数字信号处理实验报告实验五
数字信号处理实验报告
实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。
2、熟悉离散信号和系统的时域特性。
3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。
4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。
二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。
2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。
信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。
根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。
三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。
(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
数字信号处理实验实验五汇总
数字信号处理实验报告实验名称:应用FFT实现信号频谱分析学生姓名:z学生学号:学生班级:上课时间:周二上午指导老师:一、 实验目的(1) 能够熟练掌握快速离散傅里叶变换的原理及应用FFT 进行频谱分析的基本方法。
(2) 对离散傅里叶变换的主要性质及FFT 在数字信号处理中的重要作用有进一步的了解。
二、 实验原理1、离散傅里叶变换(DFT )及其主要性质DFT 表示离散信号的离散频谱,DFT 的主要性质中有奇偶对称性、虚实特性等。
通过实验可以加深理解。
实序列的DFT 具有偶对称的实部和奇对称的虚部,这可以证明如下: 由定义,可得X(k)=∑-=1)(N n kn N W n x=)2sin()()2cos()(110kn N n x j kn N n x N n N n ∑∑-=-=-ππX(N-k)=∑-=-10)()(N n n k N NWn x =∑-=-1)(N n kn nNnWWn x =∑-=-1)(N n kn N W n x=)2sin()()2cos()(110kn N n x j kn N n x N n N n ∑∑-=-=+ππ所以,X(k)=X *(N-k)实序列DFT 的这个特性,在本实验中可以通过实指数序列及三角序列看出来。
对于单一频率的三角序列来说,它的DFT 谱线也是单一的,这个物理意义可以从实验中得到验证,在理论上可以推导如下: 设)()2s i n ()(n R n Nn x N π= 其DFT 为 X(k)=∑-=-102)(N n kn Nen x π=kn Nj N n e n N ππ21)2sin(--=∑=kn N j n N j N n N j e e e j πππ22102)(21---=-∑=)(21)1(210)1(2+--=---∑k n N j N n k n N j e e j ππ从而,X(0)=0)(212102=---=∑n N j N n Nj e e j ππX(1)=22)1(21104Nj j N e j N n n N j -==-∑-=-πX(2)=0 …… X(N-2)=0X(N-1)=22)(21210)2(2Nj j N e e j n j N n n N N j =-=-∑-=--ππ以上这串式中X(0)反映了x(n)的直流分量,X(1)是x(n)的一次谐波,又根据虚实特性X *(N-1)=X(1),而其他分量均为零。
数字信号处理实验报告_五个实验
实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。
二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。
对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。
其延拓周期为采样角频率(T /2π=Ω)。
只有满足采样定理时,才不会发生频率混叠失真。
在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。
公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。
为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。
对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。
数字信号处理实验五
实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。
(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。
最新数字信号处理实验报告
最新数字信号处理实验报告一、实验目的本次实验旨在加深对数字信号处理(DSP)理论的理解,并通过实践操作掌握数字信号处理的基本方法和技术。
通过实验,学习如何使用相关软件工具进行信号的采集、分析、处理和重构,提高解决实际问题的能力。
二、实验内容1. 信号采集与分析- 使用数字示波器采集模拟信号,并将其转换为数字信号。
- 利用傅里叶变换(FFT)分析信号的频谱特性。
- 观察并记录信号的时域和频域特性。
2. 滤波器设计与实现- 设计低通、高通、带通和带阻滤波器。
- 通过编程实现上述滤波器,并测试其性能。
- 分析滤波器对信号的影响,并调整参数以优化性能。
3. 信号重构实验- 应用所学滤波器对采集的信号进行去噪处理。
- 使用逆傅里叶变换(IFFT)重构经过滤波处理的信号。
- 比较重构信号与原始信号的差异,评估处理效果。
三、实验设备与材料- 计算机及DSP相关软件(如MATLAB、LabVIEW等)- 数字示波器- 模拟信号发生器- 数据采集卡四、实验步骤1. 信号采集- 连接并设置好数字示波器和模拟信号发生器。
- 生成一系列不同频率和幅度的模拟信号。
- 通过数据采集卡将模拟信号转换为数字信号。
2. 滤波器设计- 在DSP软件中设计所需的滤波器,并编写相应的程序代码。
- 调整滤波器参数,如截止频率、增益等,以达到预期的滤波效果。
3. 信号处理与重构- 应用设计的滤波器对采集的数字信号进行处理。
- 利用IFFT对处理后的信号进行重构。
- 通过对比原始信号和重构信号,评估滤波器的性能。
五、实验结果与分析- 展示信号在时域和频域的分析结果。
- 描述滤波器设计参数及其对信号处理的影响。
