数据结构课程设计报告(图的遍历)

合集下载

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解

数据结构实验报告图的遍历讲解一、引言在数据结构实验中,图的遍历是一个重要的主题。

图是由顶点集合和边集合组成的一种数据结构,常用于描述网络、社交关系等复杂关系。

图的遍历是指按照一定的规则,挨次访问图中的所有顶点,以及与之相关联的边的过程。

本文将详细讲解图的遍历算法及其应用。

二、图的遍历算法1. 深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,其基本思想是从一个顶点出发,沿着一条路径向来向下访问,直到无法继续为止,然后回溯到前一个顶点,再选择此外一条路径继续访问。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问。

(2)从v出发,选择一个未被访问的邻接顶点w,将w标记为已访问,并将w入栈。

(3)如果不存在未被访问的邻接顶点,则出栈一个顶点,继续访问其它未被访问的邻接顶点。

(4)重复步骤(2)和(3),直到栈为空。

2. 广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,其基本思想是从一个顶点出发,挨次访问其所有邻接顶点,然后再挨次访问邻接顶点的邻接顶点,以此类推,直到访问完所有顶点。

具体步骤如下:(1)选择一个起始顶点v,将其标记为已访问,并将v入队。

(2)从队首取出一个顶点w,访问w的所有未被访问的邻接顶点,并将这些顶点标记为已访问,并将它们入队。

(3)重复步骤(2),直到队列为空。

三、图的遍历应用图的遍历算法在实际应用中有广泛的应用,下面介绍两个典型的应用场景。

1. 连通分量连通分量是指图中的一个子图,其中的任意两个顶点都是连通的,即存在一条路径可以从一个顶点到达另一个顶点。

图的遍历算法可以用来求解连通分量的个数及其具体的顶点集合。

具体步骤如下:(1)对图中的每一个顶点进行遍历,如果该顶点未被访问,则从该顶点开始进行深度优先搜索或者广度优先搜索,将访问到的顶点标记为已访问。

(2)重复步骤(1),直到所有顶点都被访问。

2. 最短路径最短路径是指图中两个顶点之间的最短路径,可以用图的遍历算法来求解。

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历一、实验目的本实验旨在通过实践的方式学习图的遍历算法,掌握图的深度优先搜索(DFS)和广度优先搜索(BFS)的实现方法,加深对数据结构中图的理解。

二、实验步骤1. 创建图的数据结构首先,我们需要创建一个图的数据结构,以方便后续的操作。

图可以使用邻接矩阵或邻接表来表示,这里我们选择使用邻接矩阵。

class Graph:def__init__(self, num_vertices):self.num_vertices = num_verticesself.adj_matrix = [[0] * num_vertices for _ in range(num_vertic es)]def add_edge(self, v1, v2):self.adj_matrix[v1][v2] =1self.adj_matrix[v2][v1] =1def get_adjacent_vertices(self, v):adjacent_vertices = []for i in range(self.num_vertices):if self.adj_matrix[v][i] ==1:adjacent_vertices.append(i)return adjacent_vertices2. 深度优先搜索(DFS)DFS是一种遍历图的算法,其基本思想是从图的某一顶点开始,沿着一条路径一直走到最后,然后返回尚未访问过的顶点继续遍历,直到所有顶点都被访问过为止。

def dfs(graph, start_vertex):visited = [False] * graph.num_verticesstack = [start_vertex]while stack:vertex = stack.pop()if not visited[vertex]:print(vertex)visited[vertex] =Truefor neighbor in graph.get_adjacent_vertices(vertex):if not visited[neighbor]:stack.append(neighbor)3. 广度优先搜索(BFS)BFS同样是一种遍历图的算法,其基本思想是从图的某一顶点开始,首先访问其所有邻接点,然后再依次访问邻接点的邻接点,直到所有顶点都被访问过为止。

数据结构课程设计报告样本(图的存储与遍历)

数据结构课程设计报告样本(图的存储与遍历)

这是最后提交的文档资料格式,必须包含几个部分完成要求不少于50页。

《数据结构》课程设计题目图的存储与遍历学生姓名指导教师学院专业班级完成时间目录(要求自动生成)第一章课程设计目的 (2)第二章课程设计内容和要求 (2)第三章课程设计分析 (3)第四章算法描述 (4)第五章源代码 (8)第六章运行结果分析 (13)第七章结束语 (15)第八章参考文献 (15)第一章课程设计目的本学期我们对《数据结构》这门课程进行了学习。

这门课程是一门实践性非常强的课程,为了让大家更好地理解与运用所学知识,提高动手能力,我们进行了此次课程设计实习。

这次课程设计不但要求实习者掌握《数据结构》中的各方面知识,还要求实习者具备一定的C语言基础和编程能力。

具体说来,这次课程设计主要有两大方面目的。

一是让实习者通过实习掌握《数据结构》中的知识。

对于《图的存储与遍历》这一课题来说,所要求掌握的数据结构知识主要有:图的邻接表存贮结构、队列的基本运算实现、邻接表的算法实现、图的广度优先搜索周游算法实现、图的深度优先搜索周游算法实现。

二是通过实习巩固并提高实习者的C语言知识,并初步了解Visual C++的知识,提高其编程能力与专业水平。

第二章课程设计内容和要求2.1课程设计内容该课题要求以邻接表的方式存储图,输出邻接表,并要求实现图的深度、广度两种遍历。

2.1.1图的邻接表的建立与输出对任意给定的图(顶点数和边数自定),并且对有向图与无向图都应进行讨论,根据邻接表的存储结构建立图的邻接表并输出之。

尽量用图形化的方式输出邻接表。

2.1.2 图的遍历的实现图的遍历包括图的广度优先遍历与深度优先遍历。

对于广度优先遍历应利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)来实现。

首先建立一空队列,从初始点出发进行访问,当被访问时入队,访问完出队。

并以队列是否为空作为循环控制条件。

对于深度优先遍历则采用递归或非递归算法来实现。

数据结构实验报告-图的遍历

数据结构实验报告-图的遍历

数据结构实验报告实验:图的遍历一、实验目的:1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表2、掌握图的构造方法3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法4、掌握图的深度优先遍历和广度优先原理二、实验内容:1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。

2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图3、深度优先遍历第一步中构造的图G,输出得到的节点序列4、广度优先遍历第一部中构造的图G,输出得到的节点序列三、实验要求:1、无向图中的相关信息要从终端以正确的方式输入;2、具体的输入和输出格式不限;3、算法要具有较好的健壮性,对错误操作要做适当处理;4、程序算法作简短的文字注释。

