最新最全的遗传算法工具箱及说明
matlab遗传算法工具箱关于离散变量优化算例
matlab遗传算法工具箱关于离散变量优化算例离散优化问题在实际应用中具有重要意义,其中遗传算法是一种常用的解决离散优化问题的方法。
Matlab遗传算法工具箱提供了一系列强大的函数和工具来帮助开发者实现离散变量优化算法。
本文将介绍如何使用Matlab遗传算法工具箱解决离散变量优化问题,并给出一个算例来演示其应用。
1. 算法背景离散优化问题是指在一组有限离散值中寻找最优解的问题。
这些离散值可能代表不同的决策或选择,例如在某个集合中选取最佳的元素组合。
传统的优化算法无法直接应用于离散变量优化问题,而遗传算法则具有较好的适应性。
遗传算法是一种模拟生物进化过程的优化算法,通过模拟基因的交叉、变异和选择来搜索最优解。
2. Matlab遗传算法工具箱简介Matlab遗传算法工具箱是Matlab平台上用于遗传算法优化设计和问题求解的工具包。
它提供了一系列函数和工具,可以简便地实现离散变量优化算法。
其中常用的函数包括:- ga:用于定义遗传算法的参数和问题函数,进行优化计算。
- gamultiobj:用于多目标优化的遗传算法。
- customSelectionFcn:自定义选择函数,用于指定选择操作。
- customCrossoverFcn:自定义交叉函数,用于指定交叉操作。
- customMutationFcn:自定义变异函数,用于指定变异操作。
3. 算例演示假设我们有一个离散优化问题,要在集合{1, 2, 3, 4, 5}中找到一个长度为5的序列,使得序列中所有元素的和最大。
首先,我们需要定义问题函数和适应度函数。
问题函数用于定义问题的约束条件,适应度函数则计算每个个体的适应度值。
```matlabfunction f = problemFunction(x)f = sum(x);endfunction f = fitnessFunction(x)f = -problemFunction(x); % 求和最大化,所以需要取负值end```接下来,我们可以使用Matlab遗传算法工具箱中的`ga`函数进行优化计算。
matlab 遗传算法 参数
Matlab 中可以使用遗传算法工具箱(Genetic Algorithm Toolbox)来实现遗传算法。
该工具箱提供了许多参数可以用于调整算法的行为。
以下是一些常用的参数:1. `PopulationSize`:种群大小,即染色体数量。
通常设置为一个相对较大的数值,以保证算法的搜索能力和多样性。
2. `MaxGenerations`:最大迭代次数。
算法将根据指定的迭代次数进行搜索,直到达到最大迭代次数或找到满足条件的解。
3. `CrossoverFraction`:交叉概率。
在每一代中,根据交叉概率对染色体进行交叉操作,以产生新的染色体。
4. `MutationFcn`:变异函数。
该函数将应用于染色体上的基因,以增加种群的多样性。
5. `Elitism`:精英策略。
该参数决定是否保留最佳个体,以避免算法陷入局部最优解。
6. `PopulationType`:种群类型。
可以选择二进制、实数或整数类型。
7. `ObjectiveFunction`:目标函数。
该函数将用于评估染色体的适应度,以确定哪些染色体更有可能产生优秀的后代。
8. `Variableargin`:变量参数。
可以将需要优化的变量作为参数传递给目标函数和变异函数。
9. `Display`:显示设置。
可以选择在算法运行过程中显示哪些信息,例如每个迭代的最佳个体、平均适应度等等。
以上是一些常用的参数,可以根据具体问题进行调整。
在Matlab 中使用遗传算法时,建议仔细阅读相关文档和示例代码,以便更好地理解算法的实现细节和如何调整参数来获得更好的结果。
matlab遗传算法工具箱导出数据的方法 -回复
matlab遗传算法工具箱导出数据的方法-回复如何使用MATLAB遗传算法工具箱导出数据MATLAB是一种广泛使用的数值计算和数据可视化软件,其遗传算法工具箱(Genetic Algorithm Toolbox)是一款强大的用于解决优化问题的工具。
在使用遗传算法工具箱时,可能会遇到需要导出数据的情况。
本文将详细介绍如何使用MATLAB遗传算法工具箱导出数据,并提供一步一步的操作指南。
第一步:加载遗传算法工具箱首先,打开MATLAB软件并加载遗传算法工具箱。
在命令窗口输入"ga"命令,即可加载遗传算法工具箱。
第二步:定义适应度函数在使用遗传算法工具箱前,需要定义一个适应度函数。
适应度函数用于度量个体对问题的适应程度,其中最佳适应程度对应最优解。
在定义适应度函数时,可以根据特定问题的要求进行自定义。
第三步:设置遗传算法参数在使用遗传算法工具箱之前,还需要设置一些遗传算法的参数。
这些参数包括种群数量、迭代次数、交叉概率、变异概率等。
根据具体问题的要求,选择合适的参数值。
第四步:运行遗传算法在完成适应度函数和参数设置后,就可以运行遗传算法了。
在命令窗口输入"ga"命令,并将适应度函数和参数作为输入参数传递给该命令。
第五步:导出数据使用遗传算法工具箱进行优化后,可能需要将优化结果导出。
下面介绍几种常用的导出数据的方法。
方法一:使用内置函数MATLAB提供了一些内置函数用于导出数据,其中比较常用的是"save"和"xlswrite"函数。
1. 使用"save"函数"save"函数用于保存变量和工作空间中的数据。
通过在命令窗口输入"save"命令,再将需要保存的变量名作为参数传递给该命令,即可将变量保存为.mat文件。
例如,要将名为"result"的变量保存为.mat文件,可以使用以下命令:save('result.mat', 'result')2. 使用"xlswrite"函数"xlswrite"函数用于将数据写入Excel文件。
谢菲尔德大学遗传算法工具箱
ObjVSel=sin(10*pi*X)./X; %计算子代的目标函数值
[Chrom,ObjV]=reins(Chrom,SelCh,1,1,ObjV,ObjVSel); %重插入子代到父代,得到新种群
SelCh=select('sus',Chrom,FitnV,GGAP); %选择
SelCh=recombin('xovsp',SelCh,px); %重组
SelCh=mut(SelCh,pm); பைடு நூலகம் %变异
trace(2,gen)=Y; %记下每代的最优值
end
plot(trace(1,:),trace(2,:),'bo'); %画出每代的最优点
grid on;
plot(X,ObjV,'b*'); %画出最后一代的种群
X=bs2rv(Chrom,FieldD);
gen=gen+1; %代计数器增加
%获取每代的最优解及其序号,Y为最优解,I为个体的序号
[Y,I]=min(ObjV);
trace(1,gen)=X(I); %记下每代的最优值
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=20; %最大遗传代数
PRECI=20; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(2,MAXGEN); %寻优结果的初始值
FieldD=[PRECI;lb;ub;1;0;1;1]; %区域描述器
matlab遗传算法工具箱关于离散变量优化算例
1. 引言遗传算法是一种模拟自然选择与遗传机制的优化算法,被广泛应用于离散变量优化问题的求解。
在Matlab软件中,有专门的工具箱可以支持遗传算法的实现与应用,极大地方便了工程技术人员进行离散变量优化问题的研究与应用。
