桥式电路图及工作原理介绍
桥式整流电路的工作原理简述
桥式整流电路的工作原理简述1. 什么是桥式整流电路?嘿,朋友们,今天我们来聊聊桥式整流电路。
这听起来可能有点复杂,但放心,咱们把它说得简单明了!首先,什么是整流电路呢?它就是把交流电(AC)转变成直流电(DC)的电路。
想象一下,你在晚上回家,发现手机没电了,急得像热锅上的蚂蚁。
这时候你需要的就是直流电,才能把手机充上电,对吧?而桥式整流电路就像你的“救星”,能把你家插座里的交流电变成你所需要的直流电。
2. 桥式整流电路的构成2.1 整流桥的构造桥式整流电路可不是一个简单的电线和电池,它里面有几个关键角色。
首先是四个二极管,别看它们个头小,作用可大着呢!这四个二极管排成一个“桥”的形状,正好可以把交流电的正负半周期都利用起来。
简单来说,这就像四个好兄弟,轮流出马,把电流引导到正确的方向。
2.2 工作原理那么,这些二极管是怎么工作的呢?当交流电进入整流电路时,电流会有两个半周期。
正半周期的时候,两个二极管“开门”欢迎电流,另两个“关门”在一旁休息;到了负半周期,情况刚好相反,另外两个二极管“开门”进来,前两个“关门”去喝茶。
这样一来,整流电路就能把电流不断地引导成一个方向,让你轻松得到稳定的直流电。
3. 优点和应用3.1 桥式整流的优势说到桥式整流电路的优点,哎呀,那可真是说不完!首先,它比其他整流方式更高效,因为它能利用交流电的全部周期,不浪费一丝电流。
其次,它输出的直流电波形比较平滑,这样你用电器的时候,就不会出现电压波动的情况,像坐过山车一样刺激。
3.2 生活中的应用而且,桥式整流电路可不是只存在于实验室里,它在我们生活中可是无处不在。
比如说,手机充电器、电脑电源,甚至是家里的小电器,基本都离不开它。
想象一下,你每天都在用的电器,居然有一个这么聪明的电路在背后默默工作,真是太酷了吧!所以,今后你再给手机充电的时候,可别忘了这位“无名英雄”。
4. 结束语总之,桥式整流电路虽然名字听起来很高大上,但它的工作原理其实就是这么简单易懂。
二极管桥式整流电路的基本结构及原理
二极管桥式整流电路的基本结构及原理引言在现代电子技术中,电力的转换和控制是不可或缺的。
而整流电路作为一种常见的电力转换电路,在各种电子设备中都有广泛的应用。
本文将介绍一种常见的整流电路,即二极管桥式整流电路,包括其基本结构和工作原理。
1.桥式整流电路的结构桥式整流电路主要由四个二极管和一个负载组成,其基本结构如下图所示:+---->Lo ad|A C In pu t+------>Di o de D1|+---->Di od eD2|+---->Di od eD3|+---->Di od eD4其中,A CI np ut代表交流输入电源,Lo a d代表电路的负载,D1至D4代表四个二极管。
2.桥式整流电路的工作原理桥式整流电路是利用二极管的单向导电性,将交流电转换为直流电的电路。
其工作原理如下:1.当输入交流电的正半周期时,二极管D1和D3导通,D2和D4截断。
电流从D1→Lo ad→D3流过负载,负载得到电流供应。
2.当输入交流电的负半周期时,二极管D2和D4导通,D1和D3截断。
电流从D2→Lo ad→D4流过负载,负载得到电流供应。
通过交流电的正负半周期交替导通,负载得到连续的直流电。
从而实现了交流电到直流电的转换。
3.桥式整流电路的优点桥式整流电路相比其他整流电路具有如下优点:-它可以实现单相或三相交流电的整流,适用范围广泛。
-桥式整流电路稳定性好,整流效率高。
-负载与电源之间的电压降低,减少了功率损耗。
-结构简单、成本低、可靠性高。
-对于功率较大的应用,可以通过并联多个二极管桥来提高整流能力,扩大使用范围。
4.总结二极管桥式整流电路是一种常见且重要的电力转换电路。
通过其独特的结构和工作原理,可以将交流电转换为直流电,为各种电子设备的正常运行提供可靠的电源。
其稳定性好、效率高以及成本低的特点,使得桥式整流电路在各个领域得到广泛应用。
希望本文能帮助读者对二极管桥式整流电路有更深入的理解,并在实践中得到应用。
整流桥-桥式整流工作原理
整流桥-桥式整流工作原理整流桥-桥式整流工作原理整流桥有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。
整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。
四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。
应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。
