以太网网卡结构和工作原理

合集下载

Ethernet-基础知识

Ethernet-基础知识

Ethernet基础知识之一一、网卡、MAC控制器和MAC地址提到MAC不得不涉及网卡的工作原理,网卡工作在OSI参考模型的数据链路层和网络层。

这里又出现了一个概念“OSI参考模型”,在这个模型中定义了网络通讯是分层的,分别是物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。

以太网数据链路层其实包含MAC(介质访问控制)子层和LLC (逻辑链路控制)子层。

物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。

数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。

以太网卡中数据链路层的芯片一般简称之为MAC控制器,物理层的芯片简称之为PHY。

许多网卡的芯片把MAC和PHY的功能做到了一颗芯片中,比如Intel 82559网卡的和3COM3C905网卡。

但是MAC和PHY的机制还是单独存在的,只是外观的表现形式是一颗单芯片。

当然也有很多网卡的MAC和PHY是分开做的,比如D-LINK的DFE-530TX等。

通常提到的MAC指狭义的MAC地址,其实在网卡中,一块以太网卡MAC芯片的作用不但要实现MAC 子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换。

以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上。

MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧。

这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示)。

最后还有一个DWORD(4Byte)的CRC码。

网卡上有一颗EEPROM芯片,通常是一颗93C46。

里面记录了网卡芯片的供应商ID、子系统供应商ID、网卡的MAC地址、网卡的一些配置,如SMI总线上PHY的地址,BOOTROM的容量,是否启用BOOTROM引导系统等东西。

网卡组成及工作原理

网卡组成及工作原理

网卡组成及工作原理网卡,又称网络适配器,是计算机与网络之间的接口设备,用于将计算机的数据转化为网络可传输的格式,并与网络进行通信。

网卡通常是通过PCI、PCI Express、USB等接口与计算机主机连接,并通过以太网或无线网络与网络进行通信。

以下将详细介绍网卡的组成和工作原理。

一、网卡的组成1.电路板:网卡的主体部分,通过电路板连接所有的组件和接口。

2.芯片组:网卡的核心,包括MAC(媒体访问控制)地址和PHY(物理层接口)芯片等。

MAC地址是用来唯一标识网卡的硬件地址,PHY芯片则负责将计算机发送的数据转化为网络可传输的信号。

3. 接口:网卡通过接口与计算机主机进行连接,常见的接口有PCI、PCI Express和USB等。

4.连接器:用于连接网卡与网络的物理接口,常见的有RJ45(以太网接口)和光纤接口等。

5.电源:为网卡提供电能,以使其正常工作。

6.配置存储器:存储网卡的配置信息,如MAC地址和传输速率等。

二、网卡的工作原理网卡的工作原理可以简单分为两个过程:发送数据和接收数据。

1.发送数据过程当计算机主机需要发送数据时,操作系统会将数据传递给网卡的设备驱动程序。

驱动程序将数据转换为网卡能够处理的格式,并将其存储在网卡的发送缓冲区中。

网卡的发送缓冲区是一段存储空间,用于临时存放要发送的数据。

网卡将发送缓冲区中的数据逐个分片,并为每个分片添加包头和校验信息。

包头包含了目标主机的MAC地址和发送主机的MAC地址等信息,校验信息用于检测数据在传输过程中是否发生错误。

发送缓冲区中的数据片段经过封装后,将通过物理层的PHY芯片转化为网络可传输的信号。

PHY芯片会调制数据信号,即将数字信号转化为模拟信号,以便在传输介质中传播。

转化为模拟信号后,数据信号将通过网卡的物理连接器传输到网络。

物理连接器负责将数字信号转化为模拟信号,并将其发送到传输介质中,如以太网或光纤。

2.接收数据过程当网卡接收到网络上的数据时,物理连接器将模拟信号转化为数字信号,并传输给网卡的PHY芯片。

以太网原理:MAC和PHY

以太网原理:MAC和PHY

以太网设计FAQ:以太网MAC和PHY问:如何实现单片以太网微控制器?答:诀窍是将微控制器、以太网媒体接入控制器(MAC)和物理接口收发器(PHY)整合进同一芯片,这样能去掉许多外接元器件。

这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积。

单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下。

问:以太网MAC是什么?答:MAC就是媒体接入控制器。

以太网MAC由IEEE-802.3以太网标准定义。

它实现了一个数据链路层。

最新的MA C同时支持10Mbps和100Mbps两种速率。

通常情况下,它实现MII接口。

问:什么是MII?答:MII即媒体独立接口,它是IEEE-802.3定义的以太网行业标准。

它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1)。

数据接口包括分别用于发送器和接收器的两条独立信道。

每条信道都有自己的数据、时钟和控制信号。

MII数据接口总共需要16个信号。

管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。

通过管理接口,上层能监视和控制PHY。

问:以太网PHY是什么?答:PHY是物理接口收发器,它实现物理层。

IEEE-802.3标准定义了以太网PHY。

它符合IEEE-802.3k中用于10B aseT(第14条)和100BaseTX(第24条和第25条)的规范。

问:造成以太网MAC和PHY单片整合难度高的原因是什么?答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件。

芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。

更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。

问:除RJ-45接口外,还需要其它元件吗?答:需要其它元件。

虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及一个局域网绝缘模块。

绝缘模块一般采用一个1:1的变压器。

这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。

以太网Ethernet

以太网Ethernet

一.以太网Ethernet●为什么叫以太网?“以太”是人们早期认为的一种电磁波的载体,看不见,摸不着。

后来经实验证实,这种介质是不存在的,但是这种叫法却延续了下来。

●以太网的特点:●典型拓朴:总线型、星型。

●常见拓朴:星型总线(如果用HUB实现,在逻辑上仍然是一种总线型工作模式,因为HUB会将收到的数据无条件的转发到每一个端口,所以其工作方式与总线型的没有区别)●信号传输:基带传输,基带传输时的信号类型是离散的数字信号。

●访问机制:CSMA/CD,带冲突检测的载波帧听多路访问。

●规范:IEEE 802.3●传输速度:10M bps或100M bps●线缆类型:粗缆、细缆、UTP、STP●10M bps IEEE 标准1.10Base2:10:10M Base:Base Band(基带)2:185米近似200米典型线缆:细缆连接器:BNC,T,Terminator(终结器)版权所有,不得用于其它培训目的。

最大传输距离:185米最短传输距离:0.5米每网段最多计算机台数:30台最大网络长度:925米遵循5-4-3规范2.10Base5:最大传输距离:500米连接器:收发器,AUI,Terminator(终结器)最大下行电缆长度:50米最短收发器间距:2.5米每网段最多计算机台数:100台最大网络长度:2500米遵循5-4-3规范版权所有,不得用于其它培训目的。

3.10BaseTT:twisted-pair(双绞线)典型线缆:UTP3、4、5类连接器:RJ-45最大传输距离:100米最短传输距离:2.5米遵循5-4-3规范4.100BaseX Ethernet(Fast Ethernet:快速以太网)应用广泛典型线缆:UTP5类访问机制:CSMA/CD典型拓朴:星型100BaseTx:UTP5类,使用2对线,其中第1对线路用于接收数据;第二对线路用于发送数据。

100Base FX:光纤十.中继器:中继器能够连接两段电缆,它在发送信号之前先增强信号。

以太网工作原理

以太网工作原理

以太网工作原理以太网是一种常见的局域网技术,它使用了一种称为CSMA/CD(载波监听多路访问/碰撞检测)的协议来控制数据传输。

在以太网中,数据被分割成帧,然后通过网络传输。

接下来,我们将详细介绍以太网的工作原理。

首先,以太网使用CSMA/CD协议来控制数据传输。

这意味着当一个设备想要发送数据时,它首先会监听网络,确保没有其他设备正在发送数据。

如果网络空闲,设备就会发送数据。

但是,如果多个设备同时发送数据,就会发生碰撞。

当检测到碰撞时,设备会随机等待一段时间,然后重新发送数据。

其次,以太网使用MAC地址来识别设备。

每个以太网设备都有一个唯一的MAC地址,它由48位二进制数组成。

当数据帧被发送到网络上时,它包含了目标设备的MAC地址,以太网设备会根据这个地址来决定是否接收数据。

此外,以太网使用了CSMA/CD协议来控制网络的拓扑结构。

在以太网中,常见的拓扑结构包括总线型、星型和树型。

总线型拓扑中,所有设备都连接到同一条总线上;星型拓扑中,所有设备都连接到一个中央设备上;树型拓扑则是将多个星型拓扑连接在一起。

最后,以太网使用了以太网交换机来提高网络性能。

交换机可以根据MAC地址来转发数据,而不是像集线器一样简单地将数据广播到整个网络上。

这样可以减少网络拥塞,提高数据传输效率。

总之,以太网是一种常见的局域网技术,它使用了CSMA/CD协议来控制数据传输,使用MAC地址来识别设备,使用不同的拓扑结构来搭建网络,同时利用以太网交换机来提高网络性能。

通过了解以太网的工作原理,我们可以更好地理解局域网的工作方式,从而更好地设计和管理网络。

网卡的工作原理

网卡的工作原理

网卡的工作原理网卡故障不只是影响工作站本身,还常常影响到整个网络的正常运行,必须引起网管人员的重视。

在以太网中,网卡用于连接访问介质并控制对介质的存取,以太网采用的载波侦听多路存取/冲突检测方法(CSMA/CD)就是在网卡内实现的。

同时,网卡还负责将上层协议形成的协议数据单元(PDU)组成以太数据帧发送到网络上,并负责接收处理网络中传来的以太网帧。

一、网卡工作原理发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质。

一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突。

在发送数据期间。

如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法)。

在等待一段随机时间后,再进行新的发送。

如果重传多次后(大于16次)仍发生冲突,就放弃发送。

接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片。

如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC 校验,则认为该帧发生了畸变。

通过校验的帧被认为是有效的,网卡将它接收下来进行本地处理。

计算机基础知识二、影响网卡工作的因素网卡能否正常工作取决于网卡及其相连接的交换设备的设置以及网卡工作环境所产生的干扰。

如信号干扰、接地干扰、电源干扰、辐射干扰等都可对网卡性能产生较大影响,有的干扰还可能直接导致网卡损坏。

计算机PC机电源故障就时常导致网卡工作不正常。

电源发生故障时产生的放电干扰信号可能窜到网卡输出端口,在进入网络后将占用大量的网络带宽,破坏其他工作站的正常数据包,形成众多的FCS帧校验错误数据包,造成大量的重发帧和无效帧,其比例随各个工作站实际流量的增加而增加,严重干扰整个网络系统的运行。

