的图象,请同学们观察,并说出来.同学甲:与直线y=-x有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为5.请根据以上信息,写出反比例函数的解析式.【答案】【解析】设出图象上任一点的坐标为(x,y),反比例函数函数关系式为,根据点到两坐标轴的距离的积都为5及与直线y=-x有两个交点,即可求得结果.设图象上任一点的坐标为(x,y),反比例函数函数关系式为∵图象上任意一点到两坐标轴的距离的积都为5∴∵反比例函数的图象与直线y=-x有两个交点∴∴反比例函数的解析式为【考点】反比例函数中的k的意义点评:反比例函数中的k的意义是反比例函数问题中极为重要的知识点,是中考的热点,一般以选择题、填空题形式出现,一般难度不大,需熟练掌握.。
反比例函数的图像与性质(必考)
命题点7 反比例函数的图象与性质(必考)
2022版课标要求能画反比例函数的图象,根据图象和表达式 探索并理解 和 时图象的变化情况.
1. 反比例函数的定义:一般地,形如 <m></m> ( <m></m> 为常数, <m></m> )的函数叫作反比例函数,自变量 <m></m> 的取值范围是______.点拨:反比例函数图象上点的坐标特征为:横、纵坐标之积为定值.
或 Βιβλιοθήκη 1.(人教九下P21第5题)已知在反比例函数 的图象的每一支上, 都随 的增大而增大.
(1) <m></m> 的取值范围为_______;
(2)该反比例函数的图象位于第________象限;
二、四
(3)若点 <m></m> , <m></m> 为图象上的两点,则 <m></m> ___;
(4)若该函数图象经过点 <m></m> , <m></m> ,且 <m></m> ,则比较 <m></m> , <m></m> 的大小为________;
(5)若该函数图象经过点 <m></m> , <m></m> ,且 <m></m> ,则比较 <m></m> , <m></m> 的大小为________;
(6)若 <m></m> ,已知点 <m></m> , <m></m> , <m></m> 在该反比例函数的图象上,则 <m></m> , <m></m> , <m></m> 的大小关系是_____________.
初中数学反比例函数图像及性质练习题(附答案)
初中数学反比例函数图像及性质练习题一、单选题1.下列函数: ①2y x =-,②3x y =,③1y x -=,④2,1y y x =+是x 的反比例函数的有( ) A.0个 B.1个C.2个D.3个 2.已知函数25(2)m y m x -=-是反比例函数,则m 的值为( )A.2B.2-C.2或2-D.任意实数3.已知变量y 与x 成反比例,当3x =时,6y =-,则该反比例函数的表达式为( )A.18y x =B.18y x =-C.2y x =D.2y x=- 4.如图,A 、B 是函数2y x=的图像上关于原点对称的任意两点,BC∥x 轴,AC∥y 轴,△ABC 面积记为S,则S=( )A.S=2B.S=4C.2<S<4D.S>45.函数y ax a =-与(0)a y a x =≠在同一直角坐标系中的图象可能是( ) A. B. C. D.6.反比例函数3y x=图象上三个点的坐标为112233(,),(,),(,)x y x y x y ,若1230x x x <<<,则123,,y y y 的大小关系是( )A.123y y y <<B.213y y y <<C.231y y y <<D.132y y y <<7.如图,在平面直角坐标系中,点P 是反比例函数(0)k y x x=>图象上的一点,分别过点P 作PA x ⊥轴于点,A PB y ⊥轴于点B .若四边形OAPB 的面积为3,则k 的值为( )A.3B.3-C.32D.32- 8.如图,点A 为反比例函数4y x =-图象上一点,过A 作AB x ⊥轴于点B ,连接OA ,则ABO △的面积为( )A.4-B.4C.2-D.29.已知(1)A y 1,、2(3)B y ,是反比例函数9y x=图象上的两点,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y < D .不能确定二、解答题10.已知函数2(53)()n y m x n m -=-++.(1)当m ,n 为何值时,是一次函数?(2)当m ,n 为何值时,是正比例函数?(3)当m ,n 为何值时,是反比例函数?11.已知12y y y =+,1y 与2x 成正比例函数关系,2y 与x 成反比例函数关系,且1x =时,3y =;1x =-时,1y =,(1)求y 与x 之间的函数表达式;(2)当12x =-时,求y 的值. 12.如图,已知一次函数y kx b =+的图象与反比例函数8y x =的图象交于A ,B 两点,点A 的横坐标是2,点B 的纵坐标是2-.(1)求一次函数的表达式.(2)求AOB的面积.三、计算题13.已知y是x的反比例函数,并且当3x=时,4y=。
反比例函数的图像和性质(第2课时)(作业)(夯实基础+能力提升)(原卷版)
18.3反比例函数的图像和性质(第2课时)(作业)(夯实基础+能力提升)【夯实基础】一、单选题1.(2022·上海浦东新·八年级期末)在反比例函数y =2x的图像上有三点A 1(x 1,y 1)、A 2(x 2,y 2)、A 3(x 3,y 3),已知x 1< x 2<0<x 3则下列各式中,正确的是( ) A .y 1<y 2<y 3B .y 3< y 2< y 1C .、y 2< y 1< y 3D .y 3< y 1< y 22.(2022·上海·八年级期末)已知三点(),a m 、(),b n 和(),c t 都在反比例函数2021y x=的图像上,若0a b c <<<,则m 、n 和t 的大小关系是( )A .t n m <<B .t m n <<C .m t nD .m n t <<3.(2022·上海·八年级单元测试)已知函数y =kx (k ≠0)中y 随x 的增大而增大,那么它和函数(0)ky k x=≠在同一直角坐标平面内的大致图象可能是( )A .B .C .D .4.(2022·上海·八年级单元测试)已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( ) A .(2,3) B .(-2,3)C .(3,0)D .(-3,0)5.(2022·上海·八年级单元测试)关于函数2y x=-,下列说法中正确的是( )A .图像位于第一、三象限B .图像与坐标轴没有交点C .图像是一条直线D .y 的值随x 的值增大而减小6.(2022·上海·八年级单元测试)已知点2,1在反比例函数(0)ky k x=≠的图象上,则这个函数图象一定经过点( ) A .(2,1)-- B .(2,2)C .16,2⎛⎫- ⎪⎝⎭D .(3,1)--二、填空题7.(2022·上海·八年级单元测试)若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k的取值范围是______.8.(2022·上海·八年级单元测试)已知反比例函数3ay x-=,如果在每个象限内,y 随自变量x 的增大而增大,那么a 的取值范围为__________.9.(2022·上海·八年级开学考试)反比例函数y=3k x-的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是_____.10.(2022·上海·八年级单元测试)如果函数2ky x的图像与直线y x =无交点,那么k 的取值范围为_______.11.(2022·上海·八年级期末)已知函数5k y x-=的图象在每个象限内,y 的值随x 的值增大而减小,则k 的取值范围是_________.12.(2022·上海·八年级期末)已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第四象限,那么k 的取值范围是__________.13.(2022·上海·八年级期末)已知反比例函数(0)ay a x=>的图像上有两点()11,A y ,()22,B y ,那么1y ______2y .(填“>”或“<”)14.(2022·上海松江·八年级期末)已知反比例函数3k y x-=的图象位于第二、四象限,则k 的取值范围是_____.15.(2022·上海市南洋模范中学八年级期末)1l 是反比例函数ky x=在第一象限内的图像,且过点()2,5A ,2l 与1l 关于x 轴对称,那么图像2l 的函数解析式为______.16.(2022·上海·八年级单元测试)已知三点(a ,m )、(b ,n )和(c ,t )在反比例函数y =kx(k >0)的图像上,若a <0<b <c ,则m 、n 和t 的大小关系是 ___.(用“<”连接)17.(2022·上海·八年级单元测试)已知: y 与x 成反比例,且x =1时,y =3,则x =12-时,y =______.三、解答题18.(2022·上海·上外附中八年级期末)已知函数 12y y y =-,且 1y 为 x 的反比例函数, 2y 为 x 的正比例函数,且 32x =- 和 1x = 时,y 的值都是1,求y 关于x 的函数关系式.19.(2022·上海·八年级单元测试)已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =﹣1时,y =﹣4;当x =3时,203y =,求y 关于x 的函数解析式.20.(2022·上海·八年级单元测试)参照反比例函数研究的内容与方法,研究下列函数:(1)研究函数11yx=+:①画出它的图像;②它的图像是什么图形?可看作怎样的图形经过怎样的平移得到?③说明它所具有的性质.(2)研究函数13yx=+的图像与性质;(3)由(1)(2)的图像经过平移,你还能得出怎样的函数图像与性质,请举例说明;(4)研究函数452xyx+=-的图像与性质.21.(2022·上海·八年级单元测试)已知反比例函数的图象经过点A(-2,-3).(1)求该反比例函数的表达式;(2)判断点3(2)B是否在该反比例函数的图象上,并说明理由.22.(2022·上海·八年级单元测试)已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3)(1)求k 的值;(2)此函数图象在 象限,在每个象限内,y 随x 的增大而 ;(填“增大”或“减小”) (3)判断点B (﹣1,6)是否在这个函数的图象上,并说明理由; (4)当﹣3<x <﹣1时,则y 的取值范围为 .【能力提升】一、单选题1.(2022·上海·八年级单元测试)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .y x =D .1y x=-2.(2022·上海·八年级期末)下列函数中,函数值y 随x 的增大而增大的是( ) A .3x y =-;B .3x y =; C .1y x=;D .1y x=-.3.(2022·上海浦东新·八年级期末)已知函数()0ky k x=≠中,在每个象限内,y 的值随x 的值增大而增大,那么它和函数()0y kx k =-≠在同一直角坐标平面内的大致图像是( ).A .B .C .D .4.(2022·上海·八年级期末)已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( )A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y >5.(2022·上海市南洋模范中学八年级期末)下列函数中,y 随x 的增大而减小的是( ) A .2y x = B .2y x=C .2y x =-D .2y x=-6.(2022·上海市崇明区横沙中学八年级期末)反比例函数my x=的图像在第二、四象限内,则点(,1)m -在( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题7.(2022·上海·八年级单元测试)在描述某一个反比例函数的性质时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y 轴作垂线,与两坐标轴所围成的长方形的面积为2022.”乙同学说:“这个反比例函数在同一个象限内,y 的值随着x 的值增大而增大.”根据这两位同学所描述,此反比例函数的解析式是_______. 8.(2022·上海·八年级单元测试)已知点P 位于第三象限内,且点P 到两坐标轴的距离分别为3和2.若反比例函数图象经过点P ,则该反比例函数的解析式为______.9.(2022·上海·八年级期末)若三个点(-2,1y ),(-1,2y ),(2,3y )都在反比例函数6y x=-的图像上,则1y 、2y 、3y 的大小关系是________.10.(2022·上海·八年级单元测试)在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数2k y x=的图像一个交点的坐标是(-1,3),则它们另一个交点的坐标是_______.三、解答题11.(2022·上海·八年级单元测试)如图,点A ,B 在反比例函数ky x=的图像上,A 点坐标(1,6),B 点坐标(,)(1)m n m >.(1)求反比例函数的解析式;(2)过点B 作BC y ⊥轴,垂足为点C ,联结AC ,当6ABCS=时,求点B 的坐标.。
反比例函数的图像与性质(含答案)