图一整流桥(桥式整流)工作原理图二各类整流桥(有些整流桥上有一个孔,是加装散热器用的)这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同作用就是整流,把交流电变为直流电。
实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。
特点是方便小巧。
不占地方。
规格型号一般直接用参数表示:50伏1安,100伏5安等等。
如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。
选择整流桥要考虑整流电路和工作电压.整流桥堆整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。
全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。
全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。
常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。
整流桥命名规则一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V如:KBL410 即4A,1000VRS507 即5A,700V整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。
简述桥式整流电路的工作原理
简述桥式整流电路的工作原理桥式整流电路是一种常用的电路配置,可以将交流电转换为直流电。
其工作原理是利用四个二极管按特定连接方式进行导通和截止,使得交流电的正负半周分别经过两个二极管,从而实现整流的目的。
桥式整流电路由一个变压器、四个二极管和一个负载组成。
变压器的一侧接入交流电源,另一侧连接到四个二极管的交叉点,同时也连接到负载。
四个二极管分别连接在交流电源的四个极性上,形成一个桥型电路。
在工作时,当交流电源正半周电压为正时,二极管D1和D4导通,电流从D1进入负载,从D4流回交流电源。
同时,二极管D2和D3截止,不参与电流的导通。
当交流电源正半周电压为负时,二极管D2和D3导通,电流从D2进入负载,从D3流回交流电源。
二极管D1和D4则截止,不参与电流的导通。
通过这种方式,桥式整流电路能够保证交流电的正负半周都能够转换为直流电。
桥式整流电路的工作原理可以用以下步骤来描述:1. 当交流电源的正半周电压为正时,二极管D1导通,D2截止,电流从D1进入负载,从D4流回交流电源。
2. 当交流电源的正半周电压为负时,二极管D2导通,D1截止,电流从D2进入负载,从D3流回交流电源。
3. 当交流电源的负半周电压为正时,二极管D3导通,D4截止,电流从D3进入负载,从D2流回交流电源。
4. 当交流电源的负半周电压为负时,二极管D4导通,D3截止,电流从D4进入负载,从D1流回交流电源。
通过以上四个步骤,交流电的正负半周分别经过两个二极管,从而实现了整流的功能。
桥式整流电路能够将交流电转换为直流电,适用于许多电子设备和电路中需要直流电供电的场合。
总结起来,桥式整流电路的工作原理是利用四个二极管按照特定连接方式进行导通和截止,使得交流电的正负半周分别经过两个二极管,从而实现整流的目的。
这种电路配置简单、效果稳定,被广泛应用于各种电子设备和电路中。
桥式整流电路图及工作原理
桥式整流电路图及工作原理桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻R L组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→RL→D3回到TR次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→RL→D4回到Tr次级上端,在负载RL上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压vo=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压vo=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
桥式整流电路工作原理
桥式整流电路工作原理
桥式整流电路是一种常用的电路结构,用于将交流电转换为直流电。
它由四个二极管和一个负载组成。
工作原理如下:
1. 基本电路:首先,将交流电源连接到桥式整流电路的输入端。
