驻极体话筒驱动电路设计

合集下载

驻极体话筒放大电路.

驻极体话筒放大电路.

一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。

另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。

应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。

为了提高信噪比S/N,前置放大器的增益要适当取大。

为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。

2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。

(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。

(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。

(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。

(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。

分析一下内容:前置放大器差模电压增益、共模电压增益、差模输入电阻、共模抑制比、有源带通滤波器的幅频响应。

驻极体话筒结构原理及应用电路设计

驻极体话筒结构原理及应用电路设计

(3) JFET旳特征曲线
转移特征 输出特征
iD f (u ) GS uDS const.
iD
IDSS (1
uGS UGS (off
)
)2
iD f (u ) DS uGS const.
饱和漏极电流: IDSS
(UGS(off ) uGS 0)
体现式
转移特 征曲线
预夹断 线
满足: uGD=UGS(off)
驻极体话筒构造原理 及应用电路设计
一、驻极体话筒旳工作原理与构造
驻极体话筒具有体积小、构造简朴、电声性能好、价 格低旳特点,广泛用于盒式录音机、无线话筒及声控等电 路中。
驻极体话筒由声电转换和阻抗变换两部分构成。声电 转换旳关键元件是驻极体振动膜。
1、驻极体极头旳构造与工作原理
驻极体极头旳基本构造由一片单面涂有金属旳驻极体薄 膜与一种上面有若干小孔旳金属电极(称为背电极)构成 以及它们中间旳几十μm厚旳尼龙隔离垫构成,如图一所示。
2、简朴旳AGC电路
AGC环是闭环电子电路,它能够提成增益受控放大电路 和控制电压形成电路两部分。增益受控放大电路位于正向 放大通路,其增益随控制电压而变化。
控制电压形成电路旳基本部件是AGC检波器和低通平滑滤 波器。
放大电路旳输出信号u0 经检波并经滤波器滤除高频调制 分量和噪声后,产生用以控制增益受控放大器旳电压uc 。 当输入信号ui增大时,u0和uc亦随之增大。 uc增大使放大 电路旳增益下降,从而使输出信号旳变化量明显不大于输入 信号旳变化量,到达自动增益控制旳目旳。
3、驻极体话筒旳接法
话筒有两根引出线,漏极D与电源正极之间接一漏极电阻 R,信号由漏极经一隔直电容输出,这种接法有一定旳电压增 益,话筒旳敏捷度比较高,但动态范围比较小。

自制9014麦克风电路图(驻极体话筒-高灵敏度麦克风)

自制9014麦克风电路图(驻极体话筒-高灵敏度麦克风)

自制9014麦克风电路图(驻极体话筒/高灵敏度麦克风)自制9014麦克风电路图设计一驻极体话筒工作原理:当驻极体膜片遇到声波振动时,就会引起与金属极板间距离的变化,也就是驻极体振动膜片与金属极板之间的电容随着声波变化,进而引起电容两端固有的电场发生变化(U=Q/C),从而产生随声波变化而变化的交变电压。

由于驻极体膜片与金属极板之间所形成的电容容量比较小(一般为几十波法),因而它的输出阻抗值(XC=1/2fC)很高,约在几十兆欧以上。

这样高的阻抗是不能直接与一般音频放大器的输入端相匹配的,所以在话筒内接入了一只结型场效应晶体三极管来进行阻抗变换。

通过输入阻抗非常高的场效应管将电容两端的电压取出来,并同时进行放大,就得到了和声波相对应的输出电压信号。

驻极体话筒内部的场效应管为低噪声专用管,它的栅极G和源极S之间复合有二极管VD,参见图1(b)所示,主要起抗阻塞作用。

由于场效应管必须工作在合适的外加直流电压下,所以驻极体话筒属于有源器件,即在使用时必须给驻极体话筒加上合适的直流偏置电压,才能保证它正常工作,这是有别于一般普通动圈式、压电陶瓷式话筒之处。