本文将介绍Matlab遗传算法工具箱在离散变量优化算例中的应用,并通过具体案例来展示其实际求解效果。
2. Matlab遗传算法工具箱介绍Matlab遗传算法工具箱是Matlab软件的一个重要工具箱,它提供了丰富的遗传算法函数和工具,方便用户进行遗传算法的实现和应用。
在离散变量优化问题的求解中,用户可以利用工具箱提供的函数对问题进行建模、参数设置、运行算法等操作,从而快速高效地求解问题。
3. 离散变量优化算例为了更好地展示Matlab遗传算法工具箱在离散变量优化中的应用效果,我们选取了一个经典的离散变量优化问题作为算例,具体问题描述如下:设有一组零件需要进行装配,零件的形状和尺寸有多种选择。
每种零件的装配工艺和成本不同,需要选择最佳的零件组合方案来满足装配要求并使总成本最低。
假设可供选择的零件种类有n种,每种零件有m个备选方案,且装配每种零件的成本已知。
问应选择哪些零件及其具体方案才能使得总装配成本最低?4. Matlab遗传算法工具箱的应用为了利用Matlab遗传算法工具箱求解上述离散变量优化问题,我们可以按照以下步骤进行操作:1) 利用Matlab的数据处理工具,将零件的备选方案数据以矩阵的形式导入Matlab环境;2) 利用工具箱提供的函数对遗传算法的参数进行设置,例如选择交叉方式、变异方式、群体大小、迭代次数等;3) 利用工具箱提供的函数对离散变量优化问题进行编码和解码,以便算法能够对离散变量进行操作;4) 利用工具箱提供的函数编写适应度函数,用于评价每个个体的适应度;5) 利用工具箱提供的主函数运行遗传算法,获取最优解及其对应的总装配成本。
5. 案例求解结果分析通过上述步骤,我们在Matlab环境中成功应用遗传算法工具箱求解了离散变量优化问题。
MATLAB7.0 GA工具箱详细讲解及实例演示
minimize f ( x)
x
如果我们想要求出函数f(x)的最大值, 可以转而求取函数g(x)=-f(x)的最小值, 因为函数g(x) 最小值出现的地方与函数f(x)最大值出现的地方相同。
2 例如,假定想要求前面所描述的函数 f ( x1 , x2 ) x12 2x1 x2 6x1 x2 6x2 的最大值,这时,
137
显示参数描述
输入适应度函数 输入适应度函数 的变量数目
开始遗传算法
显示结果
图8.2
遗传算法工具
为了使用遗传算法工具,首先必须输入下列信息: Fitness function(适应度函数)——欲求最小值的目标函数。输入适应度函数的形式 为@fitnessfun,其中fitnessfun.m是计算适应度函数的M文件。在前面“编写待优化函数的M文 件”一节里已经解释了如何编写这种M文件。符号@产生一个对于函数fitnessfun的函数句柄。 Number of variables(变量个数)——适应度函数输入向量的长度。对于“编写待优化 函数的M文件”一节所描述的函数My_fun,这个参数是2。 点击Start按钮,运行遗传算法,将在Status and Results(状态与结果)窗格中显示出相应 的运行结果。 在Options窗格中可以改变遗传算法的选项。为了查看窗格中所列出的各类选项,可单击 与之相连的符号“+”。
8.1.2 编写待优化函数的M文件
134
为了使用遗传算法和直接搜索工具箱,首先必须编写一个 M 文件,来确定想要优化的函 数。这个 M 文件应该接受一个行向量,并且返回一个标量。行向量的长度就是目标函数中独 立变量的个数。本节将通过实例解释如何编写这种 M 文件。 8.1.2.1 编写 M 文件举例 下面的例子展示了如何为一个想要优化的函数编写M文件。 假定我们想要计算下面函数的 最小值:
【Matlab】自带遗传算法工具箱的介绍和使用注意事项
【Matlab】自带遗传算法工具箱的介绍和使用注意事项简单的遗传算法可以使用Matlab自带的遗传算法工具箱,但是要从Matlab2010版本之后才会自带这个工具箱,且调用命令也有变化,分别是gatool和optimtool。
GUI界面如下图所示:GUI界面使用注意事项:这里直接按从上到下,从左到右的顺序对Matlab自带的遗传算法工具箱的GUI界面进行介绍和使用注意事项的一些说明(宅主使用的是Matlab2013a,调用命令是optimtool):1、problem setup and results设置与结果(1)Solver:求解程序,选择要用的求解程序(遗传算法,遗传算法多目标等)(2)problem:1)fitness function适应度函数,求最小,这里的使用度函数要自己编写,书写格式是“@函数名”。
2)number of variable变量数,必须是整数,即,使用这个GUI 界面的适应度函数的变量必须是[1*n]的向量,而不能是[m*n]的矩阵。
3)constraints约束4)linear inequalities线性不等式,A*x<=b形式,其中A是矩阵,b是向量5)linear equalities线性等式,A*x=b形式,其中A是矩阵,b 是向量6)bounds定义域,lower下限,upper上限,列向量形式,每一个位置对应一个变量7)nonlinear constraint function非线性约束,用户定义,非线性等式必须写成c=0形式,不等式必须写成c<=0形式8)integer variable indices整型变量标记约束,使用该项时Aeq 和beq必须为空,所有非线性约束函数必须返回一个空值,种群类型必须是实数编码举例,若是想让第一个、第三个、第五个变量保持是整数的话,则直接在此处填写[1 3 5]9)run solver and view results求解use random states from previous run使用前次的状态运行,完全重复前次运行的过程和结果2、population(1)population type编码类型1)double vector实数编码,采用双精度。
matlab-遗传算法工具箱函数及实例讲解
matlab-遗传算法工具箱函数及实例讲解最近研究了一下遗传算法,因为要用遗传算法来求解多元非线性模型。
还好用遗传算法的工具箱予以实现了,期间也遇到了许多问题。
首先,我们要熟悉遗传算法的基本原理与运算流程。
基本原理:遗传算法是一种典型的启发式算法,属于非数值算法范畴。
它是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。
它是采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。
遗传算法的操作对象是一群二进制串(称为染色体、个体),即种群,每一个染色体都对应问题的一个解。
从初始种群出发,采用基于适应度函数的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。
如此模仿生命的进化进行不断演化,直到满足期望的终止条件。
运算流程:Step1:对遗传算法的运行参数进行赋值。
参数包括种群规模、变量个数、交叉概率、变异概率以及遗传运算的终止进化代数。
Step2:建立区域描述器。
根据轨道交通与常规公交运营协调模型的求解变量的约束条件,设置变量的取值范围。
Step3:在Step2的变量取值范围内,随机产生初始群体,代入适应度函数计算其适应度值。
Step4:执行比例选择算子进行选择操作。
Step5:按交叉概率对交叉算子执行交叉操作。
Step6:按变异概率执行离散变异操作。
Step7:计算Step6得到局部最优解中每个个体的适应值,并执行最优个体保存策略。
Step8:判断是否满足遗传运算的终止进化代数,不满足则返回Step4,满足则输出运算结果。
其次,运用遗传算法工具箱。