1以太网介绍及工作原理

1以太网介绍及工作原理

以太网的解释以太网(EtherNet)以太网最早由Xerox(施乐)公司创建,在1980年,DEC、lntel和Xerox三家公司联合开发成为一个标准,以太网是应用最为广泛的局域网,包括标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)和10G(10Gbit/s)以太网,采用的是CSMA/CD访问控制法,它们都符合IEEE802.3IEEE 802.3标准它规定了包括物理层的连线、电信号和介质访问层协议的内容。

以太网是当前应用最普遍的局域网技术。

它很大程度上取代了其他局域网标准,如令牌环、FDDI和ARCNET。

历经100M以太网在上世纪末的飞速发展后,目前千兆以太网甚至10G以太网正在国际组织和领导企业的推动下不断拓展应用范围。

历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。

人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC 的老板写了一篇有关以太网潜力的备忘录。

但是梅特卡夫本人认为以太网是之后几年才出现的。

在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。

1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐,成立了3Com公司。

3com 对迪吉多, 英特尔, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。

这个通用的以太网标准于1980年9月30日出台。

当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。

而在此过程中,3Com也成了一个国际化的大公司。

梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。

Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。

受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。

网卡工作原理

网卡工作原理

网卡工作原理
网卡工作原理是指计算机内网卡(Network Interface Card)的
工作原理,它是计算机与局域网之间进行数据传输的接口设备。

1. 物理层:网卡通过物理层实现与计算机主板之间的连接,通常通过PCI插槽或者USB接口与主板连接,部分现代主板上
已经集成了网卡功能。

2. 数据链路层:网卡通过数据链路层实现计算机与局域网之间的数据通信。

在物理层传输的比特流通过网卡芯片进行解调与差错检测,将其转化为适合网络传输的数据帧。

3. MAC地址识别:网卡芯片通过一个唯一的硬件地址,即MAC地址(Media Access Control Address),来识别计算机在网络中的身份。

这个地址通常是由网卡厂商预先写入的。

4. 帧封装与解封:网卡芯片将数据包封装成以太网帧,添加以太网头和尾部,然后通过物理层将帧传输至目标地址。

接收时,网卡芯片解封数据帧,将数据包提取出来并传输给计算机进行处理。

5. 碰撞检测:当多台计算机同时发送数据到局域网时,可能会发生碰撞。

网卡芯片会通过碰撞检测机制,即载波监听与随机退避机制,来检测并处理这些碰撞。

6. 数据处理和传输:网卡芯片还具有数据处理和传输的功能。

它可以进行数据的校验、错误检测和纠正、数据的分段和组合,
以及数据的压缩和解压缩等操作。

总结起来,网卡通过物理层和数据链路层的功能实现计算机与局域网的数据通信。

它识别计算机的MAC地址,封装和解封数据帧,进行碰撞检测,以及进行数据的处理和传输。

通过这些功能,网卡实现了计算机与网络之间的数据交换。

网卡的基本组成结构和工作原理

网卡的基本组成结构和工作原理

⽹卡的基本组成结构和⼯作原理1.⽹卡的基本机构⽹卡包含7个功能模块,分别是CU(Control Unit,控制单元)、OB(Output Buffer,输出缓存)、IB(Input Buffer,输⼊缓存)、LC(Line Coder,线路编码器)、LD(Line Decoder,线路解码器)、TX(Transmitter,发射器)、RX(Receiver,接收器)。

2.⽹卡信息发送2.1 计算机的应⽤软件会产⽣等待发送的原始数据,这些数据经过TCP/IP模型的应⽤层、传输层、⽹络层处理后,得到⼀个⼀个的数据包(Packet)。