外形和种类:常用驻极体话筒的外形分机装型(即内置式)和外置型两种。

机装型驻极体话筒适合于在各种电子设备内部安装使用。

常见的机装型驻极体话筒形状多为圆柱形,其直径有6mm、9.7mm、10mm、10.5mm、11.5mm、12mm、13mm多种规格;引脚电极数分两端式和三端式两种,引脚形式有可直接在电路板上插焊的直插式、带软屏蔽电线的引线式和不带引线的焊脚式3种。

如按体积大小分类,有普通型和微型两种。

工作电压:Uds1.5~12V,常用的有1.5V,3V,4.5V三种工作电流:Ids0.1~1mA之间输出阻抗:一般小于2K(欧姆)灵敏度:单位:伏/帕,国产的分为4档,红点(灵敏度最高)黄点,蓝点,白点(灵敏度最低)频率响应:一般较为平坦。

驻极体话筒放大电路

驻极体话筒放大电路

一.设计思路1、语音放大器的基本构成根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。

另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。

应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。

为了提高信噪比S/N,前置放大器的增益要适当取大。

为了使输出波形不致产生饱和失真,输出信号的幅值应小于电源电压。

2、性能指标(1)集成直流稳压电源①同时输出12V的电压②输出纹波电压小于5mV(2) 前置放大器①输入信号:Uid.10mV②输入阻抗:Ri=100k.③设定增益Auf1=30(3) 有源带通滤波器①带通频率范围:300Hz~3kHz②增益:Au=1(4) 功率放大器①最大不失真输出功率:Pmax>=2W②负载阻抗:RL=4Ω③电源电压:+12V,-12V(5) 输出功率连续可调①直流输出电压:.50mV(输出开路时)②静态电源电流:.100mA(输出短路时)3、要求(1)选取单元电路及元件根据设计要求和已知条件,确定集成直流稳压电源、前置放大电路、有源带通滤波器电路、功率放大电路的方案,计算和选取单元电路的元件参数。

