什么是ad转换器
AD转换器介绍
D/A 转换器是将输入的二进制数字量转换成模拟量,以电压或电流的形式输出.D/A 转换器实质上是一个译码器(解码器)。
一般常用的线性D/A 转换器,其输出模拟电压uO 和输入数字量Dn 之间成正比关系。
UREF 为参考电压。
uO =DnUREF将输入的每一位二进制代码按其权值大小转换成相应的模拟量,然后将代表各位的模拟量相加,则所得的总模拟量就与数字量成正比,这样便实现了从数字量到模拟量的转换。
D/A 转换器一般由数码缓冲寄存器、模拟电子开关、参考电压、解码网络和求和电路等组成. 数字量以串行或并行方式输入,并存储在数码缓冲寄存器中;寄存器输出的每位数码驱动对应数位上的电子开关,将在解码网络中获得的相应数位权值送入求和电路;求和电路将各位权值相加,便得到与数字量对应的模拟量。
开关Si 的位置受数据锁存器输出的数码di 控制:当di=1时,Si 将对应的权电阻接到参考电压UREF 上;当di=0时,Si 将对应的权电阻接地.权电阻网络D/A 转换器的特点①优点:结构简单,电阻元件数较少;②缺点:阻值相差较大,制造工艺复杂。
2. 倒T 型电阻网络D/A 转换器3. 电阻解码网络中,电阻只有R 和2R 两种,并构成倒T 型电阻网络。
当di=1时,相应的开关Si 接到求和点;当di=0时,相应的开关Si 接地.但由于虚短,求和点和地相连,所以不论开关如何转向,电阻2R 总是与地相连。
这样,倒T 型网络的各节点向上看和向右看的等效电阻都是2R ,整个网络的等效输入电阻为R 。
倒T 型电阻网络D/A 转换器的特点:①优点:电阻种类少,只有R 和2R ,提高了制造精度;而且支路电流流入求和点不存在时间差,提高了转换速度。
②应用:它是目前集成D/A 转换器中转换速度较高且使用较多的一种,如8位D/A 转换器DAC0832,就是采用倒T 型电阻网络。
三、D/A 转换器的主要技术指标1。
分辨率分辨率用于表征D/A 转换器对输入微小量变化的敏感程度。
AD转换器原理
虽说理论值是如此,但真正在应用时,最好是接近10倍才会有不错的还原效 果(因取样点越多)。若针对多信道的 Aபைடு நூலகம்D 转换器来说,就必须乘上信道数,这样 平均下去,每一个通道才不会有失真的情况产生。 量化与编码
量化与编码 电路是 A/D 转换器的核心组成的部分,一般对取样值的量化方 式有下列两种:
只舍去不进位:首先取一最小量化单位Δ=U/2n,U 是输入模拟电压的最大值, n 是输出数字数值的位数。当输入模拟电压 U 在0~Δ之间,则归入0Δ,当 U 在 Δ~2Δ之间,则归入1Δ。透过这样的量化方法产生的最大量化误差为Δ/2,而 且量化误差总是为正,+1/2LSB。
相对精确度是指实际输出值与一理想理论之满刻输出值之接近程度,其相关 的关系是如下式子所列: 相对精准度=
基本上,一个 n-bit 的转换器就有 n 个数字输出位。这种所产生的位数值是 等效于在 A/D 转换器的输入端的模拟大小特性值。
如果外部所要输入电压或是电流量较大的话,所转换后的的位数值也就较 大。透过并列端口接口或是微处理机连接 A/D 转换器时,必须了解如何去控制或 是驱动这颗 A/D 转换器的问题。因此需要了解到 A/D 转换器上的控制信号有哪些。
AD转换器的主要技术指标
AD转换器的主要技术指标AD转换器(Analog-to-Digital Converter)是将模拟信号转换成数字信号的电子器件,广泛应用于测量、通信、控制和信号处理等领域。
主要技术指标是指影响AD转换器性能的关键参数。
下面将介绍AD转换器的主要技术指标。
1. 位数(Resolution):位数是指转换结果的二进制位数,也可理解为ADC的精度。
位数越高,转换结果的精度越高。
常见的位数有8位、10位、12位、16位等。
常见的高精度应用需要12位以上的位数。
2. 采样率(Sampling Rate):采样率是指ADC在单位时间内完成采样的次数,常用单位为千赫兹(kHz)或兆赫兹(MHz)。
采样率决定了ADC对信号的处理能力,即ADC能够处理多快的信号。
高速应用需要高采样率的ADC。
3. 信噪比(Signal-to-Noise Ratio, SNR):信噪比表示转换后的数字信号与输入模拟信号之间的噪声水平差异。
信噪比越高,ADC的抗干扰能力越强,输出结果越准确。
4. 有效比特数(Effective Number of Bits, ENOB):有效比特数表示ADC输出二进制数据的有效位数,与信噪比有关。
一般来说,ENOB比位数小,这是由于ADC的非线性误差、噪声和失配等因素导致的。
5. 误差(Error):误差是指ADC转换结果与输入信号之间的差异。
常见的误差包括非线性误差、积分非线性误差、增益误差、失配误差等。
误差越小,ADC的准确度越高。
6. 电源电压(Supply Voltage):ADC的电源电压指使用电路所需的电源电压。
一般来说,工作电压越低,功耗越小,对系统电源需求越低。