然后,⽹络层会将这些数据包逐个下传给⽹卡的CU。

2.2 CU 从⽹络层哪⾥接收到数据包之后,会将每个数据包封装成帧(Frame)。

在以太⽹中封装的数据帧为以太帧(Ethernet Frame)。

然后CU单元会将这些帧逐个传递给OB。

2.3 OB从CU哪⾥接收到帧以后,会按帧的接收顺序将这些帧排成⼀个队列,然后将队列中的帧逐个传递给LC。

先从CU哪⾥接收的帧会先传给LC。

2.4 LC从OB哪⾥接收到帧之后,会对这些帧进⾏线路编码。

从逻辑上讲,⼀个帧就是⼀个长度有限的⼀串“0”和“1”。

OB中的“0”和“1”所对应的物理量(指电平、电流、电荷等)只适合于待在缓存之中,⽽不适合于在线路上进⾏传输。

LC的作⽤就是将这些“0”和“1”所对应的物理量转换成适合于在线路上进⾏传输的物理信号,并将物理信号传递给TX。

2.5 TX从LC哪⾥接收到物理信号之后,会对物理信号的功率等特性进⾏调整,然后将调整后的物理信号通过线路发送出去。

3.⽹卡信息接收3.1 RX从传输介质(例如双绞线)哪⾥接收到物理信号(指电压/电流波形等),然后对物理信号的功率特性进⾏调整,再将调整后的物理信号传递给LD。

3.2 LD会对来⾃RX的物理信号进⾏线路解码。

线路解码:就是从物理信号中识别出逻辑上的“0”和“1”,并将这些“0”和“1”重新表达为适合于待在缓存中的物理量(指电平、电流、电荷等),然后将这些“0”和“1”以帧为单位逐渐传递给IB。

网卡工作原理图

网卡工作原理图

网卡工作原理图网卡的主要工作原理:发送数据时,计算机把要传输的数据并行写到网卡的缓存,网卡对要传输的数据进编码(10M以太网使用曼切斯特码,100M以太网使用差分曼切斯特码),串行发到传输介质上.接收数据时,则相反。

对于网卡而言,每块网卡都有一个唯一的网络节点地址,它是网卡生产厂家在生产时烧入ROM(只读存储芯片)中的,我们把它叫做MAC地址(物理地址),且保证绝对不会重复。

MAC为48bit,前24比特由IEEE分配,是需要钱买的,后24bit由网卡生产厂家自行分配.我们日常使用的网卡都是以太网网卡。

目前网卡按其传输速度来分可分为10M网卡、10/100M自适应网卡以及千兆(1000M)网卡。

如果只是作为一般用途,如日常办公等,比较适合使用10M网卡和10/100M自适应网卡两种。

如果应用于服务器等产品领域,就要选择千兆级的网卡。

一、网卡的主要特点网卡(Network Interface Card,简称NIC),也称网络适配器,是电脑与局域网相互连接的设备。

无论是普通电脑还是高端服务器,只要连接到局域网,就都需要安装一块网卡。

如果有必要,一台电脑也可以同时安装两块或多块网卡。

电脑之间在进行相互通讯时,数据不是以流而是以帧的方式进行传输的。

我们可以把帧看做是一种数据包,在数据包中不仅包含有数据信息,而且还包含有数据的发送地、接收地信息和数据的校验信息。

一块网卡包括OSI模型的两个层――物理层和数据链路层。

物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。

数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。

网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁波)将数据发送到网络上去;二是接收网络上其它设备传过来的帧,并将帧重新组合成数据,发送到所在的电脑中。

1以太网介绍及工作原理

1以太网介绍及工作原理

以太网的解释‎以太网(EtherN‎e t)以太网最早由‎X e rox(施乐)公司创建,在1980年‎,D EC、lntel和‎X erox三‎家公司联合开‎发成为一个标‎准,以太网是应用‎最为广泛的局‎域网,包括标准的以‎太网(10Mbit‎/s)、快速以太网(100Mbi‎t/s)和10G(10Gbit‎/s)以太网,采用的是CS‎MA/CD访问控制‎法,它们都符合I‎EEE802‎.3IEEE 802.3标准它规定了包括‎物理层的连线‎、电信号和介质‎访问层协议的‎内容。