(2)前置放大电路的组装与调试测量前置放大电路的电压增益AUd、输入电阻Ri等各项技术指标,并与设计要求值进行比较。

(3)有源带通滤波器的组装与调试测量有源带通滤波电路的电压增益AUd、带宽BW,并与设计要求值进行比较。

(4)功率放大电路的组装与调试测量功率放大电路的最大不失真输出功率Po,max、电源供给功率PDC、输出功率.、直流输出电压、静态电源电流等技术指标。

(5)整体电路的调试与试听(6)应用Multisim软件对电路进行仿真。

分析一下内容:前置放大器差模电压增益、共模电压增益、差模输入电阻、共模抑制比、有源带通滤波器的幅频响应。

综合电子设计_驻极体话筒放大电路

综合电子设计_驻极体话筒放大电路

综合电子设计_驻极体话筒放大电路驻极体话筒是一种高质量的话筒,具有高灵敏度和低噪声的特点。

驻极体话筒需要使用特定的放大电路才能使其工作。

本文将介绍一种针对驻极体话筒的放大电路设计,并详细阐述其工作原理。

1. 驻极体话筒简介驻极体话筒是一种基于伏打效应(电容变化)的话筒。

其工作原理是将声波转化为一个机械振动,再通过一个驻极体(一种小的金属电容)来测量振动的电容变化。

这种话筒具有高灵敏度和低自噪声的优点,因此被广泛用于录音、广播、音乐制作等领域。

2. 放大电路设计驻极体话筒的驱动电路需要具备高输入阻抗、高增益和低噪声等特点。

我们推荐以下驻极体话筒放大电路:该电路是一种共基极放大电路,适用于单极性电源供电的场合。

Q1是一个NPN型晶体管,它的基电极通过C1与驻极体话筒相连,发射极通过R1与地相连,集电极通过R2与正极相连。

C2和C3用于耦合和直流滤波,提高电路的稳定性和抗干扰能力。

3. 工作原理当声波进入驻极体话筒时,驻极体就会振动,从而产生一个微小的电容变化。

这个电容变化被传递到晶体管的基极,使得基极电压发生变化。

因为这是一个共基极放大电路,所以基极电压变化会通过电容C2耦合到集电极,从而使得集电极电压变化。

由于信号源的输出电阻极低,所以Q1的输入阻抗较高,可达到几百千欧姆,使得放大器能够很好地工作。

为了让输出信号变成一个可供使用的信号,我们需要对其进行加工。

输出信号经过C3的直流滤波后,传递到一个负载电阻中去,从而产生所需的放大效果。

此时,从负载电阻得到的输出信号,即为驻极体话筒的放大信号。

4. 总结本文介绍了一种适用于驻极体话筒的放大电路设计。

该电路具有高输入阻抗、高增益和低噪声等特点,可满足驻极体话筒应用的需求。

其他类型的驱动电路也可以应用于驻极体话筒,但本文提供的电路是一种经过验证的实际设计。

希望本文能够对驻极体话筒电路设计感兴趣的读者提供一些借鉴和帮助。

驻极体话筒驱动电路设计

驻极体话筒驱动电路设计

1.驻极体话筒驱动电路设计上图为一驻极体话筒驱动电路,当有声音时,LED会亮。

1)认识图中向关元器件。

2)分析其工作原理。

3)在万能板上搭建该电路。

4)用示波器观察测试有声音和无声音时该电路A,B,C,D,E五点的波形,记录下来。

5)比较一下电路的灵敏性,怎样提高电路的灵敏度?2.DC-DC电源模块1)认识图中相关元器件。

2)阅读芯片LM2576的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V增大输入电压,测量输出电压,记录数据6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至最大)。

调整功率电位器,减小负载电阻,测量输出电压,记录数据(注意,电阻值不可过小)7)测试纹波电压:查阅模拟电路相关书籍和资料,了解纹波电压的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

用示波器AC/5mV测量输出电压,记录波形最大值,可以调节功率电位器,观察输出波形8)效率测试:查阅模拟电路相关书籍和资料,了解效率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

测量输如电压和电流。

计算效率。

3.线性电源模块D21)认识图中相关元器件。

2)阅读芯片LM317的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V增大输入电压,测量输出电压,记录数据6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

驻极体话筒发射电路

驻极体话筒发射电路
机的罐壳体内,并将接开关和话筒的引线从壳体上方的小孔穿出,在原来安装压电打火器的地方安装好电源开关;在原来安装喷火器的地方安装好话筒,安装好原来的按钮及防风罩;并将电池从壳体尾部开口处装入机内(电池须用透明胶带包扎好,以防止短路和渗漏电液),再用有机玻璃制作一块小盖蘸上透明万能胶水封好即可。若要安装天线须另留一小孔,以便连接天线。
该无线话筒从外观上看是打火机,使用时只要用手指压下原打火机按钮(实际为机内的电源开关)便接通了话筒电源,于是话筒开始工作;如果手放松按钮,开关则自动断开电源,话筒停止工作。
制作与调试。 为尽可能缩小整机体积,图中VT1可选用2SC9014微型高频三极管;VT2可选用2SC9018微型超高频三极管;BM宜选用∮8mm驻极体微型话筒;C1、C4、C5、C6、C7应选用超小型高频瓷片电容;C2、C3应选用6.3V超小型电解电容;所有电阻均采用1/32W金属膜电阻;线圈L用∮0.51mm的漆包线在∮5mm的圆棒上平绕7匝脱胎制成,还可在中心位置抽头,便于安装发射天线;电池GB采用四节纽扣电池;开关S采用长柄轻触按键微型开关(长度不够时要设法将柄杆接长,并加套相应长度的弹簧):话筒和电源开关的连接线以及发射天线都采用∮0.05mm×5的多股软胶线。
小巧玲珑的打火机其外形多种多样,用废弃的打火机外壳制作一个无线话筒,既可以锻炼自己的动手能力,又可以增添一点乐趣。具体方法如下:
选取一款合适大小的打火机外壳,要注意打火机贮气罐内部的空间应能容纳下焊好全部电子元件的电路板和四节纽扣电池。先小心地卸下打火机上端的金属防风罩、塑料按键及压力打火器,再卸下喷火嘴及导气管。然后用手电钻在打火机壳的下端打几个∮5mm的小孔,再用木刻刀伸进孔中将贮气罐内的中间隔板挖掉,并清除干净废渣。
图2的印制板图适合配长方形打火机外壳,图3圆形印刷电路板图适合配正方形打火机外壳,爱好者还可以根据自己的实际情况,另外制作印制板。