交流电源的正负端与桥式整流电路的两个对角线上的连接点相连接,形成交流电的输入接点,而另外两个对角线上的连接点则作为直流电的输出接点。
2. 正半周:当交流电压为正半周期时,输入电流流经二极管1
和二极管4,然后通过负载,最后回到交流电源。
3. 负半周:当交流电压为负半周期时,输入电流流经二极管2
和二极管3,然后通过负载,最后回到交流电源。
4. 筛选:在交流电压为正半周期时,二极管1导通,而二极管4截止。
反之,当交流电压为负半周期时,二极管2导通,而
二极管3截止。
这样,可以通过筛选作用将交流电转换成了只包含正半周期或负半周期的电流。
5. 整流:最后,在负载的作用下,只有正半周期或负半周期的电流通过,并且流向负载的方向一致。
而对于相反的半周期,电流则无法通过。
通过以上的工作原理,桥式整流电路能够将交流电转换为负载
所需的直流电。
这种电路结构简单,效率高,广泛应用于电源供应等领域。
三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图
三相桥式全控整流电路原理及电路图,三相桥式全控整流电路原理及电路图三相整流电路的作用:在电路中,当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。
图所示就是三相半波整流电路原理图。
在这个电路中,三相中的每一相都单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120度叠加,整流输出波形不过0点,并且在一个周期中有三个宽度为120度的整流半波。
因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。
三相整流电路的工作原理:先看时间段1:此时间段A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。
电流从A相流出,经D1,负载电阻,D4,回到B相,见图14-1-3中红色箭头指示的路径。
此段时间内其他四个二极管均承受反向电压而截止,因D4导通,B相电压最低,且加到D2、D6的阳极,故D2、D6截止;,因D1导通,A相电压最高,且加到D3、D5的阴极,故D3、D5截止。
其余各段情况如下:时间段2:此时间段A相电位最高,C相电位最低,因此跨接在A相C相间的二极管D1、D6导电。
时间段3:此时间段B相电位最高,C相电位最低,因此跨接在A相C相间的二极管D3、D6导电。
时间段4:此时间段B相电位最高,A相电位最低,因此跨接在B相A相间的二极管D3、D2导电。
时间段5:此时间段C相电位最高,A相电位最低,因此跨接在C相A相间的二极管D5、D2导电。
三相桥式电阻负载整流电路的输出电压波形见图时间段6:此时间段C相电位最高,B相电位最低,因此跨接在C相B相间的二极管D5、D5导电。
时间段7:此时间段又变成A相电位最高,B相电位最低,因此跨接在A相B相间的二极管D1、D4导电。
电路状态不断重复三相半波可控整流电路工作原理:1.电阻性负载三相半波可控整流电路接电阻性负载的接线图如图3所示。
整流变压器原边绕组一般接成三角形,使三次谐波电流能够流通,以保证变压器电势不发生畸变,从而减小谐波。
桥式整流电路图及工作原理介绍07422
桥式整流电路图及工作原理介绍图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
电容输出的二极管半波整流电路仿真演示通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。
三相桥式全控整流电路
1主电路的原理1。
1主电路其原理图如图1所示。
图1 三相桥式全控整理电路原理图习惯将其中阴极连接在一起的3个晶闸管(VT1、VT3、VT5)称为共阴极组;阳极连接在一起的3个晶闸管(VT4、VT6、VT2)称为共阳极组。
此外,习惯上希望晶闸管按从1至6的顺序导通,为此将晶闸管按图示的顺序编号,即共阴极组中与a、b、c三相电源相接的3个晶闸管分别为VT1、VT3、VT5,共阳极组中与a、b、c三相电源相接的3个晶闸管分别为VT4、VT6、VT2。
从后面的分析可知,按此编号,晶闸管的导通顺序为VT1-VT2-VT3-VT4-VT5-VT6。
1。
2主电路原理说明整流电路的负载为带反电动势的阻感负载。
假设将电路中的晶闸管换作二极管,这种情况也就相当于晶闸管触发角α=0o时的情况。
此时,对于共阴极组的3个晶闸管,阳极所接交流电压值最高的一个导通。
而对于共阳极组的3个晶闸管,则是阴极所接交流电压值最低(或者说负得最多)的一个导通。
这样,任意时刻共阳极组和共阴极组中各有1个晶闸管处于导通状态,施加于负载上的电压为某一线电压。