运用基于Matlab的遗传算法工具箱非常方便,遗传算法工具箱里包括了我们需要的各种函数库目前,基于Matlab的遗传算法工具箱也很多,比较流行的有英国设菲尔德大学开发的遗传算法工具箱GATB某、GAOT以及MathWork公司推出的GADS。
实际上,GADS就是大家所看到的Matlab中自带的工具箱。
遗传算法(GeneticAlgorithm,GA)及MATLAB实现
遗传算法(GeneticAlgorithm,GA)及MATLAB实现遗传算法概述:• 遗传算法(Genetic Algorithm,GA)是⼀种进化算法,其基本原理是仿效⽣物界中的“物竞天择、适者⽣存”的演化法则,它最初由美国Michigan⼤学的J. Holland教授于1967年提出。
• 遗传算法是从代表问题可能潜在的解集的⼀个种群(population)开始的,⽽⼀个种群则由经过基因(gene)编码的⼀定数⽬的个体(individual)组成。
因此,第⼀步需要实现从表现型到基因型的映射即编码⼯作。
初代种群产⽣之后,按照适者⽣存和优胜劣汰的原理,逐代(generation)演化产⽣出越来越好的近似解,在每⼀代,根据问题域中个体的适应度(fitness)⼤⼩选择个体,并借助于⾃然遗传学的遗传算⼦(genetic operators)进⾏组合交叉和变异,产⽣出代表新的解集的种群。
这个过程将导致种群像⾃然进化⼀样,后⽣代种群⽐前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
• 遗传算法有三个基本操作:选择(Selection)、交叉(Crossover)和变异(Mutation)。
• (1)选择。
选择的⽬的是为了从当前群体中选出优良的个体,使它们有机会作为⽗代为下⼀代繁衍⼦孙。
根据各个个体的适应度值,按照⼀定的规则或⽅法从上⼀代群体中选择出⼀些优良的个体遗传到下⼀代种群中。
选择的依据是适应性强的个体为下⼀代贡献⼀个或多个后代的概率⼤。
• (2)交叉。
通过交叉操作可以得到新⼀代个体,新个体组合了⽗辈个体的特性。
将群体中的各个个体随机搭配成对,对每⼀个个体,以交叉概率交换它们之间的部分染⾊体。
• (3)变异。
对种群中的每⼀个个体,以变异概率改变某⼀个或多个基因座上的基因值为其他的等位基因。
同⽣物界中⼀样,变异发⽣的概率很低,变异为新个体的产⽣提供了机会。
遗传算法的基本步骤:1)编码:GA在进⾏搜索之前先将解空间的解数据表⽰成遗传空间的基因型串结构数据,这些串结构数据的丌同组合便构成了丌同的点。
matlab遗传算法种群初始化
matlab遗传算法种群初始化摘要:一、遗传算法简介二、MATLAB 中的遗传算法工具箱三、种群初始化方法在遗传算法中的应用四、结论正文:一、遗传算法简介遗传算法(Genetic Algorithm,GA)是一种模拟自然界生物进化过程的优化算法。
其主要思想是将进化过程中的种群、适应度函数、选择、交叉和变异等生物学概念引入到算法中,通过模拟这些生物学过程来寻找问题的最优解。
遗传算法具有较强的全局搜索能力,适用于解决复杂、非线性、非凸优化问题。
二、MATLAB 中的遗传算法工具箱MATLAB 提供了遗传算法工具箱(GA Toolbox),用户可以在MATLAB 中直接调用这个工具箱中的函数来实现遗传算法。
这个工具箱中包含了两个主要的函数:ga 和gaoptimset。
其中,ga 函数用于执行遗传算法,其语法如下:```matlab[x,fval] = ga(fitnessfcn,nvars,a,b,aeq,beq,lb,ub,nonlcon,options)```其中,fitnessfcn 表示适应度函数,nvars 表示变量个数,a 和b 分别表示交叉概率和变异概率,aeq 和beq 表示交叉和变异的约束条件,lb 和ub 表示变量范围的下界和上界,nonlcon 表示非线性约束条件,options 表示算法参数。
gaoptimset 函数用于设置遗传算法的参数,其语法如下:```matlabgaoptimset("param1",value1,"param2",value2,...)```其中,param1、value1 等表示需要设置的参数及其值。
三、种群初始化方法在遗传算法中的应用在遗传算法中,种群初始化是一个重要的步骤。
合理的种群初始化方法可以提高算法的收敛速度和搜索能力。
MATLAB 中的遗传算法工具箱提供了两种种群初始化方法:随机初始化和均匀初始化。
最权威遗传算法工具箱GAOT(goat)安装方法
最权威遗传算法工具箱GAOT(goat)安装方法首先感谢论坛前辈们对遗传算法工具箱GAOT(goat)安装所提出的方法以及解决意见!具体安装步骤1. 将GAOT工具箱文件拷贝至Matlab文件夹下,具体路径为:C:\program files\MATLAB\R2009a\toolbox。
(也可以放在其他路径,不一定放在toolbox里面,比如C:\program files\MATLAB\R2009a也行)。
2. 将GAOT工具箱路径加入Matlab文件路径之中。
流程为:File-->Set Path-->Add with Subfolders。
即,将C:\program files\MATLAB\R2009a\toolbox\gaot文件夹加入该路径系统中。
3.重新启动Matlab,运行。
4.但是在重新启动后,你会发现在命令窗口,会出现如下警告。
即安装遗传工具箱后出现问题:Warning: Name is nonexistent or not a directory: \afs\eos\info\ie\ie589k_info\GAOT解决方案:打开gaot文件夹下的startup.m,这里面写着“path(path,'\afs\eos\info\ie\ie589k_info\GAOT');”只要将“\afs\eos\info\ie\ie589k_info\GAOT”改为goat当前所在的目录,即“C:\program files\MATLAB\R2009a\toolbox\gaot”就可以了5. 测试是否安装成功,方法如下:在命令窗口输入:edit ga出现如下函数:function [x,fval,exitFlag,output,population,scores] = ga(fun,nvars,Aineq,bineq,Aeq,beq,lb,ub,nonlcon,options)此时你会发现这是MATLAB自带的ga函数,并不是你想要的工具箱中的ga 函数,这样会在以后应用工具箱编写程序是发生错误。
MATLAB中的遗传算法与优化问题解析
MATLAB中的遗传算法与优化问题解析引言随着计算机科学的迅猛发展,优化问题的求解变得越来越重要。
在现实生活中,我们经常遇到各种需要优化的情况,例如在工程设计中寻找最佳方案、在运输调度中确定最优路径、在金融领域优化投资组合等。
针对这些问题,遗传算法作为一种基于生物进化思想的优化算法,成为了研究者们的关注焦点。
一、遗传算法概述遗传算法(Genetic Algorithm, GA)是一种用来求解最优化问题的随机搜索和优化技术。
它通过模拟生物进化的机制,不断地进行个体之间的交叉、变异和选择,以寻找到最优解。
1.1 算法流程遗传算法的基本流程包括初始化种群、评估适应度、选择、交叉、变异和进化等步骤。
首先,通过随机生成一定数量的个体作为初始种群,利用适应度函数评估每个个体的适应程度。
然后,根据适应度大小,按照一定的概率选择优秀个体作为父代,进行交叉和变异操作产生新的个体。
最后,将新个体替换掉原有种群中适应度较差的个体,重复以上步骤直到满足终止条件。
1.2 适应度函数设计适应度函数是遗传算法中非常重要的一个组成部分,它用来评估个体的优劣程度。