反比例函数的图像与性质一.选择题(共12小题) 1.当x >0时,函数的图象在( )2.反比例函数y=的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大; ③若A (﹣1,h ),B (2,k )在图象上,则h <k ;④若P (x ,y )在图象上,则P ′(﹣x ,﹣y )也在图象上. 其中正确的是( )3.已知k 1<0<k 2,则函数y=k 1x ﹣1和y=的图象大致是( ).CD .4.若正比例函数y=﹣2x 与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( )5.如图,一次函数y=kx ﹣3的图象与反比例函数y=的图象交A 、B 两点,其中A 点坐标为(2,1),则k ,m 的值为( )6.在反比例函数的图象上有两点(﹣1,y 1),,则y 1﹣y 2的值是( )7.反比例函数的图象,当x >0时,y 随x 的真增大而增大,则k 的取值范围是( )y=10.若函数为反比例函数,则a的值为()11.对于反比例函数y=,下列说法正确的是()12.如图,直线y=x与双曲线y=(k>0)的一个交点为A,且OA=2,则k的值为()D 二.填空题(共3小题)13.已知是反比例函数,那么k的值是_________.14.已知反比例函数的图象经过点(m,2)和(﹣2,3),则m的值为_________.15.如图,点P是反比例函数图象上的一点,则矩形PEOF的面积是_________.三.解答题(共3小题)16.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.17.(2012•云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.18.(2012•南京二模)反比例函数y1=图象上的一些点的坐标如下表所示:(1)这个反比例函数的表达式是_________;(2)一次函数的表达式是y2=mx﹣1(其中,m是常数,且m≠0).①求证:不论m为何值,该一次函数的图象都经过一个定点;②已知一次函数的图象与反比例函数图象交于点(﹣6,1)和点(3,﹣2),请你直接写出使式子>mx﹣1成立的x的取值范围.反比例函数的图像与性质参考答案与试题解析一.选择题(共12小题)1.(2013•兰州)当x>0时,函数的图象在()解:∵反比例函数(2.(2013•河北)反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()得到y=得到得到3.(2013•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是().C D.4.(2012•孝感)若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标5.(2012•青海)如图,一次函数y=kx﹣3的图象与反比例函数y=的图象交A、B两点,其中A点坐标为(2,1),则k,m的值为()6.(2012•兰州)在反比例函数的图象上有两点(﹣1,y1),,则y1﹣y2的值是()反比例函数解:∵反比例函数)和,7.(2012•黑龙江)反比例函数的图象,当x>0时,y随x的真增大而增大,则k的取值范围是(),所以正方形的面积本题考查了反比例函数的定义.反比例函数的一般形式是y=y=本题考查了反比例函数的定义,重点是将一般式10.若函数为反比例函数,则a的值为()本题考查了反比例函数的定义.反比例函数解析式的一般形式(11.(2011•盐城)对于反比例函数y=,下列说法正确的是()的图象上,故本选项错误;的图象在一、三象限,故本选项错误;是反比例函数,∴此函数的图象是中心对称图形,故本选项正确;y=12.(2006•武汉)(人教版)如图,直线y=x与双曲线y=(k>0)的一个交点为A,且OA=2,则k的值为()D,,二.填空题(共3小题)13.已知是反比例函数,那么k的值是﹣2.反比例函数解析式的一般形式(14.(2012•黔西南州)已知反比例函数的图象经过点(m,2)和(﹣2,3),则m的值为﹣3.15.(2011•张家界)如图,点P是反比例函数图象上的一点,则矩形PEOF的面积是6.是反比例函数三.解答题(共3小题)16.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.,根据x==﹣代入(.17.(2012•云南)如图,在平面直角坐标系中,O为原点,一次函数与反比例函数的图象相交于A(2,1)、B(﹣1,﹣2)两点,与x轴交于点C.(1)分别求反比例函数和一次函数的解析式(关系式);(2)连接OA,求△AOC的面积.©2010-2013 菁优网(得到方程组(得:.的面积为.18.(2012•南京二模)反比例函数y1=图象上的一些点的坐标如下表所示:(1)这个反比例函数的表达式是y1=﹣;(2)一次函数的表达式是y2=mx﹣1(其中,m是常数,且m≠0).①求证:不论m为何值,该一次函数的图象都经过一个定点;②已知一次函数的图象与反比例函数图象交于点(﹣6,1)和点(3,﹣2),请你直接写出使式子>mx﹣1成立的x的取值范围.=得:,©2010-2013 菁优网,;>©2010-2013 菁优网。
反比例函数定义、图像和性质练习题
反比例函数定义、图像和性质练习题一.选择题(共26小题)1.若点A(1,3)在反比例函数y=的图象上,则k的值是()A.1B.2C.3D.42.已知反比例函数y=,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点(4,)C.图象不可能与坐标轴相交D.y随x的增大而减小3.反比例函数y=的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.已知反比例函数y=,当x<0时,y随x的增大而减小,那么一次函数y=﹣kx+k的图象经过第()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限5.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图象经过点(﹣1,1);乙:函数图象经过第四象限;丙:当x>0时,y随x的增大而增大.则这个函数表达式可能是()A.y=﹣x B.y=C.y=x2D.y=﹣6.一次函数y=x+n的图象与x轴交于点B,与反比例函数y=(m>0)的图象交于点A (1,m),且△AOB的面积为1,则m的值是()A.1B.2C.3D.47.已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+18.小红同学在研究函数y=|x|+的图象时,发现有如下结论:①该函数有最小值;②该函数图象与坐标轴无交点;③当x>0时,y随x的增大而增大;④该函数图象关于y轴对称;⑤直线y=8与该函数图象有两个交点,则上述结论中正确的个数为()A.2个B.3个C.4个D.5个9.下列说法正确的是()①反比例函数y=中自变量x的取值范围是x≠0;②点P(﹣3,2)在反比例函数y=﹣的图象上;③反比例函数y=的图象,在每一个象限内,y随x的增大而增大.A.①②B.①③C.②③D.①②③10.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(a是常数)的图象上,且y1<y2<0<y3,则x1,x2,x3的大小关系为()A.x2>x1>x3B.x1>x2>x3C.x3>x2>x1D.x3>x1>x2 11.已知双曲线过点(3,y1)、(1,y2)、(﹣2,y3),则下列结论正确的是()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1 12.已知点A(x1,y1),B(x2,y2)都在反比例函数y=﹣的图象上,且x1<0<x2,则y1,y2的关系是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0 13.已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0 14.一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于点A(﹣1,﹣2),点B(2,1).当y1<y2时,x的取值范围是()A.x<﹣1B.﹣1<x<0或x>2C.0<x<2D.0<x<2或x<﹣115.下列说法正确的是()A.函数y=2x的图象是过原点的射线B.直线y=﹣x+2经过第一、二、三象C.函数y=(x<0),y随x增大而增大D.函数y=2x﹣3,y随x增大而减小16.反比例函数y=与正比例函数y=2x一个交点为(1,2),则另一个交点是()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)17.根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数y=(a为常数且a>0,x>0)的性质表述中,正确的是()①y随x的增大而增大②y随x的增大而减小③0<y<1 ④0≤y≤1A.①③B.①④C.②③D.②④18.用数形结合等思想方法确定二次函数y=x2+2的图象与反比例函数y=的图象的交点的横坐标x0所在的范围是()A.0<x0<B.<x0<C.<x0<D.<x0<1 19.若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.20.一次函数y=kx+k2+1与反比例函数y=﹣在同一平面直角坐标系中的图象可能是()A.B.C.D.21.在同一平面直角坐标系中,函数y=kx+k与y=(k≠0)的图象可能是()A.B.C.D.22.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.23.反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx ﹣k的图象大致是()A.B.C.D.24.已知反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限25.如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y=的函数图象.根据这个函数的图象,下列说法正确的是()A.图象与x轴没有交点B.当x>0时,y>0C.图象与y轴的交点是(0,﹣)D.y随x的增大而减小26.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣二.填空题(共10小题)27.请写出一个图象在第二、四象限的反比例函数的表达式:.28.在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是.29.正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2=.30.若点A(1,y1),B(3,y2)在反比例函数y=的图象上,则y1y2(填“>”“<”或“=”).31.在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为.32.点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,满足:当x1>0时,均有y1<y2,则k的取值范围是.33.若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1y2.(填“>”、“=”或“<”)34.已知点A(a,y1),B(a+1,y2)在反比例函数y=(m是常数)的图象上,且y1<y2,则a的取值范围是.35.在平面直角坐标系中,一次函数y=2x与反比例函数y=(k≠0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是.36.若点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.三.解答题(共4小题)37.先化简,再求值:•﹣xy(+),其中(x,y)是函数y=2x与y=的图象的交点坐标.38.先化简再求值:(a﹣2+)÷,其中a使反比例函数y=的图象分别位于第二、四象限.39.已知函数y=(1)画出函数图象;列表:x……y….…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.40.在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若P A=2AB,求k的值.反比例函数的图像和性质参考答案与试题解析一.选择题(共26小题)1.若点A(1,3)在反比例函数y=的图象上,则k的值是()A.1B.2C.3D.4【解答】解:∵点A(1,3)在反比例函数y=的图象上,∴k=1×3=3,故选:C.2.已知反比例函数y=,则下列描述不正确的是()A.图象位于第一,第三象限B.图象必经过点(4,)C.图象不可能与坐标轴相交D.y随x的增大而减小【解答】解:A.∵k=6>0,∴图象位于第一,第三象限,故A正确,不符合题意;B.∵4×=6=k,∴图象必经过点(4,),故B正确,不符合题意;C.∵x≠0,∴y≠0,∴图象不可能与坐标轴相交,故C正确,不符合题意;D.∵k=6>0,∴在每一个象限内,y随x的增大而减小,故D错误,符合题意.故选:D.3.反比例函数y=的图象分别位于第二、四象限,则直线y=kx+k不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵反比例函数y=的图象分别位于第二、四象限,∴k<0,∴一次函数y=kx+k的图象经过第二、三、四象限,即不经过第一象限.故选:A.4.已知反比例函数y=,当x<0时,y随x的增大而减小,那么一次函数y=﹣kx+k的图象经过第()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴k>0,∴﹣k<0∵y=﹣kx+k,∴函数图象经过一、二、四象限,故选:B.5.关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图象经过点(﹣1,1);乙:函数图象经过第四象限;丙:当x>0时,y随x的增大而增大.则这个函数表达式可能是()A.y=﹣x B.y=C.y=x2D.y=﹣【解答】解:把点(﹣1,1)分别代入四个选项中的函数表达式,可得,选项B不符合题意;又函数过第四象限,而y=x2只经过第一、二象限,故选项C不符合题意;对于函数y=﹣x,当x>0时,y随x的增大而减小,与丙给出的特征不符合,故选项A 不符合题意.故选:D.6.一次函数y=x+n的图象与x轴交于点B,与反比例函数y=(m>0)的图象交于点A (1,m),且△AOB的面积为1,则m的值是()A.1B.2C.3D.4【解答】解:在y=x+n中,令y=0,得x=﹣n,∴B(﹣n,0),∵A(1,m)在一次函数y=x+n的图象上,∴m=1+n,即n=m﹣1,∴B(1﹣m,0),∵△AOB的面积为1,m>0,∴OB•|y A|=1,即|1﹣m|•m=1,解得m=2或m=﹣1(舍去),∴m=2,故选:B.7.已知y1和y2均是以x为自变量的函数,当x=m时,函数值分别是M1和M2,若存在实数m,使得M1+M2=0,则称函数y1和y2具有性质P.以下函数y1和y2具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+1【解答】解:A.令y1+y2=0,则x2+2x﹣x﹣1=0,解得x=或x=,即函数y1和y2具有性质P,符合题意;B.令y1+y2=0,则x2+2x﹣x+1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;C.令y1+y2=0,则﹣﹣x﹣1=0,整理得,x2+x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;D.令y1+y2=0,则﹣﹣x+1=0,整理得,x2﹣x+1=0,方程无解,即函数y1和y2不具有性质P,不符合题意;故选:A.8.小红同学在研究函数y=|x|+的图象时,发现有如下结论:①该函数有最小值;②该函数图象与坐标轴无交点;③当x>0时,y随x的增大而增大;④该函数图象关于y轴对称;⑤直线y=8与该函数图象有两个交点,则上述结论中正确的个数为()A.2个B.3个C.4个D.5个【解答】解:列表:x…﹣4﹣3﹣2﹣11234…y…545545…画出函数图象如图,观察图象:①该函数有最小值,符合题意;②该函数图象与坐标轴无交点,符合题意;③当x>0时,y随x的增大而增大,不合题意;④该函数图象关于y轴对称,符合题意;⑤令|x|+=8,整理得x2﹣8x+4=0或x2+8x+4=0,∵Δ=82﹣4×1×4>0,∴两个方程均有两个不相等的实数根,即共有四个根,且这四个根互不相等.