7. 噪声(Noise):噪声是指ADC输出结果中包含的非期望信号。
噪声可由转换器内部电路、供电电压和输入信号引起。
噪声影响了ADC对小信号的测量准确性,因此较低的噪声水平对高精度测量至关重要。
8. 温度效应(Temperature Coefficient):温度效应衡量ADC对温度变化的敏感程度。
AD 转换器概述
则 fs ≥ 2fimax
0
TG O(t)
S(t) S(t)=1:开关闭合 S(t)=0:开关断开
t
t
t
取样与保持电路及工作原理
采得模拟信号转换为数字信号都需要一定时间,为了给后续的量 化编码过程提供一个稳定的值,在取样电路后要求将所采样的模 拟信号保持一段时间。
I
A1
采样
S
A2
O
CH
开关驱 动电路
0 1 ·0 …· ·
0
数据寄存器
11 0…
···
0
Dn-1 1
Dn-2 0 数字
···
量输出 D1
D0
D/A 转换器
O 7.5V
• 转换原理 第三个CP:
A=6.84V
模拟 量输入
I
电压 比较器
I ≥6.25V 启
动 脉 冲
CP 时钟 控制逻 辑电路
VREF=10VVREF
移位寄位器
0 0 1·…· · 0
(2) 第一次积分:
S2
+I A S1
R
–VREF B
定 时
S
–
O
–
+
1
O
1
t 0
I
dt
1
VI T1
n 级计数器
+
C
C
信
F
1
FF
1
FF
1
FF
1
号 Q Fn 1J
Qn n-1 1J
Q 1 1J
0 1J
G
n
C < -1
1K R
C< 1K
R
1
C<
1K R
ad转换器内部工作原理
AD转换器的基本原理与内部工作原理1. 什么是AD转换器?AD转换器(Analog-to-Digital Converter)是一种电子设备,用于将连续的模拟信号转换为离散的数字信号。
模拟信号是连续变化的,而数字信号是离散的,由一系列二进制数据表示。
在现代电子设备中,AD转换器起着至关重要的作用,因为大多数处理器和微控制器只能处理数字信号。
AD转换器将模拟信号转换为数字信号,使得模拟信号可以被数字系统处理和分析。
2. AD转换器的基本原理AD转换器的基本原理是将模拟信号进行采样和量化两个步骤。
2.1 采样采样是将连续的模拟信号在时间上进行离散化的过程。
采样根据采样定理,以足够高的频率对模拟信号进行采样,以保留原始信号的信息。
采样定理规定,为了避免采样过程中出现混叠现象,采样频率必须大于信号频率的两倍。
这就意味着,对于高频信号,需要更高的采样频率来保证采样的准确性。
在AD转换器中,采样由一个采样保持电路(Sample and Hold Circuit)完成。
采样保持电路在每个采样周期内,通过开关将输入信号的电荷存储在电容器中,以保持信号的稳定性。
2.2 量化量化是将连续的模拟信号转换为离散的数字信号的过程。
量化将每个采样点的模拟信号幅度映射到一个离散的数字值。
量化的精度由分辨率决定,分辨率定义为量化器可以表示的离散级别的数量。
分辨率越高,表示的数字值越准确。
在AD转换器中,量化由一个量化器(Quantizer)完成。
量化器将采样保持电路中的电荷转换为离散的数字值。
量化器通常使用比较器和计数器的组合来实现。
比较器将采样保持电路中的电压与一组参考电压进行比较,以确定输入电压所对应的离散级别。
计数器用于记录比较器的输出,以表示量化后的数字值。
2.3 编码量化后的数字值通常用二进制表示。
编码是将量化后的数字值转换为二进制形式的过程。
编码的方式有很多种,常见的编码方式包括二进制编码、格雷码、自然二进制编码等。
ad转换器产生误差的原因
ad转换器产生误差的原因AD转换器(Analog-to-Digital Converter)是将模拟信号转换为数字信号的设备,它的精度和准确性对于数据采集和处理至关重要。
然而,AD转换器在实际应用中可能会产生误差,以下是一些可能导致误差的原因:1. 量化误差(Quantization Error):AD转换器将连续的模拟信号转换为离散的数字信号,这个过程中会产生量化误差。
量化误差是指数字信号与模拟信号之间的差异,这种误差是由于数字信号只能表示一定数量的离散值而引起的。
量化误差的大小与AD转换器的分辨率有关,分辨率越高,量化误差越小。
2. 噪声(Noise):噪声是指在AD转换器输入端产生的随机信号,它会影响AD 转换器的精度和准确性。
噪声可以来自于电源、环境、电路等方面,它会使得AD转换器输出的数字信号不稳定,从而影响数据的准确性。
3. 非线性误差(Nonlinearity Error):非线性误差是指AD转换器输出的数字信号与输入的模拟信号之间的非线性关系。
这种误差通常是由于AD转换器的非线性特性引起的,例如非线性增益、非线性偏移等。
4. 时钟误差(Clock Error):AD转换器的工作需要时钟信号的驱动,时钟信号的频率和相位会影响AD转换器的精度和准确性。