以太网是当前‎应用最普遍的‎局域网技术。

它很大程度上‎取代了其他局‎域网标准,如令牌环、FDDI和A‎R CNET。

历经100M‎以太网在上世‎纪末的飞速发‎展后,目前千兆以太‎网甚至10G‎以太网正在国‎际组织和领导‎企业的推动下‎不断拓展应用‎范围。

历史以太网技术的最初进展来‎自于施乐帕洛‎阿尔托研究中‎心的许多先锋‎技术项目中的‎一个。

人们通常认为‎以太网发明于‎1973年,当年罗伯特.梅特卡夫(Robert‎Metcal‎f e)给他PARC‎的老板写了一‎篇有关以太网‎潜力的备忘录‎。

但是梅特卡夫‎本人认为以太‎网是之后几年‎才出现的。

在1976年,梅特卡夫和他‎的助手Dav‎id Boggs发‎表了一篇名为‎《以太网:局域计算机网‎络的分布式包‎交换技术》的文章。

1979年,梅特卡夫为了‎开发个人电脑‎和局域网离开‎了施乐,成立了3Co‎m公司。

3com 对迪‎吉多, 英特尔, 和施乐进行游‎说,希望与他们一‎起将以太网标‎准化、规范化。

这个通用的以‎太网标准于1‎980年9月‎30日出台。

当时业界有两‎个流行的非公‎有网络标准令牌环网和A‎R CNET,在以太网大潮‎的冲击下他们‎很快萎缩并被‎取代。

而在此过程中‎,3Com也成‎了一个国际化‎的大公司。

梅特卡夫曾经‎开玩笑说,Jerry Saltze‎r为3Com‎的成功作出了‎贡献。

linux中ens33工作原理

linux中ens33工作原理

linux中ens33工作原理
ens33是一种网络接口的名称,通常指的是以太网网卡。

在Linux中,每个网络接口都有一个名称,以此区分不同的网络接口。

ens33的工作原理是通过网卡硬件控制器与网络传输信息。

当一个应用程序请求网络服务时,它通过网卡将请求信息发送到网络,然后等待服务器端的响应。

网卡硬件控制器会负责将数据包传输到网络上并接收响应数据包返回给应用程序。

具体来说,ens33的工作原理包括以下几个方面:
1.网卡通过物理线缆连接到计算机的主板上;
2.网卡通过驱动程序与操作系统内核进行通信,以实现数据传输和网络连接的控制;
3.网卡接收到从应用程序发送的数据包后,会将数据包格式化并封装成网络数据帧,然后交给物理层进行传输;
4.当网络数据帧到达目的主机后,网卡将其接收并解析出数据包,然后将数据包发送到操作系统内核中进行处理;
5.操作系统内核根据协议规则进行数据包的转发和处理,然后返回响应数据包给
网卡;
6.网卡将响应数据包封装成数据帧并通过物理线缆发送到发送方。

总之,ens33是以太网网卡的一个名称,通过该网卡实现网络数据的传输和连接控制。

它是计算机和网络之间的桥梁,是实现网络通信的重要组成部分。

以太网结构介绍

以太网结构介绍

网卡
主板中可以安装网卡 的PCI插槽
集线器
集线器(HUB):又称集中器,把来自于 不同计算机网络设备的电缆集中配置于 一体,是多个网络电缆的中间转接设备 ,广泛应用于星形结构的网络中作为中 心节点。集线器有利于故障的检测和提 高网络的可靠性,能自动指示有故障的 工作站,并切除其与网络的通信,不让 出问题的区段影响整个网络的正常运行 。但应当注意,利用集线器所构建起来 的网络是共享带宽式的,其带宽由它的 端口平均分配,如总带宽为100Mb/s的集 线器,连接4台工作站同时上网时,每台 工作站平均带宽仅为100/4=25Mb/s。
网络数据传输速率100Mb/s 基带输速率100Mbps基带传输
采用了FDDI的PMD协议,但价格比FDDI便宜 100BASE-T的标准由IEEE802.3制定。与10BASE-T采用相 同的媒体访问技术、类似的步线规则和相同的引出线, 易于与10BASE-T集成。 每个网段只允许两个中继器,最大网络跨度为210米。 快速以太网有四种基本的实现方式:100Base-TX、100Base FX、100Base-T4和100Base-T2。每一种规范除了接口电路外 都是相同的,接口电路决定了它们使用哪种类型的电缆。为 了实现时钟/数据恢复(CDR)功能,100Base-T使用4B/5B曼 彻斯特编码机制。
路由器以太网拓扑结构中的连接线主机网卡mdi路由器以太口mdi交换机集线器接入口mdix交换机集线器级连口mdi主机网卡mdi交叉线交叉线直连线路由器以太口mdi交叉线交叉线直连线交换机集线器接入口mdix直连线直连线交叉线直连线交换机集线器级连口mdi直连线交叉线同类接口互连用交叉线异类接口互连用直连线h3c以太网交换机支持mdimdix自适应不必考虑连线类型交叉与直连网线连接顺序交叉式rj45接头100baset以太网工作原理工作原理以太网采用带冲突检测的载波帧听多路访问csmacd机制

计算机网络之网卡介绍课件

计算机网络之网卡介绍课件

驱动程序的选 择:根据网卡 的型号和操作 系统选择合适 的驱动程序
网卡的设置和优化
01
网卡驱动安装:确保网卡驱 动已正确安装并更新到最新 版本。
03
DNS服务器设置:设置正确 的DNS服务器地址,以便正 确解析域名。
05
防火墙设置:设置合适的防 火墙规则,以保护计算Байду номын сангаас免 受网络攻击。
02
IP地址设置:为网卡设置正 确的IP地址、子网掩码和网 关。
04
人工智能:网卡在人工智能 领域,支持大规模数据传输 和处理,助力AI技术的发展
谢谢
将数据传递给上层协议处理。
网卡的硬件组成
网卡的硬件结构
01
网络接口卡 (NIC):负 责与网络连接, 进行数据传输
02
网络处理器 (NP):负责 处理网络协议, 进行数据转发
03
存储器:用于 存储网络配置 信息和数据缓

04
电源管理模块: 负责电源管理, 保证网卡的正
常工作
05
指示灯:显示 网卡的工作状 态和网络连接
01
网卡是计算机与网络之间的
桥梁,负责数据的接收和发
送。
02
网卡的工作原理主要包括数
据封装、传输和接收三个步
03
数据封装:网卡将上层协议
(如TCP/IP)的数据包封装
骤。
成帧,并添加必要的控制信息。
04
数据传输:网卡将封装好的
05
数据接收:目的主机的网卡接
收到帧后,解析控制信息,并
帧通过传输介质(如双绞线、 光纤等)发送到目的主机。
无线网卡:摆脱线缆束缚,实 现无线连接
虚拟化网卡:实现网络资源的虚 拟化和共享,提高资源利用率