∴直线y=8与该函数图象有四个交点,不符合题意,综上,以上结论正确的有:①②④,故选:B.9.下列说法正确的是()①反比例函数y=中自变量x的取值范围是x≠0;②点P(﹣3,2)在反比例函数y=﹣的图象上;③反比例函数y=的图象,在每一个象限内,y随x的增大而增大.A.①②B.①③C.②③D.①②③【解答】解:①反比例函数y=中自变量x的取值范围是x≠0,故说法正确;②因为﹣3×2=﹣6,故说法正确;③因为k=3>0,反比例函数y=的图象,在每一个象限内,y随x的增大而减小,故说法错误;故选:A.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=(a是常数)的图象上,且y1<y2<0<y3,则x1,x2,x3的大小关系为()A.x2>x1>x3B.x1>x2>x3C.x3>x2>x1D.x3>x1>x2【解答】解:∵a2+1>0,∴反比例函数y=(a是常数)的图象在一、三象限,如图所示,当y1<y2<0<y3时,x3>0>x1>x2,故选:D.11.已知双曲线过点(3,y1)、(1,y2)、(﹣2,y3),则下列结论正确的是()A.y3>y1>y2B.y3>y2>y1C.y2>y1>y3D.y2>y3>y1【解答】解:∵k<0,∴反比例函数的图象在第二、四象限,∵反比例函数的图象过点(3,y1)、(1,y2)、(﹣2,y3),∴点(3,y1)、(1,y2)在第四象限,(﹣2,y3)在第二象限,∴y2<y1<0,y3>0,∴y2<y1<y3.故选:A.12.已知点A(x1,y1),B(x2,y2)都在反比例函数y=﹣的图象上,且x1<0<x2,则y1,y2的关系是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0【解答】解:∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2,∴A在第二象限,B在第四象限,∴y1>0,y2<0,∴y1>y2.故选:A.13.已知点A(x1,y1),B(x2,y2)在反比例函数y=﹣的图象上.若x1<0<x2,则()A.y1<0<y2B.y2<0<y1C.y1<y2<0D.y2<y1<0【解答】解:∵k=﹣12<0,∴双曲线在第二,四象限,∵x1<0<x2,∴点A在第二象限,点B在第四象限,∴y2<0<y1;故选:B.14.一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于点A(﹣1,﹣2),点B(2,1).当y1<y2时,x的取值范围是()A.x<﹣1B.﹣1<x<0或x>2C.0<x<2D.0<x<2或x<﹣1【解答】解:∵一次函数和反比例函数相交于A,B两点,∴根据A,B两点坐标,可以知道反比例函数位于第一、三象限,画出反比例函数和一次函数草图,如图1,由题可得,当y1=y2时,x=﹣1或2,由图可得,当y1<y2时,0<x<2或x<﹣1,故选:D.15.下列说法正确的是()A.函数y=2x的图象是过原点的射线B.直线y=﹣x+2经过第一、二、三象限C.函数y=(x<0),y随x增大而增大D.函数y=2x﹣3,y随x增大而减小【解答】解:A、函数y=2x的图象是过原点的直线,原说法错误,故此选项不符合题意;B、直线y=﹣x+2经过第一、二、四象限,原说法错误,故此选项不符合题意;C、函数y=﹣(x<0),y随x增大而增大,原说法正确,故此选项符合题意;D、函数y=2x﹣3,y随x增大而增大,原说法错误,故此选项不符合题意.故选:C.16.反比例函数y=与正比例函数y=2x一个交点为(1,2),则另一个交点是()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【解答】解:∵反比例函数y=与正比例函数y=2x一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.17.根据反比例函数的性质、联系化学学科中的溶质质量分数的求法以及生活体验等,判定下列有关函数y=(a为常数且a>0,x>0)的性质表述中,正确的是()①y随x的增大而增大②y随x的增大而减小③0<y<1④0≤y≤1A.①③B.①④C.②③D.②④【解答】解:∵y=(a为常数且a>0,x>0),∴=,即=+1,根据反比例函数的性质,∵a>0,∴当x增大时,随x的增大而减小,∴+1也随x的增大而减小,即也随x的增大而减小,则y就随x的增大而增大,∴性质①正确.又∵a>0,x>0,∴a+x>0,∴>0,即y>0,又∵x<a+x,∴<1,即y<1,∴0<y<1,∴性质③正确.综上所述,性质①③正确,故选:A.18.用数形结合等思想方法确定二次函数y=x2+2的图象与反比例函数y=的图象的交点的横坐标x0所在的范围是()A.0<x0<B.<x0<C.<x0<D.<x0<1【解答】解:函数y=x2+2与y=的图象如图所示,交点的横坐标x0的取值范围是<x0<1,故选:D.19.若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数y =图象在第二、四象限,无选项符合.(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y =图象在第一、三象限,故B选项正确;故选:B.20.一次函数y=kx+k2+1与反比例函数y=﹣在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:∵一次函数y=kx+k2+1中,k2+1>0,∴直线与y轴的交点在正半轴,故A、B不合题意,C、D符合题意,C、由一次函数的图象过一、二、四象限可知k<0,由反比例函数的图象在二、四象限可知k>0,两结论相矛盾,故选项C错误;D、由一次函数的图象过一、二、三象限可知k>0,由反比例函数的图象在二、四象限可知k>0,故选项D正确;故选:D.21.在同一平面直角坐标系中,函数y=kx+k与y=(k≠0)的图象可能是()A.B.C.D.【解答】解:①当k>0时,y=kx+k过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+k过二、三、四象限;y=过二、四象限.观察图形可知,只有D选项符合题意.故选:D.22.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解答】解:A、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a>0,矛盾,错误;B、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;C、由函数y=ax﹣a的图象可知a>0,由函数y=(a≠0)的图象可知a<0,故错误;D、由函数y=ax﹣a的图象可知a<0,﹣a>0,由函数y=(a≠0)的图象可知a<0,故正确;故选:D.23.反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,则一次函数y=kx ﹣k的图象大致是()A.B.C.D.【解答】解:∵反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象图象经过第一、三、四象限,故选:D.24.已知反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过()A.第一、二、三象限B.第一、三、四象限C.第一、二、四象限D.第二、三、四象限【解答】解:由反比例函数图象经过二、四象限,可知,k<0,∴y=kx+2的图象经过一、二、四象限.故选:C.25.如图所示,小英同学根据学习函数的经验,自主尝试在平面直角坐标系中画出了一个解析式为y=的函数图象.根据这个函数的图象,下列说法正确的是()A.图象与x轴没有交点B.当x>0时,y>0C.图象与y轴的交点是(0,﹣)D.y随x的增大而减小【解答】解:A.由图象可知,图象与x轴没有交点,故说法正确;B.由图象可知,当0<x<1时,y<0,当x>1时,y>0,故说法错误;C.当x=0时,函数值为﹣2,故图象与y轴的交点是(0,﹣2),故说法错误;D.当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小,故说法错误.故选:A.26.已知函数y=,当函数值为3时,自变量x的值为()A.﹣2B.﹣C.﹣2或﹣D.﹣2或﹣【解答】解:若x<2,当y=3时,﹣x+1=3,解得:x=﹣2;若x≥2,当y=3时,﹣=3,解得:x=﹣,不合题意舍去;∴x=﹣2,二.填空题(共10小题)27.请写出一个图象在第二、四象限的反比例函数的表达式:y=﹣.【解答】解:∵图象在第二、四象限,∴y=﹣,故答案为:y=﹣.28.在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是m<3.【解答】解:比例函数y=图象上的每一条曲线上,y随x的增大而增大,∴m﹣3<0,∴m<3.故答案为:m<3.29.正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),则k1+k2=﹣8.【解答】解:∵正比例函数y=k1x与反比例函数y=的图象交于A,B两点,若A点坐标为(,﹣2),∴﹣2=k1,﹣2=,∴k1=﹣2,k2=﹣6,∴k1+k2=﹣8,故答案为﹣8.30.若点A(1,y1),B(3,y2)在反比例函数y=的图象上,则y1>y2(填“>”“<”或“=”).【解答】解:∵反比例函数y=中,k=3>0,∴此函数图象的两个分支分别在一三象限,且在每一象限内y随x的增大而减小.∵1<3,∴y1>y2.31.在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为﹣2.【解答】解:∵反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),∴﹣m=1×2,解得m=﹣2,即m的值为﹣2.故答案为﹣2.32.点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,满足:当x1>0时,均有y1<y2,则k的取值范围是k<0.【解答】解:∵点A(x1,y1)、B(x1+1,y2)是反比例函数y=图象上的两点,又∵0<x1<x1+1时,y1<y2,∴函数图象在二四象限,∴k<0,故答案为k<0.33.若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)【解答】解:∵2m﹣1<0(m<),∴图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∵0<1<3,∴y1<y2,故答案为:<.34.已知点A(a,y1),B(a+1,y2)在反比例函数y=(m是常数)的图象上,且y1<y2,则a的取值范围是﹣1<a<0.【解答】解:∵k=m2+1>0,∴反比例函数y=(m是常数)的图象在一、三象限,在每个象限,y随x的增大而减小,①当A(a,y1),B(a+1,y2)在同一象限,∵y1<y2,∴a>a+1,此不等式无解;②当点A(a,y1)、B(a+1,y2)在不同象限,∵y1<y2,∴a<0,a+1>0,解得:﹣1<a<0,故答案为﹣1<a<0.35.在平面直角坐标系中,一次函数y=2x与反比例函数y=(k≠0)的图象交于A(x1,y1),B(x2,y2)两点,则y1+y2的值是0.【解答】解:由正比例函数y=2x与反比例函数y=(k≠0)的图象和性质可知,其交点A(x1,y1)与B(x2,y2)关于原点对称,∴y1+y2=0,故答案为:0.36.若点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为y2<y1<y3.【解答】解:∵反比例函数y=(k为常数),k2+1>0,∴该函数图象在第一、三象限,在每个象限内y随x的增大而减小,∵点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,﹣1<﹣,点A、B在第三象限,点C在第一象限,∴y2<y1<y3,故答案为:y2<y1<y3.三.解答题(共4小题)37.先化简,再求值:•﹣xy(+),其中(x,y)是函数y=2x与y=的图象的交点坐标.【解答】原式=﹣2y﹣3x,=2x+3y﹣2y﹣3x,=﹣x+y,∵(x,y)是函数y=2x与y=的图象的交点坐标,∴联立,解得,,当x=1,y=2时,原式=﹣x+y=1,当x=﹣1,y=﹣2时,原式=﹣x+y=﹣1.38.先化简再求值:(a﹣2+)÷,其中a使反比例函数y=的图象分别位于第二、四象限.【解答】解:反比例函数y=的图象分别位于第二、四象限,∴a<0,∴|a|=﹣a,(a﹣2+)÷=•=﹣1.39.已知函数y=(1)画出函数图象;列表:x…﹣3﹣2﹣101234…y…﹣1﹣3031.…描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由;(3)设(x1,y1),(x2,y2)是函数图象上的点,若x1+x2=0,证明:y1+y2=0.【解答】解:(1)列表如下:x...﹣3﹣2﹣101234...y...﹣1﹣3031...函数图像如图所示:(2)根据图像可知:当x=1时,函数有最大值3;当x=﹣1时,函数有最小值﹣3.(3)∵(x1,x2)是函数图象上的点,x1+x2=0,∴x1和x2互为相反数,当﹣1<x1<1时,﹣1<x2<1,∴y1=3x1,y2=3x2,∴y1+y2=3x1+3x2=3(x1+x2)=0;当x1≤﹣1时,x2≥1,则y1+y2==0;同理:当x1≥1时,x2≤﹣1,y1+y2=0,综上:y1+y2=0.40.在平面直角坐标系xOy中,一次函数y=kx+b(k>0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=图象的一个交点为P(1,m).(1)求m的值;(2)若P A=2AB,求k的值.【解答】解:(1)∵P(1,m)为反比例函数y=图象上一点,∴代入得m==4,∴m=4;(2)令y=0,即kx+b=0,∴x=﹣,A(﹣,0),令x=0,y=b,∴B(0,b),∵P A=2AB,由图象得,可分为以下两种情况:①B在y轴正半轴时,b>0,∵P A=2AB,过P作PH⊥x轴交x轴于点H,又B1O⊥A1H,∠P A1O=∠B1A1O,∴△A1OB1∽△A1HP,∴,∴B1O=PH=4×=2,∴b=2,∴A1O=OH=1,∴|﹣|=1,∴k=2;②B在y轴负半轴时,b<0,过P作PQ⊥y轴,∵PQ⊥B2Q,A2O⊥B2Q,∠A2B2O=∠AB2Q,∴△A2OB2∽△PQB2,∴,∴AO=|﹣|=PQ=,B2O=B2Q=OQ=|b|=2,∴b=﹣2,∴k=6,综上,k=2或k=6.。
(完整版)反比例函数的图像和性质练习题
A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣1<x<0D.x>3
10、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y= 于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积( ).