时钟误差可能来自于时钟信号的抖动、时钟信号的漂移等因素,这些因素都会影响AD转换器的输出信号的准确性。
5. 温度漂移(Temperature Drift):温度漂移是指AD转换器在不同温度下输出信号的变化。
温度漂移通常是由于AD转换器内部电路的温度系数引起的,它会影响AD转换器的精度和准确性。
6. 电源波动(Power Supply Variation):AD转换器的工作需要电源的供应,电源的波动会影响AD转换器的精度和准确性。
电源波动可能来自于电源本身的波动、电源线的噪声等因素,这些因素都会影响AD转换器的输出信号的准确性。
综上所述,AD转换器产生误差的原因有很多,这些误差可能来自于AD转换器本身的特性、外部环境的影响等因素。
AD介绍
积分非线性误差(DNL) :指的是实际步宽和 1LSB 理想值之间的差值。如果 DNL 超过 了 1LSB, 转换器可能是非单调的。 这就意味着当输入幅度增加的情况下, 输出幅度反而变小。 也有可能丢失编码, 2n 个二进制编码中的一个或多个将永远不会输出。 微分非线性误差(INL) :实际转换函数和理想直线的偏差。理想直线普遍采用的定义是 增益和偏置误差被消除的前提下,连接函数端点之间的一条直线。偏离量是按照转换函数从 一个步长到下一个步长来度量。 动态误差:表征 ADC 参数表征 ADC 电路在动态环境下的性能,也就是说输入信号是时间的 函数。动态特性比表征 ADC 静态特性复杂得多,其动态特性参数主要包括信噪比(SNR) 、 信噪谐波比(SINAD) 、有效位数(ENOB) 、总谐波失真(THD) 、无杂散动态范围(SFDR) 、 满功率带宽(FPBW) 、孔径误差等。 在实际中,由于静态误差和动态误差的存在,即使 N 位的 ADC 的外围电路引入的误差可 以忽略不计,其有效位数 ENOB 往往是小于 N ,且从芯片制作工艺的角度而言,同样为 N 位 的 ADC,采样率不同,芯片类型(内部实现结构)不同,误差的影响也不同。在表 2 中比较 了 ADI 公司的几款 16 位 ADC 的性能。
ADC 的误差:
静态误差:在转换直流信号时影响转换器精度的误差,可以由偏置误差、增益误差、积分非 线性误差、微分非线性误差描述。 偏置误差:标准偏置点与实际偏置点之间的差值。当数字输出是零时,偏置点是步长的 中间值。这种误差是以同样的值影响所有的编码并通过修正处理过程来补偿,若不能修正, 这种误差是指零尺度误差。 增益误差:在偏置误差被修正为零后,转换函数标准增益点和实际增益点之间的误差。 当数字输出是全标度时增益点是步长中间值。这种误差表示实际转换函数和理想转换函数斜 率的差值以及每一步长中相应的同一百分比误差,可以通过修正的方法调整到零。
ad转换电路的工作原理
ad转换电路的工作原理
AD转换器(Analog to Digital converter)是一种电路,可以将模拟信号转换成数字信号,广泛应用于各种电子产品中。
AD转换器的工作原理是将模拟信号进行采样、量化、编码三个步骤,并最终将其转换成数字信号输出。
首先,AD转换器会对信号进行采样,即按照一定时间间隔对信号进行取样,将连续的模拟信号变成离散的信号。
采样率是确定采样间隔的重要参数,通常采用的采样频率为信号频率的倍数。
接下来,采样得到的信号会被量化处理。
量化就是将连续的模拟信号按照一定的步长进行划分,变成若干个离散的数值。
步长是由 AD 转换器的分辨率决定的,数值范围也由分辨率决定。
在量化过程中,精度越高,分辨率越细,就可以更精确地表示模拟信号。
最后,采样和量化后的信号需要进行编码。
编码是将已经量化的信号转换成对应的二进制编码,从而使得计算机可以处理数字信号。
编码方式有两种,即串行式编码和并行式编码。
串行式编码逐位将模拟信号输出成二进制码,速度较慢;而并行式编码会同时进行多个采样点的编码,速度更快。
综上所述,AD转换器是将模拟信号转换成数字信号的重要电路。
通过采样、量化、编码三步骤,可以将模拟信号精确地转换成数字信号,从而方便计算机进行处理和传输。
在各种电子产品中广泛应用,成为数字信号处理的重要基础。
什么是AD转换器及其在电子电路中的应用
什么是AD转换器及其在电子电路中的应用在电子电路中,AD转换器(Analog-to-Digital Converter)是一种电子设备,用于将模拟信号转换为对应的数字信号。
模拟信号是连续变化的信号,例如声音、光线强度等,而数字信号是离散的,由一系列二进制数字表示。
AD转换器的主要作用是将模拟信号转换为数字信号,以便于电子设备对其进行处理、存储和传输。
AD转换器在电子电路中具有广泛的应用。
下面将介绍一些常见的应用场景及其相关原理。
1. 传感器信号处理传感器是将物理量转换为电信号的装置,例如温度传感器、气压传感器等。
传感器通常输出的是模拟信号,而大多数的电子设备需要数字信号进行处理。
因此,在传感器信号处理中,AD转换器起到了至关重要的作用。
它可以将传感器输出的模拟信号转换为数字信号,并通过数字电路进行信号处理。