网卡工作原理

网卡工作原理

网卡工作原理
网卡是计算机中的一种硬件设备,负责处理计算机与网络之间的数据传输。

它是计算机与网络之间进行数据通信的接口。

网卡的工作原理可以简单地分为两个步骤:发送和接收。

发送数据时,计算机的操作系统将要发送的数据包传递给网卡。

网卡首先会检查数据包的格式和有效性,然后根据目标IP地
址和子网掩码判断目标主机是否在同一子网内。

如果是,则网卡将数据包直接发送到目标主机;如果不是,则网卡将数据包发送给网关。

在接收方面,网卡监听网络中的数据流量。

当网卡检测到有数据传输到达时,它会读取数据包的内容,并将数据包传递给计算机的操作系统进行进一步处理。

操作系统根据协议栈的不同层次来处理不同类型的数据包。

网卡工作原理涉及到数据传输的物理层和数据链路层。

在物理层,网卡通过电缆和其他网络设备进行物理连接。

在数据链路层,网卡使用MAC地址来标识网络设备,并使用网络协议如
以太网协议来处理数据包的传输。

总之,网卡的工作原理是通过发送和接收数据包来实现计算机与网络之间的通信。

它在计算机与网络之间起到桥梁的作用,使得计算机能够与其他设备进行数据交互及网络通信。

以太网基础知识

以太网基础知识

以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。

Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。

在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。

基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。

在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。

广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。

CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。

MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。

这种地址全球唯一。

Ethernet 基本网络组成:共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。

转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。

通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。

网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。

网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。

交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。

交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。

交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。

Mach3以太网控制卡 MKX-ET(以太网卡)说明书

Mach3以太网控制卡 MKX-ET(以太网卡)说明书

MACH3以太网控制卡适合系统:MACH3运动控制系统MK3-ET :以太网接口的,3轴运动控制卡MK4-ET :以太网接口的,4轴运动控制卡MK6-ET :以太网接口的,6轴运动控制卡型号以太网卡:184x127x 30mmMKX-ET(以太网卡)说明书QC :012016-9-13电源0V 电源24V适合系统:Mach 3系统产品型号:MK 4-ET 产品名称:Mach 3以太网控制卡硬件程序版本:特点描述支持Mach 3 所有版本,只适合Windows 操作系统,仅支持以太网接口,使用时需要进行IP 通讯地址设置(参考第20页)支持主轴速度反馈功能支持断电续传功能支持最大10米以太网线,无需安装驱动,即插即用;支持最多6轴联动,包括点动6轴联动。

(根据型号不同,支持轴数不同)拥有2000K Hz 的脉冲输出,支持差分信号输出,支持伺服/步进电机。

拥有状态指示灯,可提示连线状态,Mach 3连线状态,运行中,各类状态一目了然。

拥有16个输入口,8个输出口,支持扩展输入输出口所有IO 口全隔离,抗干扰强,性能稳定支持主轴PWM 调速输出;支持主轴脉冲+方向输出;支持主轴0到10V 模拟电压调速输出。

184x 127x 30 毫米,铝外壳,屏蔽干扰,稳定可靠。

★第1部分:控制卡硬件说明★★★★★★★★★-1-端口说明图变频器调速接口变频器调速信号模拟地变频器调速输入:0-10V 变频器10V 输出5V P W M 信号输出X 轴原点信号(输入0)Y 轴原点信号(输入1)Z 轴原点信号(输入2)A 轴原点信号(输入3)对刀信号输入(输入4)16个输入信号接口外接电源输入:24V外接电源输入:地线方向-脉冲+外接电源输入X 轴工作指示灯状态说明:常亮:表示工作运行正常输出:0V电源指示灯慢闪:表示控制卡与电脑 连接正常不亮:表示与电脑连接 不正常输出0V输出24V 输入5输入6输入7输入8输入9输入10输入11输入12输入13输入14输入15输出8输出3输出4输出5输出6输出76个输出口Y 轴Z 轴A 轴第1部分:控制卡硬件说明变频器正转信号变频器反转信号变频器数字信号地主轴速度反馈输出:24V-2-QC :012016-9-13脉冲-方向+方向-脉冲+脉冲-方向+方向-脉冲+脉冲-方向+方向-脉冲+脉冲-方向+电源0V电源24V输出:24V输出:0V适合系统:Mach 3系统产品型号:MK 4-ET 产品名称:Mach 3以太网控制卡硬件程序版本:应用接线图备注:如果出现开启变频器,控制卡工作不正常,是因为变频器干扰引起的;请更换变频器 根据我们的测试,推荐使用市场上的如下品牌变频器:贝斯特。

网卡究竟工作在OSI的哪一层?

网卡究竟工作在OSI的哪一层?