四、程序实现及结果:1、邻接矩阵:#include <stdio.h>#include <malloc.h>#define VERTEX_MAX 30#define MAXSIZE 20typedef struct{intarcs[VERTEX_MAX][VERTEX_MAX] ;int vexnum,arcnum;} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;int n,m;printf("请输入顶点数和边数:");scanf("%d%d",&n,&m);g->vexnum=n;g->arcnum=m;for (i=0;i<n;i++)for (j=0;j<n;j++)g->arcs[i][j]=0;while(1){printf("请输入一条边的两个顶点:\n");scanf("%d%d",&i,&j);if(i==-1 || j==-1)break;else if(i==j || i>=n || j>=n){printf("输入错误,请重新输入!\n");}else{g->arcs[i][j]=1;g->arcs[j][i]=1;}}}void printMG(MGraph *g) {int i,j;for (i=0;i<g->vexnum;i++){for (j=0;j<g->vexnum;j++)printf(" %d",g->arcs[i][j]);printf("\n");}printf("\n");}main(){int i,j;int fg;MGraph *g1;g1=(MGraph*)malloc(sizeof(MGraph));printf("1:创建无向图的邻接矩阵\n\n");creat_MGraph1(g1);printf("\n此图的邻接矩阵为:\n"); printMG(g1);}2、邻接链表:#include<stdio.h>#include<malloc.h>#define MAX_SIZE 10typedef struct node{int vertex;struct node *next;}node,adjlist[MAX_SIZE];adjlist g;int visited[MAX_SIZE+1];int que[MAX_SIZE+1];void creat(){int n,e;int i;int start,end;node *p,*q,*pp,*qq;printf("输入无向图的顶点数和边数:");scanf("%d%d",&n,&e);for(i = 1; i <= n ; i++){visited[i] = 0;g[i].vertex = i;g[i].next = NULL;}printf("依次输入边:\n");for(i = 1; i <= e ; i++){scanf("%d%d",&start,&end);p=(node *)malloc(sizeof(node));p->vertex = end;p->next = NULL;q = &g[start];while(q->next)q = q->next;q->next = p;p1=(node*)malloc(sizeof(node));p1->vertex = start;p1->next = NULL;q1 = &g[end];while(qq->next)q1 = q1->next;q1->next = p1;}}void bfs(int vi){int front,rear,v;node *p;front =0;rear = 1;visited[vi] = 1;que[0] = vi;printf("%d ",vi);while(front != rear){v = que[front];p = g[v].next;while(p){if(!visited[p->vertex]){visited[p->vertex]= 1;printf("%d",p->vertex);que[rear++] = p->vertex;}p = p->next;}front++;}}int main(){creat();bfs(1);printf("\n");return 0;}五.实验心得与体会:(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。

数据结构实验报告九—图的遍历

数据结构实验报告九—图的遍历

问题描述:若用有向网表示网页的链接网络,其中顶点表示某个网页,有向弧表示网页之间的链接关系。

试设计一个网络蜘蛛系统,分别以广度优先和深度优先的策略抓取网页。

一、需求分析:1.本程序要求采用利用图实现广度优先搜索。

2.首先输入顶点的数量,然后是各顶点对应的字母,再输入各条弧(权值都置为1)。

3.在Dos界面输出从首个顶点开始的广度优先遍历序列。

4.测试数据输入输入顶点数和弧数:8 9输入8个顶点.输入顶点0:a输入顶点1:b输入顶点2:c输入顶点3:d输入顶点4:e输入顶点5:f输入顶点6:g输入顶点7:h输入9条弧.输入弧0:a b 1输入弧1:b d 1输入弧2:b e 1输入弧3:d h 1输入弧4:e h 1输入弧5:a c 1输入弧6:c f 1输入弧7:c g 1输入弧8:f g 1输出广度优先遍历: a b d h e c f g深度优先遍历: a b c d e f g h二、概要设计:抽象数据类型:图的定义:ADT Graph {数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w>|v,w∈v且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息}基本操作P:CreateGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合操作结果:按V和VR的定义构造图GFirstAdjV ex(G,v)初始条件:图G存在,v是G中某个顶点操作结果:返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回“空”Next AdjV ex(G,v,w)初始条件:图G存在,v是G中某个顶点,w是v的邻接顶点操作结果:返回v的(相对于w的)下一个邻接顶点,若w是v的最后一个邻接点,则返回“空”visit(G, k)初始条件:图G存在操作结果:访问图G中的第K个节点Locate(G, c)初始条件:图G存在操作结果:访问图G中的c顶点DFS(G, v)初始条件:图G存在操作结果:以图G中的第v个节点为起点深度优先访问图GBFS(G)初始条件:图G存在操作结果:广度优先访问图G} ADT Graph算法的基本思想:(1)图的特点是没有首尾之分,所以算法的参数要指定访问的第一个顶点。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。