- 分析重构信号的质量,包括信噪比、失真度等指标。
六、实验结论- 总结实验中所学习到的数字信号处理的基本概念和方法。
- 讨论实验中遇到的问题及其解决方案。
- 提出对实验方法和过程的改进建议。
七、参考文献- 列出实验过程中参考的书籍、文章和其他资源。
数字信号管理方案计划实验报告实验五
物理与电子信息工程学院实验报告实验课程名称:数字信号处理实验名称:FIR数字滤波器设计与软件实现班级:1012341姓名:严娅学号:101234153成绩:_______实验时间:2012年12月20 日一、实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
(3)掌握FIR 滤波器的快速卷积实现原理。
(4)学会调用MATLAB 函数设计与实现FIR 滤波器。
二、实验原理1、用窗函数法设计FIR 数字滤波器的原理和方法。
如果所希望的滤波器的理想频率响应函数为 )(ωj d e H ,则其对应的单位脉冲响应为)(n h d =π21ωωωππd e e H j j d )(⎰- (2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。
由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到:)(n h =)(n h d )(n ω (2-2))(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(ωj d e H 为:)(ωj d e H =∑-=-1)(N n j e n h ω (2-3) 式中,N 为所选窗函数)(n ω的长度。
由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。
设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。
这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。
)(ωj e H 是否满足要求,要进行验算。
一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。
数字信号处理实验报告
一、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握离散时间信号的基本运算和变换方法。
3. 熟悉数字滤波器的设计和实现。
4. 培养实验操作能力和数据分析能力。
二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。
本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。
2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。
3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。
4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。
三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。
(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。
2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。
(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。
3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。
(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。
4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。
(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。
四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。
数字信号处理实验五谱分析
用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。
2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。
经常需要进行谱分析的信号是模拟信号和时域离散信号。
对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。
频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。
可以根据此式选择FFT 的变换区间N 。
误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。
周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。
如果不知道信号周期,可以尽量选择信号的观察时间长一些。
对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。
如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。
3.实验步骤及内容(1)对以下序列进行谱分析。
⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(2)对以下周期序列进行谱分析。
4()cos 4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。
分别打印其幅频特性曲线。
并进行对比、分析和讨论。
(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。
数字信号处理实验报告
数字信号处理实验报告一、实验目的本次数字信号处理实验的主要目的是通过实际操作和观察,深入理解数字信号处理的基本概念和方法,掌握数字信号的采集、处理和分析技术,并能够运用所学知识解决实际问题。
二、实验设备与环境1、计算机一台,安装有 MATLAB 软件。
2、数据采集卡。
三、实验原理1、数字信号的表示与采样数字信号是在时间和幅度上都离散的信号,可以用数字序列来表示。