驻极体话筒结构原理及应用电路设计

驻极体话筒结构原理及应用电路设计

驻极体话筒结构原理及应用电路设计驻极体话筒的结构主要由振动膜片、驻极板和输出电路组成。

振动膜片通常由金属或塑料材料制成,用于接收声压波并产生振动。

驻极板与振动膜片之间存在电容,当振动膜片受到声波的作用时,电容发生变化,导致电信号的产生。

输出电路将产生的电信号放大,并输出为声音信号。

首先是驻极体话筒的电容放大电路设计。

电容放大电路是驻极体话筒的核心部分,用于将微弱的电信号转化为可用的声音信号。

在设计电容放大电路时,需要选择合适的放大倍数和频率响应,以提高音质和减少噪音。

其次是供电电路的设计。

驻极体话筒通常需要直流电源供电,因此需要设计一个合适的供电电路,以提供稳定的电压和电流。

供电电路还需要考虑防止干扰和噪音的设计,以保证音质的清晰度和信号的稳定性。

另外,为了进一步提高声音质量,还可以在驻极体话筒的输出电路中添加滤波电路。

滤波电路可以减少声音中的杂音和失真,并根据需要调整音频的频率范围。

此外,驻极体话筒的应用电路设计还需要考虑信号传输和接收的问题。

一般情况下,驻极体话筒的信号需要通过电缆或无线方式传输给其他设备,因此需要设计合适的信号传输电路和接收电路。

这些电路可以保证信号的稳定传输和准确接收,以及防止干扰和干扰。

最后,驻极体话筒的应用电路设计还需要考虑功耗和体积的问题。

随着现代电子设备的迅速发展,人们对功耗和体积的要求越来越高。

因此,在设计驻极体话筒的应用电路时,需要尽量选择低功耗和小尺寸的元件和模块,以满足现代设备的需求。

总之,驻极体话筒的结构原理及应用电路设计是一个复杂而重要的课题。

只有深入理解其工作原理,并根据实际需求进行合理的电路设计,才能实现高质量的声音采集和放大。

驻极体话筒结构原理及应用电路设计图文

驻极体话筒结构原理及应用电路设计图文
由于驻极体薄膜上分布有极化电荷。当声波引起驻极体 薄膜振动而产生位移时;改变了电容两极版之间的距离,从 而引起电容发生变化,由于驻极体上的电荷量恒定,根据公 式Q=CU可知 :当C变化时必然引起电容器两端电压U的变化, 从而输出电信号,实现声--电的变换。
2、阻抗变换电路
驻极体膜片与金属极板之间的电容量比较小,一般为 几十pF。因而它的输出阻抗值很高,约几十兆欧以上。因此, 它不能直接与放大电路相连接,必须连接阻抗变换器。通常 用一个专用的场效应管和一个二极管复合组成阻抗变换器。 内部电气原理如图。
2、 工作电流I
I 是指话筒静态时流过话筒的电流,它就等于场效应管的 IDS.与工作电压类似,工作电流的离散性也较大,通常在 0.1~1mA 之间。
3、最大工作电压U
最大工作电压UMDS是指场效应管漏源极两端能够承受的 最大电压。超过该电压时场效应管会被击穿造成永久损坏。
4、输出阻抗
话筒输出的交流负载阻抗。由于驻极体话筒经过场效应 管的变换,输出阻抗较小,一般小于2k。
2、灵敏度的选择
灵敏度的选择是使用中一个比较关键的问题,究竟选择 灵敏度高好还是低好应根据实际情况而定。
在要求动态范围较大的场合应选用灵敏度低一些,这样 录制的节目背景噪声较小、信噪比较高,声音听起来比较 干净、清晰,但对电路的增益相对就要求高的些;
在简易系统中可选用灵敏度高一点的产品,以减轻后级 放大电路增益的压力。
• uGS < 0 时 , 耗 尽 层 增 厚 , 导 电 沟 道 变 薄 。 当
uGS=UGS(off) (<0)时,沟道开始夹断。
UGS(off) :夹断电压 ,(<0)
B. uGS=Const, uDS (>0)变化 (见p36)