在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。

本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。

二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。

三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。

四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。

通过邻接矩阵表示图的关系。

```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。

3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。

4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。

经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。

可以看出,DFS算法相对于BFS算法具有更高的效率。

五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。

2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。

DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。

3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。

这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。

图的遍历实验报告

图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。

图的遍历是指按照一定规则访问图中的所有节点。

本实验通过实际操作,探索了图的遍历算法的原理和应用。

二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。

三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。

四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。

该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。

b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。

该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。

五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。

六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。

图遍历的演示课程设计报告.

图遍历的演示课程设计报告.

合肥学院计算机科学与技术系课程设计报告20 11~20 12 学年第二学期课程数据结构与算法课程设计名称图遍历的演示学生姓名汪青松学号1004031010专业班级网络工程1班指导教师吕刚、陈圣兵2011 年 6 月图遍历的演示一、问题分析和任务定义很多涉及图上操作的算法都是以图的遍历操作为基础的。

试写一个程序,演示在连通的无向图上访问全部结点的操作。

将每个结点看做一个地名,如合肥。

然后任选国内的城市,起点未合肥,忽略城市间的里程。

设图的结点20-30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。

通过输入图的全部边(存于数据文件中,从文件读写)输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制。

注意,生成树的边是有向边,端点顺序不能颠倒。

二、数据结构的选择和概要设计城市与城市之间的关系使没有方向的,无向图采用邻近多重表来实现,主要要表示无向图中的各个结点和边,在多重表中边是采用两个结点来表示的。

在邻接表中Edgenode表示邻接表中的结点类型,其中含有访问标记mark,一条边所依附的两个结点的序号ivex和jvex,以及分别指向依附于ivex和jvex 的顶点边的链域ilink和jlink。

其中,邻接表中的表头结点用Vexnode表示,包含了顶点信息data和指向第一个边结点的firstedge。

用AMLGraph表示整个无向图,包含了图的顶点vexnum和边数edgenum。

结点坐标信息:struct loc //结点坐标信息{int v; //结点序号int x; //x坐标int y; //y坐标};边结点数据结构:struct Edgenode //边结点{int mark;//标志域,指示该边是否被访问过(0:没有1:有)int ivex,jvex;//该边关联的两个顶点的位置Edgenode *ilink,*jlink;//分别指向关联这两个顶点的下一条边};顶点结点:struct Vexnode //顶点结点{int data; //顶点名称,用数字表示城市Edgenode *firstedge;//指向第一条关联该结点的边};AMLGraph类:三、详细设计和编码程序主体部分主要包括两大部分,一是遍历算法部分;另一部分是对演示图的处理。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告正文:1·引言本实验报告旨在介绍图的遍历数据结构实验的设计、实现和结果分析。

图是一种常见的数据结构,用于表示对象之间的关系。

图的遍历是指系统地访问图的每个节点或边的过程,以便获取所需的信息。

在本次实验中,我们将学习并实现图的遍历算法,并分析算法的效率和性能。

2·实验目标本实验的主要目标是实现以下几种图的遍历算法:●深度优先搜索(DFS)●广度优先搜索(BFS)●拓扑排序3·实验环境本实验使用以下环境进行开发和测试:●操作系统:Windows 10●编程语言:C++●开发工具:Visual Studio 20194·实验设计与实现4·1 图的表示我们采用邻接矩阵的方式来表示图。

邻接矩阵是一个二维数组,用于表示图中节点之间的关系。

具体实现时,我们定义了一个图类,其中包含了节点个数、边的个数和邻接矩阵等属性和方法。

4·2 深度优先搜索算法(DFS)深度优先搜索是一种经典的图遍历算法,它通过递归或栈的方式实现。

DFS的核心思想是从起始节点开始,尽可能深地访问节点,直到达到最深的节点或无法继续访问为止。

我们实现了一个递归版本的DFS算法,具体步骤如下:●从起始节点开始进行递归遍历,标记当前节点为已访问。

●访问当前节点的所有未访问过的邻接节点,对每个邻接节点递归调用DFS函数。

4·3 广度优先搜索算法(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式实现。

BFS的核心思想是从起始节点开始,逐层地遍历节点,先访问离起始节点最近的节点。

我们实现了一个使用队列的BFS算法,具体步骤如下:●将起始节点放入队列,并标记为已访问。

●从队列中取出一个节点,访问该节点并将其所有未访问的邻接节点放入队列。

●重复上述步骤,直到队列为空。

4·4 拓扑排序算法拓扑排序是一种将有向无环图(DAG)的所有节点线性排序的算法。

数据结构图的遍历实验报告

数据结构图的遍历实验报告

题目:图的遍历的实现完成日期:2011.12.22一、需求分析1.本演示程序中,输入的数据类型均为整型数据,不允许输入字符等其他数据类型,且需要按照提示内容进行输入,成对的关系数据必须在所建立的图中已经存在对应的结点。

2.演示程序以用户和计算机的对话方式执行,在计算机终端上显示的提示信息的说明下,按照要求输入数据,运算结果在其后显示。

3.本程序实现分别基于邻接矩阵和邻接表存储结构的有、无向图,有、无向网的建立和遍历。

遍历分DFS和BFS两种算法,并分别以递归和非递归形式实现。

4.测试数据:(1)无向图结点数4 弧数3 结点:1 2 3 4 结点关系:1 2;1 3;2 4(2)有向图结点数6 弧数6 结点:1 2 3 4 5 6 结点关系:1 2;1 3;2 4;3 5;3 6;2 5 二、概要设计为实现上述程序功能,图的存储结构分为邻接矩阵和邻接表两种。

遍历过程中借助了栈和队列的存储结构。

1.邻接矩阵存储结构的图定义:ADT mgraph{数据对象V:V是具有相同特性的的数据元素的集合,成为顶点集。

数据关系R:R={VR}VR={ <v,w>| v,w є V且P(v,w),<v,w>表示从v到w的弧,谓词P(v,w)定义了弧<v,w>的意义或信息}基本操作P:locatevex(G, mes);初始条件:图G存在,mes和G中顶点有相同的特征。

操作结果:若G中存在顶点u,则返回该顶点在图中位置;否则返回其他信息。

createudn( & G);初始条件:图G 存在。

操作结果:创建无向图。

createdn( & G);初始条件:图G 存在。

操作结果:创建有向图。

createudg( & G);初始条件:图G 存在。

操作结果:创建无向网。

createdg(& G);初始条件:图G 存在。

操作结果:创建有向网。

DFS(G,v);初始条件:图G已经存在并被赋值,v是图中某个顶点的位置坐标。

数据结构实验报告图的遍历

数据结构实验报告图的遍历