在采样过程中,根据奈奎斯特采样定理,为了能够准确地恢复原始信号,采样频率必须大于信号最高频率的两倍。
2、离散傅里叶变换(DFT)DFT 是将时域离散信号变换到频域的一种方法。
通过 DFT,可以得到信号的频谱特性,从而分析信号的频率成分。
3、数字滤波器数字滤波器是对数字信号进行滤波处理的系统,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,而 IIR 滤波器则在性能和实现复杂度上有一定的优势。
四、实验内容与步骤1、信号的采集与生成使用数据采集卡采集一段音频信号,或者在 MATLAB 中生成一个模拟信号,如正弦波、方波等。
2、信号的采样与重构对采集或生成的信号进行采样,然后通过插值算法重构原始信号,观察采样频率对重构信号质量的影响。
3、离散傅里叶变换对采样后的信号进行DFT 变换,得到其频谱,并分析频谱的特点。
4、数字滤波器的设计与实现(1)设计一个低通 FIR 滤波器,截止频率为给定值,观察滤波前后信号的频谱变化。
(2)设计一个高通 IIR 滤波器,截止频率为给定值,比较滤波前后信号的时域和频域特性。
五、实验结果与分析1、信号的采集与生成成功采集到一段音频信号,并在MATLAB 中生成了各种模拟信号,如正弦波、方波等。
通过观察这些信号的时域波形,对不同类型信号的特点有了直观的认识。
2、信号的采样与重构当采样频率足够高时,重构的信号能够较好地恢复原始信号的形状;当采样频率低于奈奎斯特频率时,重构信号出现了失真和混叠现象。
数字信号处理实验报告1-5
实验一时域离散信号的产生及时域处理实验目的:了解Matlab软件数字信号处理工具箱的初步使用方法。
掌握其简单的Matlab语言进行简单的时域信号分析。
实验内容:[1.1]已知两序列x1=[0,1,2,3,4,3,2,1,0];n1=[-2:6];x2=[2,2,0,0,0,-2,-2],n2=[2:8].求他们的和ya及乘积yp. 程序如下:x1=[0,1,2,3,4,3,2,1,0];ns1=-2;x2=[2,2,0,0,0,-2,-2];ns2=2;nf1=ns1+length(x1)-1;nf2=ns2+length(x2)-1;ny=min(ns1,ns2):max(nf1,nf2);xa1=zeros(1,length(ny));xa2=xa1;xa1(find((ny>=ns1)&(ny<=nf1)==1))=x1;xa2(find((ny>=ns2)&(ny<=nf2)==1))=x2;ya=xa1+xa2yp=xa1.*xa2subplot(4,4,1),stem(ny,xa1,'.')subplot(4,1,2),stem(ny,xa2,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,3),stem(ny,ya,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,4),stem(ny,yp,'.')line([ny(1),ny(end)],[0,0])[1.2]编写产生矩形序列的程序。
并用它截取一个复正弦序列,最后画出波形。
程序如下:clear;close alln0=input('输入序列起点:n0=');N=input('输入序列长度:N=');n1=input('输入位移:n1=');n=n0:n1+N+5;u=[(n-n1)>=0];x1=[(n-n1)>=0]-[(n-n1-N)>=0];x2=[(n>=n1)&(n<(N+n1))];x3=exp(j*n*pi/8).*x2;subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('x1(n)');axis([n0,max(n),0,1]);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('x2(n)');axis([n0,max(n),0,1]);subplot(2,2,2);stem(n,real(x3),'.'); xlabel('n');ylabel('x3(n)的实部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);subplot(2,2,4);stem(n,imag(x3),'.'); xlabel('n');ylabel('x3(n)的虚部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);[1.3]利用已知条件,利用MATLAB生成图形。
数字信号处理实验报告五
数字信号处理实验报告实验五:谱分析班级:20110814学号:2011081418姓名:孙明凤日期:2013年12月1日指导教师:田园成绩:实验五谱分析一、实验原理:信号是无限延长的,而在进行信号处理时只能采用有限长信号,所以需要将信号“截断”。
在信号处理中,“截断”被看成是用一个有限长的“窗口”看无限长的信号,或是从分析的角度是无限长的信号乘以有限长的窗函数w(t),有傅里叶变换的性质可知x(t)w(t)↔ 1/2pi *X(jw)*W(jw)如果x(t)是频宽有限信号,而w(t)是频宽无限信号,截断后的信号也必是频宽无锡那信号,从而产生所谓的频谱泄漏。
频谱泄漏是不可避免的但要尽量减少,因此设计了不同的窗函数,满足不同用途的要求,从能量的角度,频谱泄漏也是能量泄漏,因为加窗后,使原来的信号集中在窄频带内的能量分散到无限的频宽范围。
Matlab信号处理工具箱提供了8种窗函数:1)函数boxcar()用于产生矩形窗:w=boxcar(N);2)函数Hanning()用于产生汉宁窗:w=hanning(N);3)函数Hamming()用于产生汉明窗:w=hamming(N);4)函数bartlett()用于产生巴特利窗:w=baetlett(N);5)函数blackman()用于产生布莱克曼窗:w=blackman(N);6)函数tring()用于产生tring窗:w=tring(N);7)函数kaiser()用于产生kaiser窗:w=Kaiser(N);8)函数chebwin用于产生切比雪夫窗:w=chebwin(N);二、实验内容:1、用MA