⽹卡究竟⼯作在OSI的哪⼀层?转载:答案:⽹卡⼯作在物理层和数据链路层的MAC⼦层。

解密⽹络传输⼯程师带你深⼊认识⽹卡⼀、什么是⽹卡?⽹卡现在已经上成为了⽬前电脑⾥的标准配置之⼀。

⼩⼩的⽹卡,究竟蕴涵着多少秘密呢?让我们⼀起来看。

我们最常⽤的⽹络设备当属⽹卡了。

⽹卡本⾝是LAN(局域⽹)的设备,通过⽹关、路由器等设备就可以把这个局域⽹挂接到Internet上。

⽽Internet本⾝就是⽆数个这样的局域⽹组成的。

⽹卡有许多种,按照数据链路层控制来分有以太⽹卡,令牌环⽹卡,ATM⽹卡等;按照物理层来分类有⽆线⽹卡,RJ-45⽹卡,同轴电缆⽹卡,光线⽹卡等等。

它们的数据链路控制、寻址、帧结构等不同;物理上的连接⽅式不同、数据的编码、信号传输的介质、电平等不同。

以下主要介绍我们最常⽤到的以太⽹⽹卡。

以太⽹采⽤的CSMA/CD(载波侦听多路访问/冲突检测)的控制技术。

他主要定义了物理层和数据链路层的⼯作⽅式。

数据链路层和物理层各⾃实现⾃⼰的功能,相互之间不关⼼对⽅如何操作。

⼆者之间有标准的接⼝(例如MII,GMII等)来传递数据和控制。

以太⽹卡的物理层可以包含很多种技术,常见的有RJ45,光纤,⽆线等,它们的区别在于传送信号的物理介质和媒质不同。

这些都在IEEE的802协议族中有详细的定义。

这次我们主要讨论的RJ45的⽹卡属于IEEE802.3定义的范围。

⼆、⽹卡的组成1.⽹卡的基本结构⼀块以太⽹⽹卡包括 OSI(开⽅系统互联)模型的两个层。

物理层和数据链路层。

物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接⼝。

数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向⽹络层提供标准的数据接⼝等功能。

以太⽹卡中数据链路层的芯⽚⼀般简称之为MAC控制器,物理层的芯⽚我们简称之为PHY。

许多⽹卡的芯⽚把MAC和PHY的功能做到了⼀颗芯⽚中,⽐如Intel 82559⽹卡的和3COM 3C905⽹卡。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以太网网卡结构和工作原理
网络适配器又称网卡或网络接口卡(NIC),英文名NetworkInterfaceCard。

它是使计算机联网的设备。

平常所说的网卡就是将PC机和LAN连接的网络适配器。

网卡(NIC)插在计算机主板插槽中,负责将用户要传递的数据转换为网络上其它设备能够识别的格式,通过网络介质传输。

它的主要技术参数为带宽、总线方式、电气接口方式等。

它的基本功能为:从并行到串行的数据转换,包的装配和拆装,网络存取控制,数据缓存和网络信号。

目前主要是8位和16位网卡。

网卡必须具备两大技术:网卡驱动程序和I/O技术。

驱动程序使网卡和网络操作系统兼容,实现PC机与网络的通信。

I/O技术可以通过数据总线实现PC和网卡之间的通信。

网卡是计算机网络中最基本的元素。

在计算机局域网络中,如果有一台计算机没有网卡,那么这台计算机将不能和其他计算机通信,也就是说,这台计算机和网络是孤立的。

网卡的不同分类:根据网络技术的不同,网卡的分类也有所不同,如大家所熟知的ATM网卡、令牌环网卡和以太网网卡等。

据统计,目前约有80%的局域网采用以太网技术。

根据工作对象的不同务器的工作特点而专门设计的,价格较贵,但性能很好。

就兼容网卡而言,目前,网卡一般分为普通工作站网卡和服务器专用网卡。

服务器专用网卡是为了适应网络服种类较多,性能也有差异,可按以下的标准进行分类:按网卡所支持带宽的不同可分为10M网卡、100M网卡、
10/100M自适应网卡、1000M网卡几种;根据网卡总线类型的不同,主要分为ISA网卡、EISA网卡和PCI网卡三大类,其中ISA网卡和PCI网卡较常使用。