数据结构实验报告图的遍历数据结构实验报告:图的遍历引言在计算机科学中,图是一种重要的数据结构,它由节点和边组成,用于表示不同实体之间的关系。

图的遍历是一种重要的操作,它可以帮助我们了解图中节点之间的连接关系,以及找到特定节点的路径。

在本实验中,我们将讨论图的遍历算法,并通过实验验证其正确性和效率。

深度优先搜索(DFS)深度优先搜索是一种常用的图遍历算法,它通过递归或栈的方式来遍历图中的节点。

在实验中,我们实现了深度优先搜索算法,并对其进行了测试。

实验结果表明,深度优先搜索算法能够正确地遍历图中的所有节点,并找到指定节点的路径。

此外,我们还对算法的时间复杂度进行了分析,验证了其在不同规模图上的性能表现。

广度优先搜索(BFS)广度优先搜索是另一种常用的图遍历算法,它通过队列的方式来遍历图中的节点。

在实验中,我们也实现了广度优先搜索算法,并对其进行了测试。

实验结果显示,广度优先搜索算法同样能够正确地遍历图中的所有节点,并找到指定节点的路径。

我们还对算法的时间复杂度进行了分析,发现其在不同规模图上的性能表现与深度优先搜索算法相近。

实验结论通过本次实验,我们深入了解了图的遍历算法,并验证了其在不同规模图上的正确性和效率。

我们发现深度优先搜索和广度优先搜索算法都能够很好地应用于图的遍历操作,且在不同情况下都有良好的性能表现。

这些算法的实现和测试为我们进一步深入研究图的相关问题提供了重要的基础。

总结图的遍历是图算法中的重要操作,它为我们提供了了解图结构和节点之间关系的重要手段。

本次实验中,我们实现并测试了深度优先搜索和广度优先搜索算法,验证了它们的正确性和效率。

我们相信这些算法的研究和应用将为我们在图相关问题的研究中提供重要的帮助。

数据结构图的遍历课程设计报告书

数据结构图的遍历课程设计报告书

课程设计报告课程名称数据结构课题名称图的遍历专业网络工程班级学号姓名指导教师陈淑红、张晓清、黄哲2015年 6 月25 日湖南工程学院课程设计任务书课程名称数据结构课题图的遍历专业班级网络工程学生姓名学号指导老师陈淑红、张晓清、黄哲审批任务书下达日期2015 年 3 月 1 日任务完成日期2015 年6月25 日目录一、设计内容与设计要求 (2)1.1设计内容---------------------------------------------------------------------------------------2 1.2选题方案---------------------------------------------------------------------------------------2 1.3设计要求---------------------------------------------------------------------------------------21.4进度安排---------------------------------------------------------------------------------------5二、需求分析 (5)2.1程序功能---------------------------------------------------------------------------------------52.2输入输出要求---------------------------------------------------------------------------------5三、概要设计 (5)3.1流程图------------------------------------------------------------------------------------------5 3.2数据结构---------------------------------------------------------------------------------------63.3函数的调用关系图,主要函数的流程---------------------------------------------------9四、详细设计 (14)4.1定义图------------------------------------------------------------------------------------------14 4.2自动生成无向图------------------------------------------------------------------------------14 4.3手动生成无向图------------------------------------------------------------------------------16 4.4广度优先遍历---------------------------------------------------------------------------------174.5深度优先遍历---------------------------------------------------------------------------------20五、调试运行 (22)5.1 测试数据--------------------------------------------------------------------------------------22 5.2运行程序---------------------------------------------------------------------------------------22 5.3自动生成图操作------------------------------------------------------------------------------235.4手动生成图操作------------------------------------------------------------------------------26六、心得体会 (29)七、源代码 (29)八、评分表 (38)第一章设计内容与设计要求1.1设计内容1.1.1 算术24游戏演示由系统随机生成4张扑克牌,用户利用扑克牌的数字及运算符号“+”、“—”、“*”、“/”及括号“(”和“)”从键盘上输入一个计算表达式,系统运行后得出计算结果,如果结果等于24,则显示“Congratulation!”,否则显示“Incorrect!”设计思路:从键盘输入中缀表达式,然后将中缀表达式转换为后缀表达式,利用后缀表达式求值。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

数据结构课程设计报告模板_图的遍历分解

数据结构课程设计报告模板_图的遍历分解

数据结构课程设计报告书设计题目图遍历的演示姓名专业班级学号指导教师成绩评语2014年6月20日目录目录 (1)一、功能需求 (2)(一)原始数据 (2)(二)系统功能 (2)三、程序总体设计 (2)(一)数据结构 (2)(二) 函数原形清单 (3)(三)程序总体框架 (4)(四)详细代码 (4)四、程序清单 (15)五、总结 (18)一、功能需求以邻接多重表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列和相应生成树的边集。

二、系统功能和原始数据(一)原始数据设图的顶点不超过20个,每个顶点用一个编号表示(如果一个图有n个顶点,则它们的编号分别为1,2,…,n)。

通过输入图的全部边输入一个图,每条边为一对整数,可以对边的输入顺序作某种限制。

注意,生成树的边是有向边,端点顺序不能颠倒。

(二)系统功能1.创建无向图2.打印无向图3.深度优先搜索4.广度优先搜索三、程序总体设计(一)数据结构typedef struct EBox{int mark;//访问标记,1代表已访问,0代表未访问int ivex,jvex;//该边依附的两个顶点的位置struct EBox *ilink,*jlink;//分别指向依附这两个顶点的下一条边//InfoType *info;//该边信息指针}EBox;typedef struct VexBox{VertexType data;EBox *firstedge;//指向第一条依附该顶点的边}VexBox;typedef struct{VexBox adjmulist[NUM];int vexnum,edgenum;//无向图的当前顶点数和边数}AMLGraph;//---------------------------------------------------队列的定义typedef int QElemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front,rear;}LinkQueue;(二) 函数原形清单int LocateVex(AMLGraph G,VertexType u)//寻找输入的数据在图中的位置,若不存在则返回-1int CreateGraph(AMLGraph &G)//采用邻接多重表存储表示,构造无向图GVertexType* GetVex(AMLGraph G,int v) //返回V的值int FirstAdjVex(AMLGraph G,VertexType v)//返回V的第一个邻接点的序号,若没有则返回-1int NextAdjVex(AMLGraph G,VertexType v,VertexType w)//返回V的(相对于W)的下一个邻接结点的序号,若W是V的最后一个邻接结点,则返回-1void DFS(AMLGraph