极坐标与参数方程复习教案
第36讲 极坐标与参数方程-教案
一.自我诊断 知己知彼1. 若圆M 的方程为,则圆M 的参数方程为 .【答案】【解析】由圆M 的方程224x y +=,可知圆心()0,0,半径为 2.所以圆M 的参数方程为:. .2.已知圆M :x 2+y 2-2x -4y +1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 .【答案】2【解析】由于圆M 的标准方程为:22(1)(2)4x y -+-=,所以圆心(1,2)M , 又因为直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)消去参数t 得普通方程为3450x y --=,422=+y x )(sin 2cos 2为参数ααα⎩⎨⎧==y x )(sin 2cos 2为参数ααα⎩⎨⎧==y x由点到直线的距离公式得所求距离2d ==;故答案为:2.3在极坐标系中,点(2,6π)到直线θρsin =2的距离等于________. 【答案】1【解析】在极坐标系中,点(2,6π1),直线θρsin =2对应直角坐标系中的方程为y =2,所以点到直线的距离为1. 4设曲线的参数方程为(是参数,),直线的极坐标方程为,若曲线与直线只有一个公共点,则实数的值是 .【答案】7【解析】曲线的普通方程为()()22116x a y -+-=,直线的普通方程3450x y +-=,直线l 与圆C相切,则圆心(),1a 到l 的距离345475a d d +-==⇒= 5.直角坐标系xOy 中,圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是 . 【答案】)6,2(π【解析】由圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数)得⎩⎨⎧-=-=1s in 3c os y x θθ可得圆的标准方程为1)1()3(22=-+-y x ,圆心坐标为)1,3(,离圆心的距离33tan ,21)3(22==+=θρ,由题意6πθ=,则圆心C 的极坐标是)6,2(π.二.温故知新 夯实基础1.平面直角坐标系C 4cos 14sin x a y θθ=+⎧⎨=+⎩θ0>a l 3cos 4sin 5ρθρθ+=C l a C l设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎪⎩⎪⎨⎧==0>,0>,''λμλλy y x x 的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ) (ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧==θρθρsin cos y x 或⎪⎩⎪⎨⎧≠=+=0,tan 222x x yy x θρ,这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程4.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧==)()(t g y t f x 就是曲线的参数方程.5.常见曲线的参数方程和普通方程三.典例剖析 举一反三考点一 坐标系(一)典例剖析例1在平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),又以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 24sin 30ρθρθ+-=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 方程相交于A ,B 两点,求||AB .【答案】(1)曲线C 的直角坐标方程为22(2)1y x --=;(2)||AB = 【解析】(1)曲线C 的极坐标方程2cos 24sin 30ρθρθ+-=, 化为2222cossin 4sin 30ρθρθρθ-+-=,即22430x y y -+-=.∴曲线C 的直角坐标方程为22(2)1y x --=.(2)将直线l的参数方程12,22x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C 方程得24100t t +-=,设A ,B 对应的参数分别为1t ,2t ,则124t t +=-,1210t t =-,所以12||||AB t t =-= 【方法点拨】(1)由极坐标与直角坐标相互转化公式cos sin x y ρθρθ=⎧⎨=⎩,可求出曲线C 的直角坐标方程;(2)将直线l 的参数方程代入曲线C 的方程并整理可得关于t 的一元二次方程,利用韦达定理可得12t t +,12t t ,运用直线的参数方程的几何意义可知,12||||AB t t =-,代入即可得出所求的结果. (二)举一反三1. 已知圆C 的参数方程为为参数),直线的极坐标方程为,则直线与圆C的交点的直角坐标为 . 【答案】)1,1(±【解析】圆C 的普通方程为()2211x y +-=,直线的普通方程为1y =,所以交点为)1,1(± 2. 将曲线22132x y +=按ϕ:变换后的曲线的参数方程为( ) A. B. C.D.【答案】Dcos ,(1sin .x y ααα=⎧⎨=+⎩l sin 1ρθ=l l【解析】由变换ϕ:可得:,代入曲线22132x y +=可得: ()()2232132x y ''+=,即为: 22321,x y +=令(θ为参数)即可得出参数方程.故选:D. 3.【2017北京卷理11】在极坐标系中,点A 在圆04sin 4-cos 2-2=+θρθρρ上,点P 的坐标为(1,0),则|AP |的最小值为 . 【答案】1【解析】将极坐标方程转化成标准方程:()();12122=-+-y x 所以AP 的最小值为1.4.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(1;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB = (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 考点二 参数方程(一)典例剖析例1已知曲线C 的极坐标方程式2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线L的参数方程是12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数). (1)求曲线C 的直角坐标方程和直线L 的普通方程;(2)设点(,0)P m ,若直线L 与曲线C 交于两点,A B ,且||||1PA PB ⋅=,求实数m 的值.【答案】(1)曲线C 的直角坐标方程为222x y x +=,直线L的普通方程为x m =+;(2)1m =± 【解析】(1)曲线C 的极坐标方程是2cos ρθ=,化为22cos ρρθ=,可得直角坐标方程:222x y x +=.直线L的参数方程是212x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),消去参数t可得x m +. (2)把212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入方程:222x y x +=,化为:2220t t m m ++-=, 由0∆>,解得13m -<<.∴2122t t m m =-.∵12||||1PA PB t t ⋅==,∴221m m -=,解得1m =±0∆>.∴实数1m =±【方法点拨】(1)利用y x y x ==+=θρθρρsin ,cos ,222,即可将极坐标方程化为平面直角坐标系方程;消去参数t 即可将直线的参数方程化为普通方程;(2)将直线的参数方程代入曲线C 的普通方程得到一个含t 且关于x的一元二次方程2220t t m m ++-=,然后利用参数t 的几何意义知,12||||1PA PB t t ⋅==22m m =-,并由t 的范围(利用判别式大于零求范围)求出值域即可.例2. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系.曲线C 的极坐标方程是4cos (0)2πρθθ=≤≤,直线l 的参数方程是3cos 6()sin 6x t t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩为参数. (1)求直线l 的直角坐标方程和曲线C 的参数方程; (2)求曲线C 上的动点M 到直线l 的距离的范围.【答案】(1)30x +=,22cos 2sin x y αα=+⎧⎨=⎩(α为参数,0απ≤≤);(2)17,22⎡⎤⎢⎥⎣⎦.【解析】(1)直线:3l x +=,即:30x -+=由24cos ρρθ=得:224x y x +=,即:22(2)4x y -+=0,sin 02y πθρθ≤≤∴=≥.故C 的参数方程为:22cos (0)2sin x y ααπα=+⎧≤≤⎨=⎩ (2)设点(22cos ,2sin )M αα+到直线30x +=的距离为dd ==54sin()1654sin()(0)226παπααπ--⎛⎫==--≤≤ ⎪⎝⎭51sin()166626ππππαα-≤-≤-≤-≤时,min max 117sin()1,,sin(),62622d d ππαα∴-==-=-=时时点M 到直线l 的距离的范围是17,22⎡⎤⎢⎥⎣⎦【方法点拨】(1)消去t 可得直线l 的直角坐标方程,利用cos x ρθ=,sin y ρθ=代入曲线C 的极坐标方程可得曲线C 的直角坐标方程,进而引入参数α可得曲线C 的参数方程;(2)先计算点M 到直线l 的距离,再利用三角函数的性质可得点M 到直线l 的距离的范围. (二)举一反三 1. 若P 为椭圆上的点,则的取值范围是 .【答案】[]2,2- 【解析】依题意可得sin m n θθ⎧=⎪⎨=⎪⎩, 1sin 2cos sin 2sin 223m n πθθθθθ⎛⎫⎛⎫∴+=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, R θ∈, []sin 1,13πθ⎛⎫∴+∈- ⎪⎝⎭, []2sin 2,23πθ⎛⎫∴+∈- ⎪⎝⎭.即[]2,2m n +∈-),(n m n m +2. 在直角坐标系xOy 中,曲线1C 的方程是5222=+y x ,2C 的参数方程是⎪⎩⎪⎨⎧-==ty t x 3(t 为参数),则1C 与2C 交点的直角坐标是 . 【答案】)1 , 3(-【解析】由⎪⎩⎪⎨⎧-==ty t x 3消去参数t ,得2C的普通方程为(0)y x x =≥,代入1C 方程5222=+y x 整理得:23x =,解得x =1y =-,因此交点为1)-.3. 参数方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为 .【答案】212y x =-,[1,1]x ∈-【解析】由2cos 212sin θθ=-得212y x =-,又sin [1,1]θ∈-,所以[1,1]x ∈-,因此普通方程为212y x =-,[1,1]x ∈-4.(2019天津理12)设a ∈R ,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为 . 【答案】34【解析】消去参数在,整理圆的方程22(2)(1)4x y -+-=;带入点到直线的距离公式,考点三 综合问题(一)典例剖析例1在直角坐标系xOy 中,直线l 的参数方程为 为参数,0απ≤<),曲线C 的参数方程为 为参数),以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设C 与l 交于,M N 两点(异于原点),求OM ON +的最大值. 