适应度函数应该能准确地衡量问题的目标函数,使得达到最大(或最小)适应度的个体能代表问题的最优解。
在设计适应度函数时,需要结合问题本身的特点和要求,合理选择适应性度量。
1.3 交叉与变异操作交叉和变异是遗传算法中的两个重要操作。
交叉操作通过将两个父代个体的染色体片段进行互换,产生出新的后代个体。
变异操作则是在个体的染色体上随机改变一个或多个基因的值。
通过交叉和变异操作可以增加种群的多样性,提高搜索空间的覆盖率,从而增加找到最优解的概率。
二、 MATLAB中的遗传算法工具箱MATLAB作为一种高效且易于使用的科学计算软件,提供了丰富的工具箱,其中包括了强大的遗传算法工具箱。
通过这个工具箱,用户可以方便地实现遗传算法来解决各种优化问题。
2.1 工具箱安装与调用遗传算法工具箱是MATLAB的一个功能扩展包,用户可以在MATLAB官方网站上下载并安装。
遗传算法
4、基本遗传算法的实现
(2)个体适应度评价: 基本遗传算法按与个体适应度成正比的概率来决定当前群体中每个个体遗传到 下一代群体中的机会多少。 如前所述,要求所有个体的适应度必须为正数或零,不能是负数。 (1) 当优化目标是求函数最大值,并且目标函数总取正值时,可以直接设定个 体的适应度F(X)就等于相应的目标函数值f(X),即: F(X)=f(X) (2) 对于求目标函数最小值的优化问题,理论上只需简单地对其增加一个负号 就 可将其转化为求目标函数最大值的优化问题,即: min f(X)=max ( - f(X))
F(X) =
其中,Cmax是一个适当地相对比较大的数,它可用下面几种方法求得:
4、基本遗传算法的实现
(3) 遗传算子 基本遗传算法使用下述三种遗传算子: • 选择运算:根据每个个体的适应度值大小选择,适应度较高的个体被 遗传到下一代的概率较大。有很多种选择算子,基本遗传法使用的是: 赌轮盘选择:指个体被选中并遗传到下一代群体中的概率与该个体 的适应度大小成正比。 pi = fi / fi ( i=1,2,…,M ) 式中 pi——个体i被选中的概率;
注:在这里输入引用说明
4、基本遗传算法的实现
• 变异运算:变异(Mutation)是以较小的概率对个体编码串上的某个或某些位值进 行改变。 其目的有两个: 改善遗传算法的局部搜索能力。 维持群体的多样性,防止出现早熟现象。 基本遗传算法采用基本位变异算子:对于基本遗传算法中用二进制编码符号串所表示 的个体,若需要进行变异操作的某一基因座上的原有基因值为0,则变异操作将该 基因值变为1,反之,若原有基因值为1,则变异操作将其变为0。 基本位变异因子的具体执行过程是: Ⅰ. 对个体的每一个基因座,依变异概率pm指定其为变异点。 Ⅱ. 对每一个指定的变异点,对其基因值做取反运算或用其它等位基因值来代替, 从而产生出一个新的个体。 基本位变异运算的示例如下所示: A:1010 1 01010 基本位变异 A’:1010 0 01010
GADS--matlab遗传算法工具箱使用总结
GADS--Matlab遗传算法工具箱使用总结e-mail:978299005@一、GADS简介与启动MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。
在Matlab平台上主要有三个遗传算法(GA)的工具箱,分别是:GAOT,美国北卡罗来纳大学开发;GATBX,英国谢菲尔德大学开发;GADS,Matlab7以后的版本中自带的。
GATBX可以包含GAOT,而GADS显然年代又近了一些。
这里主要讲的是GADS。
GADS(Genetic Algorithm and Direct Search Toolbox)遗传算法与直接搜索工具箱。
可以在命令行中直接使用,在M文件的程序中调用ga函数,或在GUI 界面中使用它来解决实际问题。
在不同的Matlab版本中启动方法稍有区别。
以笔者的Matlab 2010b为例,启动有两种方法:1、在Matlab命令行中输入optimtool回车,在出现的对话框左上角找到Solver,选择ga- Genetic Algorithm即可。
2、Matlab界面中单击左下角Start,选择toolboxes,选择其中的optimization再点击optimization tool即可打开对话框,然后如1中,选择ga即可。
二、GADS的具体使用【1】先介绍ga函数的格式。
Ga函数可以在命令行中直接使用。
在命令行中键入命令type ga可以打印出ga函数的代码。
键入help ga,就打印出ga函数的帮助提示。
以下是help ga的输出:GA Constrained optimization using genetic algorithm.GA attempts to solve problems of the form:min F(X) subject to: A*X <= B, Aeq*X = Beq (linear constraints)X C(X) <= 0, Ceq(X) = 0 (nonlinear constraints)LB <= X <= ubX = GA(FITNESSFCN,NVARS) finds a local unconstrained minimum X to theFITNESSFCN using GA. NVARS is the dimension (number of designvariables) of the FITNESSFCN. FITNESSFCN accepts a vector X of size1-by-NVARS, and returns a scalar evaluated at X.X = GA(FITNESSFCN,NVARS,A,b) finds a local minimum X to the functionFITNESSFCN, subject to the linear inequalities A*X <= B. Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq) finds a local minimum X to thefunction FITNESSFCN, subject to the linear equalities Aeq*X = beq aswell as A*X <= B. (Set A=[] and B=[] if no inequalities exist.) Linearconstraints are not satisfied when the PopulationType option is set to'bitString' or 'custom'. See the documentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub) defines a set of lower andupper bounds on the design variables, X, so that a solution is found inthe range lb <= X <= ub. Use empty matrices for lb and ub if no boundsexist. Set lb(i) = -Inf if X(i) is unbounded below; set ub(i) = Inf ifX(i) is unbounded above. Linear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON) subjects