驻极体话筒应用电路

驻极体话筒应用电路

驻极体话筒应用电路
1.单管放大电路
2.低噪声话筒功放电路
本文介绍的这款话筒功放电路,外围元件少,制作简单,音质却出乎意料的好。

采用一块双路音频放大集成电路。

其主要特点是效率高、耗电省,静态工作电流典型值只有6mA左右,该集成电路的电压适应能力强(1.8V~15VDC),即使在1.8V低电压下使用,仍会有约 100mW的功率输出,具体电路如图所示。

一、工作原理
驻极体话筒MIC将拾取的声音信号转换成电信号后,经C2和W从U1的②脚引入,经U1音频放大后,推动喇叭发音。

本机接成BTL输出电路,这对于改善音质,降低失真大有好处,同时输出功率也增加了4倍,当3V供电时,其输出功率为350mW。

二、元器件选择与调试
电阻R1、R2均选用1/4W金属膜电阻,W为小型碳膜电位器,C2最好选用独石电容器,如没有应选用质量好的瓷片电容,C1、C4、C3选用优质耐压16V,漏电电流小的电解电容,MIC选用高灵敏度驻极体传声器。

K选用小型的按钮开关或拨动开关等,U1选用TDA2822M或TDA2822,也可用D2822代替。

按图1中数值制作,一般无需调试即可正常工作。

驻极体麦克风(ECM)电路设计总结

驻极体麦克风(ECM)电路设计总结

驻极体麦克风(ECM)电路设计总结1. ECM原理ECM是指驻极体电容式麦克风,与MEMS硅麦不同,其内部结构如图1所示。

MIC内部有一个充有一定电荷的膜片电容,电容其中一个极板与FET连接,由于FET的基极输入阻抗很高,可以认为电容的电荷不会消失。

膜片随着外部声压振动,使得电容两个极板之间距离发生变化,从而导致电容发生变化,从电容公式可以知道,电荷一定的情况下,当电容值发生改变时,电压也会发生变化,即FET的GS电压改变导致DS电流发生变化,电流的变化导致外部偏置电阻上的电压发生变化,从而使得MIC输出端DS电压发生变化,其电压变化量和偏置电阻的电压变化量相等。

图1上述的工作原理其实就是三极管(或MOSFET)的放大用法,在实际工作中,我们使用三极管(或MOSFET)多数是开关作用居多,我在之前的一篇文章《三极管放大区静态工作点设置》,就简单讲述过三极管放大区的静态工作点设置方法,其本质与MIC内部FET的工作原理相同,使FET工作于饱和区(对应三极管的线性放大区)。

2. ECM参数规格根据上述参考文章的讲解,要想MIC输出电压的动态范围最大,需要合适的偏置电阻将正极+输出电压设置在Vs的一半。

根据MIC规格书中的电气参数可知(图2),静态电流为500uA,因此RL=(Vs-V+)/Idss=(2-1)V/500uA=2K,实际选择了2.2K,相差不大。