2. 数据采集系统在数据采集系统中,AD转换器用于将模拟信号转换为数字信号,以便于存储和处理。
例如,在工业自动化领域,AD转换器可以将传感器采集到的模拟信号转换为数字信号,然后通过串行通信或存储设备传输给控制系统。
3. 音频处理音频信号的处理常常需要数字信号进行。
AD转换器可将音频信号转换为数字信号,以便于数字音频设备进行处理和存储。
例如,音频采集卡中的AD转换器将麦克风捕捉到的声音转换为数字信号,然后传输给计算机进行进一步处理,例如音频合成、降噪等。
4. 显示器的驱动电路在液晶显示器等数字显示设备中,AD转换器用于将输入信号转换为适合驱动电路的数字信号。
由于显示器通常需要显示分辨率较高的图像或视频,因此需要高精度的AD转换器来确保信号的准确度和稳定性。
5. 无线通信系统在无线通信系统中,AD转换器用于将模拟信号(例如音频信号)转换为数字信号,以便于传输。
数字化的信号可以通过调制和解调的方式进行传输,提高传输信号的可靠性和质量。
AD转换器在无线通信系统中起到了关键作用,使得通信信号的数字处理更为方便和高效。
AD转换芯片介绍
AD转换芯片介绍
AD转换器(Analog to Digital Converter,ADC)是一种将模拟信号转换为数字信号的电路。
AD转换器的功能是将模拟信号(例如温度,湿度和电压等)转换为数字信号,以便在电路中易于处理。
AD转换器作为传感器信号的“接口”,具有较高的要求。
AD转换器的主要构成部分包括模拟输入电路,A/D转换电路和数字输出电路。
模拟输入端:模拟输入端可分为模拟量输入电路和外部接口电路。
前者主要是模拟量读数电路和模拟量采样电路,其中模拟量读数电路用于收集需要转换的模拟信号,而模拟量采样电路用于将模拟量信号转换为数字量信号,以便A/D转换。
模拟量输入电路还必须提供一个建立相对稳定的参考电压,以保证被测量的模拟量信号电平在量化过程中的准确度。
A/D转换电路:A/D转换电路是AD转换器的核心部分,主要由比较器电路、多位式移位寄存器、时钟电路、标记电路等组成。
A/D转换电路的功能是把模拟输入信号转换成数字输出信号。
A/D转换电路的量化精度是根据测量信号的范围和精确度来确定的。
数字输出端:数字输出端主要由数据存储器和数据输出电路组成。
a d转换器工作原理
a d转换器工作原理
AD转换器是模拟信号和数字信号之间的转换器。
在AD转换过程中,模拟信号首先经过采样,然后经过量化和编码,最后转换为数字信号输出。
AD转换器的工作原理如下:
1. 采样:AD转换器会连续地对模拟信号进行采样,即在确定的时间间隔内获取一系列离散的样本值。
采样定理规定采样频率应该是模拟信号最高频率的两倍以上,以避免信号失真。
2. 量化:采样后的模拟信号经过量化处理,将连续的模拟信号转换为离散的量化电平。
量化的目的是将连续的模拟信号离散化,使其能够用数字形式表示。
量化过程中会根据固定的量化级别将连续的模拟信号映射到特定的离散电平上。
3. 编码:量化后的模拟信号需要通过编码转换为数字信号。
编码过程中使用的编码方式包括二进制编码、格雷码等。
编码后的信号将每个量化电平映射为一个数字代码,以表示该离散电平的数值。
4. 数字信号输出:编码后的数字代码通过输出接口输出为数字信号,供其他数字电路或设备使用。
数字信号可以在计算机系统中进行数字信号处理、分析和存储等操作。
总的来说,AD转换器通过采样、量化和编码的过程将连续的模拟信号转换为离散的数字信号。
采样将模拟信号离散化,量
化将离散化后的信号分级表示,编码将信号转换为数字代码,最后输出为数字信号。
这样可以实现模拟信号的数字化处理和传输。
AD转换器
满刻度值只是个名义值,实际的A/D转换器的最大输入 电压值总比满刻度值小1/2n(n为转换器的位数)。这是因 为0值也是2n个转换器状态中的一个。
例如12位的A/D转换器,其满刻度值为10V,而实际允 4095
二、A/D指A/D转换器在每秒钟内所能完成的转换次数。 转换速率也可表述为转换时间,即A/D转换从启动到结束 所需的时间,转换速率与转换时间互为倒数。 例如,某A/D转换器的转换速率为5MHz,则其转换时间 是200ns
二、A/D转换器的技术指标
4、满刻度范围
个模拟量泛指电压、电阻、电流、时间等参量,但在
二、A/D转换器的技术指标 1. 分辨率与量化误差 2. 转换精度 3. 转换速率 4. 满刻度范围
二、A/D转换器的技术指标
1. 分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的技 术指标。例如:某A/D转换器为12位,若用百分比表示,即表 示该转换器可以用212个二进制数对输入模拟量进行量化,其分 辨力为1LSB。
④ 改进型是在上述某种形式A/D转换器的基础上,为满足 某项高性能指标而改进或复合而成的。例如余数比较式即是在逐 次比较式的基础上加以改进,使其在保持原有较高转换速率的前 提下精度可达0.01%以上。