theminimization to the constraints defined in NONLCON. The functionNONLCON accepts X and returns the vectors C and Ceq, representing thenonlinear inequalities and equalities respectively. GA minimizesFITNESSFCN such that C(X)<=0 and Ceq(X)=0. (Set lb=[] and/or ub=[] ifno bounds exist.) Nonlinear constraints are not satisfied when thePopulationType option is set to 'bitString' or 'custom'. See thedocumentation for details.X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options) minimizeswith the default optimization parameters replaced by values in thestructure OPTIONS. OPTIONS can be created with the GAOPTIMSET function.See GAOPTIMSET for details.X = GA(PROBLEM) finds the minimum for PROBLEM. PROBLEM is a structurethat has the following fields:fitnessfcn: <Fitness function>nvars: <Number of design variables>Aineq: <A matrix for inequality constraints>bineq: <b vector for inequality constraints>Aeq: <Aeq matrix for equality constraints>beq: <beq vector for equality constraints>lb: <Lower bound on X>ub: <Upper bound on X>nonlcon: <nonlinear constraint function>options: <Options structure created with GAOPTIMSET>rngstate: <State of the random number generator>[X,FVAL] = GA(FITNESSFCN, ...) returns FVAL, the value of the fitnessfunction FITNESSFCN at the solution X.[X,FVAL,EXITFLAG] = GA(FITNESSFCN, ...) returns EXITFLAG whichdescribes the exit condition of GA. Possible values of EXITFLAG and thecorresponding exit conditions are1 Average change in value of the fitness function overoptions.StallGenLimit generations less than options.TolFun andconstraint violation less than options.TolCon.3 The value of the fitness function did not change inoptions.StallGenLimit generations and constraint violation lessthan options.TolCon.4 Magnitude of step smaller than machine precision and constraintviolation less than options.TolCon. This exit condition appliesonly to nonlinear constraints.5 Fitness limit reached and constraint violation less thanoptions.TolCon.0 Maximum number of generations exceeded.-1 Optimization terminated by the output or plot function.-2 No feasible point found.-4 Stall time limit exceeded.-5 Time limit exceeded.[X,FVAL,EXITFLAG,OUTPUT] = GA(FITNESSFCN, ...) returns astructure OUTPUT with the following information:rngstate: <State of the random number generator before GA started>generations: <Total generations, excluding HybridFcn iterations>funccount: <Total function evaluations>maxconstraint: <Maximum constraint violation>, if anymessage: <GA termination message>[X,FVAL,EXITFLAG,OUTPUT,POPULATION] = GA(FITNESSFCN, ...) returns thefinal POPULATION at termination.[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES] = GA(FITNESSFCN, ...) returnsthe SCORES of the final POPULATION.Example:Unconstrained minimization of 'rastriginsfcn' fitness function ofnumberOfVariables = 2x = ga(@rastriginsfcn,2)Display plotting functions while GA minimizesoptions = gaoptimset('PlotFcns',...