此时电路工作波形如图2所示.图2 反电动势α=0o时波形α=0o时,各晶闸管均在自然换相点处换相。
由图中变压器二绕组相电压与线电压波形的对应关系看出,各自然换相点既是相电压的交点,同时也是线电压的交点。
在分析ud的波形时,既可从相电压波形分析,也可以从线电压波形分析。
从相电压波形看,以变压器二次侧的中点n为参考点,共阴极组晶闸管导通时,整流输出电压ud1为相电压在正半周的包络线;共阳极组导通时,整流输出电压ud2为相电压在负半周的包络线,总的整流输出电压ud = ud1-ud2是两条包络线间的差值,将其对应到线电压波形上,即为线电压在正半周的包络线.直接从线电压波形看,由于共阴极组中处于通态的晶闸管对应的最大(正得最多)的相电压,而共阳极组中处于通态的晶闸管对应的是最小(负得最多)的相电压,输出整流电压ud为这两个相电压相减,是线电压中最大的一个,因此输出整流电压ud波形为线电压在正半周的包络线。
单相桥式全控整流电路(阻感性负载)
1.单相桥式全控整流电路(阻-感性负载)电路图如图1所示图1.单相桥式全控整流电路(阻-感性负载)1.2单相桥式全控整流电路工作原理(阻-感性负载)1) 在u2正半波的(0~α )区间:晶闸管VT1、VT4承受正压,但无触发脉冲,处于关断状态。
假设电路已工 作在稳定状态,则在O 〜α区间由于电感释放能量,晶闸管VT2、VT3维持导通。
2) 在u2正半波的ω t=α时刻及以后:在ω t=α处触发晶闸管 VT1、VT4使其导通,电流沿 a →VT1 → L → R →VT4 →b →Tr 的二次绕组→ a 流通,此时负载上有输出电压(ud=u2)和电流。
电源电 压反向加到晶闸管VT2、VT3上,使其承受反压而处于关断状态。
3) 在u2负半波的(π ~ π + α)区间:当ω t=π时,电源电压自然过零,感应电势使晶闸管 VT1、VT4继续导通。
1.1单相桥式全控整流电路电路结构(阻 -感性负载)单相桥式全控整流电路用四个晶闸管, 接成共阳极,每一只晶闸管是一个桥臂。
两只晶闸管接成共阴极,两只晶闸管 单相桥式全控整流电路(阻-感性负载)I!*-■\U/-1-kγ叫OO:Ow...0f ∣2√*-(b}≡r∣√在电压负半波,晶闸管VT2、VT3承受正压,因无触发脉冲,VT2、VT3处于关 断状态。
4)在u2负半波的ω t=π +α时刻及以后:在ω t=π + α处触发晶闸管 VT2、VT3使其导通,电流沿 b →VT3→L →R → VT2→a →Tr 的二次绕组→ b 流通,电源电压沿正半周期的方向施加到负载上, 负载上有输出电压(Ud=-U2)和电流。
此时电源电压反向加到 VT1、VT4上,使其承受反压而变为关断状态。
晶闸管 VT2、VT3 一直要导通到下一周期ω t=2 π +α处再次触发晶闸管VT1、VT4为止。
1.3单相桥式全控整流电路仿真模型(阻-感性负载)单相桥式全控整流电路(阻-感性负载)仿真电路图如图2所示:图2单相双半波可控整流电路仿真模型(阻-感性负载)興朋rgui—B∣÷ FtJιIU lPUIHTfrIflηi pr1 ⅛B -∣S ,T⅛∏Ftor2电源参数,频率50hz,电压100v ,如图3⅞⅛ BIQCk Parameter5: AC VoItage SOUrCe AC Voltage SOUrCe (mask) CIink)Ideal S l innSOidaI AC VOlt age SIDUrCe-图3.单相桥式全控整流电路电源参数设置VT1,VT4脉冲参数,振幅3V ,周期0.02,占空比10%,时相延迟α /360*0.02, 如图4图4.单相桥式全控整流电路脉冲参数设置ApplyCancelHe :IPVT2,VT3脉冲参数,振幅3V,周期0.02,占空比10%,时相延迟(α+180)/360*0.02,如图5⅝∣ Source BloCk Parameters: PUISe Generator2图5.单相桥式全控整流电路脉冲参数设置1.4单相桥式全控整流电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
桥式整流电路原理;电感滤波原理;电容滤波原理
桥式整流电路原理;电感滤波原理;电容滤波原理桥式整流电路原理桥式整流电路如图1所示,图中B为电源变压器,它的作用是将交流电网电压e1变成整流电路要求的交流电压,RL是要求直流供电的负载电阻,四只整流二极管D1~D4接成电桥的形式,故有桥式整流电路之称。
图1桥式整流电路的工作原理可分析如下。
为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。