G,int v)//深度优先搜索//深度优先遍历图void DFSTraverse(AMLGraph G,int(*Visit)(VertexType))int InitQueue(LinkQueue *Q) //队列的初始化int QueueEmpty(LinkQueue Q)//判断队列是否为空,为空则返回1,否则返回0int EnQueue(LinkQueue *Q,QElemType e) //向队列中插入元素int DeQueue(LinkQueue *Q,QElemType *e) //若队列不为空,则删除对头元素,并返回1;否则返回 0 void BFSTraverse(AMLGraph G ,int(*Visit)(VertexType)) //广度优先非递归遍历图G void MarkUnVisited(AMLGraph G) //把边的访问标记设置为0,即未被访问 void Display(AMLGraph G) //显示构造的无向图(包括定点数、顶点、边数、边)(三)程序总体框架(四)详细代码#include <iostream> using namespace std;//--------------------------------------------------------无向图的邻接多重表存储结构的定义 const int NUM=20;const int Data_Num=2;//每个顶点所表示的数据 开始创建无向图打印无向图深度优先搜索创建无向图结束typedef char VertexType[Data_Num];typedef struct EBox{int mark;//访问标记,1代表已访问,0代表未访问int ivex,jvex;//该边依附的两个顶点的位置struct EBox *ilink,*jlink;//分别指向依附这两个顶点的下一条边}EBox;typedef struct VexBox{VertexType data;EBox *firstedge;//指向第一条依附该顶点的边}VexBox;typedef struct{VexBox adjmulist[NUM];int vexnum,edgenum;//无向图的当前顶点数和边数}AMLGraph;//---------------------------------------------------队列的定义typedef int QElemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front,rear;}LinkQueue;//寻找输入的数据在图中的位置,若不存在则返回-1int LocateVex(AMLGraph G,VertexType u){int i;for(i=0;i<G.vexnum;i++)if(strcmp(u,G.adjmulist[i].data)==0)return i;return -1;}//采用邻接多重表存储表示,构造无向图Gint CreateGraph(AMLGraph &G){cout<<"请输入图的顶点数、边数:";cin>>G.vexnum;//输入图当前的顶点数cin>>G.edgenum;//输入图当前的边数cout<<"请输入每个顶点所对应的值:"<<endl;for(int i=0;i<G.vexnum;i++){cin>>G.adjmulist[i].data;//输入顶点值G.adjmulist[i].firstedge=NULL;//初始化指针}VertexType v1,v2;EBox *p;int j;//每条弧所关联的两个结点for(int k=0;k<G.edgenum;k++){cout<<"请输入第"<<k<<"边的始点和终点:";cin>>v1;cin>>v2;i=LocateVex(G,v1);j=LocateVex(G,v2);//确定v1和v2在图G中的位置p=(EBox *)malloc(sizeof(EBox));//对弧结点进行赋值(*p).mark=0;(*p).ivex=i;(*p).jvex=j;(*p).ilink=G.adjmulist[i].firstedge;(*p).jlink=G.adjmulist[j].firstedge;G.adjmulist[i].firstedge=G.adjmulist[j].firstedge=p;}return 1;}//返回V的值VertexType* GetVex(AMLGraph G,int v){if(v>G.vexnum||v<0)exit(0);return &G.adjmulist[v].data;}//返回V的第一个邻接点的序号,若没有则返回-1int FirstAdjVex(AMLGraph G,VertexType v){int i;i=LocateVex(G,v);if(i<0)return -1;if(G.adjmulist[i].firstedge)//V有邻接结点if(G.adjmulist[i].firstedge->ivex==i)return G.adjmulist[i].firstedge->jvex;elsereturn G.adjmulist[i].firstedge->ivex;elsereturn -1;}//返回V的(相对于W)的下一个邻接结点的序号,若W是V的最后一个邻接结点,则返回-1 int NextAdjVex(AMLGraph G,VertexType v,VertexType w){int i,j;EBox *p;i=LocateVex(G,v);j=LocateVex(G,w);if(i<0||j<0)return -1;p=G.adjmulist[i].firstedge;while(p)if(p->ivex==i&&p->jvex!=j)p=p->ilink;else if(p->jvex==i&&p->ivex!=j)p=p->jlink;elsebreak;if(p&&p->ivex==i&&p->jvex==j){p=p->ilink;if(p&&p->ivex==i)return p->jvex;else if(p&&p->jvex==i)return p->jvex;}if(p&&p->ivex==j&&p->jvex==i){p=p->jlink;if(p&&p->ivex==i)return p->jvex;else if(p&&p->jvex==i)return p->jvex;}return -1;}//------------------------------------队列的操作int visite[NUM];//访问标志数组int (*VisitFunc)(VertexType v);void DFS(AMLGraph G,int v){int j;EBox *p;VisitFunc(G.adjmulist[v].data);visite[v]=1;//该顶点已经被访问p=G.adjmulist[v].firstedge;while(p){j=p->ivex==v?p->jvex:p->ivex;if(!visite[j])DFS(G,j);p=p->ivex==v?p->ilink:p->jlink;}}//深度优先遍历图void DFSTraverse(AMLGraph G,int(*Visit)(VertexType)) {int v,start;VisitFunc=Visit;for(v=0;v<G.vexnum;v++)visite[v]=0;cout<<"请输入你要开始进行查找的位置:";cin>>start;cout<<"按广深度优先搜索的结果是:"<<endl;for(v=start;v<G.vexnum;v++){if(v>=G.vexnum){for(v=0;v<G.vexnum;v++){if(!visite[v])DFS(G,v);}//内层for}//ifelse{if(!visite[v])DFS(G,v);}//else}//外层forcout<<"\b\b\b ";cout<<endl;}//队列的初始化int InitQueue(LinkQueue *Q){(*Q).front=(*Q).rear=(QueuePtr)malloc(sizeof(QNode));if(!(*Q).front)exit(0);(*Q).front->next=NULL;return 1;}//判断队列是否为空,为空则返回1,否则返回0int QueueEmpty(LinkQueue Q){if(Q.front==Q.rear)return 1;elsereturn 0;}//向队列中插入元素int EnQueue(LinkQueue *Q,QElemType e){QueuePtr p=(QueuePtr)malloc(sizeof(QNode));if(!p)exit(0);p->data=e;p->next=NULL;(*Q).rear->next=p;(*Q).rear=p;return 1;}//若队列不为空,则删除对头元素,并返回1;否则返回0 int DeQueue(LinkQueue *Q,QElemType *e){QueuePtr p;if((*Q).front==(*Q).rear)return 0;p=(*Q).front->next;*e=p->data;(*Q).front->next=p->next;if((*Q).rear==p)(*Q).rear=(*Q).front;free(p);return 1;}//广度优先非递归遍历图Gvoid BFSTraverse(AMLGraph G,int(*Visit)(VertexType)){int u,v,w,start=0;VertexType w1,u1;LinkQueue