③ 非线性误差:是指实际转移函数与理想直线的最大偏移。 非线性误差不包括量化误差,偏移误差和满刻度误差。
④ 微分非线性误差:是指转换器实际阶梯电压与理想阶梯 电压(1LSB)之间的差值。为保证A/D转换器的单调性能,A/D转 换器的微分非线性误差一般不大于1LSB。非线性误差和微分非 线性误差在使用中很难进行调整。
ad转换器的基本原理
ad转换器的基本原理ad转换器的基本原理什么是ad转换器?ad转换器(Analog-to-Digital Converter),简称ADC,是一种电子设备,用于将模拟信号转换为数字信号。
模拟信号是连续变化的,而数字信号则是离散的。
ad转换器在现代电子设备中扮演着非常重要的角色,如音频设备、计算机、通信设备等。
ad转换器的作用ad转换器的作用是将模拟信号转换为数字信号,使得我们可以对信号进行数字化处理。
数字信号可以方便地进行存储、传输和处理,因此ad转换器在现代电子技术中非常重要。
ad转换器的原理ad转换器的基本原理如下:1.采样(Sampling):ad转换器对模拟信号进行采样,即每隔一定时间间隔对信号进行取样。
采样需要保证采样频率足够高,以保证采样到的信号能够准确还原原始信号。
2.量化(Quantization):在采样的基础上,ad转换器对采样到的信号进行量化。
量化是将连续变化的模拟信号转换为离散的数字信号的过程。
量化过程中,ad转换器将信号的幅值划分为若干个级别,然后将每个采样值映射到最接近的级别。
3.编码(Encoding):经过量化的信号被编码为数字信号,以便于存储和处理。
ad转换器使用不同的编码方式,如二进制、十进制等,将量化后的信号转换为数字形式。
4.输出(Output):ad转换器最终输出的是一个数字序列,表示了原始模拟信号在不同时间点的幅值。
这个数字序列可以被传输、存储或直接用于数字信号处理。
ad转换器的应用ad转换器广泛应用于各种电子设备中,包括但不限于以下领域:•音频设备:ad转换器将声音信号转换为数字信号,使得我们可以使用数字音频处理软件对声音进行剪辑、混音等操作。
•通信设备:ad转换器将模拟语音信号转换为数字信号,并将其压缩、传输至目标设备,再由目标设备的da转换器将数字信号还原为模拟信号,使人们能够进行远程通讯。
•传感器网络:ad转换器将传感器采集到的模拟信号转换为数字信号,实现对环境参数的监测和数据采集。
AD转换器
A/D转换器的量化误差 转换器的量化误差
二、A/D转换器的技术指标
1. 分辨率与量化误差
分辨率是衡量A/D转换器分辨输入模拟量最小变化程度的 转换器分辨输入模拟量最小变化程度的 分辨率是衡量 技术指标。 转换器的分辨率取决于A/D转换器的位数,所 转换器的位数, 技术指标。A/D转换器的分辨率取决于 转换器的分辨率取决于 转换器的位数 以习惯上以输出二进制数或BCD 码数的位数来表示。 码数的位数来表示。 以习惯上以输出二进制数或
A/D转换器概述 / 转换器概述
一、A/D转换器的定义 / 转换器的定义 A/D转换器是将模拟量转换为数字量的器件,这 / 转换器是将模拟量转换为数字量的器件, 转换器是将模拟量转换为数字量的器件 个模拟量泛指电压、电阻、电流、时间等参量, 个模拟量泛指电压、电阻、电流、时间等参量,但在 一般情况下,模拟量是指电压而言的。 一般情况下,模拟量是指电压而言的。 二、A/D转换器的技术指标 / 转换器的技术指标 1. 分辨率与量化误差 2. 转换精度 3. 转换速率 4. 满刻度范围
二、A/D转换器的技术指标
3、转换速率 、
转换速率是指A/ 转换器在每秒钟内所能完成的转换次数 转换器在每秒钟内所能完成的转换次数。 转换速率是指 /D转换器在每秒钟内所能完成的转换次数。 转换速率也可表述为转换时间,即A/D转换从启动到结束 转换速率也可表述为转换时间, / 转换从启动到结束 所需的时间,转换速率与转换时间互为倒数。 所需的时间,转换速率与转换时间互为倒数。 例如, 转换器的转换速率为5MHz,则பைடு நூலகம்转换时间 例如,某A/D转换器的转换速率为 / 转换器的转换速率为 , 是200ns。 。
三、A/D转换器的分类
逐次比较式A/ 转换器 转换时间一般在µs级 转换器: ① 逐次比较式 /D转换器:转换时间一般在 级,转换精 度一般在0.1%上下,适用于一般场合。 度一般在 %上下,适用于一般场合。 积分式A/ 转换器 其核心部件是积分器, 转换器: ② 积分式 /D转换器:其核心部件是积分器,因此转换时 间一般在ms级或更长 但抗干扰性能强,转换精度可达0.01% 级或更长, 间一般在 级或更长,但抗干扰性能强,转换精度可达 % 或更高。适于数字电压表类仪器采用。 或更高。适于数字电压表类仪器采用。 并行比较式又称闪烁式:采用并行比较, ③ 并行比较式又称闪烁式:采用并行比较,其转换时间可 达ns级,但抗干扰性能较差,由于工艺限制,其分辨率一般不高 级 但抗干扰性能较差,由于工艺限制, 于8位。可用于数字示波器等要求转换速度较快的仪器中。 位 可用于数字示波器等要求转换速度较快的仪器中。 改进型是在上述某种形式A/ 转换器的基础上 转换器的基础上, ④ 改进型是在上述某种形式 /D转换器的基础上,为满足 某项高性能指标而改进或复合而成的。 某项高性能指标而改进或复合而成的。例如余数比较式即是在逐 次比较式的基础上加以改进, 次比较式的基础上加以改进,使其在保持原有较高转换速率的前 提下精度可达0.01%以上。 提下精度可达 %以上。