A、逐渐增大 B、逐渐减小 C、保持不变 D、无法确定
(第10题图) (第11题图) (第12题图)
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
24、如图, 已知反比例函数y= 的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,
反比例函数的图像和性质练习题
一、选择题
1.下列函数中,y与x成反比例函数是( )
A、 B、 C、 D、
2.反比例函数 的图象两支分布在第二、四象限,则k取值范围为( )
A.k<2B.k>2C. D.
3.如果双曲线y= 经过点(-2,3),那么此双曲线也经过点( )
A.(-2,-3)B.(3,2)C.(3,-2)D.(-3,-2)
7.一次函数 与反比例函数 在同一坐标系中的图像大致是( )
(第6题图) (第7题图)
8.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是()
(第8题图) (第9题图)
9、已知一次函数y1=kx+b与反比例函数y2= 在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()
19、如图,点A是反比例函数 图象上一点,AB⊥y轴于点B, 那么△AOB的面积是。
专题01 反比例函数的图像和性质(专项培优训练)教师版
专题01 反比例函数的图像和性质(专项培优训练)满分:100分考试时间:120分钟难度系数:0.46试卷说明:本套试卷结合人教版数学九年级下册同步章节知识点,精选易错,常考,压轴类问题进行专题汇编!题目经典,题型全面,解题模型主要选取热点难点类型!同步复习,考前强化必备!适合成绩中等及偏上的学生拔高冲刺。
一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2分)(2023秋•香坊区校级期中)在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>3B.k>0C.k≥3D.k<3解:∵在反比例函数的图象的每一条曲线上,y都随x的增大而减小,∴3﹣k>0,∴k<3.故选:D.2.(2分)(2023秋•九龙坡区校级月考)反比例函数的图象经过点A(2,﹣4),则当x=﹣2时,y的值为( )A.﹣4B.C.D.4解:因为反比例函数的图象是双曲线,且关于坐标原点成中心对称,又点A(2,﹣4)在反比例函数的图象上,所以点A关于坐标原点的对称点也在该反比例函数的图象上.又点A关于坐标原点的对称点的坐标为(﹣2,4),即x=﹣2时,y=4.故选:D.3.(2分)(2023•任丘市二模)如图,把函数和函数的图象画在同一平面直角坐标系中,则坐标系的原点可能是( )A.点M B.点N C.点P D.点Q解:在函数和函数的中,∵1>0,﹣2<0,∴函数的图象在第三象限,函数的图象在第二象限,∵|﹣2|>|1|,∴当x取相同的值时,的图象更靠近坐标轴,∴坐标系的原点可能是Q.故选:D.4.(2分)(2023春•德化县期中)对于反比例函数,下列说法不正确的是( )A.点(﹣2,1)在它的图象上B.它的图象在第二,第四象限C.图象关于原点对称D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2解:反比例函数的关系式为:y=﹣,即xy=﹣2,点(﹣2,1)坐标满足关系式,因此A选项不符合题意;由于k=﹣2,因此图象位于第二,第四象限,因此B不符合题意;根据反比例函数的对称性,图象关于原点对称,因此C选项不符合题意;若点A(x1,y1),B(x2,y2)不在同一象限,由x1<x2,得出y1>y2,因此D选项符合题意.故选:D.5.(2分)(2023•长兴县二模)运用你学习函数的经验,判断下列哪个函数的图象如图所示( )A.B.y=C.D.解:选项A中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项A不符合题意;选项B中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项B不符合题意;选项C中的函数y=的图象与题干中的图象相符,故选项C符合题意;选项D中的函数y=的x不能等于﹣1,与题干中的图象不符,故选项D不符合题意;故选:C.6.(2分)(2023•武汉)关于反比例函数,下列结论正确的是( )A.图象位于第二、四象限B.图象与坐标轴有公共点C.图象所在的每一个象限内,y随x的增大而减小D.图象经过点(a,a+2),则a=1解:反比例函数,图象在第一、三象限,与坐标轴没有交点,故A选项错误,B选项错误;反比例函数,在每一个象限内,y随着x的增大而减小,故C选项正确;反比例函数图象经过点(a,a+2),∴a(a+2)=3,解得a=1或a=﹣3,故D选项错误,故选:C.7.(2分)(2023•奉贤区二模)下列函数图象中,可能是反比例函数的图象的是( )A.B.C .D .解:∵中,k =6>0,∴该函数图象在第一、第三象限,故选:C .8.(2分)(2022秋•梁山县期末)如图,A (0,1),B (1,5)曲线BC 是双曲线的一部分.曲线AB 与BC 组成图形G .由点C 开始不断重复图形G 形成一条“波浪线“.若点P (2025,m ),Q (x ,n )在该“波浪线上,则m 的值及n 的最大值为( )A .m =1,n =1B .m =5,n =1C .m =1,n =5D .m =1,n =4解:∵B (1,5)在y =的图象上.∴k =1×5=5.当x =5时,y ==1.∴C (5,1).又因为2025÷5=405.∴m =1.∵Q (x ,n )在该“波浪线”上.∴n 的最大值是5.故选:C .9.(2分)(2023秋•洪江市校级月考)下列反比例函数图象一定在二、四象限的是( )A .B .C .D .解:A.反比例函数中﹣k不一定小于零,故A选项不符合题意;B.反比例函数中﹣(k+1)不一定小于零,故B选项不符合题意;C.反比例函数中﹣(k2+1)一定小于零,故C选项符合题意;D.反比例函数中﹣(k﹣1)不一定小于零,故D选项不符合题意;故选:C.10.(2分)(2021秋•房县期末)如图,点P(﹣2a,a)是反比例函数y=的图象与⊙O的一个交点,图中阴影部分的面积为10π,则该反比例函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣解:设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:πr2=10π.解得:r=2.∵点P(﹣2a,a)是反比例函数y=(k<0)与⊙O的一个交点.∴﹣2a2=k且=r.∴a2=8.∴k=﹣2×8=﹣16,则反比例函数的解析式是:y=﹣.故选:D.二、填空题:本大题共10小题,每小题2分,共20分.11.(2分)(2023•北京二模)反比例函数y=(k≠0)在第一象限的图象如图所示,已知点A的坐标为(3,1),写出一个满足条件的k的值 2(答案不唯一) .解:假设点A(3,1)在反比例函数第一象限的图象上,则,∴k=3,但是点A在反比例函数(k≠0)第一象限的图象上方,∴0<k<3,∴满足条件的k的值可以是2.故答案为:2(答案不唯一).12.(2分)(2023春•姑苏区校级期末)若反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,则m的值为 ﹣2 .解:∵反比例函数y=(m+1)的图象在每个象限内随着x的增大而增大,∴m+1<0且3﹣m2=﹣1,解得m=﹣2.故答案为:﹣2.13.(2分)(2023•武功县模拟)已知反比例函数的图象在每个象限内y随x的增大而增大,且当1≤x≤3时,函数y的最大值和最小值之差为4,则k的值为 ﹣6 .解:∵反比例函数的图象在每个象限内y随x的增大而增大,∴k<0,∵当1≤x≤3时,函数y的最大值和最小值之差为4,∴,解得:k=﹣6.故答案为:﹣6.14.(2分)(2023秋•洪江市校级月考)若反比例函数y=的图象不经过第一象限,则k的取值范围是 k> .解:∵反比例函数y=的图象不经过第一象限,∴反比例函数y=的图象经过第二、四象限,∴1﹣3k<0,∴k>,故答案为:k>.15.(2分)(2023春•广陵区月考)已知反比例函数y=图象位于一、三象限,则m的取值范围是 m>﹣6 .解:∵反比例函数图象位于一、三象限,∴m+6>0,解得:m>﹣6.故答案为:m>﹣6.16.(2分)(2023•开阳县模拟)反比例函数y=的图象分布情况如图所示,则k的值可以是 0(答案不唯一) .(写出一个符合条件的k值即可)解:由反比例函数y=的图象位于第二,四象限可知,k﹣1<0,∴k<1,∴k的值可以是0,故答案为:0(答案不唯一).17.(2分)(2022秋•鹤山市期末)已知反比例函数y=的图象在第二、第四象限,则m的取值范围是 m <﹣7 .解:∵反比例函数y=的图象在第二、第四象限,∴m+7<0,即m<﹣7.故答案为:m<﹣7.18.(2分)(2022秋•永丰县期末)反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,则m的取值范围是 m>1 .解:∵反比例函数y=(x>0)的图象中,函数值y随着x的增大而减小,∴m﹣1>0,∴m>1,故答案为m>1.19.(2分)(2023春•灌云县期末)若反比例函数的图象在第一、三象限,则m的取值范围是 m > .解:∵反比例函数y=的图象在第一、第三象限,∴2m﹣3>0,解得m>.故答案为:m>.20.(2分)(2022•衢州二模)如图,点B在x轴正半轴上,点A在第一象限,AO=AB,函数y=(x>0)的图象分别交AO,AB于点C,D,若OC=3,BD=1,则OA的长为 5 ;当OD⊥AB时,k的值为 .解:如图,过点C作CE⊥OB于E,过点D作DF⊥OB于F,过点A作AG⊥OB于点G,设OB=m,∴CE ∥DF ∥AG ,OG =BG =m .∴∠OEC =∠BFD =90°,∵AO =AB ,∴∠AOB =∠ABO ,∴△COE ∽△DBF ,∴===3.设C (a ,b ),∴OE =a ,CE =b ,∴BF =a ,DF =b ,∴D (m ﹣a ,b ),∵反比例函数y =(x >0)的图象分别交边AO ,AB 于点C ,D ,∴k =ab =(m ﹣a )•b ,解得a =m ,∴EG =m ﹣m =m ,BF =a =m ,∴OF =m ﹣m =m .∵CE ∥AG ,∴OC :OA =CE :AG =OE :OG ,即3:OA =m :m ,∴OA =5.若OD ⊥AB ,则∠ODB =90°.由射影定理可得DF 2=OF •BF .∴b 2=m •m =m 2,即b =m ,在Rt△OCE中,由勾股定理可得,OE2+CE2=OC2,∴(m)2+(m)2=32,整理得m2=10.∴k=ab=m2=.故答案为:5;.三、解答题:本大题共8小题,21-22题每小题6分,23-28题每小题8分,共60分.21.(6分)(2022秋•顺德区期末)反比例函数.(1)画出反比例函数的图象;(2)观察图象,当y≥﹣1时,写出x的取值范围.解:(1)反比例函数.列表:x⋯﹣4﹣2﹣1124⋯y⋯﹣1﹣2﹣4421描点、连线,反比例函数的图象如图,;(2)由图象可知,当y≥﹣1时,自变量x的取值范围是x≤﹣4或x>0.22.(6分)(2023秋•利津县月考)已知反比例函数y=(m为常数)(1)若函数图象经过点A(﹣1,6),求m的值;(2)若函数图象在二、四象限,求m的取值范围;(3)若x>0时,y随x的增大而减小,求m的取值范围.解:(1)∵函数图象经过点A(﹣1,6),∴m﹣8=xy=﹣1×6=﹣6,解得:m=2,∴m的值是2;(2)∵函数图象在二、四象限,∴m﹣8<0,解得:m<8,∴m的取值范围是m<8;(3)∵若x>0时,y随x的增大而减小,∴m﹣8>0,解得:m>8,∴m的取值范围是m>8;23.(8分)(2020春•江都区期末)在函数的学习中,我们经历了“确定函数表达式﹣﹣画函数图象﹣﹣利用函数图象研究函数性质﹣﹣利用图象解决问题”的学习过程.我们可以借鉴这种方法探究函数y=的图象性质.(1)补充表格,并画出函数的图象.①列表:x…﹣3﹣10235…y…﹣1﹣2﹣441…②描点并连线,画图.(2)观察图象,写出该函数图象的一个增减性特征: 当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小 ;(3)函数y=的图象是由函数y=的图象如何平移得到的?其对称中心的坐标为 (1,0) ;(4)根据上述经验,猜一猜函数y=+2的图象大致位置,结合图象直接写出y≥3时,x的取值范围 1<x≤5 .解:(1)①x=3时,y==2.②图象如图所示:(2)当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.