TLAB绘制各种窗函数的形状N=20;w1=boxcar(N);subplot(221);stem(w1);title('boxcar')xlabel('n');ylabel('w1');w2=hanning(N);subplot(222);stem(w2);title('hanning')xlabel('n');ylabel('w2');w3=hamming(N);subplot(223);stem(w3);title('hamming')xlabel('n');ylabel('w3');w4=bartlett(N);subplot(224);stem(w4);title('bartlett')xlabel('n');ylabel('w4');w5=blackman(N);subplot(221);stem(w5);title('blackman')xlabel('n');ylabel('w5');w6=triang(N); subplot(222);stem(w6); title('triang')xlabel('n');ylabel('w6'); beta=60;w7=kaiser(N,beta); subplot(223);stem(w7); title('kaiser')xlabel('n');ylabel('w7'); r=60;w8=chebwin(N,r); subplot(224);stem(w8); title('chebwin')xlabel('n');ylabel('w8');2、用MA TLAB编程绘制各种窗函数的幅频响应N=20;w1=boxcar(N);[H,W]=freqz(w1,1);subplot(221),plot(W/pi/2,abs(H))title('矩形窗振幅特性/dB')xlabel('相对频率');ylabel('|H(W)|');w2=hanning(N);[H,W]=freqz(w2,1);subplot(222),plot(W/pi/2,abs(H))title('汉宁窗振幅特性/dB')xlabel('相对频率');ylabel('|H(W)|');w3=hamming(N);[H,W]=freqz(w3,1);subplot(223),plot(W/pi/2,abs(H))title('汉明窗振幅特性/dB')xlabel('相对频率');ylabel('|H(W)|');w4=bartlett(N);[H,W]=freqz(w4,1);subplot(224),plot(W/pi/2,abs(H))title('巴特利特窗振幅特性/dB')xlabel('相对频率');ylabel('|H(W)|');w5=blackman(N);[H,W]=freqz(w5,1);subplot(221),plot(W/pi/2,abs(H)) title('布莱克曼窗振幅特性/dB') xlabel('相对频率');ylabel('|H(W)|'); w6=triang(N);[H,W]=freqz(w6,1);subplot(222),plot(W/pi/2,abs(H)) title('三角窗振幅特性/dB') xlabel('相对频率');ylabel('|H(W)|'); w7=kaiser(N,60);[H,W]=freqz(w3,1);subplot(223),plot(W/pi/2,abs(H)) title('凯泽窗振幅特性/dB') xlabel('相对频率');ylabel('|H(W)|'); w8=chebwin(N);[H,W]=freqz(w8,1);subplot(224),plot(W/pi/2,abs(H)) title('切比雪夫窗振幅特性/dB') xlabel('相对频率');ylabel('|H(W)|');3、绘制矩形窗的幅频响应,窗长度分别为:N=10,N=20,N=50,N=100。
数字信号处理实验报告
实验一 离散时间信号的产生及信号的卷积和运算实验者: 丁 悦 实验日期:2016年12月02日 学号:142125010035一、 实验目的(简述)数字信号处理系统中的信号都是以离散时间形态存在,所以对离散时间信号的研究是数字信号处理的基本所在。
而要研究离散时间信号,首先需要产生出各种离散时间信号。
MATLAB 是一套功能强大的工程计算及数据处理软件,广泛应用于工业,电子,医疗和建筑等众多领域。
使用MATLAB 软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大的绘图功能,便于用户直观地输出处理结果。
通过本实验,将学会如何用MATLAB 产生一些常见的离散时间信号,实现信号的卷积和运算,并通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。
二、实验原理(一)常见的离散时间信号:1. 单位抽样序列,或称为离散时间冲激,单位冲激:⎩⎨⎧=01)(n δ 00≠=n n如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即:⎩⎨⎧=-01)(k n δ 0≠=n k n2.单位阶跃序列⎩⎨⎧=01)(n u 00<≥n n如果)(n u 在时间轴上延迟了k 个单位,得到)(k n u -即:⎩⎨⎧=-01)(k n u k n kn <≥3.正弦序列)cos()(0φω+=n A n x这里,,,0ωA 和φ都是实数,它们分别称为正弦信号()x n 的振幅,角频率和初始相位。
πω200=f 为频率。
4.复正弦序列n j e n x ω=)(5.实指数序列n A n x α=)((二)、信号的卷积和运算)(*)()()()(n h n x m n h m x n y m =-=∑+∞-∞=三、实验内容及实验结果分析(一)实验内容:编制程序产生前5种信号(长度可输入确定),并利用MATLAB 中的基本图形函数绘出其图形。
实现正弦序列和实指数序列的卷积和运算,并绘出其图形。
数字信号处理实验五报告
实验5F I R滤波器的设计一、实验目的1.掌握用窗函数法,频率采样法及优化设计法设计FIR 滤波器的原理及方法。
2.熟悉线性相位FIR 滤波器的幅频特性和相频特性。
3.了解各种不同窗函数对滤波器性能的影响。
二、实验内容a)N=45,计算并画出矩形窗、汉明窗、布莱克曼窗的归一化的幅度谱,并比较各自的主要特点。
各自特点:矩形窗函数具有最窄的主瓣宽度,但有最大的旁瓣峰值;汉明窗函数的主瓣稍宽,而旁瓣较小;布莱克曼窗函数主瓣最宽,旁瓣最小。
矩形窗设计的滤波器过渡带最窄,但是阻带最小衰减也最差;布莱克曼窗设计的滤波器阻带衰减最好,过渡带最宽,约为矩形窗设计的三倍。
汉明窗设计的滤波器处于以上二者之间。
b)N=15,带通滤波器的两个通带边界分别是ω1=π,ω2=π。
用汉宁窗设计此线性相位带通滤波器,观察它的实际3dB 和20dB 带宽。
N=45,重复这一设计,观察幅频和相位特性的变化,注意长度N 变化的影响。
N增加,3db带宽和20db带宽分别减小,滤波器特性变好,过渡带变陡,幅频曲线显示其通带较平缓,波动小,阻带衰减大,相频特性曲线显示其相位随频率变化也变大。