AD转换器原理范文
AD转换器原理范文AD(模数转换器)转换器是一种电子设备,它能将连续模拟信号转换为离散数字信号。
在电子系统中,AD转换器是一种非常常用的设备,广泛应用于通信、控制、测量等领域。
AD转换器的工作原理主要涉及抽样、量化和编码三个过程。
首先,抽样是AD转换过程的第一步。
连续模拟信号是由无数个连续时间点上的模拟数值组成的,抽样的目的是以固定的时间间隔对模拟信号进行采样,得到一系列离散的信号样本。
通常使用采样定理来确定抽样频率,即至少要进行2倍于信号最高频率的抽样频率,以保证采样后的数字信号能够准确地表示原始信号。
接下来是量化过程,在这个过程中,抽样得到的连续信号样本将被映射为离散的模拟数值。
量化的目的是将连续的样本值转换为属于特定离散级别的数字值。
通常,使用均匀量化或非均匀量化方法进行量化。
均匀量化是指将样本值划分为相等的离散级别,每个级别对应一个数字值。
非均匀量化则根据信号的重要性和动态范围,将加大量化精度。
量化精度通常用比特数(bit)来表示,比特数越高,表示的离散级别越多,数字信号的精度也就越高。
最后是编码过程,编码的目的是将量化得到的离散模拟数值转换为二进制数字信号。
常用的编码方法有直接二进制编码、格雷编码和循环冗余编码等。
直接二进制编码是最基本的编码方法,它将每个离散模拟数值分别对应到一个确定的二进制数字。
格雷编码则是将只有一位改变的相邻数值映射为只有一位改变的二进制数字,这样可以避免转换过程中产生的误码。
循环冗余编码是一种最常用的编码方式,它通过在数据中添加冗余信息,可以检测和纠正传输中的错误。
总结来说,AD转换器的工作原理可以概括为抽样、量化和编码三个过程。
抽样过程是将连续模拟信号进行离散化,量化过程是将离散化的信号映射为特定的模拟数值,编码过程是将模拟数值转换为二进制数字信号。
通过这些过程,AD转换器可以将连续模拟信号转换为离散数字信号,为数字系统处理提供了基础。
AD转换器
双积分型ADC • 双积分型ADC:是1种V—T型A/D转换器,
• 由积分器、比较器、计数器和部分控制电路组成。
• 最大优点:是工作稳定,抗干扰能力强。 • 最大缺点:是速度较慢,所以主要用于数字电压
表等低速测试系统中。 • 转换精度主要取决于位数、运算放大器和比较器 的灵敏度和零点漂移等因素,高精度的价格较贵。
• 自电子管ADC面世以来,经历了分立半导体、集成 电路数据转换器的发展历程。
• ADC的生产已进入全集成化阶段,同时在转换速度 和转换精度等主要指标上有了重大突破,还开发了 一些具有与计算机直接接口功能的芯片。在集成 技术中,又发展了模块、混合和单片机集成数据转 换器技术。
• ADC主要的应用领域不断拓宽,广泛应用于多媒体、 通讯、自动化、仪器仪表等领域。对不同的领域 的不同要求,例如接口、电源、通道、内部配置的 要求,每一类ADC都有相应的优化设计方法;同时, 用户不仅要考虑到ADC本身的工艺和电路结构,而 且还应考虑到ADC的外围电路,如相应的信号调理 电路等模拟电路的设计。
• 各种技术和工艺的相互渗透,扬长避短,开发出 适合各种应用场合,能满足不同需求的A/D转换器, 将是模拟/数字转换技术的未来发展趋势;高速、 高精度、低功耗A/D转换器将是今后数据转换器发 展的重点。
全并行模拟/数字转换
• 它的工作原理非常简单,模拟输入信号同时与2N1个参考电压进行比较,只需一次转换就可以同时 产生n位数字输出。它是迄今为止速度最快的A/D 转换器,最高采样速率可以达到500MSPS。
• A/D转换器(ADC)是将模拟信号转换成数 字信号的电路 • A/D转换过程包括取样、保持、量化和编码 4个步骤,一般,前2个步骤在取样-保持电 路中1次性完成,后2个步骤在A/D转换电路 中1次性完成。
AD转换器的介绍
AD转换器的介绍在仪器仪表系统中,常常需要将检测到的连续变化的模拟量如:温度、压力、流量、速度、光强等转变成离散的数字量,才能输入到计算机中进行处理。
这些模拟量经过传感器转变成电信号(一般为电压信号),经过放大器放大后,就需要经过一定的处理变成数字量。
实现模拟量到数字量转变的设备通常成为模数转换器(ADC),简称A/ D。
随着集成电路的飞速发展,A/D转换器的新设计思想和制造技术层出不穷。
为满足各种不同的检测及控制需要而设计的结构不同、性能各异的A/D转换器应运而生。
下面讲讲A/D转换器的基本原理和分类根据A/D转换器的原理可将A/D转换器分成两大类。