{@gaplotbestf,@gaplotbestindiv,@gaplotexpectation,@gaplotstopping});[x,fval,exitflag,output] = ga(@rastriginsfcn,2,[],[],[],[],[],[],[],options)An example with inequality constraints and lower boundsA = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = zeros(2,1);% Use mutation function which can handle constraintsoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);[x,fval,exitflag] = ga(@lincontest6,2,A,b,[],[],lb,[],[],options);FITNESSFCN can also be an anonymous function:x = ga(@(x) 3*sin(x(1))+exp(x(2)),2)If FITNESSFCN or NONLCON are parameterized, you can use anonymousfunctions to capture the problem-dependent parameters. Suppose you wantto minimize the fitness given in the function myfit, subject to thenonlinear constraint myconstr, where these two functions areparameterized by their second argument a1 and a2, respectively. Heremyfit and myconstr are MATLAB file functions such asfunction f = myfit(x,a1)f = exp(x(1))*(4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + a1);andfunction [c,ceq] = myconstr(x,a2)c = [1.5 + x(1)*x(2) - x(1) - x(2);-x(1)*x(2) - a2];% No nonlinear equality constraints:ceq = [];To optimize for specific values of a1 and a2, first assign the valuesto these two parameters. Then create two one-argument anonymousfunctions that capture the values of a1 and a2, and call myfit andmyconstr with two arguments. Finally, pass these anonymous functions toGA:a1 = 1; a2 = 10; % define parameters first% Mutation function for constrained minimizationoptions = gaoptimset('MutationFcn',@mutationadaptfeasible);x = ga(@(x)myfit(x,a1),2,[],[],[],[],[],[],@(x)myconstr(x,a2),options)解释如下:ga函数最完整的格式是[X,FVAL,EXITFLAG,OUTPUT,POPULATION,SCORES]= GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)。
MATLAB中的遗传算法及其应用示例
MATLAB中的遗传算法及其应用示例引言:遗传算法是一种基于自然进化规律的优化方法,适用于求解复杂的问题。
作为MATLAB的重要工具之一,遗传算法在各个领域的优化问题中被广泛应用。
本文将介绍MATLAB中的遗传算法的原理及其应用示例。
一、遗传算法的原理遗传算法(Genetic Algorithm, GA)是一种基于进化的搜索算法,源于对达尔文进化论的模拟。
它模拟了自然界中生物个体基因遗传和自然选择的过程,通过优胜劣汰和进化操作寻找问题的最优解。
遗传算法的基本步骤包括:初始化种群、适应度评估、选择、交叉、变异和进化终止准则。
在初始化阶段,种群中的个体由一组基因表示,基因可以是二进制、实数或其他形式。
适应度评估阶段根据问题的特定要求对每个个体进行评估。
选择操作通过适应度大小选择出较优的个体,形成下一代种群。
交叉操作模拟自然界中的基因交换过程,将不同个体的基因进行组合。
变异操作引入新的基因,增加种群的多样性。
经过多次迭代后,算法会逐渐收敛,并得到一个近似的最优解。
二、遗传算法的应用示例:函数优化遗传算法在函数优化问题中有广泛应用。
以一个简单的函数优化问题为例,假设我们要求解以下函数的最小值:f(x) = x^2 + 5sin(x)首先,我们需要定义适应度函数,即f(x)在给定范围内的取值。
接下来,我们需要设置参数,例如种群数量、交叉概率和变异概率等。
然后,我们可以利用MATLAB中的遗传算法工具箱,通过以下步骤实现函数的最小化求解:1. 初始化种群:随机生成一组个体,每个个体表示参数x的一个取值。
2. 适应度评估:计算每个个体在函数中的取值,得到适应度。
3. 选择:根据适应度大小选择优秀的个体。
4. 交叉:随机选择两个个体进行基因交叉。
5. 变异:对个体的基因进行变异操作,引入新的基因。
6. 迭代:重复步骤2至步骤5,直到达到迭代终止条件。
通过上述步骤,我们可以较快地找到给定函数的最小值。
在MATLAB中,我们可以使用遗传算法工具箱的相关函数来实现遗传算法的迭代过程,如'ga'函数。
matlab遗传算法ga工具箱调用gpu运算
matlab遗传算法ga工具箱调用gpu运算标题:利用Matlab遗传算法GA工具箱调用GPU运算随着科技的飞速发展,计算能力的需求也在不断提高。
特别是对于那些需要大量计算的任务,如机器学习、深度学习和大数据分析等,传统的CPU已经无法满足需求。
在这种情况下,GPU(图形处理器)作为一种并行处理的强大工具,受到了越来越多的关注。
本文将详细介绍如何在Matlab中使用遗传算法GA工具箱调用GPU进行运算。
首先,我们需要了解什么是遗传算法。
遗传算法是一种模拟自然选择和遗传机制的优化算法。
它通过模拟生物进化过程中的“适者生存”和“遗传变异”机制,在求解复杂问题时能够找到全局最优解或近似最优解。
Matlab GA工具箱是Matlab 提供的一个用于实现遗传算法的工具箱,其提供了丰富的函数和接口,使得用户可以方便地实现各种遗传算法。
然而,遗传算法通常需要处理大量的数据和复杂的运算,这使得其计算效率成为了一个关键问题。
为了解决这个问题,我们可以利用GPU强大的并行计算能力来加速遗传算法的运算。
Matlab GA工具箱支持调用GPU进行运算,只需要简单的设置即可实现。
在Matlab中,我们可以通过以下步骤来调用GPU进行运算:1. 首先,我们需要确认计算机是否安装了GPU以及CUDA驱动程序。
CUDA 是NVIDIA公司推出的一种编程模型,可以让开发者直接访问GPU的硬件资源。
只有安装了CUDA驱动程序,才能在Matlab中使用GPU进行运算。
2. 然后,我们需要在Matlab中设置工作区为GPU。
这可以通过以下命令实现:```matlabg = gpuDevice();set(g,'ExecutionMode','manual');```3. 接下来,我们需要将数据从CPU复制到GPU。
这可以通过以下命令实现:```matlabd_X = gpuArray(X);```其中,X是我们需要复制到GPU的数据。
(实例)matlab遗传算法工具箱函数及实例讲解