故答案为:当x>1时,y随x的增大而减小,当x<1时,y随x的增大而减小.(3)函数y=的图象是由函数y=的图象向右平移1个单位得到.y=的对称中心为(1,0).故答案为(1,0)(4)数y=+2的图象是由y=的图象向上平移2个得到,y≥3时,1<x≤5.故答案为1<x≤5.24.(8分)(2019春•长春期中)已知反比例函数y=,(k为常数,k≠1).(1)若点A(1,2)在这个函数的图象上,求k的值;(2)若在这个函数图象的每一分支上,y随x的增大而增大,求k的取值范围;(3)若k=13,试判断点B(3,4),C(2,5)是否在这个函数的图象上,并说明理由.解:(1)∵点A(1,2)在这个函数的图象上,∴k﹣1=1×2,解得k=3;(2)∵在函数y=图象的每一支上,y随x的增大而增大,∴k﹣1<0,解得k<1;(3)点C不在这个函数的图象上,理由如下:∵k=13,有k﹣1=12,∴反比例函数的解析式为y=.将点B的坐标代入y=,可知点B的坐标满足函数关系式,∴点B在函数y=的图象上,将点C的坐标代入y=,由5≠,可知点C的坐标不满足函数关系式,∴点C不在函数y=的图象上.25.(8分)(2017•商水县二模)数学李老师给学生出了这样一个问题:探究函数y=的图象与性质,小斌根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小斌的探究过程,请您补充完成:(1)函数y=的自变量x的取值范围是: x≠﹣1 (2)列出y与x的几组对应值,请直接写出m的值,m= 3 .x…﹣5﹣4﹣3﹣2﹣﹣012m45…y… 2 3﹣10…(3)请在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出函数y=的一条性质.解:(1)∵x+1≠0,∴x≠﹣1.故答案为:x≠﹣1.(2)当y==时,x=3.故答案为:3.(3)描点、连线画出图象如图所示.(4)观察函数图象,发现:函数y=在x<﹣1和x>﹣1上均单调递增.26.(8分)(2016春•怀柔区期末)有这样一个问题,探究函数y=的图象和性质.小强根据学习一次函数的经验,对函数y=的图象和性质进行了探究.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围是 x≠2 ;(2)如图,在平面直角坐标系xOy中,他通过列表描点画出了函数y=图象的一部分,请结合自变量的取值范围,补出函数图象的另一部分;(3)进一步探究发现,该函数图象有一条性质是:在第一象限的部分,y随x的增大而 减小 ;(4)结合函数图象,写出该函数图象的另外一条性质.解:(1)由已知得:x﹣2≠0,解得:x≠2.故答案为:x≠2.(2)补出函数图象的另一部分,如图.(3)∵在y=中k=3>0,∴该函数在第一象限的部分,y随x的增大而减小.故答案为:减小.(4)在第三、四象限的部分,y随x的增大而减小.27.(8分)(2016春•延庆县期末)有这样一个问题:探究函数y=+x的图象与性质.小东根据学习函数的经验,对函数y=+x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=+x的自变量x的取值范围是 x≠1 ;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣102345…y…﹣﹣﹣﹣1﹣﹣3m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(2,3),结合函数的图象,写出该函数的其它性质(一条即可): 该函数没有最大值,也没有最小值 .解:(1)x≠1,故答案为x≠1;(2)令x=4,∴y=+4=;∴m=;(3)如图(4)该函数的其它性质:该函数没有最大值,也没有最小值;故答案为该函数没有最大值,也没有最小值.28.(8分)(2022春•镇平县期中)已知反比例函数y=的图象经过A(2,﹣4).①求k的值.②这个函数的图象在哪几个象限?y随x的增大怎样变化?③画出函数的图象.④点B(﹣2,4),C(﹣1,5)在这个函数的图象上吗?解:①∵反比例函数y=的图象经过点A(2,﹣4),∴1﹣k=2×(﹣4)=﹣8;解得:k=9;②∵k=﹣8<0,∴图象位于二、四象限,在每个象限内y随x的增大而增大;③图象为:④∵﹣2×4=﹣8、﹣1×5=﹣5≠﹣8,∴B(﹣2,4)在反比例函数的图象上,C(﹣1,5)不在反比例函数的图象上。
鲁教版数学九年级上1.2《反比例函数的图像与性质》同步练习(含答案及解析)
反比例函数的图像与性质时间:100分钟总分:100一、选择题〔本大题共10小题,共30.0分〕1.二次函数y=ax2+bx+c的图象如下,那么一次函数y=ax−2b与反比例函数y =c在同一平面直角坐标系中的图象x大致是()A. B.C. D.2.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).假设反在第一象限内的图象与△ABC有交点,那么k的比例函数y=kx取值范围是()A. 1≤k≤4B. 2≤k≤8C. 2≤k≤16D. 8≤k≤163.假设A(3,y1),B(−2,y2),C(−1,y3)三点都在函数y=−1的图象上,那么y1,y2,xy3的大小关系是()A. y1<y2<y3B. y1>y2>y3C. y1=y2=y3D. y1<y3<y24.在双曲线y=1−k的任一支上,y都随x的增大而增大,那么k的值可以是()xA. 2B. 0C. −2D. 15.假设反比例函数y=2k+1的图象位于第一、三象限,那么k的取值可以是()xA. −3B. −2C. −1D. 06.如图,AB⊥x轴,B为垂足,双(x>0)与△AOB的两曲线y=kx条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,那么k等于()A. 2B. 3C. 4D. 6第 1 页7.一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如下图,假设y1<y2,那么x的取值范围是()A. −2<x<0或x>1B. x>1C. x<−2或0<x<1D. −2<x<18.如图,反比例函数y=kx(x>0),那么k的取值范围是()A. 1<k<2B. 2<k<3C. 2<k<4D. 2≤k≤49.如图,A,B两点在反比例函数y=k1x 的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,那么k1−k2的值是()A. 6B. 4C. 3D. 210.反比例函数y=ax (a>0,a为常数)和y=2x在第一象限内的图象如下图,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x 的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,那么点B是MD的中点.其中正确结论的个数是()A. 0B. 1C. 2D. 3二、填空题〔本大题共9小题,共27.0分〕11.如图,点A在双曲线y=1x 上,点B在双曲线y=3x上,且AB//x轴,C、D在x轴上,假设四边形ABCD为矩形,那么它的面积为______ .(x<0)12.如图,在平面直角坐标系中,点A是函数y=kx图象上的点,过点A 作y 轴的垂线交y 轴于点B,点C在x轴上,假设△ABC的面积为1,那么k的值为______ .13.如图,四边形OABC是平行四边形,点C在x轴上,(x>0)的图象经过点A(5,12),且与反比例函数y=kx边BC交于点D.假设AB=BD,那么点D的坐标为______ .14.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30∘,AB=BO,反比例函数y=k(x<0)的图象经过点A,假设S△ABO=√3,那么k的x值为______ .15.点A(1,m),B(2,n)在反比例函数y=−2的图象上,那么m与n的大小关系为______.x(a为常数)的图象,在每一个象限内,y随x的增大而减小,16.假如反比例函数y=a+3x写出一个符合条件的a的值为______.17.矩形ABCD的四个顶点均在反比例函数y=1的图象上,且点A的横坐标是2,那x么矩形ABCD的面积为______.(x<0)的图象上,过18.如图,假设点P在反比例函数y=−3x点P作PM⊥x轴于点M,PN⊥y轴于点N,那么矩形PMON的面积为______.19.反比例函数的图象经过点A(3,4),那么当−6<x<−3时,y的取值范围是______.三、计算题〔本大题共3小题,共27.0分〕20.如图,在Rt△OAB中,∠OAB=90∘,OA=AB,且△OAB(x>0)的图象经过点B,求点B的面积为9,函数y=kx的坐标及该反比例函数的表达式.第 3 页21.如图,在Rt△AOB中,∠ABO=90∘,OB=4,AB=8,且反比例函数y=k在第一象限内的图象分别交OA、xAB于点C和点D,连结OD,假设S△BOD=4,(1)求反比例函数解析式;(2)求C点坐标.),过点P作x轴的平行线交y轴于22.如图,点P的坐标为(2,32(x>0)于点N;作PM⊥AN交双曲线y=点A,交双曲线y=kxk(x>0)于点M,连接AM.PN=4.x(1)求k的值.(2)求△APM的面积.四、解答题〔本大题共2小题,共16.0分〕(x>0) 23.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=kx 的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.24.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例(k>0)的图象与BC边交于点E.函数y=kx(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?答案和解析【答案】1. C2. C3. A4. A5. D6. C7. C8. C9. D10. D11. 212. −2)13. (8,15214. −3√315. m<n第 5 页16. −2 17. 15218. 319. −4<y <−220. 解:∵∠OAB =90∘,OA =AB ,∴12⋅OA ⋅OA =9,∴OA =3√2, ∴B(3√2,3√2),把B(3√2,3√2)代入y =kx 得k =3√2⋅3√2=18, ∴反比例函数解析式为y =18x .21. 解:(1)∵S △BOD =12k ,∴12k =4,解得k =8, ∴反比例函数解析式为y =8x ;(2)设直线OA 的解析式为y =ax ,把A(4,8)代入得4a =8,解得a =2, 所以直线OA 的解析式为y =2x , 解方程组{y =8xy=2x得{y =4x=2或{y =−4x=−2,所以C 点坐标为(2,4).22. 解:(1)∵点P 的坐标为(2,32),∴AP =2,OA =32. ∵PN =4,∴AN =6, ∴点N 的坐标为(6,32).把N(6,32)代入y =k x 中,得k =9.(2)∵k =9,∴y =9x . 当x =2时,y =92. ∴MP =92−32=3. ∴S △APM =12×2×3=3.23. 解:(1)∵反比例函数y =kx 的图象经过点A ,A点的坐标为(4,2), ∴k =2×4=8,∴反比例函数的解析式为y =8x ;(2)过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N , 由题意可知,CN =2AM =4,ON =2OM =8, ∴点C 的坐标为C(8,4),设OB =x ,那么BC =x ,BN =8−x , 在Rt △CNB 中,x 2−(8−x)2=42, 解得:x =5,∴点B 的坐标为B(5,0),设直线BC 的函数表达式为y =ax +b ,直线BC 过点B(5,0),C(8,4), ∴{5a +b =08a +b =4,解得:{a =43b =−203,∴直线BC 的解析式为y =43x −203,根据题意得方程组{y =34x −203y =8x,解此方程组得:{x =−1y =−8或{x =6y =43 ∵点F 在第一象限, ∴点F 的坐标为F(6,43).24. 解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B(3,2),∵F 为AB 的中点, ∴F(3,1),∵点F 在反比例函数y =kx (k >0)的图象上, ∴k =3,∴该函数的解析式为y =3x (x >0);(2)由题意知E ,F 两点坐标分别为E(k2,2),F(3,k3), ∴S △EFA =12AF ⋅BE =12×13k(3−12k), =12k −112k 2=−112(k 2−6k +9−9) =−112(k −3)2+34,在边AB 上,不与A ,B 重合,即0<k3<2,解得0<k <6,∴当k=3时,S有最大值.S最大值=34.