【答案】(1)曲线C 的极坐标方程为24sin ρρθ=;(2)【解析】(1)曲线C 的普通方程为()2224x y +-=,化简得224x y y +=,则24sin ρρθ=,所以曲线C 的极坐标方程为24sin ρρθ=. (2)由直线l 的参数方程可知,直线l 必过点()0,2,也就是圆C 的圆心,则2MON π∠=,不妨设()12,,,2MN πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则()1244424OM ON sin sin sin cos ππρρθθθθθ⎛⎫⎛⎫+=+=++=+=+ ⎪ ⎪⎝⎭⎝⎭,所以当4πθ=, OM ON +取得最大值为【方法点拨】(1)由题意可得曲线C 的普通方程为()2224x y +-=,将其转化为极坐标方程即24sin ρρθ=.(2)由参数方程可知直线l 过圆C 的圆心,则2MON π∠=,设()12,,,2MN πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则4OM ON πθ⎛⎫+=+⎪⎝⎭,由三角函数的性质可得OM ON +取得最大值为.例2. 【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=; 若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos θ-=5π6θ=. 综上,P的极坐标为π6⎫⎪⎭ 或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭. 【方法点拨】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大例 3. 在直角坐标系xoy 中,曲线1C 的参数方程为 ,( α为参数),以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值.【答案】(1)2213x y +=, 80x y +-=(2)【解析】(1)由曲线1C :得{ cos y sin αα==即:曲线1C 的普通方程为: 2213x y +=由曲线2C :sin 4πρθ⎛⎫+= ⎪⎝⎭()sin cos ρθθ+=即:曲线2C 的直角坐标方程为: 80x y +-=(2)由(1)知椭圆1C 与直线2C无公共点,椭圆上的点),sin Pαα到直线80x y +-=的距离为d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时, d的最小值为【方法点拨】(1)对于1C ,利用22cos sin 1αα+=,化简得2213x y +=,对于2C ,展开后利用极坐标与直角坐标转化公式,化简的80x y +-=.(2)直接利用点到直线距离公式,求出距离,并用辅助角公式化简,利用三角函数最值求得距离的最小值. (二)举一反三例 1. 已知在平面直角坐标系xOy 中,直线l 的参数方程是(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 【答案】(1)260x y -+=,(222x y +=(2)2⎡-+⎣【解析】(1)由{26x t y t ==+,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y +=,故曲线C的普通方程为(222x y -+=;(2)据题意设点)Mθθ,则2sin 4x y πθθθ⎛⎫+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.例2. 在直角坐标系xOy 中,曲线C 的参数方程为(α为参数),以平面直角坐标系的原点为极点, x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)过原点O 的直线12,l l 分别与曲线C 交于除原点外的,A B 两点,若3AOB π=,求AOB 的面积的最大值.【答案】(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭;(2) .【解析】 (1)曲线C 的普通方程为(()2214x y -+-=,即2220x y y +--=,所以,曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)不妨设()1,A ρθ, 2,3B πρθ⎛⎫+⎪⎝⎭,,33ππθ⎛⎫∈- ⎪⎝⎭.则14sin 3πρθ⎛⎫=+⎪⎝⎭,224sin 3πρθ⎛⎫=+⎪⎝⎭,AOB 的面积12112sinsin sin 232333S OA OB ππππρρθθθ⎛⎫⎛⎫=⋅==++= ⎪ ⎪⎝⎭⎝⎭所以,当0θ=时, AOB 的面积取最大值为例3. 在直角坐标系xOy 中,曲线C 的参数方程是 (α为参数),以该直角坐标系的原点O为极点, x 轴的正半轴为极轴建立极坐标系,直线l sin cos 0m θρθ-+=. (1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)设点(),0P m ,直线l 与曲线C 相交于,A B 两点,且1PA PB =,求实数m 的值.【答案】(1)曲线C 的普通方程为()2212x y -+=,直线l 的直角坐标方程为)3y x m =-;(2)1m =±0m =或2m =.【解析】(1)()2212x y ⇒-+=故曲线C 的普通方程为()2212x y -+=.直线l)3x m y x m -+⇒=-. (2)直线l的参数方程可以写为,{12x m y t =+=(t 为参数).设,A B 两点对应的参数分别为12,t t ,将直线l 的参数方程代入曲线C 的普通方程()2212x y -+=可以得到2221122m t t ⎛⎫⎛⎫+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭)()21120m t m -+--=, 所以()212121PA PB t t m ==--= 2211m m ⇒--= 2220m m ⇒-==或220m m -=,解得1m =±0m =或2m =.四.分层训练 能力进阶【基础】1. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 .【答案】6【解析】消参后化为:14522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛y x ,整理为1162522=+y x ,所以焦距6162522=-=c . 2. 把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴⎩⎨⎧==ϕϕsin 4cos 5y x (ϕ为参数); ⑵⎩⎨⎧=-=t y tx 431(t 为参数)【答案】⑴1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆.⑵0434=-+y x ,它表示过(0,43)和(1, 0)的一条直线. 【解析】本题主要是考查参数方程化为普通方程,(1)对两个式子中右边的系数挪到左边,利用三角函数的平方关系式消去ϕ整理即得到;(2)可以代入消元或加减消元消去t 得普通方程.解:⑴.∵⎩⎨⎧==ϕϕsin 4cos 5y x ∴⎪⎩⎪⎨⎧==ϕϕsin 4cos 5y x两边平方相加,得ϕϕ2222s i n c o s 1625+=+y x 即1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆. ⑵.∵⎩⎨⎧=-=ty t x 431∴由4y t =代入t x 31-=,得 431yx ⋅-=∴0434=-+y x∴它表示过(0,43)和(1, 0)的一条直线. 3.【2019北京卷理3】已知直线l 的参数方程为)(4231为参数t ty t x ⎩⎨⎧+=+=,则点()0,1到直线l 的距离是A .51 B .52 C .54 D .56 【答案】D【解析】直线l 的参数方程为)(4231为参数t ty tx ⎩⎨⎧+=+=,消参数得,3234+=x y 即0234=+-y x ,则点()0,1到直线l 的距离是564320422=++-=d ,故选D4. 已知直线l 的方程为2)4sin(=+πθρ,曲线C 的方程为()为参数θθθ⎩⎨⎧==sin cos y x . (1)把直线l 和曲线C 的方程分别化为直角坐标方程和普通方程; (2)求曲线C 上的点到直线l 距离的最大值. 【答案】(1)2=+y x ,122=+y x ;(2)12+=l .【解析】(1)222cos 22sin =⎪⎪⎭⎫⎝⎛⋅+⋅θθρ,根据⎩⎨⎧==θρθρsin cos y x ,代入得:2=+y x 根据1cos sin 22=+θθ,消参后的方程是:122=+y x .(2)直线与圆相离,所以圆上的点到直线的最大距离是圆心到直线的距离加半径,即222==d ,那么最大距离就是12+=l5. 已知曲线C 的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平 面直角坐标系,直线l 的参数方程是⎪⎩⎪⎨⎧+==tm x t y 2222(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程; (Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,试求实数m 的值. 【答案】(Ⅰ)2240x y x +-=,y x m =-;(Ⅱ)1或3.【解析】(Ⅰ)曲线C 的极坐标方程是ρ=4cos θ化为直角坐标方程为:0422=-+x y x 直线l 的直角坐标方程为:m x y -=(5分)(Ⅱ)解法一:由(Ⅰ)知:圆心的坐标为(2,0),圆的半径R =2,圆心到直线l 的距离22)214(222=-=d ,∴ 1222202=-⇒=--m m ∴ 31==m m 或解法二:把22x t my t ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数)代人方程2x 042=-+x y得222)40t m t m m -+-=∵ m m t t m t t 42(222121-=--=+),∴ 21221214)(t t t t t t AB -+=-= ∴ []14)442(222=---=m m m ()∴ 31==m m 或【巩固】1.【2018北京卷理7】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为 A .1 B .2C .3D .4【答案】C【解析】点P 的轨迹为x ²+y ²=1,则点P 到直线的距离可转化为圆上任意一点到直线的距离。
高三数学《参数方程与极坐标系》高级数学方法教案
高三数学《参数方程与极坐标系》高级数学方法教案引言:《参数方程与极坐标系》是高中数学中的一个重要内容,是数学建模及解决实际问题的重要工具。
通过学习参数方程和极坐标系,我们可以更全面地理解平面上的曲线及其性质,为解决实际问题提供更广阔的思路和方法。
本教案旨在通过合理安排教学内容和方法,培养学生的数学建模能力和问题解决能力。
一、教学目标1. 理解参数方程与极坐标系的概念及其应用;2. 掌握参数方程与极坐标系的转化方法;3. 能够运用参数方程和极坐标系解决实际问题。
二、教学重点和难点1. 参数方程与极坐标系的转化方法;2. 实际问题的建模和求解。
三、教学内容及安排1. 参数方程的引入与概念解释(20分钟)- 通过示例引导学生理解参数方程的概念及作用;- 介绍参数方程与直角坐标系之间的关系。
2. 参数方程的画图与性质(30分钟)- 通过实例演示如何使用参数方程绘制平面曲线;- 引导学生观察与分析参数方程对曲线形状的影响;- 讲解参数方程下函数的周期性、对称性等性质。
3. 参数方程与直角坐标系的转化(30分钟)- 介绍参数方程向直角坐标系的转化方法;- 讲解常见曲线如直线、圆、椭圆等的参数方程与直角坐标系方程的转化。