(实例)matlab遗传算法工具箱函数及实例讲解matlab遗传算法工具箱函数及实例讲解核心函数:(1)function[pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] =ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverO ps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega 的options参数,第三个参数控制是否输出,一般为0。
如[1e-6 1 0] termFN--终止函数的名称,如['maxGenTerm']termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['normGeomSelect']selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation'] mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]matlab遗传算法工具箱附件【注意】matlab工具箱函数必须放在工作目录下【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算结果为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。
matlab遗传算法ga工具箱调用gpu运算
matlab遗传算法ga工具箱调用gpu运算1. 引言1.1 背景介绍在传统的遗传算法中,遗传算法能够有效地解决一些复杂的优化问题。
随着问题规模的增大和复杂度的提高,传统的遗传算法在计算效率上显得有些力不从心。
为了提高遗传算法的计算速度和效率,研究者们开始探索将图形处理器(GPU)应用于遗传算法中,以加速计算过程。
GPU是一种高度并行化的处理器,适合处理大规模的并行计算任务。
相比于传统的中央处理器(CPU),GPU具有更多的处理单元和更快的计算速度。
通过利用GPU的并行计算能力,可以显著加速遗传算法的计算过程,从而提高算法的效率和性能。
在MATLAB中,有专门的遗传算法GA工具箱,可以方便地实现遗传算法。
结合GPU加速计算的技术,可以进一步提高遗传算法在复杂优化问题上的求解能力。
本文将介绍如何使用MATLAB遗传算法GA工具箱调用GPU进行计算,并通过实验设计和结果分析来验证其优化效果。
通过本文的研究,可以更好地了解遗传算法在GPU加速计算下的应用和优化效果,为未来的研究提供参考。
1.2 研究目的研究目的是为了探讨在遗传算法中利用GPU加速运算的优势和应用。
由于遗传算法是一种基于群体搜索的优化算法,通常需要进行大量的迭代计算以找到最优解。
而传统的CPU计算在处理大规模问题时往往效率较低,因此利用GPU进行并行计算能够显著提高算法的运行速度和效率。
通过调用MATLAB遗传算法GA工具箱,并结合GPU加速运算,可以加快算法的收敛速度,提高搜索效率,同时也能够处理更复杂的优化问题。
研究的目的是为了验证在实际应用中,利用GPU进行计算对遗传算法的性能和效果的提升程度,并进一步分析其在不同类型问题上的适用性和优势。
通过本研究的实验设计与结果分析,可以对比传统CPU计算和GPU加速计算的效果差异,评价加速计算技术在遗传算法中的实际应用效果,为进一步优化遗传算法的设计和改进提供参考依据。
2. 正文2.1 GPU加速在遗传算法中的应用遗传算法是一种通过模拟自然选择与遗传机制来搜索最优解的优化算法,然而遗传算法在处理复杂问题时往往需要大量的计算资源来进行演化计算,而传统的CPU计算速度往往难以满足需求。
matlab遗传算法ga工具箱调用gpu运算
matlab遗传算法ga工具箱调用gpu运算全文共四篇示例,供读者参考第一篇示例:Matlab是一个强大的科学计算工具,而遗传算法(Genetic Algorithm,GA)被广泛应用于优化问题的求解。
在大规模优化问题中,GA的求解速度往往是一个瓶颈,为了加速GA的求解过程,可以利用GPU进行并行计算。
在Matlab中,可以通过GPU进行加速的工具箱,称为Parallel Computing Toolbox。
本文将介绍如何利用Matlab的Parallel Computing Toolbox和GA工具箱结合起来,实现GPU加速GA的求解过程。
我们需要在Matlab中安装Parallel Computing Toolbox和GA 工具箱。
在安装完成后,就可以开始编写适用于GPU加速的GA程序了。
在编写程序时,需要注意以下几点:1. 设定GA参数:一般来说,可以设置GA的种群大小、迭代次数、交叉概率、变异概率等参数。
这些参数的设定将直接影响到GA的求解效果和速度。
2. 定义适应度函数:在GA中,适应度函数决定了个体的适应程度,从而影响被选择的几率。
在编写适用于GPU加速的适应度函数时,要注意将计算过程向量化,以便GPU并行计算。
3. 设置GPU运算环境:在Matlab中,可以通过parallel.gpu.GPUDevice函数获取当前可用的GPU设备列表,并选择一个合适的设备进行计算。
在进行GPU计算时,需要将待处理的数据转换为GPU数组,以便GPU并行计算。
4. 调用GA函数并启用GPU加速:在进行GA求解过程中,可以通过设置options参数启用GPU加速。
在调用GA函数时,可以通过设定eParallel参数为true,来启用GPU加速。
下面,我们来看一个简单的例子,演示如何利用Parallel Computing Toolbox和GA工具箱结合GPU加速GA的求解过程。
假设我们要求解一个简单的函数f(x) = x^2 + 5,在区间[-10, 10]内的最小值。
英国Sheffield遗传算法工具箱(GATBX)基本函数介绍与编程方法
因为每个个体对应一组染色体,故经常叫种群中的个体为染色体而每个染色体有好多基因组成,每个基因就是对应为题的每一个变量。
1.函数bs2rvphen=bs2rv(chrom,fieldD)根据译码矩阵fieldD将二进制串矩阵chorm转换成实值向量,返回矩阵包含对应的种群表现型。
fieldD=[len;lb;ub;code;scale;lbin;ubin]len:指明chorm中每个变量(基因)的二进制编码的长度,满足sum(len)==size(chorm,2) lb和ub:分别指明每个变量使用的上下边界code:指明每个变量的编码方式,1为标准二进制编码,0为格雷编码scale:指明每个变量的是否使用对数或算术刻度,1是对数刻度,0为算术刻度lbin和ubin:指明表示范围总是否包含每个边界,1表示包含,0不包含比如:fieldD=[5 6 9 7 %len0 -5 -1 9 %lb10 0 10 20 %ub0 1 1 1 %code0 1 0 1 %scale1 1 1 0 %lbin0 1 0 0 ] %ubin表示chrom的每个个体(染色体)的编码规则为:共有4个变量(即每个染色体有4个基因),第1个基因体是使用5位标准二进制编码,上下边界为[0 10],只包含上边界的算术刻度第2个基因体是使用6位格雷二进制编码,上下边界为[-5 0],包含上下边界的对数刻度2.crtbasebasevec=crtbase(lind,base)产生向量的元素对应染色体每个基因的基数(每个变量的范围)lind:每个染色体的基因(变量)个数,sum(lind)==变量个数,且length(lind)=length(base) base:对应每个基因的基数比如:>>basevec=crtbase([2 3 4 2],[10 20 15 8])结果为:>>basevec=[10 10 20 20 20 15 15 15 15 8 8]上面表示创建有2+3+4+2=11个基因(变量)的染色体(个体)前两的变量的取值为0-9,接着三个0-19,还有四个0-14,最后两个0-7由上面可以看出basevec其实可使用matlab的其它简单命令创建,因此很少用到它,一般使用rep。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新最全的遗传算法工具箱Gaot_v5及说明Gaot_v5下载地址:/mirage/GAToolBox/gaot/gaotv5.zip添加遗传算法路径:1、 matlab的file下面的set path把它加上,把路径加进去后在2、 file→Preferences→General的Toolbox Path Caching里点击update Toolbox Path Cache更新一下,就OK了遗传算法工具箱Gaot_v5包括许多实用的函数,各种算子函数,各种类型的选择方式,交叉、变异方式。