c)分别改用矩形窗和布莱克曼窗,设计(2)中的带通滤波器,观察并记录窗函数对滤波器幅频特性的影响,比较三种窗的特点。
矩形窗设计的滤波器过渡带最窄,但阻带最小衰减也最差;汉宁窗设计的滤波器过渡带稍宽,但有较好的阻带衰减;布莱克曼窗设计的滤波器阻带衰减最好,但过渡带最宽。
当使用同种窗设计滤波器时,N越大,主瓣宽度越窄,通带越平坦,过渡带宽越小。
对于同一个N值,当用不同窗设计时,矩形窗的过渡带最窄,但阻带衰减最差;布莱克曼窗的阻带衰减最好,但过渡带最宽;汉明窗的两种特性介于前两者之间。
d)用Kaiser 窗设计一专用线性相位滤波器,N=40,当β=4、6、10 时,分别设计、比较它们的幅频和相频特性,注意β取不同值时的影响。
由图中可以看出,β越大,则窗越窄,过渡带宽越大,主瓣的宽度也相应增加,而频谱的旁瓣越小,阻带最小衰减也越大。
数字信号处理实验报告实验五
物理与电子信息工程学院实验报告实验课程名称:数字信号处理实验名称:FIR数字滤波器设计与软件实现班级:1012341姓名:严娅学号:101234153成绩:_______实验时间:2012年12月20 日一、实验目的(1)掌握用窗函数法设计FIR 数字滤波器的原理和方法。
(2)掌握用等波纹最佳逼近法设计FIR 数字滤波器的原理和方法。
(3)掌握FIR 滤波器的快速卷积实现原理。
(4)学会调用MATLAB 函数设计与实现FIR 滤波器。
二、实验原理1、用窗函数法设计FIR 数字滤波器的原理和方法。
如果所希望的滤波器的理想频率响应函数为 )(ωj d e H ,则其对应的单位脉冲响应为)(n h d =π21ωωωππd e e H j j d )(⎰- (2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列)(n h 逼近)(n h d 。
由于)(n h d 往往是无限长序列,且是非因果的,所以用窗函数)(n ω将)(n h d 截断,并进行加权处理,得到:)(n h =)(n h d )(n ω (2-2))(n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数)(ωj d e H 为:)(ωj d e H =∑-=-10)(N n j e n h ω (2-3) 式中,N 为所选窗函数)(n ω的长度。
由第七章可知,用窗函数法设计的滤波器性能取决于窗函数)(n ω的类型及窗口长度N 的取值。
设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。
这样选定窗函数类型和长度N 后,求出单位脉冲响应)(n h =)(n h d ·)(n ω,并按式(2-3)求出)(ωj e H 。
)(ωj e H 是否满足要求,要进行验算。
一般在)(n h 尾部加零使长度满足于2的整数次幂,以便用FFT 计算)(ωj e H 。
数字信号处理实验报告
数字信号处理实验报告数字信号处理实验报告一、实验目的本实验旨在通过数字信号处理的方法,对给定的信号进行滤波、频域分析和采样率转换等操作,深入理解数字信号处理的基本原理和技术。
二、实验原理数字信号处理(DSP)是一种利用计算机、数字电路或其他数字设备对信号进行各种处理的技术。
其主要内容包括采样、量化、滤波、变换分析、重建等。
其中,滤波器是数字信号处理中最重要的元件之一,它可以用来提取信号的特征,抑制噪声,增强信号的清晰度。
频域分析是指将时域信号转化为频域信号,从而更好地理解信号的频率特性。
采样率转换则是在不同采样率之间对信号进行转换,以满足不同应用的需求。
三、实验步骤1.信号采集:首先,我们使用实验室的信号采集设备对给定的信号进行采集。
采集的信号包括噪声信号、含有正弦波和方波的混合信号等。
2.数据量化:采集到的信号需要进行量化处理,即将连续的模拟信号转化为离散的数字信号。
这一步通常通过ADC(模数转换器)实现。
3.滤波处理:将量化后的数字信号输入到数字滤波器中。
我们使用不同的滤波器,如低通、高通、带通等,对信号进行滤波处理,以观察不同滤波器对信号的影响。
4.频域分析:将经过滤波处理的信号进行FFT(快速傅里叶变换)处理,将时域信号转化为频域信号,从而可以对其频率特性进行分析。
5.采样率转换:在进行上述处理后,我们还需要对信号进行采样率转换。
我们使用了不同的采样率对信号进行转换,并观察采样率对信号处理结果的影响。
四、实验结果及分析1.滤波处理:经过不同类型滤波器处理后,我们发现低通滤波器可以有效抑制噪声,高通滤波器可以突出高频信号的特征,带通滤波器则可以提取特定频率范围的信号。
这表明不同类型的滤波器在处理不同类型的信号时具有不同的效果。
2.频域分析:通过FFT处理,我们将时域信号转化为频域信号。
在频域分析中,我们可以更清楚地看到信号的频率特性。
例如,对于噪声信号,我们可以看到其频率分布较为均匀;对于含有正弦波和方波的混合信号,我们可以看到其包含了不同频率的分量。
数字信号处理实验报告
物理与电子电气工程学院实验报告课程名称:数字信号处理院系:物理与电子电气工程学院专业:电子信息科学与技术班级:学号:姓名:物理与电子电气工程学院实验报告实验报告(1)实验名称实验一离散时间信号分析实验日期2013.10.19 指导教师(2)绘制单位跃阶)u序列(n解:MATLAB程序如下:>> n=-10:10;>> x=[zeros(1,10),ones(1,11)]; >> stem(n,x,'fill')>> grid on(4)正弦型序列)35sin()(ππ+=n A n x解:MATLAB 程序如下: >> n=-10:10; >> w=pi/5; >> ph=pi/3; >> A=2;(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: >> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> stem(n,x,'fill') >> grid on(2)实现任意序列(2)()(-+=n n n h δδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=circshift(x,[0,-4]); %左移四位>> stem(n,y,'fill') >> grid on(4)实现任意序列)(=n x (2)2()1(2)()(+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x+y; %两数列相加(5)实现任意序列)(=n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下:>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)]; >> y=[zeros(1,10),1,2,3,4,5,zeros(1,6)]; >> k=x.*y; %实现两序列的积 >> stem(n,k,'fill')(6)分别实现()(=n n x δ(2)2()1(2)()(-+-+-+=n n n n n h δδδδ解:MATLAB 程序如下: ①>> n=-10:10;②>> n=-10:10;>> x=[zeros(1,10),1,2,1,2,zeros(1,7)];>> y=cumsum(x); %%实现函数自身的累加(由左向右累加)>> stem(n,y,'fill')>> grid on实验一实验心得:首先,第一次实验,我又开始重拾MATLAB方法。