Q;for(v=0;v<G.vexnum;v++)visite[v]=0;InitQueue(&Q);cout<<"请输入你要开始进行查找的位置:";cin>>start;cout<<"按广度优先搜索的结果是:"<<endl;for(v=start;v<G.vexnum;v++){if(!visite[v]){visite[v]=1;Visit(G.adjmulist[v].data);EnQueue(&Q,v);//v入队列while(!QueueEmpty(Q)){DeQueue(&Q,&u);strcpy(u1,*GetVex(G,u));for(w=FirstAdjVex(G,u1);w>=0;w=NextAdjVex(G,u1,strcpy(w1,*GetVex(G,w))))if(!visite[w]){visite[w]=1;Visit(G.adjmulist[w].data);EnQueue(&Q,w);}}}}//forInitQueue(&Q);for(v=0;v<start;v++){if(!visite[v]){visite[v]=1;Visit(G.adjmulist[v].data);EnQueue(&Q,v);//v入队列while(!QueueEmpty(Q)){DeQueue(&Q,&u);strcpy(u1,*GetVex(G,u));for(w=FirstAdjVex(G,u1);w>=0;w=NextAdjVex(G,u1,strcpy(w1,*GetVex(G,w))))if(!visite[w]){visite[w]=1;Visit(G.adjmulist[w].data);EnQueue(&Q,w);}}}}//forcout<<"\b\b\b ";cout<<endl;}//把边的访问标记设置为0,即未被访问void MarkUnVisited(AMLGraph G){int i;EBox *p;for(i=0;i<G.vexnum;i++){p=G.adjmulist[i].firstedge;while(p){p->mark=0;if(p->ivex==i)p=p->ilink;elsep=p->jlink;}}}//显示构造的无向图(包括定点数、顶点、边数、边)void Display(AMLGraph G){int i;EBox *p;MarkUnVisited(G);cout<<G.vexnum<<"个顶点:";for(i=0;i<G.vexnum;i++)cout<<G.adjmulist[i].data<<" ";cout<<"; "<<G.edgenum<<"条边:"<<endl;for(i=0;i<G.vexnum;i++){p=G.adjmulist[i].firstedge;while(p)if(p->ivex==i){if(!p->mark){cout<<G.adjmulist[i].data<<"-->"<<G.adjmulist[p->jvex].data<<" ";p->mark=1;//已经被访问过了}p=p->ilink;}else{if(!p->mark){cout<<G.adjmulist[p->ivex].data<<"-->"<<G.adjmulist[i].data<<" ";p->mark=1;//已经被访问过了}p=p->jlink;}cout<<endl;}}int Visit(VertexType v){cout<<v<<"-->";return 1;}int main(){int flag=1,control,YES=0;AMLGraph g;while(flag){cout<<"\t\t-----------------------------------------------------"<<endl;cout<<"\t\t-------------请输入你要进行的操作:------------------"<<endl;cout<<"\t\t-----------1.创建无向图||2.打印无向图||----------"<<endl;cout<<"\t\t-----------3.深度优先搜索||4.广度优先搜索||----------"<<endl;cout<<"\t\t-----------0.退出系统--------------------------------"<<endl;cout<<"\t\t-----------------------------------------------------"<<endl;cin>>control;switch(control){case 1:YES=CreateGraph(g);break;case 2:if(YES)Display(g);else{cout<<"请先创建无向图,再选择此项"<<endl;}break;case 3:if(YES){DFSTraverse(g,Visit);}else{cout<<"请先创建无向图,再选择此项"<<endl;}break;case 4:if(YES){BFSTraverse(g,Visit);}else{cout<<"请先创建无向图,再选择此项"<<endl;}break;case 0:flag=0;break;}//switch}//whilereturn 0;}四、程序清单代码运行结果截图:主页面:1.创建无向图:输入6个顶点、9条边,如图:2.打印无向图:3.深度优先搜索4.广度搜索五、总结参考资料[1] 殷人昆 .《数据结构(用面向对象方法与c++语言描述)》清华大学出版社[2] 严蔚敏、吴伟民.《数据结构(C语言版)》清华大学出版社。

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告doc

数据结构图的遍历实验报告篇一:【数据结构】图的存储和遍历实验报告《数据结构B》实验报告系计算机与电子专业级班姓名学号XX年1 0月 9日1. 上机题目:图的存储和遍历2. 详细设计#include#define GRAPHMAX 10#define FALSE 0#define TRUE 1#define error printf#define QueueSize 30typedef struct{char vexs[GRAPHMAX];int edges[GRAPHMAX][GRAPHMAX];int n,e;}MGraph;int visited[10];typedef struct{int front,rear,count;int data[QueueSize];}CirQueue;void InitQueue(CirQueue *Q) {Q->front=Q->rear=0;Q->count=0;}int QueueEmpty(CirQueue *Q) {return Q->count=QueueSize;}int QueueFull(CirQueue *Q){return Q->count==QueueSize;}void EnQueue(CirQueue *Q,int x) {if(QueueFull(Q))error("Queue overflow");else{ Q->count++;Q->data[Q->rear]=x;Q->rear=(Q->rear+1)%QueueSize;}}int DeQueue(CirQueue *Q){int temp;if(QueueEmpty(Q)){ error("Queue underflow");return NULL;}else{ temp=Q->data[Q->front]; Q->count--; Q->front=(Q->front+1)%QueueSize; return temp;}}void CreateMGraph(MGraph *G){int i,j,k;char ch1,ch2;printf("\n\t\t请输入定点数,边数并按回车(格式如:3,4):");scanf("%d,%d",&(G->n),&(G->e));for(i=0;in;i++){ getchar();printf("\n\t\t请输入第%d个定点数并按回车:",i+1);scanf("%c",&(G->vexs[i]));}for(i=0;in;i++)for(j=0;jn;j++)G->edges[i][j]=0;for(k=0;ke;k++){ getchar();printf("\n\t\t请输入第%d条边的顶点序号(格式如:i,j):",k+1);scanf("%c,%c",&ch1,&ch2);for(i=0;ch1!=G->vexs[i];i++);for(j=0;ch2!=G->vexs[j];j++);G->edges[i][j]=1;}}void DFSM(MGraph *G,int i){int j;printf("\n\t\t深度优先遍历序列: %c\n",G->vexs[i]);visited[i]=TRUE;for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) ////////////////DFSM(G,j);}void BFSM(MGraph *G,int k){ int i,j;CirQueue Q;InitQueue(&Q);printf("\n\t\t广度优先遍历序列:%c\n",G->vexs[k]);visited[k]=TRUE;EnQueue(&Q,k);while(!QueueEmpty(&Q)){ i=DeQueue(&Q);for(j=0;jn;j++)if(G->edges[i][j]==1 && visited[j]!