4. 极坐标系的引入与概念解释(20分钟)- 通过实例引导学生理解极坐标系的概念及作用;- 介绍极坐标系与直角坐标系之间的转化关系。
5. 极坐标系的画图与性质(30分钟)- 通过实例演示如何使用极坐标系绘制平面曲线;- 引导学生观察与分析极坐标方程对曲线形状的影响;- 讲解极坐标方程下函数的周期性、对称性等性质。
6. 参数方程与极坐标系的联系与应用(30分钟)- 引导学生理解参数方程与极坐标系的关系及其应用场景;- 通过实例讲解参数方程与极坐标系在工程、物理等领域的具体应用。
四、教学方法与手段1. 讲授与演示相结合:通过具体实例讲解参数方程与极坐标系的相关概念和性质,以提高学生的直观理解能力。
高考数学二轮复习极坐标与参数方程学案(含解析)
高考数学二轮复习极坐标与参数方程学案(含解析)考向一:极坐标方程极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =□01ρcos θ,y =□02ρsin θ;⎩⎪⎨⎪⎧ρ2=□03x 2+y 2,tan θ=□04y x x ≠0.1、[2016•全国Ⅱ,23]在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 解法二:将l 的参数方程代入C 的方程得于是t 1+t 2=-12cos α,t 1t 2=11. |AB |=|t 1-t 2|=144cos 2α-44由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 条件探究:若直线l 的极坐标方程为θ=π4(ρ∈R ),l 与C 交于M ,N 两点,求△CMN 的面积.设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+ρ+11=0.于是ρ1+ρ2=-,ρ1ρ2=11.|AB |=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=圆C 的半径为5,△CMN 的面积为.2、【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =,求P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)π3,6⎛⎫ ⎪⎝⎭或π3,3⎛⎫ ⎪⎝⎭或2π3,3⎛⎫ ⎪⎝⎭或5π3,6⎛⎫⎪⎝⎭. 【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以的极坐标方程为,的极坐标方程为(21)知综上,P 3、[2017•全国Ⅱ,22]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ.由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0).因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积S =12|OA |·ρB ·sin∠AOB =4cos α·⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3 =2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.4、【2019年高考全国Ⅱ卷理数】在极坐标系中,Ol P .(1l的极坐标方程;(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.【答案】(1l(2【解析】(1Cl上除P所以,l(2因为P在线段OM所以,P考向二:参数方程1、[2017•全国Ⅰ,22]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ (θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t(t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎪⎨⎪⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917.由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117.由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.2、【2019年高考全国Ⅰ卷理数】在直角坐标系xOy中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos 3sin 110ρθρθ++=. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y x x +=≠-;l 的直角坐标方程为23110x y ++=;(2)7. 【解析】(1)解法一:,221111t t --<≤+, ,,,所以C 的直角坐标方程为221(1)4y x x +=≠-. 解法二:因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+, 所以C 的直角坐标方程为221(1)4y x x +=≠-. l 的直角坐标方程为23110x y ++=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到l 的距离为π4cos 11|2cos 23sin 11|377ααα⎛⎫-+ ⎪++⎝⎭=.当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l 距离的最小值为7.3、[2018•全国Ⅲ,22]在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.解:(1)解析一:⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当21+k2<1,解得k <-1或k >1,即α∈(π4,π2)或α∈(π2,3π4).综上α的取值范围是(π4,3π4).解析二:设l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin αt 为参数,代入⊙O 的直角坐标方程得t 2-22t sin α+1=0. 直线l 与⊙O 交于A ,B 两点,所以,,α的取值范围是(π4,3π4).(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin αt 为参数,π4<α<3π4. 设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎪⎨⎪⎧x =22sin2α,y =-22-22cos2αα为参数,π4<α<3π4. 条件探究:点(0,-2),过点M 的直线l 与⊙O 交于A ,B 两点,若,求直线l 的方程。
极坐标与参数方程教案
极坐标与参数方程【教学目标】1、知识目标:(1)掌握极坐标的意义,会把极坐标转化一般方程(2)掌握参数方程与一般方程的转化2、能力目标:通过对公式的应用,提高学生分析问题和解决问题的能力,多方面考虑事物,培养他们的创新精神和思维严谨性.3、情感目标:培养学生数形结合是思想方法.【教学重点】1、极坐标的与一般坐标的转化2、参数方程和一般方程的转化3、几何证明的整体思路【教学难点】极坐标意义和直角坐标的转化【考点分析】坐标系与参数方程和几何证明在广东高考中为二者选一考,一般是5分的比较容易的题,知识相对比较独立,与其他章节联系不大,容易拿分.根据不同的几何问题可以建立不同的坐标系,坐标系选取的恰当与否关系着解决平面内的点的坐标和线的方程的难易以及它们位置关系的数据确立.有些问题用极坐标系解答比较简单,而有些问题如果我们引入一个参数就可以使问题容易入手解答,计算简便.高考出现的题目往往是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与普通方程间的相互转化,并用极坐标方程、参数方程研究有关的距离问题,交点问题和位置关系的判定.【基本要点】一、极坐标和参数方程:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.2.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点.极点O 的坐标为)R )(,0(∈θθ.3.极坐标与直角坐标的互化:4.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是θρ2acos =; 在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =; 5.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.6.圆222r )b y ()a x (=-+-的参数方程可表示为)(.rsin b y ,rcos a x 为参数θθθ⎩⎨⎧+=+=. 椭圆1b y a x 2222=+(a>b>0)的参数方程可表示为)(.bsin y ,acos x 为参数ϕϕϕ⎩⎨⎧==. 抛物线2px y 2=的参数方程可表示为)t (.2pt y ,2pt x 2为参数⎩⎨⎧==. 经过点)y ,x (M o o O ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.tsin y y ,tcos x x o o αα(t 为参数).【典型例题】题型一:极坐标与直角坐标的互化和应用例1、(1)点M 的极坐标)32,5(π化为直角坐标为( )B A .)235,25(-- B .)235,25(- C .)235,25(- D .)235,25( (2)点M 的直角坐标为)1,3(--化为极坐标为( )BA .)65,2(πB .)67,2(πC .)611,2(π D .)6,2(π 评注:极坐标和直角坐标的互化,注意角度的范围.变式1:(1)点()22-,的极坐标为 . (2)在极坐标系中,圆心在)4A(1,π,半径为1的圆的极坐标方程是___________ .评注:注意曲线极坐标与直角坐标的互化之间的联系.例2、(1)曲线的极坐标方程θρsin 4=化 成直角坐标方程为( )+(y+2)2=4 +(y-2)2=4 C.(x-2)2+y 2=4 D.(x+2)2+y 2=4【解析】将ρ=22y x +,sin θ=22y x y+代入ρ=4sin θ,得x 2+y 2=4y , 即x 2+(y-2)2=4.∴应选B.(2)⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程;求经过⊙O 1,⊙O 2交点的直线的直角坐标方程.【解析】以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(1)x=ρcos θ,y=ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ.所以x 2+y 2=4x.即x 2+y 2-4x=0为⊙O 1的直角坐标方程.同理x 2+y 2+4y=0为⊙O 2的直角坐标方程.(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==,0,011y x 或⎩⎨⎧-==.2,222y x 即⊙O 1,⊙O 2交于点(0,0)和(2,-2). 过交点的直线的直角坐标方程为y=-x.变式1:极坐标ρ=cos(θπ-4)表示的曲线是( ) A.双曲线 B.椭圆 C.抛物线 D.圆【解析】原极坐标方程化为ρ=21(cosθ+sinθ)⇒22ρ=ρcosθ+ρsinθ, ∴普通方程为2(x 2+y 2)=x+y ,表示圆.应选D.变式2:在极坐标系中与圆4sin ρθ=相切的一条直线的方程为( )A .cos 2ρθ=B .sin 2ρθ=C .4sin()3πρθ=+D .4sin()3πρθ=-【解析】A 4sin ρθ=的普通方程为22(2)4x y +-=,cos 2ρθ=的普通方程为2x = 圆22(2)4x y +-=与直线2x =显然相切.例3、在极坐标系中,已知两点P (5,45π),Q )4,1(π,求线段PQ 的长度;变式1、在极坐标系中,直线ρsin(θ+)=2被圆ρ=4截得的弦长为 .变式2、在极坐标系中,点到直线的距离为 .例4、极坐标方程分别为和的两个圆的圆心距为____________;变式1、把极坐标方程化为直角坐标方程是 .变式2、在极坐标系中,圆心在且过极点的圆的方程为_ .变式3、在极坐标系中,若过点且与极轴垂直的直线交曲线于A 、B 两点,则_________ _.题型二:参数方程的互化和应用例1、若直线(t 为参数)与直线垂直,则常数= .变式1、设直线的参数方程为(t 为参数),直线的方程为y=3x+4则与的距离为_______变式2、已知直线与直线相交于点,又点,则_______________。