数字信号处理实验五用DFT(FFT)对信号进行频谱分析
开课学院及实验室:电子楼3172018年 4月 29 日3()x n :用14()()x n R n =以8为周期进行周期性延拓形成地周期序列.(1> 分别以变换区间N =8,16,32,对14()()x n R n =进行DFT(FFT>,画出相应地幅频特性曲线;(2> 分别以变换区间N =4,8,16,对x 2(n >分别进行DFT(FFT>,画出相应地幅频特性曲线; (3> 对x 3(n >进行频谱分析,并选择变换区间,画出幅频特性曲线.<二)连续信号 1. 实验信号:1()()x t R t τ=选择 1.5ms τ=,式中()R t τ地波形以及幅度特性如图7.1所示.2()sin(2/8)x t ft ππ=+式中频率f 自己选择.3()cos8cos16cos 20x t t t t πππ=++2. 分别对三种模拟信号选择采样频率和采样点数.对1()x t ()R t τ=,选择采样频率4s f kHz =,8kHz ,16kHz ,采样点数用τ.s f 计算.对2()sin(2/8)x t ft ππ=+,周期1/T f =,频率f 自己选择,采样频率4s f f =,观测时间0.5p T T =,T ,2T ,采样点数用p s T f 计算.图5.1 R(t>地波形及其幅度特性对3()cos8cos16cos 20x t t t t πππ=++,选择采用频率64s f Hz =,采样点数为16,32,64. 3. 分别对它们转换成序列,按顺序用123(),(),()x n x n x n 表示.4. 分别对它们进行FFT.如果采样点数不满足2地整数幂,可以通过序列尾部加0满足.5. 计算幅度特性并进行打印.五、实验过程原始记录<数据、图表、计算等)(一> 离散信号%14()()x n R n = n=0:1:10。
数字信号处理--实验五-用DFT(FFT)对信号进行频谱分析
学生实验报告开课学院及实验室:电子楼3172013年4月29日、实验目的学习DFT 的基本性质及对时域离散信号进行频谱分析的方法,进一步加深对频域概念和数字频率的理解,掌握 MATLAB 函数中FFT 函数的应用。
二、实验原理离散傅里叶变换(DFT)对有限长时域离散信号的频谱进行等间隔采样,频域函数被离散化了, 便于信号的计算机处理。
设x(n)是一个长度为 M 的有限长序列,x(n)的N 点傅立叶变换:X(k)N 1j 三 knDFT[x(n)]N x(n)e N0 k N 1n 0其中WNe.2 jN,它的反变换定义为:1X(n)NkN 1nkX(k)W N0 令z W N k,X(zz WN k则有:N 1x( n)Wj kn 0可以得到,X(k)X(Z)Z WN kZ W N*是Z 平面单位圆上幅角为2kN 的点,就是将单位圆进行N 等分以后第 K 个点。
所以, X(K)是Z 变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。
时域采样在满足Nyquist 定理时,就不会发生频谱混叠。
DFT 是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。
如果用FFT 对模拟信号进行谱分析,首先要把模拟信号转换成数字信号,转换时要求知道模拟 信号的最高截至频率,以便选择满足采样定理的采样频率。
般选择采样频率是模拟信号中最高频率的3~4倍。
另外要选择对模拟信号的观测时间,如果采样频率和观测时间确定,则采样点数也确定 了。
这里观测时间和对模拟信号进行谱分析的分辨率有关,最小的观测时间和分辨率成倒数关系。
最小的采样点数用教材相关公式确定。
要求选择的采样点数和观测时间大于它的最小值。
如果要进行谱分析的模拟信号是周期信号,最好选择观测时间是信号周期的整数倍。
如果不知道■ 厂1*1IE向i1A I1f Ii i 0r 1 疋0Jfb-4W0 70000图5.1 R(t)的波形及其幅度特性xn=[on es(1,4),zeros(1,7)];%输入时域序列向量 xn=R4( n)%计算xn 的8点DFTXk16=fft(x n,16);%计算xn 的16点DFTXk32=fft(x n,32); %计算xn 的32点DFTk=0:7;wk=2*k/8;对 x 3(t) cos8 t cos16 t cos20 t ,选择采用频率 f s 64Hz ,采样点数为 16 , 32 , 64。
数字信号处理--实验五
实验五FIR数字滤波器的设计04011344 王晨一、实验目的(1) 掌握用窗函数法、频率采样法及优化设计法设计FIR滤波器的原理及方法,熟悉相应的MATLAB编程。
(2) 熟悉线性相位FIR滤波器的幅频特性和相频特性。
(3) 了解各种不同窗函数对滤波器性能的影响。
二、实验原理①线性相位实系数FIR滤波器按其N值奇偶和h(n)的奇偶对称性分为四种:1、h(n)为偶对称,N为奇数;H(ejω)的幅值关于ω=0,π,2π成偶对称。
2、h(n)为偶对称,N为偶数;H(ejω)的幅值关于ω=π成奇对称,不适合作高通。
3、h(n)为奇对称,N为奇数;H(ejω)的幅值关于ω=0,π,2π成奇对称,不适合作高通和低通。
4、h(n)为奇对称,N为偶数;H(ejω) ω=0、2π=0,不适合作低通。
② 窗口法窗函数法设计线性相位FIR 滤波器步骤:➢ 确定数字滤波器的性能要求:临界频率k {}ω,滤波器单位脉冲响应长度N ; ➢ 根据性能要求,合理选择单位脉冲响应(n)h 的奇偶对称性,从而确定理想频率响应j (e )d H ω的幅频特性和相频特性;➢ 求理想单位脉冲响应(n)d h ,在实际计算中,可对j (e )d H ω按M(M 远大于N)点等距离采样,并对其求IDFT 得(n)M h ,用(n)M h 代替(n)d h ;➢ 选择适当的窗函数(n)ω,根据d (n)h (n)(n)h ω=求所需设计的FIR 滤波器单位脉冲响应;➢ 求j (e )H ω,分析其幅频特性,若不满足要求,可适当改变窗函数形式或长度N ,重复上述设计过程,以得到满意的结果。