ISA总线网卡的带宽一般为10M,PCI总线网卡的带宽从10M到1000M都有。

同样是10M网卡,因为ISA总线为16位,而PCI总线为32位,所以PCI网卡要比ISA网卡快。

网卡的接口类型:根据传输介质的不同,网卡出现了AUI接口(粗缆接口)、BNC接口(细缆接口)和RJ-45接口(双绞线接口)三种接口类型。

所以在选用网卡时,应注意网卡所支持的接口类型,否则可能不适用于你的网络。

市面上常见的10M网卡主要有单口网卡(RJ-45接口或BNC接口)和双口网卡(RJ-45和BNC两种接口),带有AUI粗缆接口的网卡较少。

而100M和1000M网卡一般为单口卡(RJ-45接口)。

除网卡的接口外,我们在选用网卡时还常常要注意网卡是否支持无盘启动。

必要时还要考虑网卡是否支持光纤连接。

网卡的选购:据统计,目前绝大多数的局域网采用以太网技术,因而重点以以太网网卡为例,讲一些选购网卡时应注意的问题。

购买时应注意以下几个重点:
网卡的应用领域----目前,以太网网卡有10M、100M、10M/100M及千兆网卡。

对于大数据量网络来说,服务器应该采用千兆以太网网卡,这种网卡多用于服务器与交换机之间的连接,以提高整体系统的响应速率。

而10M、100M和
10M/100M网卡则属人们经常购买且常用的网络设备,这三种产品的价格相差不大。

所谓10M/100M自适应是指网卡可以与远端网络设备(集线器或交换机)
自动协商,确定当前的可用速率是10M还是100M。

对于通常的文件共享等应用来说,10M网卡就已经足够了,但对于将来可能的语音和视频等应用来说,100M网卡将更利于实时应用的传输。

鉴于10M技术已经拥有的基础(如以前的集线器和交换机等),通常的变通方法是购买10M/100M网卡,这样既有利于保护已有的投资,又有利于网络的进一步扩展。

就整体价格和技术发展而言,千兆以太网到桌面机尚需时日,但10M的时代已经逐渐远去。

因而对中小企业来说,10M/100M网卡应该是采购时的首选。

注意总线接口方式----当前台式机和笔记本电脑中常见的总线接口方式都可以从主流网卡厂商那里找到适用的产品。

但值得注意的是,市场上很难找到ISA接口的100M网卡。

1994年以来,PCI总线架构日益成为网卡的首选总线,目前已牢固地确立了在服务器和高端桌面机中的地位。

即将到来的转变是这种网卡将推广到所有的桌面机中。

PCI以太网网卡的高性能、易用性和增强了的可靠性使其被标准以太网网络所广泛采用,并得到了PC业界的支持。

网卡兼容性和运用的技术----快速以太网在桌面一级普遍采用100BaseTX技术,以UTP为传输介质,因此,快速以太网的网卡设一个RJ45接口。

由于小办公室网络普遍采用双绞线作为网络的传输介质,并进行结构化布线,因此,选择单一RJ45接口的网卡就可以了。

适用性好的网卡应通过各主流操作系统的认证,至少具备如下操作系统的驱动程序:Windows、Netware、Unix和OS/2。

智能网卡上自带处理器或带有专门设计的AISC芯片,可承担使用非智能网卡时由计算机处理器承担的一部分任务,因而即使在网络信息流量很大时,也极少占用计算机的内存和CPU时间。

智能网卡性能好,价格也较高,主要用在服务器上。

另外,有的网卡在BootROM上做文章,加入防病毒功能;有的网卡则与主机板配合,借助一定的软件,实现Wake on LAN(远程唤醒)功能,可以通过网络远程启动计算机;还有的计算机则干脆将网卡集成到了主机板上。

网卡生产商----由于网卡技术的成熟性,目前生产以太网网卡的厂商除了国外的3Com、英特尔和IBM等公司之外,台湾的厂商以生产能力强且多在内地设厂等优势,其价格相对比较便宜。

一、网卡工作原理
发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质。

一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突。

在发送数据期间。

如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法)。

在等待一段随机时间后,再进行新的发送。

如果重传多次后(大于16次)仍发生冲突,就放弃发送。

接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片。

如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC校验,则认为该帧发生了畸变。

通过校验
的帧被认为是有效的,网卡将它接收下来进行本地处理。

计算机基础知识
二、影响网卡工作的因素
网卡能否正常工作取决于网卡及其相连接的交换设备的设置以及网卡工作环境所产生的干扰。

如信号干扰、接地干扰、电源干扰、辐射干扰等都可对网卡性能产生较大影响,有的干扰还可能直接导致网卡损坏。

计算机
PC机电源故障就时常导致网卡工作不正常。

电源发生故障时产生的放电干扰信号可能窜到网卡输出端口,在进入网络后将占用大量的网络带宽,破坏其他工作站的正常数据包,形成众多的FCS帧校验错误数据包,造成大量的重发帧和无效帧,其比例随各个工作站实际流量的增加而增加,严重干扰整个网络系统的运行。

接地干扰也常影响网卡工作,接地不好时,静电因无处释放而在机箱上不断积累,从而使网卡的接地端(通过网卡上部铁片直接跟机箱相连)电压不正常,最终导致网卡工作不正常,这种情况严重时甚至会击穿网卡上的控制芯片造成网卡的损坏。

干扰的情况很容易出现,有时网卡和显卡由于插得太近也会产生干扰。

干扰不严重时,网卡能勉强工作,数据通信量不大时用户往往感觉不到,但在进行大数据量通信时,在Windows98下就会出现“网络资源不足”的提示,造成机器死机现象。

网卡的设置也将直接影响工作站的速度。

电脑网卡的工作方式可以为全双工和半双工,当服务器、交换机、工作站工作状态不匹配,如服务器、工作站网卡被设置为全双工状态,而交换机、集线器等都工作在半双工状态时,就会产生大量碰撞帧和一些FCS 校验错误帧,访问速度将变得非常慢,从服务器上拷贝一个20MB的文件可能也需要5~10分钟。

这方面的错误往往是由于网络维护人员的疏忽,大多时候他们都使用默认设置,而并不验证实际状态。

相关文档
最新文档