一类是直接型A/D转换器,将输入的电压信号直接转换成数字代码,不经过中间任何变量;另一类是间接型A/D转换器,将输入的电压转变成某种中间变量(时间、频率、脉冲宽度等),然后再将这个中间量变成数字代码输出。
尽管A/D转换器的种类很多,但目前广泛应用的主要有三种类型:逐次逼近式A/D转换器、双积分式A/D转换器、V/F变换式A/D转换器。
另外,近些年有一种新型的Σ-Δ型A/D转换器异军突起,在仪器中得到了广泛的应用。
逐次逼近式A/D转换器的基本原理是:将待转换的模拟输入信号与一个推测信号进行比较,根据二者大小决定增大还是减小输入信号,以便向模拟输入信号逼进。
推测信号由D/A转换器的输出获得,当二者相等时,向D/A转换器输入的数字信号就对应的时模拟输入量的数字量。
这种A/D转换器一般速度很快,但精度一般不高。
常用的有A DC0801、ADC0802、AD570等。
双积分式A/D转换器的基本原理是:先对输入模拟电压进行固定时间的积分,然后转为对标准电压的反相积分,直至积分输入返回初始值,这两个积分时间的长短正比于二者的大小,进而可以得出对应模拟电压的数字量。
这种A/D转换器的转换速度较慢,但精度较高。
由双积分式发展为四重积分、五重积分等多种方式,在保证转换精度的前提下提高了转换速度。
模数转换AD转换精度和转换速度是衡量ADDA转换器性
仪器仪表与测试设备
示波器
示波器中的模数转换器用于将模拟信 号转换为数字信号,以便在屏幕上显 示波形,进行信号的观察和分析。
频谱分析仪
传感器数据采集
传感器数据采集系统中,模数转换器 用于将传感器的模拟输出信号转换为 数字信号,便于数据的处理、分析和 传输。
频谱分析仪利用模数转换器将接收到 的模拟信号转换为数字信号,进行频 谱分析和测量。
吞吐量
衡量AD转换器处理能力的一个指标,表示每秒钟能够完成多少次AD转换。吞吐量通常以每秒转换次数 (SPS)表示。
实时性能要求
实时性
指AD转换器的输出结果能否及时反映 输入信号的变化。实时性能好的AD转 换器能够快速响应输入信号的变化。
跟踪速度
衡量AD转换器实时性能的一个重要指 标,表示AD转换器的输出能否跟随输 入信号的快速变化。跟踪速度越快, 实时性能越好。
模数转换器(AD转换器性能评 估
目录
CONTENTS
• 模数转换器(AD转换器)简介 • AD转换精度 • AD转换速度 • AD转换器的应用领域 • AD转换器的发展趋势与挑战 • AD转换器性能评估案例研究
01
CHAPTER
模数转换器(AD转换器)简 介
定义与工作原理
定义
模数转换器(AD转换器)是一种 将模拟信号转换为数字信号的电 子器件。
示。
采样速率
指AD转换器每秒钟能够采样的 次数,通常以Hz或SPS(每秒采 样点数)表示。
非线性误差
指AD转换器的输出与理想输出 之间的偏差,通常以LSB(最低 有效位)表示。
电源电压与功耗
指AD转换器正常工作所需的电 源电压和功耗,对于便携式应
用非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
什么是ad转换器
将模拟信号转换成数字信号的电路,称为模数转换器(简称a/d转换器或adc,analog to digital converter);将数字信号转换为模拟信号的电路称为数模转换器(简称d/a转换器或dac,digital to analog converter);a/d转换器和d/a转换器已成为信息系统中不可缺俚慕涌诘缏贰?br> 为确保系统处理结果的精确度,a/d转换器和d/a转换器必须具有足够的转换精度;如果要实现快速变化信号的实时控制与检测,a/d与d/a转换器还要求具有较高的转换速度。
转换精度与转换速度是衡量a/d与d/a转换器的重要技术指标。
随着集成技术的发展,现已研制和生产出许多单片的和混合集成型的a/d和d/a转换器,它们具有愈来愈先进的技术指标。
A/D转换的作用是将时间连续、幅值也连续的模拟量转换为时间离散、幅值也离散的数字信号,因此,A/D 转换一般要经过取样、保持、量化及编码4个过程。
在实际电路中,这些过程有的是合并进行的,例如,取样和保持,量化和编码往往都是在转换过程中同时实现的。
取样和保持
取样是将随时间连续变化的模拟量转换为时间离散的模拟量。
取样过程示意图如图11.8.1所示。
图(a)为取样电路结构,其中,传输门受取样信号S(t)控制,在S(t)的脉宽τ期间,传输门导通,输出信号v O(t)为输入信号v1,而在(T s-τ)期间,传输门关闭,输出信号v O(t)=0。
电路中各信号波形如图(b)所示。
图11.8.1 取样电路结构(a)
图11.8.1 取样电路中的信号波形(b)
通过分析可以看到,取样信号S(t)的频率愈高,所取得信号经低通滤波器后愈能真实地复现输入信号。
但带来的问题是数据量增大,为保证有合适的取样频率,它必须满足取样定理。
取样定理:设取样信号S(t)的频率为f s,输入模拟信号v1(t)的最高频率分量的频率为f imax,则f s与f imax必须满足下面的关系f s≥2f imax,工程上一般取f s>(3~5)f imax。