这也是多数MIC推荐的工作条件:2V偏置电压、2.2K偏置电阻。

在此条件下,可以计算得出MIC两端的静态电压Vbias=2-2.2K*500uA=0.9V。

图2设定好偏置电阻后,我们需要确定MIC输出的交流电压,因为真正有用的声音信息包含在交流电压信号中。

根据模电MOSFET交流等效模型可得,MIC的交流等效电路如图3所示。

由于FET的rgs很大,所以膜片电容上的电荷基本不会放电消失;由于rd相对RL很大,并联之后可以忽略rd,因此MIC的交流输出电压V=gmVgs*RL,由此可知,要想获得较大的有效交流输出信号,可以增大偏置电阻RL。

话筒驱动电路

话筒驱动电路

话筒驱动电路实验报告计算机与电子信息学院一、实验目的:1、了解电容式驻极体话筒的工作原理;2、掌握驻极体话筒的应用电路;3、掌握基本晶体管放大器的设计和调试方法;4、掌握放大器基本特性参数的测量方法。

二、实验主要设备:万用表,低频信号发生器,双踪示波器。

三、实验基本元件:电容式驻极体话筒(咪头)1只,NPN型小功率三极管2只。

建议型号:9014或2N5551四、实验原理:话筒驱动电路图MIC为电容式驻极体话筒(又叫咪头),其是有极性的,有正负极之分,在实验中不可接错。

驻极体话筒内部除了有一个声音传感器之外,还集成了一个场效应管,用于放大传感器输出的信号。

有的话筒有三个引脚,有的有两个,本实验中使用的是有两个引脚的话筒。

关于电容式驻极体话筒的详细内容。

电路中,J1为跳线帽插座,正常工作时,必须用跳线帽将其短接起来。

R1电阻将正的电压加到MIC上,为其提供电源支持。

感受到声音的MIC会输出变化的电流,这变化电流会在R1上产生变化的电压降,此信号通过电容C1耦合到T1管基极。

T1管接成共发射极组态,完成对信号的放大功能。

经T1管放大后的信号从其集电极经直接耦合方式送到T2管的基极,最后从T2管的发射极输出。

T2管的工作状态为射极输出方式,可向负载提供较强的驱动电流,这也就是常说的有较强的带负载能力。

射极输出电路(即共集电极组态),其输出电阻是三种基本组态中最小的。

电路中,R2电阻的作用是在J1跳线插座没有跳线帽短路时,为电容C1引入正电位。

电容C1是电解电容,因其极性的需要,不可以出现给其施加反向电压的情况。

在实验任务中,为确保这一要求,添加了R2电阻,实际的应用电路可以去除R2电阻和直接短接跳线座J1。

R3电阻从T1管的集电极引入偏置电流送给T1管的基极,这种电路形式形成了直流负反馈,可以起到稳定静态工作点的作用,确保电路放大能力的稳定,降低噪声。

R5电阻构成交流负反馈,可改善由于放大管的非线性特点而产生的非线性失真。

综合电子设计_驻极体话筒放大电路

综合电子设计_驻极体话筒放大电路

实验报告课程名称综合电子设计实验项目驻极体话筒放大电路实验环境学院专业班级/学号学生姓名实验日期成绩指导教师目录一.实验目的 (3)二.知识点和设计内容 (3)三.设计思路 (3)1、语音放大器的基本构成 (3)2、性能指标 (3)3、要求 (4)四.实验原理 (4)1、集成直流稳压电源 (4)2、前置放大电路 (6)3、有源带通滤波器 (7)4、功率放大器 (8)5、系统设计 (8)五.元器件实物及引脚顺序 (9)六.实验步骤 (10)1、电路焊接 (10)2、直流稳压电源的调试 (10)3、前置放大器的调试 (11)4、有源带通滤波器的调试 (11)5、功率放大器的调试 (11)6、系统联调 (12)7、试听 (12)七.实验中的问题提出与解决方法 (13)八.实验体会 (13)九.市场前景分析 (13)十.附录 (14)1、集成运算放大器LM324的管脚图及基本参数 (14)2、元器件符号 (15)3.元件清单 (15)一.实验目的(1)通过实验培养学生的市场素质、工艺素质、自主学习的能力、分析问题解决问题的能力以及团队精神。