【解析】1. 解:二次函数y=ax2+bx+c的图象开口向下可知a<0,对称轴位于y轴左侧,a、b异号,即b>0.图象经过y轴正半可知c>0,由a<0,b>0可知,直线y=ax−2b经过一、二、四象限,由c>0可知,反比例函数y=cx的图象经过第一、三象限,应选:C.先根据二次函数的图象开口向下可知a<0,再由函数图象经过y轴正半可知c>0,利用排除法即可得出正确答案.此题考察的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.2. 解:∵△ABC是直角三角形,∴当反比例函数y=kx经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.应选C.由于△ABC是直角三角形,所以当反比例函数y=kx经过点A时k最小,经过点C时k 最大,据此可得出结论.此题考察的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.3. 【分析】此题考察了反比例函数的性质,主要是它的增减性,相对其它性质,这个知识比拟难理解,利用数形结合的思想更容易一些;注意反比例函数的图象,在每一分支,y随x的增大而增大或减小.因为反比例函数的系数为−1,那么图象的两个分支在二、四象限,且每一分支,y随x的增大而增大,作出判断;也可以依次将x的值代入计算求出对应的y值,再比拟.【解答】解:∵k=−1<0,∴反比例函数的两个分支在二、四象限,且每一分支,y随x的增大而增大,∵3>0,∴y1<0,∵−2<−1<0,∴0<y2<y3,∴y1<0<y2<y3,应选A.4. 解:∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1−k<0,∴k>1.故k可以是2(答案不唯一),应选A.先根据反比例函数的增减性判断出1−k的符号,再求出k的取值范围即可.第 7 页此题主要考察反比例函数的性质的知识点,此题属开放行题目,答案不唯一,解答此题的关键是根据题意判断出函数图象所在的象限,再根据反比例函数的性质解答即可.5. 【分析】此题考察的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.【解答】解:∵反比例函y=2k+1的图象位于第一、三象限,x∴2k+1>0,解得k>−1,2∴k的值可以是0.应选D.6. 解:连接OD,过点C作CE⊥x轴,∵OC=CA,∴OE:OB=1:2;设△OBD面积为x,根据反比例函数k的意义得到三角形OCE面积为x,∵△COE∽△AOB,∴三角形COE与三角形BOA面积之比为1:4,∵△ACD的面积为3,∴△OCD的面积为3,∴三角形BOA面积为6+x,即三角形BOA的面积为6+x=4x,解得x=2,∴1|k|=2,2∵k>0,∴k=4,应选:C.由反比例函数k的几何意义得到三角形OCE与三角形OAC面积相等,由相似三角形面积之比等于相似比得到三角形ODE与三角形OBA面积之比,设三角形OAC面积为x,列出关于x的方程,求出方程的解确定出三角形OAC与三角形OCB面积之比即可此题属于反比例函数综合题,涉及的知识有:相似三角形的断定与性质,以及反比例函数k的几何意义,纯熟掌握反比例函数k的几何意义是解此题的关键.7. 解:由函数图象可知,当x<−2或0<x<1时,一次函数的图象在二次函数图象的下方.应选C.直接根据函数图象可得出结论.此题考察的是反比例函数的性质,根据题意利用数形结合求出不等式的解集是解答此题的关键.8. 解:∵A(2,2),B(2,1),∴当双曲线经过点A时,k=2×2=4;当双曲线经过点B时,k=2×1=2,∴2<k<4.应选C.直接根据A、B两点的坐标即可得出结论.此题考察的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定合适此函数的解析式是解答此题的关键.9. 解:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF =12|k1|=12k1,S△COE=S△DOF =1 2|k2|=−12k2,∵S△AOC=S△AOE+S△COE,∴12AC⋅OE=12×2OE=OE=12(k1−k2)…①,∵S△BOD=S△DOF+S△BOF,∴12BD⋅OF=12×(EF−OE)=12×(3−OE)=32−12OE=12(k1−k2)…②,由①②两式解得OE=1,那么k1−k2=2.应选:D.由反比例函数的性质可知S△AOE=S△BOF=12k1,S△COE=S△DOF=−12k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1−k2的值.此题考察反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.10. 解:①由于A、B在同一反比例函数y=2x图象上,那么△ODB与△OCA的面积相等,都为12×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,那么四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,那么△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=a2,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;应选:D.①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积−(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.此题考察了反比例函数y=kx(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y第 9 页轴垂线,所得矩形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.11. 解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=1x上,∴四边形AEOD的面积为1,∵点B在双曲线y=3x上,且AB//x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3−1=2.故答案为:2.根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.此题主要考察了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.12. 解:∵AB⊥y轴,∴AB//CO,∴三角形AOB的面积=12AB⋅OB,∵S三角形ABC =12AB⋅OB=1,∴|k|=2,∵k<0,∴k=−2,故答案为−2.根据条件得到三角形ABO的面积=12AB⋅OB,由于三角形ABC的面积=12AB⋅OB=1,得到|k|=2,即可得到结论.此题考察了反比例函数系数k的几何意义,明确三角形AOB的面积=S三角形ABC是解题的关键.13. 解:∵反比例函数y=kx(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为y=60x,设D(m,60m),由题可得OA的解析式为y=125x,AO//BC,∴可设BC的解析式为y=125x+b,把D(m,60m )代入,可得125m+b=60m,∴b=60m −125m,∴BC的解析式为y=125x+60m−125m,令y=0,那么x=m−25m ,即OC=m−25m,∴平行四边形ABCO中,AB=m−25m,如下图,过D作DE⊥AB于E,过A作AF⊥OC于F,那么△DEB∽△AFO,∴DBDE =AOAF,而AF=12,DE=12−60m,OA=√52+122=13,∴DB=13−65m,∵AB=DB,∴m−25m =13−65m,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,152).故答案为:(8,152).先根据点A(5,12),求得反比例函数的解析式为y=60x ,可设D(m,60m),BC的解析式为y=12 5x+b,把D(m,60m)代入,可得b=60m−125m,进而得到BC的解析式为y=125x+60m−12 5m,据此可得OC=m−25m=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13−65m ,最后根据AB=BD,得到方程m−25m=13−65m,进而求得D的坐标.此题主要考察了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,根据平行四边形的对边相等以及相似三角形的对应边成比例进展计算,解题时注意方程思想的运用.14. 解:过点A作AD⊥x轴于点D,如下图.∵∠AOB=30∘,AD⊥OD,∴ODAD=cot∠AOB=√3,∵∠AOB=30∘,AB=BO,∴∠AOB=∠BAO=30∘,∴∠ABD=60∘,第 11 页∴BDAD =cot∠ABD=√33,∵OB=OD−BD,∴OBOD =OD−BDOD=(√3−√33)AD√3AD=23,∴S△ABOS△ADO =23,∵S△ABO=√3,∴S△ADO=12|k|=3√32,∵反比例函数图象在第二象限,∴k=−3√3故答案为:−3√3.过点A作AD⊥x轴于点D,由∠AOB=30∘可得出ODAD=√3,再根据BA=BO可得出∠ABD=60∘,由此可得出BDAD =√33,根据线段间的关系即可得出线段OB、OD间的比例,结合反比例函数系数k的几何意义以及S△ABO=√3即可得出结论.此题考察了反比例函数系数k的几何意义、特殊角的三角函数值以及比例的计算,解题的关键是根据线段间的关系找出OB、OD间的比例.此题属于中档题,难度不大,解决该题型题目时,根据特殊角的三角函数值找出线段间的关系是关键.15. 解:∵反比例函数y=−2x中k=−2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.由反比例函数y=−2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x的增大而增大,根据这个断定那么可.此题考察的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.16. 解:根据反比例函数的性质,在每一个象限内y随x的增大而减小的反比例函数只要符合a+3>0,即a>−3即可,故答案可以是:−2.利用反比例函数的性质解答.此题主要考察反比例函数y=kx,当k>0时,在每一个象限内,y随x的增大而减小;当k>0时,在每一个象限,y随x的增大而减小.17. 解法1:如下图,根据点A在反比例函数y=1x的图象上,且点A的横坐标是2,可得A(2,12),第 13 页根据矩形和双曲线的对称性可得,B(12,2),D(−12,−2),由两点间间隔 公式可得,AB =√(2−12)2+(12−2)2=32√2,AD =√(2+12)2+(12+2)2=52√2,∴矩形ABCD 的面积=AB ×AD =32√2×52√2=152;解法2:如下图,过B 作BE ⊥x 轴,过A 作AF ⊥x 轴,根据点A 在反比例函数y =1x 的图象上,且点A 的横坐标是2,可得A(2,12), 根据矩形和双曲线的对称性可得,B(12,2), ∵S △BOE =S △AOF =12,又∵S △AOB +S △AOF =S △BOE +S 梯形ABEF , ∴S △AOB =S 梯形ABEF =12(12+2)×(2−12)=158,∴矩形ABCD 的面积=4×158=152,故答案为:152.先根据点A在反比例函数y=1x 的图象上,且点A的横坐标是2,可得A(2,12),再根据B(12,2),D(−12,−2),运用两点间间隔公式求得AB和AD的长,即可得到矩形ABCD的面积.也可以根据A,B的坐标求得△AOB的面积,进而得到矩形的面积.此题主要考察了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,根据反比例函数系数k的几何意义以及矩形的性质求得矩形的面积.18. 解:设PN=a,PM=b,∵P点在第二象限,∴P(−a,b),代入y=3x中,得k=−ab=−3,∴矩形PMON的面积=PN⋅PM=ab=3,故答案为:3.设PN=a,PM=b,根据P点在第二象限得P(−a,b),根据矩形的面积公式即可得到结论.此题考察了反比例函数系数k的几何意义.过反比例函数图象上一点作x轴、y轴的垂线,所得矩形的面积为反比例函数系数k的绝对值.19. 