极坐标与参数方程复习教案
极坐标与参数方程复习教案教案:极坐标与参数方程的复习(1200字以上)一、教学目标:1.复习极坐标及参数方程的基本概念和表示法。
2.复习极坐标与参数方程之间的转换关系。
3.复习极坐标和参数方程表示的图形特征。
4.进一步理解和掌握极坐标和参数方程在解决几何问题中的应用。
二、教学内容:1.极坐标表示法的复习1.极坐标系的定义和坐标表示2.极坐标与直角坐标之间的转换关系3.极坐标方程的表示和解析几何意义4.极坐标方程的图形特征2.参数方程表示法的复习1.参数方程的定义和表示方法2.参数方程的图形特征和解析几何意义3.参数方程与直角坐标之间的转换关系3.极坐标与参数方程的相互转换1.极坐标转换为参数方程2.参数方程转换为极坐标4.极坐标和参数方程在几何问题中的应用1.利用极坐标方程和参数方程求曲线的方程2.利用极坐标和参数方程求曲线的长度、面积等几何量3.利用极坐标和参数方程解决几何问题的应用实例三、教学重点和难点:1.极坐标与直角坐标系之间的转换关系及其应用。
2.参数方程与直角坐标系之间的转换关系及其应用。
3.极坐标和参数方程在解决几何问题中的应用实例。
四、教学方法:1.讲授结合演示:通过讲解和示例演示,引导学生理解极坐标与参数方程的基本概念和表示法。
2.练习巩固:通过给予学生一定数量和难度的练习题,巩固学生对极坐标和参数方程的掌握程度。
3.解题指导:针对应用题和难题,给予学生相应的解题指导,帮助学生理解问题的解题思路和方法。
五、教学流程:1.复习极坐标的基本概念和表示法。
2.复习参数方程的基本概念和表示法。
3.复习极坐标与参数方程的相互转换关系。
4.复习极坐标和参数方程表示的图形特征。
5.进一步理解和掌握极坐标和参数方程在解决几何问题中的应用。
6.练习巩固和解题指导。
六、教学资源准备:1.教材教辅资料:教材、习题册、参考书等。
2.多媒体设备:电脑、投影仪等。
3.白板、黑板、彩色粉笔等。
七、教学评价方式:1.观察学生学习的积极程度和参与度。
新人教版高中数学选修4-4《极坐标与参数方程》优质教案
(3.5学案)第1讲 极坐标系与参数方程(大题)教学目标1.会将参数方程,极坐标方程化为普通方程2.理解极坐标方程中ρ,θ含义,参数方程中直线中的t 的含义,圆与椭圆中θ几何意义,及应用教学重点:ρ,θ应用及直线参数方程中t 应用椭圆中θ应用 教学难点:椭圆中θ的含义题型一:极坐标.参数方程与普通方程互化 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性.(1).直线的参数方程过定点M(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).(2).圆的参数方程圆心为点M(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数).(3).圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a>b>0)的参数方程为⎩⎨⎧x =acos θ,y =bsin θ(θ为参数).(2)抛物线y 2=2px(p>0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数).(4).(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例1、(1)方程表示的曲线是( )A. 双曲线B.双曲线的上支C.双曲线的下支D.圆 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.(2)、设P 是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.(3)、极坐标方程表示的曲线是()A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.(4)、极坐标方程转化成直角坐标方程为()A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.通关练习一1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是()A. B. C. D.2.若直线的参数方程为,则直线的斜率为()A. B. C. D.3.下列在曲线上的点是()A. B. C. D.4.将参数方程化为普通方程为()A. B. C.D.5.参数方程为表示的曲线是()A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为() A. B. C. D.7.极坐标方程表示的曲线为()A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是()A. B. C. D.9. 圆心为C,半径为3的圆的极坐标方程为10 若A,B,则|AB|=__________,___________(其中O是极点)11. ,若A、B是C上关于坐标轴不对称的任意两点,AB 的垂直平分线交x轴于P(a,0),求a的取值范围.一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析:,得,因此中点为7.C 解析:,则或8、C 解析:距离为9、解析:如下图,设圆上任一点为P(),则10、解析:在极坐标系中画出点A、B,易得,11. 解析:,,,,题型二极坐标,参数方程综合应用例2 (2019·全国Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ)(ρ>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP|=|OA|cosπ3=2. 设Q(ρ,θ)为l 上除P 的任意一点,连接OQ ,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上.所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,故θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 由题意知ρA =4sinπ6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB|=|ρA -ρB |=3.例 3 (2019·六安质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),过点P(-2,0)作斜率为k 的直线l 与圆C交于A ,B 两点.(1)若圆心C 到直线l 的距离为455,求k 的值;(2)求线段AB 中点E 的轨迹方程.解 (1)由题意知,圆C 的普通方程为(x -2)2+y 2=4, 即圆C 的圆心为C(2,0),半径r =2.依题意可得过点P(-2,0)的直线l 的方程为y =k(x +2),即kx -y +2k =0, 设圆心C(2,0)到直线l 的距离为d , 则d =|2k +2k|1+k 2=|4k|1+k2=455, 解得k =±12.(2)设直线l 的参数方程为⎩⎨⎧x =-2+tcos θ,y =tsin θ(t 为参数),θ∈⎝ ⎛⎭⎪⎫-π6,π6,代入圆C :(x -2)2+y 2=4,得t 2-8tcos θ+12=0. 设A ,B ,E 对应的参数分别为t A ,t B ,t E , 则t E =t A +t B2, 所以t A +t B =8cos θ,t E =4cos θ. 又点E 的坐标满足⎩⎨⎧x =-2+t E cos θ,y =t E sin θ,所以点E 的轨迹的参数方程为⎩⎨⎧x =-2+4cos 2θ,y =4sin θcos θ,即⎩⎨⎧x =2cos 2θ,y =2sin 2θ,θ∈⎝ ⎛⎭⎪⎫-π6,π6,化为普通方程为x 2+y 2=4(1<x ≤2).例4在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M(1,1),求|MA|·|MB|的值. 解 (1)设曲线C 上任意一点N(2cos α,3sin α), 直线l :x -2y +1=0,则点N 到直线l 的距离d =|2cos α-23sin α+1|5=⎪⎪⎪⎪⎪⎪4cos ⎝⎛⎭⎪⎫α+π3+15≤5,∴曲线C 上的点到直线l 的距离的最大值为 5. (2)设直线l 的倾斜角为θ, 则由(1)知tan θ=12,∴cos θ=255,sin θ=55. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+255t ,y =1+55t (t 为参数),曲线C :x 24+y 23=1,联立方程组,消元得165t 2+45t -5=0, 设方程两根为t 1,t 2,则t 1t 2=-2516, 由t 的几何意义,得|MA|·|MB|=-t 1t 2=2516. 通关练习二1.(2019·东莞调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),圆C 的标准方程为(x -3)2+(y -3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.解(1)∵直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),∴在直线l 的参数方程中消去t 可得直线l 的普通方程为x -y -34+a =0,将x =ρcos θ,y =ρsin θ代入直线l 的普通方程中, 得到直线l 的极坐标方程为ρcos θ-ρsin θ-34+a =0.∵圆C 的标准方程为(x -3)2+(y -3)2=4,∴圆C 的极坐标方程为ρ2-6ρcos θ-6ρsin θ+14=0.(2)在极坐标系中,由已知可设M ⎝ ⎛⎭⎪⎫ρ1,π3,A ⎝ ⎛⎭⎪⎫ρ2,π3,B ⎝⎛⎭⎪⎫ρ3,π3,联立⎩⎨⎧θ=π3,ρ2-6ρcos θ-6ρsin θ+14=0,得ρ2-(3+33)ρ+14=0, ∴ρ2+ρ3=3+3 3. ∵点M 恰好为AB 的中点, ∴ρ1=3+332,即M ⎝⎛⎭⎪⎫3+332,π3. 把M ⎝ ⎛⎭⎪⎫3+332,π3代入ρcos θ-ρsin θ-34+a =0,得3()1+32×1-32-34+a =0,解得a =94.2.在平面直角坐标系xOy 中,曲线C 1过点P(m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数m 的值. 解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x. 即C 2的直角坐标方程为y 2=4x.