这些函数按照功能可以分成以下几类:主程序 ga.m提供了 GAOT 与外部的接口。
它的函数格式如下:[x endPop bPop traceInfo]=ga(bounds,evalFN,evalOps,startPop,opts,termFN,termOps, selectFn,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)输出参数及其定义如表 1 所示。
输入参数及其定义如表 2 所示。
表1 ga.m的输出参数输出参数 定义x 求得的最好的解,包括染色体和适应度endPop 最后一代染色体(可选择的)bPop 最好染色体的轨迹(可选择的)traceInfo 每一代染色体中最好的个体和平均适应度(可选择的) 表2 ga.m的输入参数表3 GAOT核心函数及其它函数核心函数:(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数【输出参数】pop--生成的初始种群【输入参数】num--种群中的个体数目bounds--代表变量的上下界的矩阵eevalFN--适应度函数eevalOps--传递给适应度函数的参数options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如precision--变量进行二进制编码时指定的精度F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数【输出参数】x--求得的最优解endPop--最终得到的种群bPop--最优种群的一个搜索轨迹【输入参数】bounds--代表变量上下界的矩阵evalFN--适应度函数evalOps--传递给适应度函数的参数startPop-初始种群opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。
如[1e-6 1 0]termFN--终止函数的名称,如['maxGenTerm']termOps--传递个终止函数的参数,如[100]selectFN--选择函数的名称,如['normGeomSelect']selectOps--传递个选择函数的参数,如[0.08]xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]【注意】matlab工具箱函数必须放在工作目录下遗传算法实例1【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function[sol,eval]=fitness(sol,options)x=sol(1);eval=x+10*sin(5*x)+7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代运算借过为:x =7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。
遗传算法实例2【问题】在-5<=Xi<=5,i=1,2区间内,求解f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2))) +22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3【程序清单】%源函数的matlab代码function [eval]=f(sol)numv=size(sol,2);x=sol(1:numv);eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282; %适应度函数的matlab代码function [sol,eval]=fitness(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=f(x);eval=-eval;%遗传算法的matlab代码bounds=ones(2,1)*[-5 5];[p,endPop,bestSols,trace]=ga(bounds,'fitness')注:前两个文件存储为m文件并放在工作目录下,运行结果为p =0.0000 -0.0000 0.0055大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。
matlab命令行执行命令:fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。
xoverops是传递给交叉函数的参数。
mutops是传递给变异函数的参数。
遗传算法实例3下面用 GA解 De Jong 函数的参数优化问题,求解:minf(x)-512≤xi≤512采用 GAOT 的步骤如下:①编制 De Jong 函数文件DeJong.m如下:function[eval]=DeJong(sol)numv=size(sol,2);x=sol(1:numv);eval=sum(x.^2);②编制目标函数适值文件 DeJongMin.m如下:function[sol,eval]=DeJongMin(sol,options)numv=size(sol,2)-1;x=sol(1:numv);eval=DeJong (x);eval=-eval;图2 De Jong函数图③编程调用主程序 DeJong_ga.m,其程序如下:bounds=ones(3,1)*[-512 512]; %设置参数边界[p,endPop,bestSols,trace]=ga(bounds,'DeJongMin'); %遗传算法优化pplot(trace(:,1),trace(:,3),'b-') %性能跟踪hold onplot(trace(:,1),trace(:,2),'r-')xlabel('Generation','fontsize',14); ylabel('Fittness','fontsize',14); legend('解的变化','种群平均值的变化')Minf=DeJong(p(1:3))④结果输出p=1.0e-003 *[0.0112 0.1450 0.1183]eval(p)=0.0000理论上最优解为:p=[0 0 0] ,极小值为0。
显然 GA有效地解决了 De Jong 函数的极小化问题。
图3是 De Jong 函数的 GA的寻优性能图。
图3 GA的寻优性能图总结GA作为一种求解复杂系统优化问题的通用算法,正在得到广泛的应用。
基于MATLAB的 GAOT 提供了一个标准的、可扩展的、简单的算法。
使用者可以节省大量编程时间和精力,且使用灵活、方便,易于学习和掌握。
只要对其相关模块作适当修改,即可解决许多实际问题。
实例表明,GAOT 对于实际工程优化问题具有较好的应用前景。