在e2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管D1流向RL,再由二极管D3流回变压器,所以D1、D3正向导通,D2、D4反偏截止。
在负载上产生一个极性为上正下负的输出电压。
其电流通路可用图1(a)中虚线箭头表示。
在e2的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过二极管D2流向RL,再由二极管D4流回变压器,所以D1、D3反偏截止,D2、D4正向导通。
电流流过RL时产生的电压极性仍是上正下负,与正半周时相同。
其电流通路如图1(b)中虚线箭头所示。
综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。
图2根据上述分析,可得桥式整流电路的工作波形如图2。
由图可见,通过负载RL的电流iL以及电压uL的波形都是单方向的全波脉动波形。
桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高。
因此,这种电路在半导体整流电路中得到了颇为广泛的应用。
桥式整流电路电感滤波原理电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。
从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,所以电感L有平波作用。
单相桥式半控整流电路实验原理
三.实验原理单相桥式半控整流电路在电阻性负载时的工作情况与全控电路完全相同,这里只介绍电感性负载时的工作情况。
单相桥式半控整流电路原理图如下图所示。
假设负载中电感很大,且电路已工作于稳态。
当电源电压 u 2 在正半周期,控制角为 a 时触发晶闸管 VT1 使其导通,电源经 VT1 和 VD4 向负载供电。
当 u 2 过零变负时,由于电感的作用使 VT1 继续导通。
因a 点电位低于 b 点电位,使得电流从 VD4 转移至 VD2 ,电流不再流经变压器二次绕组,而是由 VT1 和 VD2 续流。
此阶段忽略器件的通态压降,则u d = 0 ,不像全控电路那样出现 u d 为负的情况。
在 u 2 负半周控制角为 a 时触发 VT3 使其导通,则向 VT1 加反压使之关断, u 2 经 VT3 和 VD2 向负载供电。
u 2 过零变正时, VD4 导通。
VT3 和VD4 续流, u d 又为零。
此后重复以上过程。
若无续流二极管,则当 a 突然增大至180 ° 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使 u d 成为正弦半波,即半周期 u d 为正弦,另外半周期 u d 为零,其平均值保持恒定,称为失控。
有续流二极管 VD 时,续流过程由 VD 完成,在续流阶段晶闸管关断,避免了某一个晶闸管持续导通从而导致失控的现象。
单相桥式半控整流电路原理图四.实验内容⒈ 接线在实验装置断电的情况下,按单相桥式半控整流电路实验线路图及接线图进行接线。
图中可调电阻器 R d ,选用 MEL ﹣ 03 中的其中一组可调电阻器并联, R d 的初始电阻值应调到最大值。
⒉ 触发电路调试在主电路断电情况下调试触发电路。
当给定电压 U g = 0V ,调节偏移电压使触发脉冲初始相位 a =180 °,然后逐渐调节给定电压 U g ,观察触发脉冲移相范围是否满足 a =30 °~180 °。
桥式整流电路图及工作原理介绍07428
桥式整流电路图和工作原理桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
桥式整流电路及工作原理详解
桥式整流电路及工作原理详解
桥式整流电路是一种可以将交流电转变为直流电的电路。
它由四个可
控制开关(如晶体管、可控硅或MOSFET)组成,这些开关经过调整可以
只让一种方向的流通,而屏蔽另外一种方向的流通,使得电流只在一个方
向流动。
桥式整流电路有四个可控制开关,它们由负极跟正极通过交流电源组成。
这两个极性组合构成叫做"桥",它们分别连接两个结点,称作开关点。
当交流电源接通时,开关点之间的电压差会发生变化。
由于开关点之间的
位置关系,电流会在一个方向流动,而在另一个方向则不让电流通过。
因此,桥式整流电路能够把交流电变成单向电流。
在桥式整流电路的开启过程中,由于开关点之间的位置关系,负极点
首先与正极点连接,然后断开。
当桥式整流电路关闭时,负极点将先断开,然后将正极点与负极点连接。
这两个过程构成了一个完整的电流推进周期,使得电流在一个方向上发生推进,而在另一个方向上则不会发生电流流动。
桥式整流电路原理图解