(2)将曲线C 1的参数方程标准化为⎩⎪⎨⎪⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x , 得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m)>0,得m>-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=24-4m,解得m =-239,满足m>-3; 当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=24-4m解得m =33,满足m>-3. 综上,m =-239或33. 3.(2019·衡水中学调研)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)已知直线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),A 是C 3与C 1的交点,B 是C 3与C 2的交点,且A ,B 均异于原点O ,|AB|=42,求α的值. 解 (1)由⎩⎨⎧x =2+2cos φ,y =2sin φ消去参数φ,得C 1的普通方程为(x -2)2+y 2=4.由ρ=4sin θ,得ρ2=4ρsin θ,又y =ρsin θ,x 2+y 2=ρ2, 所以C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)知曲线C 1的普通方程为(x -2)2+y 2=4, 所以其极坐标方程为ρ=4cos θ.设点A ,B 的极坐标分别为(ρA ,α),(ρB ,α), 则ρA =4cos α,ρB =4sin α,所以|AB|=|ρA -ρB |=4|cos α-sin α| =42⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π4=42,所以sin ⎝ ⎛⎭⎪⎫α-π4=±1,即α-π4=k π+π2(k ∈Z ),解得α=k π+3π4(k ∈Z ),又0<α<π,所以α=3π4. 4.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点.(1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l(即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =tcos α,y =-2+tsin α 化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2.因为直线l 与⊙O 交于不同的两点, 所以21+k2<2, 解得k>1或k<-1.当k<-1时,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4;当k>1时,α的取值范围是⎝ ⎛⎭⎪⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2, 因直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),代入x 2+y 2=2中得,t 2-4tsin α+2=0, 故可设A(t 1cos α,-2+t 1sin α),B(t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎪⎫t 1+t 22cos α,-2+t 1+t 22sin α, 即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为 ⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。
极坐标与参数方程复习课件
摆线的极坐标方程是ρ=a(1-cosθ),其中ρ表示点到原点的距离,θ表示点与x轴的夹角,a表示摆线的 半径。通过这个方程,我们可以方便地计算摆线的长度和面积。
实例三:磁场线的参数方程
总结词
磁场线的参数方程表示
详细描述
磁场线的参数方程通常由两个参数构 成,例如时间和角度。参数方程可以 描述磁场线在任意时刻的位置和方向 ,从而方便地计算磁场线的长度和面 积。
极坐标与参数方程的转换关系
极坐标与直角坐标转换
极坐标系中的点可以用直角坐标系中的坐标表示,反之亦然。具体转换公式为 :$x = rho cos theta, y = rho sin theta, x^2 + y^2 = rho^2$。
参数方程与直角坐标转换
参数方程中的点也可以用直角坐标系中的坐标表示,具体转换公式取决于参数 方程的形式。
05
极坐标与参数方程的习题及解析
习题一:求圆的极坐标方程
总结词
理解并掌握圆的极坐标方程的推 导方法
详细描述
通过给定的圆心和半径,利用极 坐标与直角坐标方程
80%
总结词
掌握参数方程转换为普通方程的 方法
100%
详细描述
通过消去参数,将参数方程转化 为普通方程,以便更好地理解曲 线的几何意义。
极坐标与直角坐标的关系
对于平面内任意一点P,其直角坐标为(x,y),则其极坐标为(r,θ), 其中r=√(x²+y²),tanθ=y/x。
极坐标与直角坐标的转换
直角坐标转换为极坐标
已知点P的直角坐标为(x,y),则其极 坐标为(r,θ),其中r=√(x²+y²), tanθ=y/x。
极坐标转换为直角坐标
参数方程与极坐标教学案
参数方程与极坐标教学案一、引言参数方程与极坐标是高中数学教学中的重要内容,它们在解决几何问题和计算问题中具有广泛的应用。
本教学案主要介绍参数方程与极坐标的概念、性质和应用,旨在帮助学生深入理解和掌握这两种坐标系的特点和使用方法。
二、参数方程的概念与性质1.1 参数方程的定义参数方程是以参数为自变量,通过参数与变量之间的对应关系描述曲线的一种坐标系表示方法。
1.2 参数方程的性质(1)参数方程可以表示平面曲线上的任意一点。
(2)参数方程描述的曲线不一定是函数图像。
(3)参数方程能够简化一些复杂的曲线方程的求解过程。
三、参数方程与几何图形2.1 直线的参数方程(1)斜率存在时的参数方程:设直线的斜率为k,过点P(x₁, y₁),则直线的参数方程为:x = x₁ + ty = y₁ + kt其中t为参数,表示直线上任意一点的坐标。
(2)斜率不存在时的参数方程:设直线垂直于x轴,交点为(x₀, y₁),则直线的参数方程为:x = x₀y = y₁ + t其中t为参数,表示直线上任意一点的坐标。
2.2 曲线的参数方程(1)椭圆的参数方程:椭圆的参数方程可以表示为:x = a*cos(t)y = b*sin(t)其中a和b分别为椭圆的两个半轴长度。
(2)抛物线的参数方程:抛物线的参数方程可以表示为:x = at²y = 2at其中a为抛物线的参数和焦点到准线的距离。
四、极坐标的概念与性质3.1 极坐标的定义极坐标是以极径和极角为坐标的一种表示方法,其中极径表示点到原点的距离,极角表示点与正半轴的夹角。
3.2 极坐标的性质(1)极坐标中的极径和极角是有序对,唯一确定一点的。
(2)同一点在极坐标和直角坐标系中的表示不同。
五、极坐标的转化与应用4.1 直角坐标转极坐标已知点P(x, y),其极坐标就可以表示为:r = √(x² + y²)θ = arctan(y/x)4.2 极坐标转直角坐标已知点P(r, θ),其直角坐标可以表示为:x = r*cos(θ)y = r*sin(θ)六、参数方程与极坐标的应用5.1 参数方程在运动学中的应用通过用参数方程描述物体的运动轨迹,可以更方便地计算物体的位置、速度和加速度等运动学问题。
极坐标与参数方程学案
极坐标与参数方程专题复习一、教学目标1、理解坐标系(de)作用.了解在平面直角坐标系伸缩变换作用下平面图形(de)变化情况;2、会在极坐标系中用极坐标刻画点(de)位置,能进行极坐标和直角坐标(de)互化;3、能在极坐标系中给出简单图形(如过极点(de)直线、过极点或圆心在极点(de)圆)表示(de)极坐标方程.4、了解参数方程,了解参数(de)意义;5、能选择适当(de)参数写出直线、圆和椭圆(de)参数方程;6、掌握直线(de)参数方程及参数(de)几何意义,能用直线(de)参数方程解决简单(de)相关问题.二、重点难点1、教学重点:能进行极坐标与直角坐标(de)互化、参数方程与普通方程(de)互化;2、教学难点:能进行极坐标与直角坐标(de)互化、参数方程与普通方程(de)互化;三、教学策略与方法师生互动法、自主学习法、小组讨论探究、一帮一导师制四、教学过程(一)、高考目标导航:(二)、课前自主导学:1、要点梳理:(1)点(de)极坐标与直角坐标(de)相互转化公式,当极坐标系中(de)极点与直角坐标系中(de)原点重合,极轴与x 轴(de)正半轴重合,两种坐标系中取相同(de)长度单位时,点(de)极坐标与直角坐标(de)相互转化公式为:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=yx x ≠0.(2)柱坐标、球坐标与直角坐标(de)互化公式: ①柱坐标化为直角坐标公式:⎩⎪⎨⎪⎧x =ρcos θy =ρsin θz =z②球坐标化为直角坐标公式:⎩⎪⎨⎪⎧x =r sin φcos θy =r sin φsin θz =r cos φ(3)参数方程:①参数方程(de)定义:在取定(de)坐标系中.如果曲线上任意一点(de)(1)这里T 公共定义域.并且对于t(de)每一个允许值.由方程(1)所确定(de)都在这条曲线上;那么(1)叫做这条曲线(de)参数方程,辅助变数t 叫做参数.参数方程(It 为参数)(i)通常称(I参数方程(de)标准形式.其中t数量.t>0时,pt<0时,p ,t=0时,p.(ii )直线(de)参数方程(de)t 为参数).当且仅当b>0时. (1)中(de)t 才具有(I )中(de)t 所具有(de)几何意义.③圆(de)参数方程:r(de)圆(de)④ 参数方程参数方程t 为参数)(4)坐标系包括平面直角坐标系、极坐标系、柱坐标系、球坐标系.(5)“坐标法”是解析几何学习(de)始终,同学们在不断地体会“数形结合”(de)思想方法并自始至终强化这一思想方法.(6)热门考点高考题中这一部分主要考查简单图形(de)极坐标方程,极坐标与直角坐标(de)互化,直线、圆和圆锥曲线(de)参数方程,参数方程化为直角坐标方程等.热点是极坐标与直角坐标(de)互化、参数方程化为直角坐标方程.冷点是推导简单图形(de)极坐标方程、直角坐标方程化为参数方程.盲点是柱坐标系、球坐标系中表示空间中点(de)位置(de)方法,摆线在实际中(de)应用,摆线在表示行星运动轨道中(de)作用.涉及较多(de)是极坐标与直角坐标(de)互化及简单应用.2、基础自测:(1)点M (de)直角坐标是(-1,3),则点M (de)极坐标为( ) (k ∈Z)(2)已知直线l 经过点P (1,1),倾斜角α=π6,直线l (de)参数方程为_____________________.(3)在极坐标系中,点(1,0)到直线ρ(cos θ+sin θ)=2(de)距离为 .(三)、课堂典例讲练:题型一 极坐标与直角坐标(de)相互转化:例1:①在极坐标系中,点⎝ ⎛⎭⎪⎫2π3到圆ρ=2cos θ(de)圆心(de)距离为()A .2②若曲线(de)极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为 x 轴正半轴建立直角坐标系,则改曲线(de)直角坐标方程为______________________解析:1极坐标⎝ ⎛⎭⎪⎫2π3化为直角坐标为⎝ ⎛⎭⎪⎫2cosπ32sinπ3,即(1,3).圆(de)极坐标方程ρ=2cos θ可化为ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2=2x ,即(x -1)2+y 2=1.所以圆心坐标为(1,0).则由两点间距离公式d = 1-1 2+ 3-0 2= 3.故选D.2解析:根据已知ρ=2sin θ+4cos θ=2·y ρ+4xρ,化简可得:ρ2=2y +4x =x 2+y 2.