=1) { visited[j]=TRUE;EnQueue(&Q,j);}}}void DFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) DFSM(G,i);}void BFSTraverseM(MGraph *G){int i;for(i=0;in;i++)visited[i]=FALSE;for(i=0;in;i++)if(!visited[i]) BFSM(G,i);}void main(){MGraph *G,a;char ch1;int i,j,ch2;G=&a;printf("\n\t\t建立一个有向图的邻接矩阵表示\n");CreateMGraph(G);printf("\n\t\t已建立一个有向图的邻接矩阵存储\n");for(i=0;in;i++){ printf("\n\t\t");for(j=0;jn;j++)printf("%5d",G->edges[i][j]);}getchar();ch1='y';while(ch1=='y'||ch1=='Y'){ printf("\n");printf("\n\t\t图的存储与遍历 ");printf("\n\t\t********************************");printf("\n\t\t*1-----更新邻接矩阵*");printf("\n\t\t*2-----深度优先遍历*");printf("\n\t\t*3-----广度优先遍历*");printf("\n\t\t*0-----退出*");printf("\n\t\t********************************");}} printf("\n\t\t请选择菜单号(0----3)"); scanf("%d",&ch2); getchar(); switch(ch2) { case 1:CreateMGraph(G); printf("\n\t\t图的邻接矩阵存储建立完成\n");break; case 2:DFSTraverseM(G);break; case 3:BFSTraverseM(G);break; case 0:ch1='n';break; default:printf("\n\t\t输出错误!清重新输入!"); }3. 调试分析(1)调试过程中主要遇到哪些问题?是如何解决的?由于实习之初对邻接表的存储结构了解不是很清楚,所以在运行出了一个小错误,即在输出邻接表时,每个结点都少了一个邻接点。

图的遍历的实现 课设报告

图的遍历的实现 课设报告

数据结构课程设计设计说明书图的遍历的实现学生姓名周朝学号********** 班级网络1101班成绩指导教师申静数学与计算机科学学院2014年1 月4日课程设计任务书2013—2014学年第一学期课程设计名称:数据结构课程设计课程设计题目:图的遍历实现完成期限:自2013年12 月23日至2014年 1 月4 日共 2 周设计内容:1. 任务说明(1) 采用邻接表存储结构创建一个图;(2) 编程实现图的深度优先搜索(或广度优先搜索)遍历算法;(3) 输出遍历结果;(4) 给定具体数据调试程序。

2. 要求1)问题分析和任务定义:根据设计题目的要求,充分地分析和理解问题,明确问题要求做什么?2)逻辑设计:写出抽象数据类型的定义,各个主要模块的算法,并画出模块之间的调用关系图;3)详细设计:定义相应的存储结构并写出各函数的伪码算法。

4)程序编码:把详细设计的结果进一步求精为程序设计语言程序。

5)程序调试与测试:采用自底向上,分模块进行,即先调试低层函数。

6)结果分析:程序运行结果包括正确的输入及其输出结果和含有错误的输入及其输出结果。

算法的时间、空间复杂性分析;7)编写课程设计报告。

3. 参考资料指导教师:申静教研室负责人:余冬梅课程设计评阅摘要本课程设计主要目的在于更深一步的了解图的遍历的问题,以无向图为例分别实现了广度优先遍历和深度优先遍历,在课程设计中,程序设计设计语言采用Visual C,程序运行平台为Windows 98/2000/XP。

在程序设计中我主要是解决的是给出一个图如何用多种方法完成图的遍历的问题。

程序最终通过调试运行,实现了设计目标。

关键词:程序设计;数据结构;无向图目录一课题描述 (1)二设计目的与任务 (2)2.1课程设计的目的 (2)2.2课程设计的任务 (2)三设计方案和实施 (3)3.1总体设计 (3)3.2基本操作 (3)3.3详细设计 (4)四运行调试结果 (6)五结论与致谢 (9)六附录 (10)一课题描述图是一种较为复杂且重要的数据结构,其特殊性在于图形结构中结点之间的关系可以是任意的,图中任意两个数据元素之间都有可能相关。

图的遍历数据结构实验报告

图的遍历数据结构实验报告

图的遍历数据结构实验报告图的遍历数据结构实验报告1. 实验目的本实验旨在通过使用图的遍历算法,深入理解图的数据结构以及相关算法的运行原理。

2. 实验背景图是一种非线性的数据结构,由顶点和边组成。

图的遍历是指按照某种规则,从图中的一个顶点出发,访问图中的所有顶点且仅访问一次的过程。

3. 实验环境本次实验使用的操作系统为Windows 10,编程语言为Python3.8,使用的图数据结构库为NetworkX。

4. 实验步骤4.1 创建图首先,我们使用NetworkX库创建一个有向图。

通过调用add_nodes_from()方法添加顶点,并调用add_edge()方法添加边,构建图的结构。

4.2 深度优先搜索(DFS)接下来,我们使用深度优先搜索算法来遍历这个图。

深度优先搜索是一种递归的遍历法,从一个顶点开始,沿着深度方向访问图中的顶点,直到不能继续深入为止。

4.3 广度优先搜索(BFS)然后,我们使用广度优先搜索算法来遍历这个图。

广度优先搜索是一种先访问离起始顶点最近的顶点的遍历法,从一个顶点开始,依次访问与之相邻的顶点,直到访问完所有的顶点为止。

5. 实验结果我们根据深度优先搜索和广度优先搜索算法,分别得到了图的遍历结果。

通过实验可以观察到每种遍历方式所访问的顶点顺序以及所需的时间复杂度。

6. 结论通过本次实验,我们了解了图的遍历数据结构及相关算法的原理和实现方式。

深度优先搜索和广度优先搜索算法适用于不同的场景,可以根据具体情况选择合适的算法进行图的遍历。

附件:无附录:本文所涉及的法律名词及注释:- 图:由结点和边组成的非线性数据结构。

- 顶点:图中的每个元素都称为顶点,也称为结点。

- 边:顶点之间的连接关系称为边。

课程设计报告-图的遍历

课程设计报告-图的遍历

目录一、课题的主要功能 (2)1.1设计内容 (2)1.2对课程设计功能的需求分析 (2)二、课题的功能模块的划分 (2)2.1模块划分 (2)2.2系统的概要设计 (3)三、主要功能的实现 (4)3.1算法思想 (4)1.图的邻接矩阵的建立 (4)2.图的遍历的实现 (4)3.2数据结构 (4)3.3主函数流程图 (5)3.4深度优先遍历流程图 (6)3.5深度优先遍历递归 (7)3.6深度优先遍历流程图 (9)3.7广度优先遍历递归流程图 (10)四、程序调试 (11)4.1程序的调试分析 (11)4.2程序的测试结果 (11)五、总结 (15)六、附件 (16)6.1源程序一、课题的主要功能1.1设计内容演示图的深度优先, 广度优先遍历过程,并输出原图结构及遍历结果。

要求图的结点数不能少于6个。

可以由系统随机生成图,也可以由用户手动输入图。

报告中要写出画图的思路;画出图的结构,有兴趣的同学可以进一步改进图的效果。

1.2对课程设计功能的需求分析图的遍历并不需要是一个过于复杂的工作环境,一般来说:最合适的才是最好的。

软件设计必须符合我们使用实际情况的需要。

根据要求,图的遍历主要功能如下:1.用户可以随时建立一个有向图或无向图;2.用户可以根据自己的需要,对图进行深度遍历或广度遍历;3.用户可以根据自己的需要对图进行修改;4.在整个程序中,用户可以不断的按照不同的方式对图进行遍历,若不继续,用户也可以随时跳出程序,同时,如果用户输入的序号错误,程序会提示用户重新输入序号;二、课题的功能模块的划分2.1模块划分1.队列的初始化、进队、出队、队列空、队列满的函数void InitQueue(CirQueue *Q) //初始化队列int QueueEmpty(CirQueue *Q)//队列是否为空int QueueFull(CirQueue *Q)//队列满Void EnQueue(CirQueue *Q,int x)//将队员进队int DeQueue(CirQueue *Q)//将队员出队2.创建图的函数void CreateMGraph(MGraph *G)//根据用户需要创建一个图3.图的深度优先遍历递归void DFSM(MGraph *G,int i)/*含有输出已访问的顶点的语句*/4.图的广度优先遍历递归void BFSM(MGraph *G,int k) /*含有输出已访问的顶点的语句*/5.深度优先遍历void DFSTraverseM(MGraph *G)/*调用DFSM函数*/6.广度优先遍历void BFSTraverseM(MGraph *G) /*调用BFSM函数*/7.主函数main() /*包含一些调用和控制语句*/2.2系统的概要设计三、主要功能的实现3.1算法思想本课题所采用的是邻接矩阵的方式存储图,实现图的深度、广度两种遍历,并将每种遍历结果输出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中南大学课程设计报告题目数据结构课程设计学生姓名指导教师漆华妹学院信息科学与工程学院专业班级学号完成时间 2011年07月目录第一章、需求分析 (2)第二章、概要设计 (2)2.1设定图的抽象数据类型 (2)2.2设定队列的抽象数据类型 (3)2.3本程序包含的功能模块 (3)第三章、详细设计 (3)3.1顶点、边和图的类型 (6)3.2队列类型 (8)3.3主程序和其他伪码算法 (9)第四章、调试分析 (9)第五章、用户手册 (9)第六章、测试结果 (10)第七章、心得体会 (10)附:源程序代码 (11)图遍历的演示题目:试设计一个程序,演示在连通的无向图上访问全部结点的操作第一章、需求分析1、以邻接多重表为存储结构;2、实现连通和非连通的无向图的深度优先和广度优先遍历;3、要求利用栈实现无向图的深度优先遍历;4、以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和生成树的边集;5、用凹入表打印生成树;6、求出从一个结点到另外一个结点,但不经过另外一个指定结点的所有简单路径;6、本程序用C语言编写,在C-Free3.5环境下通过。