解:设反比例函数关系式为y=kx(k≠0),∵图象经过点A(3,4),∴k=12,∴y=12x,当x=−6时,y=−2,当x=−3时,y=−4,∴当−6<x<−3时,−4<y<−2,故答案为:−4<y<−2.设反比例函数关系式为y=kx (k≠0),利用待定系数法可得反比例函数关系式y=12x,根据反比例函数的性质可得在图象的每一支上,y随自变量x的增大而减小,然后求出当x=−6时,y=−2,当x=−3时,y=−4,进而可得答案.此题主要考察了反比例函数的性质,以及待定系数法求反比例函数解析式,对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.20. 利用三角形面积公式得到12⋅OA⋅OA=9,那么OA=3√2,从而得到B点坐标,然后把B点坐标代入y=kx中求出k的值得到反比例函数解析式.此题考察了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);再把条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.21. (1)根据反比例函数y=kx (k≠0)系数k的几何意义得到S△BOD=12k=4,求出k即可确定反比例函数解析式;(2)先利用待定系数法确定直线AC的解析式,然后把正比例函数解析式和反比例函数解析式组成方程,解方程组即可得到C点坐标.此题考察了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.22. (1)根据P的坐标为(2,32),PN=4先求出点N的坐标为(6,32),从而求出k=9.(2)由k可求得反比例函数的解析式y=9x .根据点M的横坐标求出其纵坐标y=92,得出MP=92−32=3,从而求得S△APM=12×2×3=3.主要考察了待定系数法求反比例函数的解析式和反比例函数y=kx中k的几何意义.这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.23. (1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和双曲线的交点坐标即可.此题考察了反比例函数图象上的点的特点、待定系数法确定反比例函数的解析式等知识,解题的关键是可以根据点C的坐标确定点B的坐标,从而确定直线的解析式.24 (1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,纯熟掌握待定系数法是解此题的关键.第 15 页。
反比例函数图像与性质试题及详细标准答案
反比例函数图像与性质试题一.选择题(共21小题)1.(2013•安顺)若是反比例函数,则a的取值为()2.(1998•山西)若函数y=(m+1)是反比例函数,则m的值为()3.反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()C Dy=.C D.6.已知函数是反比例函数,且图象在第二、四象限内,则m的值是().7.若函数y=是反比例函数,则m的值为()±.8.(2014•自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是().C D.9.(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是().C D.10.(2014•牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k ≠0)的图象大致是( ) .CD .11.(2014•海南)已知k 1>0>k 2,则函数y=k 1x 和y=的图象在同一平面直角坐标系中大致是( ) .CD .12.(2014•乐山)反比例函数y=与一次函数y=kx ﹣k+2在同一直角坐标系中的图象可能是( ) .CD .13.(2014•怀化)已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=在同一坐标系中的图象大致是( ).CD .14.(2014•昆明)如图是反比例函数y=(k 为常数,k ≠0)的图象,则一次函数y=kx ﹣k 的图象大致是( ).CD .15.(2014•黔东南州)如图,正比例函数y=x 与反比例函数y=的图象相交于A 、B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为( )D .16.(2014•抚顺)如图,在平面直角坐标系中,点A 是x 轴正半轴上的一个定点,点P 是双曲线y=(x >0)上的一个动点,PB ⊥y 轴于点B ,当点P 的横坐标逐渐增大时,四边形OAPB 的面积将会( )17.(2014•黔西南州)已知如图,一次函数y=ax+b 和反比例函数y=的图象相交于A 、B 两点,不等式ax+b >的解集为( )18.(2014•贵港)如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是()19.(2013•贺州)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是().C D20.(2013•汕头)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是().C D.21.(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是().C D.二.填空题(共8小题)22.已知函数y=(k+1)是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为_________.23.若反比例函数y=(m﹣1)x﹣|m|的图象经过第二、四象限,则m=_________.24.(2002•兰州)已知函数y=(m2﹣1),当m=_________时,它的图象是双曲线.25.(2014•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=_________.26.(2013•娄底)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为_________.27.(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是_________.28.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是_________.29.(2012•宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是_________.三.解答题(共1小题)30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数图像与性质试题参考答案与试题解析一.选择题(共21小题)1.(2013•安顺)若是反比例函数,则a的取值为()y=2.(1998•山西)若函数y=(m+1)是反比例函数,则m的值为()()3.反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()C D反比例函数(>y=根据反比例函数的定义,解析式符合本题考查了反比例函数的定义,注意在解析式的一般式C D根据反比例函数的定义,反比例函数的一般式是(本题考查反比例函数的定义,熟记反比例函数解析式的一般式6.已知函数是反比例函数,且图象在第二、四象限内,则m的值是()y=7.若函数y=是反比例函数,则m的值为()±(y=±y=8.(2014•自贡)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()C D:当9.(2014•泉州)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()C D的图象可知的图象可知10.(2014•牡丹江)在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()C Dy=(11.(2014•海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()C D(y=(12.(2014•乐山)反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()C D13.(2014•怀化)已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()C Dy=y=14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k的图象大致是()C D的图象所在的象限确定y=y=的图象是双曲线,当15.(2014•黔东南州)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC 的面积为()D的图象相交于,所以的图象相交于××的图象中任取一点,16.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()()(BO=•+=+•17.(2014•黔西南州)已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b>的解集为().的解集为﹣18.(2014•贵港)如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A、B两点.若y1<y2,则x的取值范围是()19.(2013•贺州)当a≠0时,函数y=ax+1与函数y=在同一坐标系中的图象可能是()B.y=过一、三象限;过二、四象限;20.(2013•汕头)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()C D21.(2013•云南)若ab>0,则一次函数y=ax+b与反比例函数y=在同一坐标系数中的大致图象是()C D二.填空题(共8小题)22.已知函数y=(k+1)是反比例函数,且正比例函数y=kx的图象经过第一、三象限,则k的值为2.y=)﹣|m|本题考查了反比例函数的定义,重点是将一般式24.(2002•兰州)已知函数y=(m2﹣1),当m=0时,它的图象是双曲线.y=25.(2014•南开区三模)若反比例函数y=(2k﹣1)的图象位于二、四象限,则k=0.是反比例函数,,<一般式(26.(2013•娄底)如图,已知A点是反比例函数的图象上一点,AB⊥y轴于B,且△ABO的面积为3,则k的值为6.|k|中|k|27.(2013•铁岭)如图,点P是正比例函数y=x与反比例函数y=在第一象限内的交点,PA⊥OP交x轴于点A,△POA的面积为2,则k的值是2.S×((28.(2012•连云港)如图,直线y=k1x+b与双曲线y=交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是﹣5<x<﹣1或x>0.<,<29.(2012•宜宾)如图,一次函数y1=ax+b(a≠0)与反比例函数的图象交于A(1,4)、B(4,1)两点,若使y1>y2,则x的取值范围是x<0或1<x<4.三.解答题(共1小题)30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.,根据x==﹣代入(.21 / 21。
反比例函数的图像和性质专题训练
对 称 点为 P ,作 直线 P 平 行 于 y轴. A 过 点 P 作 直 线 PA 平 行 于 轴 .
相 交 于点 A, AP 面积 为 则 AP 的
与 PA ,
.
第 1 3题 图
( ) 反 比例 函数 和一次 函数 的解 析式 : 1求
ll ll
孝 簟
、 一 一 ~ 一 一 ~ 一
一 一 一 一 一 一 一 ~ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
一
一
~
一
一
~
一
二一 :二二二 ‘ 。
想 成 功 的人 头 脑 要 冷 静 , 望 值要 降低 。— — 约 翰 . 利 尔 期 柯
() 1 如果 点 A 的坐 标 为 ( , )求 线 段 A 02 , B 与线段 C 的长 度之 比 : A
=
} ( 0上, ,, 的大小关系 < ) 则 bc
— 一
Y=k x+b的 图像 和 反 比例 函数 y=堕 的 图像 的两 个交 点 .
为
. 图 ,设 点 P是 函数 Y= 0如
在第 一 象 限
图像 上 的任 意 一 点 ,点 P关 于原 点 0 的
1 6
、
、
一 … 一… 一 夹I … = = j
桌
亩 二
一 …~ …
的
亚
得 的
数 个
坐
P.