将取样电路每次取得的模拟信号转换为数字信号都需要一定时间,为了给后续的量化编码过程提供一个稳定值,每次取得的模拟信号必须通过保持电路保持一段时间。
取样与保持过程往往是通过取样-保持电路同时完成的。
取样-保持电路的原理图及输出波形如图11.8.2所示。
图11.8.2 取样-保持电路原理图
图11.8.2 取样-保持电路波形图
电路由输入放大器A1、输出放大器A2、保持电容C H和开关驱动电路组成。
电路中要求A1具有很高的输入阻抗,以减少对输入信号源的影响。
为使保持阶段C H上所存电荷不易泄放,A2也应具有较高输入阻抗,A2还应具有低的输出阻抗,这样可以提高电路的带负载能力。
一般还要求电路中A V1·A V2=1。
现结合图11.8.2来分析取样-保持电路的工作原理。
在t=t0时,开关S闭合,电容被迅速充电,由于A V1·A V2=1,因此v0=v I,在t0~t1时间间隔内是取样阶段。
在t=t1时刻S断开。
若A2的输入阻抗为无穷大、S为理想开关,这样可认为电容C H没有放电回路,其两端电压保持为v0不变,图11.8.2(b)中t1到t2的平坦段,就是保持阶段。
取样-保持电路以由多种型号的单片集成电路产品。
如双极型工艺的有AD585、AD684;混合型工艺的有AD1154、SHC76等。
量化与编码
数字信号不仅在时间上是离散的,而且在幅值上也是不连续的。
任何一个数字量的大小只能是某个规定的最小数量单位的整数倍。
为将模拟信号转换为数字量,在A/D转换过程中,还必须将取样-保持电路的输出电压,按某种近似方式归化到相应的离散电平上,这一转化过程称为数值量化,简称量化。
量化后的数值最后还需通过编码过程用一个代码表示出来。
经编码后得到的代码就是A/D转换器输出的数字量。
量化过程中所取最小数量单位称为量化单位,用△表示。
它是数字信号最低位为1时所对应的模拟量,即1LSB。
在量化过程中,由于取样电压不一定能被△整除,所以量化前后不可避免地存在误差,此误差称之为量化误差,用ε表示。
量化误差属原理误差,它是无法消除的。
A/D 转换器的位数越多,各离散电平之间的差值越小,量化误差越小。
量化过程常采用两种近似量化方式:只舍不入量化方式和四舍五入的量化方式。
1.只舍不入量化方式
以3位A/D转换器为例,设输入信号v1的变化范围为0~8V,采用只舍不入量化方式时,取△=1V,量化中不足量化单位部分舍弃,如数值在0~1V之间的模拟电压都当作0△,用二进制数000表示,而数值在1~2V之间的模拟电压都当作1△,用二进制数001表示……这种量化方式的最大误差为△。
2.四舍五入量化方式
如采用四舍五入量化方式,则取量化单位△=8V/15,量化过程将不足半个量化单位部分舍弃,对于等于或大于半个量化单位部分按一个量化单位处理。
它将数值在0~8V/15之间的模拟电压都当作0△对待,用二进制000表示,而数值在8V/15~24V/15之间的模拟电压均当作1△,用二进制数001表示等。
3.比较
采用前一种只舍不入量化方式最大量化误差│εmax│=1LSB,而采用后一种有舍有入量化方式│εmax│=1LSB/2,后者量化误差比前者小,故为多数A/D转换器所采用。
A/D转换器的种类很多,按其工作原理不同分为直接A/D转换器和间接A/D转换器两类。
直接A/D转换器可将模拟信号直接转换为数字信号,这类A/D转换器具有较快的转换速度,其典型电路有并行比较型A/D转换器、逐次比较型A/D转换器。
而间接A/D转换器则是先将模拟信号转换成某一中间电量(时间或频率),然后再将中间电量转换为数字量输出。
此类A/D转换器的速度较慢,典型电路是双积分型A/D转换器、电压频率转换型A/D转换器。
a/d转换器的功能是把模拟量变换成数字量。
由于实现这种转换的工作原理和采用工艺技术不同,因此生产出种类繁多的a/d转换芯片。
a/d转换器按分辨率分为4位、6位、8位、10位、14位、16位和bcd码的31/2位、51/2位等。
按照转换速度可分为超高速(转换时间≤330ns),次超高速(330~3.3μs),高速(转换时间3.3~333μs),低速(转换时间>330μs)等。
a/d转换器按照转换原理可分为直接a/d转换器和间接a/d转换器。
所谓直接a/d转换器,是把模拟信号直接转换成数字信号,如逐次逼近型,并联
比较型等。
其中逐次逼近型a/d转换器,易于用集成工艺实现,且能达到较高的分辨率和速度,故目前集成化a/d芯片采用逐次逼近型者多;间接a/d转换器是先把模拟量转换成中间量,然后再转换成数字量,如电压/时间转换型(积分型),电压/频率转换型,电压/脉宽转换型等。
其中积分型a/d转换器电路简单,抗干扰能力强,切能作到高分辨率,但转换速度较慢。
有些转换器还将多路开关、基准电压源、时钟电路、译码器和转换电路集成在一个芯片内,已超出了单纯a/d转换功能,使用十分方便。