所以解析式为:x 2+y 2-4x -2y =0点拨:本题考查极坐标(de)知识及极坐标与直角坐标(de)相互转化,一定要记住两点:①x =ρ·cos θ,y =ρ·sin θ;②ρ2=x 2+y 2,tan θ=yx.即可.直角坐标化为极坐标方程比较容易,只是将公式x =ρ·cos θ,y =ρ·sin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题,构造形如ρcos θ,ρsin θ,ρ2(de)形式,进行整体代换,其中方程两边同时乘以ρ及方程两边平方是常用(de)变形方法.跟踪练习:极坐标方程分别为ρ=2cos θ和ρ=sin θ(de)两个圆(de)圆心距为____.题型二 参数方程与普通方程(de)相互转化:例2:已知两曲线参数方程分别为⎩⎪⎨⎪⎧x =5cos θy =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t2y =t(t∈R ),它们(de)交点坐标为___________.解析:⎩⎪⎨⎪⎧x =5cos θy =sin θ表示椭圆x 25+y 2=1(-5<x ≤5且0≤y ≤1).⎩⎪⎨⎪⎧x =54t2y =t 表示抛物线y 2=45x .联立方程组⎩⎨⎧x 25+y 2=1(-5<x ≤5且0≤y ≤1)y 2=45xx 2+4x -5=0 x =1或x =-5(舍去).又因为0≤y ≤1,所以它们(de)交点坐标为⎝ ⎛⎭⎪⎫12 55.点拨:常见(de)消参数法有:代入消元(抛物线(de)参数方程)、加减消元(直线(de)参数方程)、平方后再加减消元(圆、椭圆(de)参数方程)等.经常使用(de)公式有sin 2α+cos 2α=1.在将曲线(de)参数方程化为普通方程(de)过程中一定要注意参数(de)范围,确保普通方程与参数方程等价.跟踪练习:已知圆C (de)圆心是直线⎩⎪⎨⎪⎧x =t y =1+t(t 为参数),与 x 轴(de)交点,且圆 C与直线 x +y +3=0 相切,则圆 C (de)方程为题型三 极坐标与参数方程(de)综合应用:例3(2016年全国卷Ⅰ,22,10分)在直角坐标系xOy 中,曲线C 1(de)参数方程为⎩⎪⎨⎪⎧x =a cos ty =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴(de)极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1(de)方程化为极坐标方程;(2)直线C 3(de)极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2(de)公共点都在C 3上,求a . 解析试题分析:(I,圆(II公共弦所在(de)题型四易错、易混、易漏-----参数方程与普通方程互化时应注意参数(de)取值范围例4将参数方程⎩⎪⎨⎪⎧x=2+sin2θy=sin2θ(θ为参数)化为普通方程为()A.y=x-2 B.y=x+2 C.y=x-2(2≤x≤3) D.y=x+2(0≤y≤1)解析:转化为普通方程:y=x-2,且x∈[2,3],故选C.失误与防范在将曲线(de)参数方程化为普通方程时,不仅仅是把其中(de)参数消去,还要注意x,y (de)取值范围,也即在消去参数(de)过程中一定要注意普通方程与参数方程(de)等价性.本题很容易忽略参数方程中0≤sin2θ≤1 (de)限制而错选A.(四)、归纳与提升:1、方法与指导:解决极坐标、参数方程(de)综合问题应关注三点(1)对于参数方程或极坐标方程应用不够熟练(de)情况下,我们可以先化成直角坐标(de)普通方程,这样思路可能更加清晰. (2)对于一些运算比较复杂(de)问题,用参数方程计算会比较简捷. (3)利用极坐标方程解决问题时,要注意题目所给(de)限制条件及隐含条件.2、误区与防范:(1)极坐标与直角坐标之间可以进行互化,在没有充分理解极坐标(de)前提下,可以通过直角坐标解决问题.对于参数方程,同样遵循以上原则.(2)在将曲线(de)参数方程化为普通方程时,不仅仅是把其中(de)参数消去,还要注意x,y (de)取值范围,也即在消去参数(de)过程中一定要注意普通方程与参数方程(de)等价性.(五)、课后强化作业:1,参在以坐标原点为极点正半轴为极轴(de)极坐标系中, 曲线直角坐标方程;(Ⅱ) 求(de)距离(de)最大值.。
2016年二轮复习 极坐标与参数方程 文 教案 (全国通用)
第二讲极坐标与参数方程从历年高考题全国卷可知,极坐标与参数方程在选考题中相对容易,选此题同学较多,且重点考查参数方程与普通方程互化,极坐标与普通坐标的互化,另重点考几类曲线的参数方程与极坐标方程,应争取拿满分!极坐标的基本概念1.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ),决定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,如果平面曲线C上的任意一点的极坐标满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.几类曲线的极坐标方程及与直角坐标的互化 2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.(2)与极轴垂直且与极轴交于点(a ,0)的直线的极坐标方程是ρcos θ=a ,如下图所示.(3)与极轴平行且在x 轴的上方,与x 轴的距离为a 的直线的极坐标方程为ρsin θ=a ,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r 的圆的方程为ρ=r ,如图1所示.(2)圆心在极轴上且过极点,半径为r 的圆的方程为ρ=2r cos _θ,如图2所示. (3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r 的圆的方程为ρ=2r sin _θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内任意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或者ρtan θ=y x,其中要结合点所在的象限确定角θ的值. 参数方程的定义及几类曲线的参数方程 1.曲线的参数方程的定义.在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论:①设A ,B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B 2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数). (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =b cos θ,y =a sin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎪⎨⎪⎧x =x 0+a cos α,y =y 0+b sin α(α为参数).(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎪⎨⎪⎧x =a sec θ,y =b tan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =b tan θ,y =a sec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎪⎨⎪⎧x =2p ,y =2p (t 为参数,p>0)注:sec θ=1cos θ. 3.参数方程化为普通方程.由参数方程化为普通方程就是要消去参数,消参数时常常采用代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要注意参数的取值范围对x ,y 的限制.1.已知点A 的极坐标为⎝⎛⎭⎪⎫4,5π3,则点A 2.把点P 的直角坐标(6,-2)化为极坐标,结果为6. 3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为________.解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.答案:3。
高三第二轮专题复习极坐标与参数方程课件.ppt
x
y
a b
r r
cos sin
(为参数)
其中参数的几何意义为: θ为圆心角
4.椭圆
x2 a2
y2 b2
1(a
b
0)的参数方程为:
x
y
a b
cos sin
(为参数)
双基自测
1.极坐标方程 ρ=cos θ 和参数方程xy= =2-+1t-t, (t 为参
数)所表示的图形分别是( ).
A.直线、直线
答案 (-4,0)
4.(2013·广州调研)已知直线 l 的参数方程为:xy==12+t,4t (t 为参数), 圆 C 的极坐标方程为 ρ=2 2sin θ,则直线 l 与圆 C 的位置关系为 ________.
x=2t,
解析 将直线 l 的参数方程:
化为普通方程得,y=1+2x,
y=1+4t
圆 ρ=2 2sin θ 的直角坐标方程为 x2+(y- 2)2=2,圆心(0, 2)到
重点方法:<1>消参的方法;<2>极 坐标方程化为直角坐标方程的方法; <3>设参的方法。
1、过定点 M 0 (x0 , y0 ) 、倾斜角为 的直线 l 的参
数方程为
x
y
x0 y0
t cos t sin
,(t
为参数)
我们把这一形式称为直线参数方程的标准形式,其
中t表示直线l上以定点M0为起点,任意一点M(x,y)为终 点的有向线段的数量M0M。当点M在点M0的上方时, t>0;当点M在点M0的下方时,t<0;当点M与点M0重合 时,t=0。很明显,我们也可以参数t理解为以M0为原点, 直线l向上的方向为正方向的数轴上点M的坐标,其长度
极坐标与参数方程教案
、教学过程设计一、复习、检查函数与方程重点知识二、梳理本节课重要知识1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一、教学过程设计 一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程点M 直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx xρθ=+=≠极径为, r为, r,为的直线○θ○θ点,垂点,平<0;当点。
第13章 极坐标与参数方程(文)教案
.
2 9 2 2 x (t t 2) 4 16 4 (t为参数) 消去 t 得双曲线方程: x 2 y 2 4 , 解析: 9 9 y 2 9 (t 2 t 2 2), 16
所以离心率为
5 . 2
【例 2】 若直线 y x b与曲线
2 x y 4 0( 2 x 3)
x sin cos 3.参数方程为 ,化为普通方程为_______________. (为参数) y sin2
解 析 : 由 x sin cos 得 : x 2 1 2 sin 2 , 所 以 x 2 y 1 0 ,
4 cos ( 0,0 ) ,则曲线 C1 与 C2 交点的极坐标为
2
解析:我们通过联立解方程组
.
cos 3 ( 0, 0 ) 2 4 cos
2 3 解得 ,即两曲线的交点为 (2 3, 6 ) . 6
(2008 江苏) 在平面直角坐标系 xOy 中, 【例 2】
为
x2 y 2 1 上的一个动 解题要点: 点 P (x,y ) 是椭圆 3 凡 是 形 如 a sin b cos 的 点 , 则 S x y 的 最 大 值 式 子 , 都 可 以 化 为 a 2 b 2 sin( 0 ) , 从 而
2
sin 2 cos ,即: x 2 y 2 y 2 x ,所
5
3 ,
,则 P 点的直角坐标__________,曲线的极坐标方程 4
.