(2)掌握分立或集成运放放大器的工作原理及其应用。

(3)通过实验总结回顾所学模拟电子技术基础理论和基础实验,掌握低频小信号放大电路和功放电路的设计方法。

(4)了解语言识别知识。

二.知识点和设计内容本实验的知识点为分立元件放大器或集成运放、有源滤波器、功率放大器;涉及电子电路各个模块之间的联合调试技术。

三.设计思路1、根据要求,输出功率P=2W,电阻R=4Ω,由功率公式可得U=2.8V,对TDA2030输入100mv电压时,可达到设计要求。

另外,由于语音通过话筒输入信号为5mv,放大后要求达到100mv,放大倍数需在20倍以上,由电路设计要求得知,该放大器由三级组成,其总的电压增益AUf=AUf1AUf2AUf3。

应根据放大器所需的总增益AU,来合理分配各级电压增益(AUf1.AUf3)。

驻极体mic等效电路

驻极体mic等效电路

驻极体mic等效电路
驻极体mic是一种常见的麦克风类型,它的工作原理是利用电容的变化来转换声音信号为电信号。

在电路中,驻极体mic可以被等效为一个电容和一个电阻组成的并联电路。

其中电容代表了驻极体的电容,电阻则代表了驻极体内部的电阻和电路中其他元器件的阻值。

驻极体mic等效电路的设计和调试是麦克风电路设计的重要一环,它直接影响到麦克风的声音质量和灵敏度。

因此,对于驻极体mic等效电路的研究和优化具有重要的意义。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.驻极体话筒驱动电路设计
上图为一驻极体话筒驱动电路,当有声音时,LED会亮。

1)认识图中向关元器件。

2)分析其工作原理。

3)在万能板上搭建该电路。

4)用示波器观察测试有声音和无声音时该电路A,B,C,D,E五点的波形,记录下来。

5)比较一下电路的灵敏性,怎样提高电路的灵敏度?
2.DC-DC电源模块
1)认识图中相关元器件。

2)阅读芯片LM2576的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V
增大输入电压,测量输出电压,记录数据
6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至最大)。

调整功率电位器,减小负载电阻,测量输出电压,记录数据(注意,电阻值不可过小)
7)测试纹波电压:查阅模拟电路相关书籍和资料,了解纹波电压的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

用示波器AC/5mV测量输出电压,记录波形最大值,可以调节功率电位器,观察输出波形
8)效率测试:查阅模拟电路相关书籍和资料,了解效率的概念
输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至2欧姆)。

测量输如电压和电流。

计算效率。

3.线性电源模块
D2
1)认识图中相关元器件。

2)阅读芯片LM317的文档,分析其工作原理。

3)在万能板上搭建该电路。

4)输入9V时,调整电位器R2,测量输出电压范围,并记录。

5)测试电压调整率:查阅模拟电路相关书籍和资料,了解电压调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V
增大输入电压,测量输出电压,记录数据
6)测试负载调整率:查阅模拟电路相关书籍和资料,了解负载调整率的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至最大)。

调整功率电位器,减小负载电阻,测量输出电压,记录数据(注意,电阻值不可过小)
7)测试纹波电压:查阅模拟电路相关书籍和资料,了解纹波电压的概念输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至5欧姆)。

用示波器AC/5mV测量输出电压,记录波形最大值,可以调节功率电位器,观察输出波形
8)效率测试:查阅模拟电路相关书籍和资料,了解效率的概念
输入电压设为9V,输出空载,调电位器,使输出为5V。