第二章、概要设计1、设定图的抽象数据类型:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为点集.数据关系R:R={VR}VR={(v,w)|v,w属于V,(v,w)表示v和w之间存在的路径} 基本操作P:CreatGraph(&G,V,VR)初始条件:V是图的顶点集,VR是图中弧的集合.操作结果:按V和VR是定义构造图G.DestroyGraph(&G)初始条件:图G存在操作结果:销毁图GLocateVex(G,u)初始条件: 图G存在,u和G中顶点有相同的特征操作结果:若图G中存在顶点u,则返回该顶点在图中的位置;否则返回其他信息GetVex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的值FirstAjvex(G,v)初始条件: 图G存在,v是G中顶点操作结果:返回v的第一个邻接顶点,若顶在图中没有邻接顶点,则返回为空NextAjvex(G,v,w)初始条件: 图G存在,v是G中顶点,w是v的邻接顶点操作结果:返回v的下一个邻接顶点,若w是v的最后一个邻接顶点,则返回空DeleteVexx(&G,v)初始条件: 图G存在,v是G中顶点操作结果:删除顶点v已经其相关的弧DFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果: 对图进行深度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败BFSTraverse(G,visit())初始条件: 图G存在,visit的顶点的应用函数操作结果:对图进行广度优先遍历,在遍历过程中对每个结点调用visit函数一次,一旦visit失败,则操作失败}ADT Graph2、设定队列的抽象数据类型:ADT Queue{数据对象:D={ai|ai属于Elemset,i=1,2….,n,n>=0}数据关系:R1={<ai-1,ai>|ai-1,ai属于D,i=1,2,…,n}约定ai为端为队列头,an为队列尾基本操作:InitQueue(&Q)操作结果:构造一个空队列QDestryoQueue(&Q)初始条件:队列Q已存在。

操作结果:队列Q被销毁,不再存在。

EnQueue(&Q,e)初始条件:队列Q已经存在操作结果:插入元素e为Q的新的队尾元素DeQueue(&Q,&E)初始条件:Q为非空队列操作结果:删除Q的队尾元素,并用e返回其值QueueEmpty(Q)初始条件:队列已经存在操作结果:若队列为空,则返回TRUE,否则返回FLASE}ADT Queue3、本程序包含四个模块:1)主程序模块void main (){手动构造一个图;进行深度优先遍历图;进行广度优先遍历图;};2)手动构造一个图-自己输入图的顶点和边生成一个图;3)进行深度优先遍历图-打出遍历的结点序列和边集;4)进行广度优先遍历图-打出遍历的结点序列和边集;第三章、详细设计1、顶点,边和图类型#define MAX_INFO 10 /* 相关信息字符串的最大长度+1 */#define MAX_VERTEX_NUM 20 /* 图中顶点数的最大值*/int visited[MAX_VERTEX_NUM]; /*全局变量,访问标志数组 */typedef char InfoType; /*相关信息类型*/typedef char VertexType; /* 字符类型 */typedef enum{unvisited,visited}VisitIf;typedef struct EBox /*边结点类型*/{int mark; /*访问标记 */int ivex,jvex; /*该边依附的两个顶点位置*/struct EBox *ilink,*jlink; /*分别指向依附这两个顶点的下一条边 */}EBox;typedef struct VexBox /*顶点结点类型*/{char data[MAX_LEN];EBox *fistedge; /*指向第一条依附该顶点的边*/}VexBox;typedef struct{VexBox list[MAX_VERTEX_NUM];int vexnum,edgenum; /*无向图当前顶点数和边数 */}AMLGraph;图的基本操作如下:int LocateVex(AMLGraph G,VertexType u);//查G和u有相同特征的顶点,若存在则返回该顶点在无向图中位置;否则返回-1。

VertexType& GetVex(AMLGraph G,int v);//以v返回邻接多重表中序号为i的顶点。

int FirstAdjVex(AMLGraph G,VertexType v);//返回v的第一个邻接顶点的序号。

若顶点在G中没有邻接顶点,则返回-1。

int NextAdjVex(AMLGraph G,VertexType v,VertexType w);//返回v的(相对于w的)下一个邻接顶点的序号若w是v的最后一个邻接点,则返回-1。

void CreateGraph(AMLGraph &G);//采用邻接多重表存储结构,构造无向图G。

Status DeleteArc(AMLGraph &G,VertexType v,VertexType w);//在G中删除边<v,w>。

Status DeleteVex(AMLGraph &G,VertexType v);//在G中删除顶点v及其相关的边。

void DestroyGraph(AMLGraph &G);//销毁一个图void Display(AMLGraph G);//输出无向图的邻接多重表G。

void DFSTraverse(AMLGraph G,VertexType start,int(*visit)(VertexType));//从start顶点起,(利用栈非递归)深度优先遍历图G。

void BFSTraverse(AMLGraph G,VertexType start,int(*Visit)(VertexType));//从start顶点起,广度优先遍历图G。

void MarkUnvizited(AMLGraph G);//置边的访问标记为未被访问。

其中部分操作的算法如下:void CreateGraph(AMLGraph *p) /*创建无向图 */ {int i,j,k;EBox *q;printf("\n\t\t\t请输入图的结点个数和边的个数:");/*输入图的结点数和边数*/scanf("%d,%d",&p->vexnum,&p->edgenum);for(i=1;i<=p->vexnum;i++){ printf("\n\t\t\t请输入结点%d的名称:",i);/*输入顶点数据信息*/scanf("%s",p->list[i].data);p->list[i].fistedge=NULL; /*初始化指针*/ }for(k=0;k<p->edgenum;k++) /*输入各边并构造多重链表*/ { printf("\n\t\t\t请输入互相有关联的两个结点:");scanf("%d,%d",&i,&j);q=(EBox *)malloc(sizeof(EBox));q->mark=0; /*对边结点赋值*/q->ivex=i;q->ilink=p->list[i].fistedge;q->jvex=j;q->jlink=p->list[j].fistedge;p->list[i].fistedge=p->list[j].fistedge=q; /*完成边在链头的插入*/}printf("\n");}void DFS(AMLGraph *p, int v){ /*对第v个顶点的深度优先遍历 */int w;EBox *q;visited[v]=1; /*标记已访问结点 */printf("%s ",p->list[v].data);for(q=p->list[v].fistedge;q!=NULL;){if(q->ivex==v){w=q->jvex; q=q->jlink;}else{w=q->ivex; q=q->ilink;}if(!visited[w]) DFS(p,w); /*对尚未访问的点调用DFS*/}}void DFSTraverse(AMLGraph *p,int n){ /*深度优先遍历 */int v;printf("\n\t\t\t");for(v=1;v<=p->vexnum;v++)visited[v]=0; *访问标志数组初始化*/ DFS(p,n); /*对起始顶点调用DFS*/ for(v=1;v<=p->vexnum;v++)if(!visited[v]) DFS(p,v); /*对尚未访问的顶点调用DFS*/printf("\n");}2、队列类型typedef int QelemType;typedef struct QNode{QElemType data;struct QNode *next;}QNode,*QueuePtr;typedef struct{QueuePtr front;QueuePtr rear; /* 队头、队尾指针 */}LinkQueue;队列的基本操作如下:Status InitQueue(LinkQueue &Q);//构造一个空队列Q。

相关文档
最新文档