桥式整流电路原理图解
图1
桥式整流电路,也可认为它是全波整流电路的一种,变压器绕组按图1方法接四只二极管。
D 1 ~ D 4 为四只相同的整流二极管,接成电桥形式,故称桥式整流电路。
利用二极管的导引作用,使在负半周时也能把次级输出引向负载。
具体接法如图所示,从图中可以看到,在正半周时由D1、D2导引电流自上而下通过RL,负半周时由D3、D4导引电流也是自上而下通过 RL ,从而实现了全波整流。
在这种结构中,若输出同样的直流电压,变压器次级绕组与全波整流相比则只须一半绕组即可,但若要输出同样大小的电流,则绕组的线径要相应加粗。
至于脉动,和前面讲的全波整流电路完全相同。
由于整流电路的输出电压都含有较大的脉动成分。
为了尽量压低脉动成分,另一方面还要尽量保留直流成分,使输出电压接近理想的直流,这种措施就是滤波。
滤波通常是利用电容或电感的能量存储作用
来实现的。
在本实验电路中采用的是电容滤波,即在负载电阻RL上并联一个滤波电容C,电路如图2,滤波后的波形如下图。
全波整流滤波波形
图2半波整流滤波波形。
单相桥式整流电路图及工作原理 (含参数计算)
单相桥式整流电路图及工作原理 (含参数计算)
1.工作原理单相桥式整流电路是最基本的将交流转换为直流的电路,其电路。
图10.1.2单相桥式整流电路(a)整流电路 (b)波形图在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。
根据图10.1.2(a)的电路图可知:
当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。
当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。
在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。
单相桥式整流电路的波形图见图10.1.2(b)。
2.参数计算根据图10.1.2(b)可知,输出电压是单相脉动电压。
通常用它的平均值与直流电压等效。
流过负载的脉动电压中包含有直流分量和交流分量,可将脉动电压做傅里叶分析。
此时谐波分量中的二次谐波幅度最大,最低次谐波的幅值与平均值的比值称为脉动系数S。
3.单相桥式整流电路的负载特性曲线单相桥式整流电路的负载特性曲线是指输出电压与负载电流之间的关系曲线该曲线。
曲线的斜率代表了整流电路的内阻。
图10.1.3 负载特性曲线。
桥式电路图及工作原理介绍
桥式整流电路图及工作原理介绍桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
桥式电路工作原理
桥式电路工作原理
桥式电路是一种常用于电压或电流测量的电路。
它基于“电桥平衡”的原理来计算未知电阻或电压。
工作原理如下:
1. 桥式电路由四个电阻组成,分别为 R1、R2、R3 和 Rx(未知电阻)。
2. 理想情况下,当电桥平衡时,桥电路两边的电压相等,即V1/V2 = V3/Vx。
3. 通过测量不同位置的电压,可以计算未知电阻 Rx 或电压。
4. 调节电阻 R1 和 R2,使得电桥平衡。
当电桥平衡时,可以使用以下公式计算未知电阻 Rx:
Rx = (R2/R1) * R3
5. 桥式电路可以根据使用的传感器类型进行不同的应用,例如测量温度、压力、湿度等。
总之,桥式电路的工作原理是通过调节电桥的四个电阻使其平衡,从而测量未知电阻或电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
桥式整流电路图及工作原理介绍桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。
由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。
四只整流二极管接成电桥形式,故称桥式整流。
图1 桥式整流电路图桥式整流电路的工作原理如图2所示。
在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。
这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即UL = 0.9U2IL = 0.9U2/RL流过每个二极管的平均电流为ID = IL/2 = 0.45 U2/RL每个二极管所承受的最高反向电压为什么叫硅桥,什么叫桥堆目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。
桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。