窗函数的傅式变换j (e )W ω的主瓣决定了j (e )H ω过渡带宽。
j (e )W ω的旁瓣大小和多少决定了j (e )H ω在通带和阻带范围内波动幅度,常用的几种窗函数有:(1) 矩形窗(Rectangle Window) N (n)R (n)ω=(2) 汉宁(Hanning)窗,又称升余弦窗(3) 汉明(Hamming)窗,又称改进的升余弦窗(4) 布莱克曼(Blankman)窗,又称二阶升余弦窗(5) 凯塞(Kaiser)窗其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
数字信号处理Matlab课后实验(吴镇扬)
数字信号处理实验报告实验一熟悉MATLAB环境实验二信号的采样与重建实验三快速变换及其应用实验四 IIR数字滤波器的设计实验五 FIR数字滤波器的设计实验一熟悉MATLAB环境一、实验目的(1)熟悉MATLAB的主要操作命令。
(2)学会简单的矩阵输入和数据读写。
(3)掌握简单的绘图命令。
(4)用MATLAB编程并学会创建函数。
(5)观察离散系统的频率响应。
二、实验内容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。
在熟悉了MATLAB基本命令的基础上,完成以下实验。
上机实验内容:(1)数组的加、减、乘、除和乘方运算。
输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。
实验程序:A=[1 2 3 4];B=[3 4 5 6];n=1:4;C=A+B;D=A-B;E=A.*B;F=A./B;G=A.^B;subplot(4,2,1);stem(n,A,'fill');xlabel ('时间序列n');ylabel('A');subplot(4,2,2);stem(n,B,'fill');xlabel ('时间序列n ');ylabel('B');subplot(4,2,3);stem(n,C,'fill');xlabel ('时间序列n ');ylabel('A+B');subplot(4,2,4);stem(n,D,'fill');xlabel ('时间序列n ');ylabel('A-B');subplot(4,2,5);stem(n,E,'fill');xlabel ('时间序列n ');ylabel('A.*B');subplot(4,2,6);stem(n,F,'fill');xlabel ('时间序列n ');ylabel('A./B');subplot(4,2,7);stem(n,G,'fill');xlabel ('时间序列n ');ylabel('A.^B');运行结果:(2)用MATLAB实现以下序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理与电子信息工程学院实验报告实验课程名称:数字信号处理实验名称: FIR数字滤波器设计与软件实现班级: 1012341姓名:严娅学号: 101234153成绩:_______实验时间: 2012年12月20 日一、实验目的(1) 掌握用窗函数法设计FIR数字滤波器的原理和方法。
(2) 掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
(3)掌握FIR滤波器的快速卷积实现原理。
(4)学会调用MATLAB函数设计与实现FIR滤波器。
2、 实验原理1、用窗函数法设计FIR数字滤波器的原理和方法。
如果所希望的滤波器的理想频率响应函数为 ,则其对应的单位脉冲响应为= (2-1)窗函数设计法的基本原理是用有限长单位脉冲响应序列逼近。
由于往往是无限长序列,且是非因果的,所以用窗函数将截断,并进行加权处理,得到:= (2-2)就作为实际设计的FIR数字滤波器的单位脉冲响应序列,其频率响应函数为:= (2-3)式中,N为所选窗函数的长度。
由第七章可知,用窗函数法设计的滤波器性能取决于窗函数的类型及窗口长度N的取值。
设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N。
各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见第七章。
这样选定窗函数类型和长度N后,求出单位脉冲响应=·,并按式(2-3)求出。
是否满足要求,要进行验算。
一般在尾部加零使长度满足于2的整数次幂,以便用FFT计算。
如果要观察细节,补零点数增多即可。
如果不满足要求,则要重新选择窗函数类型和长度N,再次验算,直至满足要求。
如果要求线性相位特性,则还必须满足(2-4)根据上式中的正负号和长度N的奇偶性又将线性相位FIR滤波器分成四类。
要根据设计的滤波特性正确选择其中一类。
例如,要设计线性低通特征,可选择一类,而不能选一类。
2、 等波纹最佳逼近法等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。
用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。
这就是等波纹的含义。
最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。
与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。
阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。
实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。
Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。
三、实验内容及步骤(1)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图10.5.1所示;图10.5.1 具有加性噪声的信号x(t)及其频谱如图(2)设计滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。
根据窗函数设计滤波器原理设计滤波器,根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。
并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。
绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。
(3)改用等波纹最佳逼近法设计滤波器,滤波器指标不变,调用MATLAB函数remezord和remez设计FIR数字滤波器。
并比较两种设计方法设计的滤波器阶数和滤出来的波形效果。
(4) 修改程序:将步骤(2)中用窗函数设计的低通滤波器参数改为fp=100; fs=110,单独滤出上边带频谱线,并绘制波形图,(5) 修改程序:将步骤(3)中用等波纹设计的低通滤波器改为带通滤波器,单独滤出下边带频谱线,根据带通滤波器的参数选取通、阻带截止频率,带通滤波器的设计指标为:fsl=95;fpl=105; fpu=115;fsu=125;fb=[fsl,fpl,fpu,fsu];m=[0,1,0];dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)]并绘制波形图。
四、实验程序清单1.信号产生函数xtg程序清单function xt=xtg(N)%实验五信号x(t)产生,并显示信号的幅频特性曲线%xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz%载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz.Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10;mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt,频率为f0ct=cos(2*pi*fc*t); %产生载波正弦波信号ct,频率为fcxt=mt.*ct; %相乘产生单频调制信号xtnt=2*rand(1,N)-1; %产生随机噪声nt%设计高通滤波器hn,用于滤除噪声nt中的低频成分,生成高通噪声fp=150; fs=200;Rp=0.1;As=70; % 滤波器指标fb=[fp,fs];m=[0,1]; % 计算remezord函数所需参数f,m,dev dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt%======================================================xt=xt+yt; %噪声加信号fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(2,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)'); axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形') subplot(2,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b)信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')2、实验程序清单%《数字信号处理(第三版)学习指导》第10章实验5程序exp5.m% FIR数字滤波器设计及软件实现clear all;close all;%调用xtg产生信号xt, xt长度N=1000,并显示xt及其频谱N=1000;xt=xtg(N);fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % 输入给定指标% (1) 用窗函数法设计滤波器============================wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化)B=2*pi*(fs-fp)/Fs; %过渡带宽度指标Nb=ceil(11*pi/B); %blackman窗的长度Nhn=fir1(Nb-1,wc,blackman(Nb));Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波%以下为用窗函数法设计法的绘图部分====subplot(2,1,1); %绘制低通滤波器幅频特性曲线myplot(hn,1);title('(a)低通滤波器幅频特性');subplot(2,1,2); %绘制滤除噪声后的信号波形yt='y_w(t)';tplot(ywt,T,yt);title('滤除噪声后的信号波形')% (2) 用等波纹最佳逼近法设计滤波器=====================fb=[fp,fs];m=[1,0]; % 确定remezord函数所需参数f,m,dev dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)];[Ne,fo,mo,W]=remezord(fb,m,dev,Fs); % 确定remez函数所需参数hn=remez(Ne,fo,mo,W); % 调用remez函数进行设计Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波%以下为用等波纹设计法的绘图部分=================subplot(2,1,1); %绘制低通滤波器幅频特性曲线myplot(hn,1);title('(a)低通滤波器幅频特性');subplot(2,1,2); %绘制滤除噪声后的信号波形yt='y_w(t)';tplot(ywt,T,yt);title('滤除噪声后的信号波形')五、实验程序运行结果用窗函数法设计滤波器,滤波器长度 Nb=184。
滤波器损耗函数和滤波器输出yw(nT)分别如图10.5.2(a)和(b)所示。
用等波纹最佳逼近法设计滤波器,滤波器长度 Ne=83。
滤波器损耗函数和滤波器输出ye(nT)分别如图10.5.2(c)和(d)所示图10.5.2图10.5.2用窗函数法设计低通滤波器滤出上边带频谱滤波器损耗函数和滤波器输出yw(nT)分别如图10.5.3(a)和(b)所示。
用等波纹最佳逼近法设计带通滤波器滤出下边带频谱滤波器损耗函数和滤波器输出yw(nT)分别如图10.5.3(c)和(d)所示。
图10.5.36、 实验心得及体会1、通过本次实验我学会了调用MATLAB函数设计和实现FIR数字滤波器,理解了窗函数法设计FIR数字滤波器的原理,和等波纹最佳逼近法设计FIR数字滤波器的原理和方法。
2、FIR数字滤波器和IIR数字滤波器的设计方法有很大差别,IIR数字滤波器的设计方法是利用模拟滤波器成熟的理论和设计图表进行设计的,只考虑了幅频特性,没考虑到相位特性,所设计的一般是某种特定的非线性相位特性。