4 sin 化成直角坐标方程为
解析: (
6 6 , , 1) 2 2
极坐标与全参数方程教案设计
极坐标与参数方程【教课目的】1、知识目标:( 1)掌握极坐标的意义,会把极坐标转变一般方程(2)掌握参数方程与一般方程的转变2、能力目标:经过对公式的应用,提升学生剖析问题和解决问题的能力,多方面考虑事物,培育他们的创新精神和思想谨慎性.3、感情目标:培育学生数形联合是思想方法.【教课重点】1、极坐标的与一般坐标的转变2、参数方程和一般方程的转变3、几何证明的整体思路【教课难点】极坐标意义和直角坐标的转变【考点剖析】坐标系与参数方程和几何证明在广东高考取为两者选一考,一般是 5 分的比较简单的题,知知趣对照较独立,与其余章节联系不大,简单拿分.依据不一样的几何问题能够成立不同的坐标系,坐标系选用的适合与否关系着解决平面内的点的坐标和线的方程的难易以及它们地点关系的数据确定.有些问题用极坐标系解答比较简单,而有些问题假如我们引入一个参数就能够使问题简单下手解答,计算简易.高考出现的题目常常是求曲线的极坐标方程、参数方程以及极坐标方程、参数方程与一般方程间的互相转变,并用极坐标方程、参数方程研究相关的距离问题,交点问题和地点关系的判断.【基本重点】一、极坐标和参数方程:1. 极坐标系的观点:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位( 往常取弧度 ) 及其正方向 ( 往常取逆时针方向) ,这样就成立了一个极坐标系.2.点 M的极坐标:设 M是平面内一点,极点O与点M的距离OM叫做点 M的极径,记为;以极轴O x 为始边,射线 OM为终边的∠ XOM叫做点 M的极角,记为.有序数对(, ) 叫做点1适用标准文案M 的极坐标 ,记为 M (,).极坐标( , ) 与 ( ,2k )(k Z) 表示同一个点.极点O 的坐标为 (0, )(R) .2x 2 y 2 , xcos ,3.极坐标与直角坐标的互化:ysin ,tany( x 0)x4.圆的极坐标方程: 在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是r ;在极坐标系中, 以 C(a,0) (a>0) 为圆心, a 为半径的圆的极坐标方程是2acos ;在极坐标系中, 以 C(a,) (a>0) 为圆心, a 为半径的圆的极坐标方程是 2asin ;25.参数方程的观点: 在平面直角坐标系中,假如曲线上随意一点的坐标 x,y 都是某个变数 t的函数x f (t ),而且关于 t的每一个同意值, 由这个方程所确定的点M(x,y) 都在这条曲 yg(t ),线上,那么这个方程就叫做这条曲线的 参数方程 ,联系变数 x,y 的变数 t叫做参变数 ,简称参数 .相关于参数方程而言,直接给出点的坐标间关系的方程叫做一般方程 .6. 圆 (x a) 2( y b) 2 r 2 的参数方程可表示为x a rcos ,( 为参数) .yb rsin .椭圆x2y 2x acos ,1(a>b>0) 的参数方程可表示为y bsin . ( 为参数).a 2b 2抛物线 y 22px 的参数方程可表示为x 2pt 2,( t 为参数 ) .y 2pt.经过点 M O (x o , y o ) ,倾斜角为的直线 l的参数方程可表示为xx o tcos , ( t 为参y y o tsin .数).出色文档适用标准文案【典型例题】题型一:极坐标与直角坐标的互化和应用例 1、(1)点M的极坐标(5,2) 化为直角坐标为() B 3A.(5,5 3) B .(5,5 3) C .(5,5 3) D .(5,5 3) 22222222( 2)点 M的直角坐标为(3,1) 化为极坐标为() B. 5 )B .7)C.( 2,11 )D.(2,)A(2,(2,66 66评注:极坐标和直角坐标的互化,注意角度的范围.变式:( 1)点2, 2 的极坐标为.12A(1,) ,半径为1的圆的极坐标方程是___________.()在极坐标系中,圆心在4评注:注意曲线极坐标与直角坐标的互化之间的联系.例 2、(1)曲线的极坐标方程4sin化成直角坐标方程为()22222222A.x +(y+2)+(y-2)=4 C.(x-2)+y =4D.(x+2)+y =4【分析】将ρ = x2y2, sin θ =y2代入ρ =4sin θ,得x2+y2=4y,2yx即 x2+(y-2) 2=4. ∴应选 B.( 2)⊙ O1和⊙ O2的极坐标方程分别为=4cos , =-4sin.把⊙ O1和⊙ O2的极坐标方程化为直角坐标方程;求经过⊙ O1,⊙ O2交点的直线的直角坐标方程.出色文档【分析】以极点为原点,极轴为 x 轴正半轴,成立平面直角坐标系,两坐标系中取同样的长度单位 . ( 1) x= cos ,y= sin , 由 =4cos , 得2=4 cos .所以 x2+y2=4x. 即 x2+y2 -4x=0 为⊙ O1的直角坐标方程. 同理 x2+y2+4y=0 为⊙ O2的直角坐标方程.( 2)由x 2y 24x0,解得x10,或x22,即⊙ O,⊙ O 交于点( 0, 0)和( 2, -2 ) .22y0,y2 2.12x y4y0,1过交点的直线的直角坐标方程为y=-x.变式 1:极坐标ρ=cos() 表示的曲线是()4A. 双曲线B. 椭圆C. 抛物线D. 圆【分析】原极坐标方程化为ρ=1(cosθ+sinθ)2 2 =ρcosθ+ρsinθ,2∴一般方程为 2 (x2+y2)=x+y,表示圆.应选D.变式 2:在极坐标系中与圆4sin相切的一条直线的方程为()A.cos2B.sin2.4sin()D.4sin()C33【分析】A4sin 的一般方程为x2( y 2)2 4 ,cos2的一般方程为 x 2 圆x2( y 2)2 4 与直线x 2明显相切.例 3、在极坐标系中,已知两点P( 5,5),Q(1,) ,求线段PQ的长度;44变式 1、在极坐标系中,直线ρsin( θ + π)=2 被圆ρ =4 截得的弦长为.4变式 2、在极坐标系中,点 1,0 到直线cos sin 2 的距离为.例 4、极坐标方程分别为2 cos 和 sin 的两个圆的圆心距为 ____________ ;变式 1、把极坐标方程cos() 1 化为直角坐标方程是.6变式 2、在极坐标系中,圆心在 ( 2,) 且过极点的圆的方程为 _.变式 3A(3,0) 且与极轴垂直的直线交曲线4 cos 于 A 、B 两点,、在极坐标系中,若过点则 | AB | __________.题型二:参数方程的互化和应用x 1 2t(t4x ky 1垂直,则常数 k = .例 1、若直线2为参数)与直线y3tx 1 t( t 为参数),直线 l 2 的方程为 y=3x+4 则 l 1 与 l 2 的变式 1、设直线 l 1 的参数方程为1 3ty距离为 _______变式 2、l 1 :x 1 (t 为参数 )与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,已知直线3ty 2 4t则 AB _______________ 。
高考数学一轮复习教案选修第17讲极坐标与参数方程的应用
一、教学目标1、理解掌握一些简单图形(过极点的直线、过极点的圆、圆心在极点的圆等)极坐标方程;2、理解掌握直线、圆和中心在原点的椭圆的参数方程;3、会进行曲线的极坐标与直角坐标方程的互化,会进行曲线的参数方程与直角坐标方程的互化;4、能利用极坐标和参数方程解决相关问题。
二、基础知识回顾阅读教材第18页到第教材第24页,第47页至第49页.完成下列任务.1:进行极坐标与直角坐标的互化。
尤其曲线的极坐标方程与直角坐标的方程的互化。
(注意互化的条件)_____________________________()..,,)(sin 2cos 2,6,1,1:2选取时参数的几何意义为例理解直线参数方程两点的距离之和到求点交于为参数与曲线设倾斜角经过点已知直线B A P B A y x l P l θθθπα⎩⎨⎧=== ○1: 直线的参数方程与普通方程的互化(尤其要注意直线参数方程的选取);○2:圆和椭圆(椭圆的中心在坐标原点)参数方程与普通方程的互化。
○3圆和椭圆(椭圆的中心在坐标原点)参数方程的选取在求距离时的运用。
3:完成教材第47页例题1,第49页例题3.课后习题第6,7,8.【教学建议】帮助学生复习、理解简单图形(主要是直线和圆)的极坐标方程。
(1)教学时,教师可引导学生回顾直线和园的极坐标方程的求解过程。
让学生清楚求解直线和圆的极坐标方程的求解步骤和思路;(2)同时,教师要注意引导学生通过直角坐标方程与极坐标方程的互化来解决,即:本题可以让学生先写出直角坐标方程,然后转化为极坐标方程。
三“知识梳理”[要点解析]4.参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.5.普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系x =f (t )(或y =φ(t )),再代入普通方程F (x ,y )=0,求得另一关系y =φ(t )(或x =f (t )).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.三、诊断练习1、教学处理:课前由学生自主完成3道小题,并要求将解题过程扼要地写在学习笔记栏。
极坐标与参数方程教学设计
极坐标与参数⽅程教学设计极坐标与参数⽅程题型和⽅法归纳教学⽬标:知识与技能:通过本节课教学,使学⽣掌握极坐标与参数⽅程中⼏种常见题型的解法,体会恰当应⽤极坐标与参数⽅程解题的优越性。
过程与⽅法:通过本节课的学习,逐步提⾼学⽣逻辑思维能⼒、运算能⼒、语⾔表达能⼒和发散思维能⼒。
情感及价值观:培养学⽣良好的思维品质、严谨的求学态度.教学重点:化归与转化思想的运⽤教学难点:理解极坐标与参数⽅程在解决弦长、最值、距离之积等问题的应⽤教学⽅法:对⽐教学法,归纳讨论法教学过程:题型⼀:极坐标(⽅程)与直⾓坐标(⽅程)的相互转化,参数⽅程与普通⽅程相互转化,极坐标⽅程与参数⽅程相互转化。
⽅法如下:{222cos sin tan (0x y x y yx x ραραρρθ==?=+??=≠+??或(1)极坐标⽅程直⾓坐标⽅程221θθ=→←消参(代⼊法、加减法、sin +cos 等)圆、椭圆、直线的参数⽅程(2)参数⽅程直⾓坐标⽅程→??→←??←??(3)参数⽅程直⾓坐标⽅程(普通⽅程)极坐标⽅程1、已知直线l的参数⽅程为112x t y ?=+?=(t 为参数)以坐标原点O 为极点,以x 轴正半轴为极轴,建⽴极坐标系,曲线C的⽅程为2sin cos 0θθ=.(Ⅰ)求曲线C 的直⾓坐标⽅程;(Ⅱ)写出直线l 与曲线C 交点的⼀个极坐标.题型⼆:三个常⽤的参数⽅程及其应⽤(1)圆222()()x a y b r -+-=的参数⽅程是: cos sin ()x a r y b r θθθ=+??=+?为参数(2)椭圆22221(0,0,)x y a b a b a b +=>>≠的参数⽅程是:cos ,()sin x a y b θθθ=??=?为参数(3)过定点00(,)P x y 倾斜⾓为α的直线l 的标准参数⽅程为:00cos ,()sin x x t t y y t αα=+??=+?为参数对(3)注意: P 点所对应的参数为00t =,记直线l 上任意两点,A B 所对应的参数分别为12,t t ,则①12AB t t =-,②1212121212,0,0t t t t PA PA t t t t t t ?+?>?+=+=?-?1212PA PA t t t t ?=?=?2. 以直⾓坐标系的原点为极点,x 轴的正半轴为极轴,且两个坐标系取相等的长度,已知直线l的参数⽅程是,(3.x t y ?=?=为参数)曲线c的极坐标⽅程为2cos =2sin ρθθ。