在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。
二极管整流电路原理与分析半波整流二极管半波整流电路实际上利用了二极管的单向导电特性。
当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。
当输入电压处于交流电压的负半周时,二极管截止,输出电压v o=0。
半波整流电路输入和输出电压的波形如图所示。
二极管半波整流电路对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。
但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。
平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。
电容输出的二极管半波整流电路仿真演示通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。
(2)半波整流电路的交流利用率为50%。
(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。
(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。
全波整流当输入电压处于交流电压的正半周时,二极管D1导通,输出电压V o=v i-V D1。
当输入电压处于交流电压的负半周时,二极管D2导通,输出电压V o=v i-V D2。
二极管全波整流电路由上述分析可知,二极管全波整流电路输出的仍然是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。
通过与半波整流相类似的计算,可以得到全波整流输出电压有效值V o rsm=0.9U rsm。
全波整流输出的直流脉动电压仍然不能满足电子电路对直流电源的要求,必须经过平滑(滤波)处理。
与半波整流相同,平滑处理电路是在全波整流的输出端接一个电容。
电容在脉动电压的两个峰值之间向负载放电,使输出电压得到相应的平滑。
电容输出的二极管半波整流电路仿真演示通过上述分析可以得到半波整流电路的基本特点如下:(1)半波整流输出的是一个直流脉动电压。
(2)半波整流电路的交流利用率为50%。
(3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。
(3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。
全波整流当输入电压处于交流电压的正半周时,二极管D1导通,输出电压V o=v i-V D1。
当输入电压处于交流电压的负半周时,二极管D2导通,输出电压V o=v i-V D2。
二极管全波整流电路仿真演示由上述分析可知,二极管全波整流电路输出的仍然是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。
通过与半波整流相类似的计算,可以得到全波整流输出电压有效值V o rsm=0.9U rsm。
全波整流输出的直流脉动电压仍然不能满足电子电路对直流电源的要求,必须经过平滑(滤波)处理。
与半波整流相同,平滑处理电路是在全波整流的输出端接一个电容。
电容在脉动电压的两个峰值之间向负载放电,使输出电压得到相应的平滑。
电容输出的二极管全波整流电路仿真演示通过上述分析可以得到全波整流电路的基本特点如下:(1)全波整流输出的是一个直流脉动电压。
(2)全波整流电路的交流利用率为100%。
(3)电容输出全波整流电路,二极管承担的最大反向电压为2倍交流峰值电压(电容输出时电压叠加)。
(4)实际电路中,全波整流电路中二极管和电容的选择必须满足负载对电流的要求。
桥式整流所谓桥式整流电路,就是用二极管组成一个整流电桥。
当输入电压处于交流电压正半周时,二极管D1、负载电阻R L、D3构成一个回路(图5中虚线所示),输出电压V o=v i-V D1-V D3。
输入电压处于交流电压负半周时,二极管D2、负载电阻R L、D4构成一个回路,输出电压V o=v i-V D2-V D4。
图中滤波电容的工作状态。
二极管桥式整流电路仿真演示由上述分析可知,二极管桥式整流电路输出的也是一个方向不变的脉动电压,但脉动频率是半波整流的一倍。
与半波整流输出电压有效值计算相类似,可以得到桥式整流输出电压有效值V o rsm=0.9U rs m。
通过上述分析,可以得到桥式整流电路的基本特点如下:(1)桥式整流输出的是一个直流脉动电压。