然后输出负载接一100W 0~300欧姆的功率电位器(先把阻值调至5欧姆)。

测量输如电压和电流。

计算效率。

4. 差分放大电路
输电源

1)认识图中相关元器件。

2)分析其工作原理,写出Vout 和Vin1以及Vin2关系式(不考虑左下角框中电路)
3)在万能板上搭建该电路。

4)输入Vin 接信号发生器,产生5KHz 的峰峰值为20mV 的正弦信号,用示波器测量输出Vout 。

调节R5,使输入Vin2的电压为0V 。

调节R4,使输出峰峰值为2V(放大倍数100)
5)测试输出电阻ro :查阅模拟电路相关书籍和资料,了解输出电阻ro 的概念 测量该电路的输出电阻ro=
6)测试输入电阻ri :查阅模拟电路相关书籍和资料,了解输入电阻ri 的概念 测量该电路的输入电阻ri=
7)测试通频带:查阅模拟电路相关书籍和资料,了解通频带的概念 测量该电路的频率上限:f L = 频率下限:f H =
8)调节电位器R5,观察输出波形有何变化
图中MIC为驻极体话筒,其工作原理如下:
驻极体话筒的结构和工作原理
驻极体话筒具有体积小,频率范围宽,高保真和成本低的特点,目前,已在通讯设备,家用电器等电子产品中广泛应用。

一、驻极体话筒的结构与工作原理
驻极体话筒的工作原理可以用图(1)来表示。

图(1)
话筒的基本结构由一片单面涂有金属的驻极体薄膜与一个上面有若干小孔的金属电极(背称为背电极)构成。

驻极体面与背电极相对,中间有一个极小的空气隙,形成一个以空气隙和驻极体作绝缘介质,以背电极和驻极体上的金属层作为两个电极构成一个平板电容器。

电容的两极之间有输出电极。

由于驻极体薄膜上分布有自由电荷。

当声波引起驻极体薄膜振动而产生位移时;改变了电容两极版之间的距离,从而引起电容的容量发生变化,由于驻极体上的电荷数始终保持恒定,根据公式:Q =CU 所以当C变化时必然引起电容器两端电压U的变化,从而输出电信号,实现声—电的变换。

实际上驻极体话筒的内部结构如图(2)。

图(2)
由于实际电容器的电容量很小,输出的电信号极为微弱,输出阻抗极高,可达数百兆欧以上。

因此,它不能直接与放大电路相连接,必须连接阻抗变换器。

通常用一个专用的场效应管和一个二极管复合组成阻抗变换器。

内部电气原理如图(3)
图(3)
电容器的两个电极接在栅源极之间,电容两端电压既为栅源极偏置电压Ucs,Ucs变化时,引起场效应管的源漏极之间Idc的电流变化,实现了阻抗变换。

一般话筒经变换后输出电阻小于2千欧。

二、驻极体话筒的正确使用
机内型驻极体话筒有四种连接方式,如图(4)所示。

图(4)
对应的话筒引出端分为两端式和三端式两种,图中R是场效应管的负载电阻,它的取值直接关系到话筒的直流偏置,对话筒的灵敏度等工作参数有较大的影响。

二端输出方式是将场效应管接成漏极输出电路,类似晶体三极管的共发射极放大电路。

只需两根引出线,漏极D与电源正极之间接一漏极电阻R,信号由漏极输出有一定的电压增益,因而话筒的灵敏度比较高,但动态范围比较小。

目前市售的驻极体话筒大多是这种方式连接。

(SONY用在MD上的话筒也是这类)三端输出方式是将场效应管接成源极输出方式,类似晶体三极管的射极输出电路,需要用三根引线。

漏极D接电源正极,源极S与地之间接一电阻R来提供源极电压,信号由源极经电容C输出。

源极输出的输出阻抗小于2K,电路比较稳定,动态范围大,但输出信号比漏极输出小。

三端输出式话筒目前市场上比较少见。

无论何种接法,驻极体话筒必须满足一定的偏置条件才能正常工作。

(实际上就是保证内置场效应管始终处于放大状态)
三、驻极体话筒的特性参数
工作电压Uds 1.5~12V,常用的有1.5V,3V,4.5V三种
工作电流Ids 0.1~1mA之间
输出阻抗一般小于2K(欧姆)
灵敏度单位:伏/帕,国产的分为4档,红点(灵敏度最高)黄点,蓝点,白点(灵敏度最低)
频率响应一般较为平坦
指向性全向
等效噪声级小于35分贝。

相关文档
最新文档