极坐标与参数方程复习教案
精锐教育学科教师辅导教案学员编号:年级:高三课时数:3学员姓名:辅导科目:数学学科教师:刘欢授课类型 C-极坐标与参数方程 C –极坐标与参数方程C-极坐标与参数方程授课日期及时段教学内容知识点概括一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。
2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
3.极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O 称为极点,射线OX 称为极轴。
)① 设M 是平面上的任一点,ρ表示OM 的长度,θ表示以射线OX 为始边,射线OM 为终边所成的角。
那么有序数对(,)ρθ称为点M 的极坐标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
4.直角坐标与极坐标的互化以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则 二、曲线的极坐标方程1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:00sin()sin()ρθ-α=ρθ-α 几个特殊位置的直线的极坐标方程(1)直线过极点(2)直线过点M(a,0)且垂直于极轴(3)直线过(,)2M b π且平行于极轴 2.圆的极坐标方程:若圆心为00(,)M ρθ,半径为r 的圆方程为: 几个特殊位置的圆的极坐标方程(1)当圆心位于极点(2)当圆心位于(,0)M r (3)当圆心位于(,)2M r π3.直线、圆的直角坐标方程与极坐标方程的互化利用:x =2ρ=三、参数方程1.参数方程的意义在平面直角坐标系中,若曲线C 上的点(,)P x y 满足()()x f t y f t =⎧⎨=⎩,该方程叫曲线C 的参数方程,变量t 是参变数,简称参数2.参数方程与普通方程的互化 参数方程化为普通方程常见参数方程化为普通方程,并说明它们各表示什么曲线:⑴cos sin x a y b ϕϕ=⎧⎨=⎩(ϕ为参数);⑵00(x x at t y y bt =+⎧⎨=+⎩为参数)(3)2sin cos x y θθ=⎧⎨=⎩[0,2)θπ∈(4)1()21()2ax t t b y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数) (5)cos sin x a r y b r ϕϕ=+⎧⎨=+⎩(ϕ为参数)☆参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围! 二、考点阐述考点1、极坐标与直角坐标互化 例题1、在极坐标中,求两点)4,2(),4,2(ππ-Q P 之间的距离以及过它们的直线的极坐标方程。
参数方程、极坐标含教案
参数方程、极坐标一、知识结构1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00(t 为参数) ② 2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图) 极坐标和直角坐标的互化(1)互化的前提条件 ①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式 ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 二、知识点(一)曲线的参数方程,参数方程与普通方程的互化 例 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)例 在方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化 例 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( )A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4例 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆三、能力训练 (一)选择题1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线 B.一条垂直于x 轴的直线 C.一个圆 D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心 3.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( ) BA.直线B.圆C.双曲线D.抛物线 4.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) C A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1, -3π),r=25.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A.3π B.32πC.3π或32π D. 3π或35π6.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π7.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆 8.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1πB .⎪⎭⎫ ⎝⎛4,21πC .⎪⎭⎫ ⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π9.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ10、)0(4≤=ρπθ表示的图形是A .一条射线B .一条直线C .一条线段D .圆 11、直线αθ=与1)cos(=-αθρ的位置关系是A 、平行B 、垂直C 、相交不垂直D 、与有关,不确定(二)填空题12.直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),过点(4,-1)且与l 平行的直线在y 轴上的截距为 ;13.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .14、曲线的θθρcos 3sin -=直角坐标方程为_ 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精锐教育学科教师辅导教案
学员编号:年级:高三课时数:3
学员姓名:辅导科目:数学学科教师:刘欢
C-极坐标与参数方程C–极坐标与参数方程C-极坐标与参数方程授课类型
授课日期及时段
教学内容
知识点概括
一、坐标系1.平面直角坐标系的建立:在平面上,当取定两条互相垂直的直线的交点为原点,并确定
了度量单位和这两条直线的方向,就建立了平面直角坐标系。
2.空间直角坐标系的建立:在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交
点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。
3.极坐标系的建立:在平面上取一个定点O,自点O引一条射线OX,同时确定一个单位长度和计算
角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。
(其中O称为极点,射线OX称为极轴。
)
①设M是平面上的任一点,ρ表示OM的长度,θ表示以射线OX
ρθ称为点M的极坐
为始边,射线OM为终边所成的角。
那么有序数对(,)
标。
其中ρ称为极径,θ称为极角。
约定:极点的极坐标是ρ=0,θ可以取任意角。
4.直角坐标与极坐标的互化
以直角坐标系的O 为极点,x 轴正半轴为极轴,且在两坐标系中取相同的单位长度平面内的任一点P 的直角坐标极坐标分别为(x ,y )和(,)ρθ,则
二、曲线的极坐标方程
1.直线的极坐标方程:若直线过点00(,)M ρθ,且极轴到此直线的角为α,则它的方程为:
00sin()sin()ρθ-α=ρθ-α
几个特殊位置的直线的极坐标方程
(1)直线过极点 (2)直线过点M(a,0)且垂直于极轴 (3)直线过(,)2M b π
且平行于极轴
2.圆的极坐标方程: 若圆心为00(,)M ρθ,半径为r 的圆方程为: 几个特殊位置的圆的极坐标方程
(1)当圆心位于极点 (2)当圆心位于(,0)M r (3)当圆心位于(,)2M r π
3.直线、圆的直角坐标方程与极坐标方程的互化
利用: x = 2ρ= 三、参数方程
222
θθθ的圆心为
8cos6sin7cos80
y x y
【解】由题设得
3sin
y
…………………………
于是
已知直线l 经过点(1,1)P ,倾斜角6
π
α=
,
①写出直线l 的参数方程;
②设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.
解 (1)直线的参数方程为1cos 61sin 6x t y t ππ
⎧=+⎪⎪⎨⎪=+⎪⎩,即3
12112
x t y t ⎧=+⎪⎪⎨
⎪=+⎪⎩. 3分 (2)把直线3
12112
x t y t ⎧=+⎪⎪⎨
⎪=+⎪⎩代入422=+y x , 得22231
(1)(1)4,(31)2022
t t t t +
++=++-=,122t t =-, 6分 则点P 到,A B 两点的距离之积为2. 10分
练习5.1抚顺一中2009
求直线415
315x t y t
⎧=+⎪⎪⎨⎪=--⎪⎩
(为参数t )被曲线2cos()4πρθ=+所截的弦长.
解:将方程415315x t y t ⎧
=+⎪⎪⎨
⎪=--⎪⎩
,2cos()4
π
ρθ=+分别化为普通方程:
3410x y ++=,220,x y x y +-+=--------------------------------------(5分)
)若直线的参数方程为。