正
On afo n wi e h l fk o ngwha o nt skn wigwh t um u t ie u eor o e t ty u wa o n a s v p b f ey u g ti. i yo g
反比例函数的图象与性质》练习题
反比例函数的图象与性质》练习题1.2 反比例函数的图像与性质一、选择题1.已知反比例函数 $y=\frac{2}{x}$,则这个函数的图像一定经过()A。
(2,1) B。
(2,-1) C。
(2,4) D。
(-1,2)2.如果反比例函数 $y=\frac{k}{x}$ 的图像经过点 (-3,-4),那么该函数的图像位于()A。
第一、二象限B。
第一、三象限C。
第二、四象限D。
第三、四象限3.反比例函数 $y=\frac{k-1}{x}$ 的图像在每个象限内,y随x的增大而减小,则k的值可为A。
-1 B。
0 C。
1 D。
24.对于反比例函数 $y=\frac{2}{x}$,下列说法不正确的是()A。
点 (-2,-1) 在它的图像上 B。
它的图像在第一、三象限C。
当 x>0 时,y随 x 的增大而减小 D。
当 x<0 时,y随 x 的增大而减小5.反比例函数 $y=\frac{k}{x}$ 的图像如图1所示,点 M 是该函数图像上一点,MN 垂直于 x 轴,垂足是点 N,如果$\triangle MON=2$,则 k 的值为()A。
2 B。
-2 C。
4 D。
-46.函数 $y=x+m$ 与 $y=\frac{2}{x^2}$ 的图像可能是()A。
在同一坐标系内的直线和双曲线 B。
在同一坐标系内的直线和抛物线 C。
在不同坐标系内的直线和双曲线 D。
在不同坐标系内的直线和抛物线7.如图2,是一次函数 $y=kx+b$ 与反比例函数$y=\frac{2}{x}$ 的图像,则关于 x 的方程$kx+b=\frac{2}{x^2}$ 的解为()A。
$x_1=1,x_2=2$ B。
$x_1=-2,x_2=-1$ C。
$x_1=1,x_2=-2$ D。
$x_1=2,x_2=-1$二、填空题8.写出一个图像在第一、三象限的反比例函数的表达式。
答:$y=-\frac{1}{x}$9.已知正比例函数$y=kx$ 与反比例函数$y=\frac{k}{x}$,则 k 的值为________。
北师大版九年级数学上册《6.2反比例函数的图象与性质》同步测试题及答案
北师大版九年级数学上册《6.2反比例函数的图象与性质》同步测试题及答案一、单选题1.反比例函数y=k x是经过点(2,3),那么这个反比例函数的图象应在()A.第一、二象限B.第一、三象限C.第二,三象限D.第二、四象限2.在同一平面直角坐标系中,函数y=kx+k与y=k x(k≠0)的图象可能是()A.B.C.D.3.已知反比例函数y=−6x,则下列描述正确的是()A.图象位于第一、三象限B.图象必经过点(4,32)C.图象必经过点(4,−32)D.y随x的增大而减小4.对于反比例函数y=−4x,①这个函数图象的两个分支分别位于第二、四象限,②这个函数的图象既是轴对称图形又是中心对称图形,③点(−2,−2)不在这个函数图象上,④若点A(a,b)和点B(a+2,c)在该函数图象上,则c>b.上述四个判断中,不正确的个数是()A.3B.2C.1D.05.如图,反比例函数y=4x图象的对称轴的条数是()A.0B.1C.2D.36.在反比例函数y=1−k x的图象的每一条曲线上,y随x的增大而增大,则k的值可以是()A.-1B.0C.1D.27.下列函数中,当x>0时,y随x的增大而增大的是()A.y=−3x B.y=−x+3C.y=−5x D.y=1 2x8.若点(−2,y1),(−1,y2),(2,y3)在双曲线y=k x(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y29.在平面直角坐标系中,点P是y轴正半轴上的任意一点,过点P作x轴的平行线,分别与反比例函数y=−12x和y=16x的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为()A.10B.12C.14D.2810.如图,A,B是反比例函数y=8x图象上的两点,分别过点A,B作x轴,y轴的垂线,构成图中的三个相邻且不重叠的小矩形S1,S2,S3已知S2=3,S1+S3的值为()A.16B.10C.8D.5二、填空题11.若双曲线y=kx(k≠0)在第二、四象限,则直线y=kx-2不经过第象限.12.若反比例函数y=k x的图象经过点(-2,6)和(4,m),则m=.13.直线y=kx与双曲线y=2x交于A(x1,y1)、B(x2,y2)两点,则x1y2﹣3x2y1的值为.14.如图,点A(5a−1,2)、B(8,1)都在反比例函数y=kx(k≠0)的图象上,点P是直线y=x上的一个动点,则PA+PB的最小值是.15.如图,双曲线y=k x经过Rt △BOC斜边上的中点A,与BC交于点D,S△BOD=21则k=.16.如图,点A是反比例函数y=k x(x>0)图象上的一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,4)也在此函数的图象上,则a=.三、作图题17.在平面直角坐标系中,画出函数y=4x的图象.四、解答题18.如图,点A在反比例函数y=10x的图象上,过点A作y轴的平行线交反比例函数y=kx(k<0)的图象于点B,点C在y轴上,若△ABC的面积为8,求k的值.19.已知函数y1=kx,y2=−kx(k>0)当2≤x≤3时,函数y1的最大值是a,函数y2的最小值是a−4,求a和k的值.20.(1,√3)是反比例函数图象上的一点,直线AC经过坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的表达式.五、综合题21.已知反比例函数y=kx,其中k>−2,且k≠0,1≤x≤2.(1)若y随x的增大而增大,则k的取值范围是;(2)若该函数的最大值与最小值的差是1,求k的值.22.如图,点A在反比例函数y=k x的图象位于第一象限的分支上,过点A作AB△y轴于点B,S△AOB=2.(1)求该反比例函数的表达式(2)若P(x1,y1)、Q(x2,y2)是反比例函数y=kx图象上的两点,且x1<x2,y1<y2,指出点P、Q各位于哪个象限,并简要说明理由.23.在矩形AOBC中OB=6,OA=4.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上一点,过点F的反比例函数y=k x(k>0)图象与AC边交于点E.(1)请用k表示点E,F的坐标;(2)若△OEF的面积为9,求反比例函数的解析式.24.如图反比例函数y=k x与一次函数y=ax+b的图象交于点A(1,3)和B(﹣3,n)两点.(1)求反比例函数与一次函数的解析式;(2)由图象直接写出当x 取什么值时,一次函数的值大于反比例函数的值.(3)连OA 、OB ,求出△OAB 的面积.参考答案与解析1.【答案】B【解析】【解答】解:∵反比例函数y =k x 经过点(2,3)∴k=2×3=6>0∴反比例函数图象位于第一、三象限故答案为:B .【分析】将(2,3)代入y =k x中求出k 值,根据k 的符号进行判断即可. 2.【答案】D【解析】【解答】解:①当k >0时,y =kx+k 过一、二、三象限;y =k x过一、三象限; ②当k <0时,y =kx+k 过二、三、四象限;y =k x 过二、四象限A .由反比例函数知k<0,一次函数y =kx+k 应过二、三、四象限,故该选项不符合题意;B .由反比例函数知k<0,一次函数y =kx+k 中k >0,故该选项不符合题意;C .由反比例函数知k >0,一次函数y =kx+k 应过一、二、三象限,故该选项不符合题意;D .由反比例函数知k >0,一次函数y =kx+k 应过一、二、三象限,故该选项符合题意.故答案为:D .【分析】①当k >0时,y =kx+k 过一、二、三象限;y =k x过一、三象限;②当k <0时,y =kx+k 过二、三、四象限;y =k x过二、四象限,据此逐一判断即可. 3.【答案】C【解析】【解答】解:A 、反比例函数y =−6x,k <0,经过二、四象限,选项A 不符合题意; B 、当x=4时y =−6x =−64=−32,图象不经过点(4,32),选项B 不符合题意; C 、当x=4时y =−6x =−64=−32,图象经过点(4,−32),选项C 符合题意; D 、反比例函数图象分为两部分,在每个象限内,y 随x 的增大而增大,选项D 不符合题意; 故答案为:C .【分析】反比例函数y =−6x,由于k <0可得经过二、四象限,且在每个象限内,y 随x 的增大而增大,将x=2时y=-32,据此逐一判断即可. 4.【答案】C【解析】【解答】解: 对于反比例函数y =−4x,它的图象既是轴对称图形又是中心对称图形,故②正确; ∵−4<0∴这个函数图象的两个分支分别位于第二、四象限,故①正确;当x =−2时y =2∴点(−2,−2)不在这个函数图象上,故③正确;若a 和a +2同号,则c >b若a 和a +2异号,则b >c ,故④不正确;∴不正确的个数是1.故答案为:C.【分析】根据反比例函数的解析式可知:其图象位于二、四象限,且在每一象限内,y随x的增大而增大,据此判断①④;根据反比例函数图象的对称性可判断②;令x=-2,求出y的值,据此判断③. 5.【答案】C【解析】【解答】解:如下图沿直线y=x或y=﹣x折叠反比例函数y=4x图象,直线两旁的部分都能够完全重合,∴反比例函数y=4x图象的对称轴有2条.故答案为:C.【分析】根据轴对称图形特点分析判断,轴对称图形沿一条轴折叠180°,被折叠两部分能完全重合,关键是找到对称轴.6.【答案】D【解析】【解答】解:∵在反比例函数y= 1−kx的图象的每一条曲线上,y随x的增大而增大∴1-k<0∴k>1∴k可以为2.故答案为:D.【分析】由反比例函数y= kx图象的性质可知,当k<0时,在每个象限内,y随x的增大而增大,可列出不等式1-k<0,即k>1,据此即可得出正确答案. 7.【答案】C【解析】【解答】解:A、y=−3x,k<0,故y随着x增大而减小,故该选项不符合题意;B、y=−x+3k<0,故y随着x增大而减小,故该选项不符合题意;k=-5<0,在每个象限里,y随x的增大而增大,故该选项符合题意;C、y=−5xk= 12>0,在每个象限里,y随x的增大而减小,故该选项不符合题意.D、y=12x故答案为:C.【分析】y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;y= kx(k≠0),当k>0时,图象位于一、三象限,且在每一象限内,y随x的增大而减小;当k<0时,图象位于二、四象限,且在每一象限内,y随x的增大而增大,据此一一判断得出答案.8.【答案】D【解析】【解答】解:∵k<0∴反比例函数y=ky随x的增大而增大x图象位于二、四象限,且在每一象限内,∴点(−2,y1),(−1,y2)在第二象限,(2,y3)在第四象限∴y1>0y2>0y3<0∵−2<−1∴y1<y2∴y3<y1<y2.故答案为:D.【分析】根据反比例函数的解析式可知其图象位于二、四象限,且在每一象限内,y随x的增大而增大,据此进行比较.9.【答案】C【解析】【解答】解:如图,连接OA,OB∵△AOB 与△ACB 同底等高∴S △AOB=S △ACB∵AB△x 轴∴AB△y 轴∵A 、B 分别在反比例函数y=-12x 和y=16x的图象上 ∴S △AOP=6,S △BOP=8∴S △ABC=S △AOB=S △AOP+S △BOP=6+8=14.故答案为:C .【分析】连接OA ,OB ,根据反比例函数k 的几何意义可得S △AOP=6,S △BOP=8,再利用S △ABC=S △AOB=S △AOP+S △BOP 计算即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《反比例函数的图像和性质》测试题
一、选择题
1.已知反比例函数2
y x
=
,则这个函数的图像一定经过( ) A . (2,1) B . (2,1-) C . (2,4) D . 122⎛⎫
- ⎪⎝⎭, 2.如果反比例函数k
y x
=的图像经过点(34)--,,那么该函数的图像位于( )
A.第一、二象限 B.第一、三象限 C.第二、四象限 D.第三、四象限 3.反比例函数1
k y x
-=
的图像在每个象限内,y 随x 的增大而减小,则k 的值可为 A .1- B .0 C .1 D .2 4.对于反比例函数2
y x
=
,下列说法不正确...的是( ) A .点(21)--,在它的图像上
B .它的图像在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小
5.反比例函数k
y x
=
的图像如图1所示,点M 是该函数图像上一点,MN 垂直于x 轴,垂足是点N ,如果2MON S =△,则k 的值为( )
A.2 B.2- C.4
D.4-
6.函数y x m =+与(0)m
y m x
=≠在同一坐标系内的图像可能是( )
7.如图2,是一次函数y =kx+b 与反比例函数y =2
x
的图像,则关于x 的方程kx +b =
2
x
的解为( ) A .x l =1,x 2=2 B .x l =-2,x 2=-1 C .x l =1,x 2=-2 D .x l =2,x 2=-1
x
y
O A . x
y O B .
x
y
O C . x
y
O D .
O
N
My
x
二、填空题
8.写出一个图像在第一、三象限的反比例函数的表达式 . 9.已知正比例函数kx y =与反比例函数3
y x
=的图像都过A (m ,1),则m = ,正比例函数的表达式是 ;
10.若反比例函数1
y x
=-的图像上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”).
11.如图3,双曲线1k
y x
=与直线2y k x =相交于A B ,两点,如果A
点的坐
标是(12),,那么B 点的坐标为
三、解答题
12.已知一次函数与反比例函数的图像都经过(21)--,和(2)n ,两点.求这两个函数的关系式.
13.已知如图4,反比例函数x
y 8
-
=与一次函数2+-=x y 的图像交与A,B
两点,求(1)A,B 两点的坐标. (2)△AOB 的面积.
参考答案
一、选择题
1.A 2.B 3.D 4.C 5.D 6.B 7.C 二、填空题 8.如x
y 1
=
等 9.3, x y 31= 10. < 11. (1
2)--, 三、解答题
12.解①设反比例函数为m y x
=
, 则2(1)2m =-⨯-=
∴反比例函数的表达式为2y x
=
②
(2)n ,在反比例函数上,1n ∴=
设一次函数为y kx b =+ 因为图像经过(21)(12)--,,,两点
21
2k b k b -+=-⎧∴⎨
+=⎩
11
k b =⎧
∴⎨=⎩
一次函数为1y x =+
13.(1)由⎪⎩⎪⎨⎧
+---
=28x y x y 得⎩⎨
⎧-==2411y x ⎩⎨⎧=-=4222y x ;
所以)2,4(),4,2(--B A
(2) 2+-=x y 与x 轴的交点为(2,0) 所以S △ABC=6422
1
2221=⨯⨯+⨯⨯。