(2)桥式整流电路的交流利用率为100%。
(3)电容输出桥式整流电路,二极管承担的最大反向电压为2倍的交流峰值电压(电容输出时电压叠加)。
(4)桥式整流电路二极管的负载电流仅为半波整流的一半。
(5)实际电路中,桥式整流电路中二极管和电容的选择必须满足负载对电流的要求。
各种整流电路及工作原理介绍各种整流电路及工作原理介绍本文介绍一下利用二极管组成的各种整流电路及工作原理一、半波整流电路图5-1、是一种最简单的整流电路。
它由电源变压器B、整流二极管D和负载电阻R fz,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D再把交流电变换为脉动直流电。
下面从图5-2的波形图上看着二极管是怎样整流的。
变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。
在0~K时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻R fz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,R fz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过R fz,在R fz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
二、全波整流电路如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。
图5-3 是全波整流电路的电原理图。
全波整流电路,可以看作是由两个半波整流电路组合成的。
变压器次级线圈中间需要引出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压e2a、e2b,构成e2a、D1、R fz与e2b、D2、R fz,两个通电回路。
全波整流电路的工作原理,可用图5-4 所示的波形图说明。
在0~π间内,e2a对Dl为正向电压,D1导通,在R fz上得到上正下负的电压;e2b对D2为反向电压,D2不导通(见图5-4(b)。
在π-2π时间内,e2b对D2为正向电压,D2导通,在R fz上得到的仍然是上正下负的电压;e2a对D1为反向电压,D1不导通(见图5-4(C)。
如此反复,由于两个整流元件D1、D2轮流导电,结果负载电阻R fz上在正、负两个半周作用期间,都有同一方向的电流通过,如图5-4(b)所示的那样,因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍)。
图5-3所示的全波整滤电路,需要变压器有一个使两端对称的次级中心抽头,这给制作上带来很多的麻烦。
另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。
图5-5(a )为桥式整流电路图,(b)图为其简化画法。
三、桥式整流电路桥式整流电路是使用最多的一种整流电路。
这种电路,只要增加两只二极管口连接成"桥"式结构,便具有全波整流电路的优点,而同时在一定程度上克服了它的缺点。
桥式整流电路的工作原理如下:e2为正半周时,对D1、D3和方向电压,Dl,D3导通;对D2、D4加反向电压,D2、D4截止。
电路中构成e2、Dl、R fz、D3通电回路,在R fz,上形成上正下负的半波整洗电压,e2为负半周时,对D2、D4加正向电压,D2、D4导通;对D1、D3加反向电压,D1、D3截止。
电路中构成e2、D2R fz、D4通电回路,同样在R fz上形成上正下负的另外半波的整流电压。
上述工作状态分别如图5-6(A)(B)所示。
如此重复下去,结果在R fz,上便得到全波整流电压。
其波形图和全波整流波形图是一样的。
从图5-6中还不难看出,桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半!四、整流元件的选择和运用需要特别指出的是,二极管作为整流元件,要根据不同的整流方式和负载大小加以选择。
如选择不当,则或者不能安全工作,甚至烧了管子;或者大材小用,造成浪费。
表5-1 所列参数可供选择二极管时参考。
"另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。
图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半口三只二极管并联,每只分担电路总电流的三分之一。
总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。