北师大版-数学-七年级上册-《认识一元一次方程》第一课时精品教案1
北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教案

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教案一. 教材分析《一元一次方程(第1课时)》这一节的内容是北师大版七年级数学上册第三章第一节的第一课时,主要介绍一元一次方程的概念、解法以及应用。
通过这一节课的学习,学生能够理解一元一次方程的含义,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了代数的基础知识,对于方程的概念有一定的了解。
但是,对于一元一次方程的定义、解法以及应用可能还不够清晰。
因此,在教学过程中,需要引导学生从实际问题中抽象出一元一次方程,并通过例题讲解让学生掌握一元一次方程的解法,培养学生的解题能力。
三. 教学目标1.知识与技能:让学生理解一元一次方程的概念,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
2.过程与方法:通过实例引入一元一次方程,培养学生从实际问题中抽象出方程的能力;通过讲解和练习,让学生掌握一元一次方程的解法,提高解题能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:一元一次方程的概念、解法以及应用。
2.难点:一元一次方程的解法,以及如何从实际问题中抽象出一元一次方程。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。
通过设置问题情境,引导学生从实际问题中抽象出一元一次方程,并运用实例讲解一元一次方程的解法。
在教学过程中,鼓励学生积极参与,进行小组讨论,培养学生的团队合作意识。
六. 教学准备1.教案准备:提前编写好详细的教学计划,明确教学目标、教学内容、教学方法、教学步骤等。
2.课件准备:制作与教学内容相关的课件,以便在课堂上进行演示和讲解。
3.习题准备:挑选一些适合巩固一元一次方程知识点的习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元一次方程的概念,例如:某商店举行打折活动,原价100元的商品打8折后售价是多少?让学生思考并尝试解答,从而引出一元一次方程。
七年级数学上册5.1认识一元一次方程(第1课时)教学设计(新版)北师大版【教案】

第五章一元一次方程1.认识一元一次方程(一)一、学生起点剖析学生在小学时期已学过等式、等式的基天性质以及方程、方程的解、解方程等知识,经历了剖析简单数目的关系,并依据数目关系列出方程、求解方程、查验结果的过程。
对方程已有初步认识,但并无学习“一元一次方程”正确的理性的观点。
二、学习任务剖析本节从风趣的“猜年纪”游戏下手,经过对五个熟习的实质问题的剖析,学生联合已有知识,能得出一元一次方程。
在此过程中,学生渐渐领会方程是刻画现实世界、解决实质问题的有效数学模型.本节的要点:学生在实质问题中剖析、找到等量关系 , 正确列出方程,并总结所列方程的共同特色,归纳出一元一次方程的观点。
本节的难点:由特别的几个方程的共同特色归纳一元一次方程的观点。
三、教课目的1、在对实质问题情境的剖析过程中感觉方程模型的意义;2、借助类比、归纳的方式归纳一元一次方程的观点,并在归纳的过程中体验归纳方法;3、使学生在剖析实质问题情境的活动中领会数学与现实的亲密联系。
四、教课过程设计环节一:阅读章前图内容 1:请一位同学阅读章前图中对于“丟番图”的故事。
(大概1分钟)丢番图(Diophantus )是古希腊数学家.人们对他的平生事迹知道得极少,但流传着一篇墓志铭表达了他的平生:坟中埋葬着丢番图,多么令人吃惊,它忠实地记录了其所经历的人生旅途.上帝恩赐他的童年占六分之一,又过十二分之一他两颊长出了胡子,再过七分之一,点燃了新婚的蜡烛.五年以后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便入黄泉.伤心只实用数学研究去填补,又过四年,他也走完了人生的旅途.——出自《希腊诗文选》(T h e G r e e kAnthology)第126题目的:经过阅读章前图中的故事,激发同学们探究丟番图年纪的兴趣,从而指引学生通过列方程解决问题,感觉利用方程能够解决实质问题,感觉方程是刻画现实世界有效地模型。
成效:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年纪是多少呢?教师借1机也提出问题:用什么方法能够求解丟番图的年纪呢?紧接着表现内容2。
北师大版数学七年级上册《一元一次方程的认识》教学设计1

北师大版数学七年级上册《一元一次方程的认识》教学设计1一. 教材分析《一元一次方程的认识》是北师大版数学七年级上册的教学内容。
本节课的主要内容是一元一次方程的定义、性质和解法。
教材通过实例引入一元一次方程,使学生了解一元一次方程在实际生活中的应用,培养学生解决实际问题的能力。
教材还介绍了方程的解法,帮助学生掌握解一元一次方程的方法。
二. 学情分析学生在七年级上册之前已经学习了代数基础知识,对代数式、未知数等概念有一定的了解。
但他们对一元一次方程的认识尚浅,需要通过实例和练习来进一步理解。
学生应具备的数学素养包括逻辑思维能力、运算能力、问题解决能力等。
三. 教学目标1.了解一元一次方程的定义和性质。
2.掌握解一元一次方程的方法。
3.能够运用一元一次方程解决实际问题。
4.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.一元一次方程的定义和性质。
2.解一元一次方程的方法。
3.一元一次方程在实际问题中的应用。
五. 教学方法1.讲授法:讲解一元一次方程的定义、性质和解法。
2.案例分析法:分析实际问题,引导学生运用一元一次方程解决。
3.练习法:通过课堂练习和课后作业,巩固所学知识。
4.小组讨论法:分组讨论,培养学生的合作能力和沟通能力。
六. 教学准备1.教学PPT:制作包含实例、练习和拓展题的PPT。
2.教案:编写详细的教学过程和教学方法。
3.练习题:准备适量的课堂练习和课后作业。
4.小组讨论材料:准备相关资料,便于学生分组讨论。
七. 教学过程1.导入(5分钟)利用PPT展示实际问题,引导学生思考如何用数学方法解决。
例如,某商场举行打折活动,原价100元的商品现价80元,求打几折?2.呈现(10分钟)讲解一元一次方程的定义、性质和解法。
通过PPT展示实例,使学生了解一元一次方程在实际生活中的应用。
3.操练(10分钟)课堂练习:让学生独立完成PPT上的练习题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)小组讨论:学生分组讨论PPT上的拓展题。
北师大版初一数学上册5.1 认识一元一次方程(第1课时)教学设计

《认识一元一次方程》教学设计(义务教育课程标准北师大版七年级上册第五章第1节第1课时)一、教材分析《认识一元一次方程》是义务教育课程标准北师大版七年级(上)第五章《认识一元一次方程》第1节,本节内容安排了两个课时,学生在小学认识方程和本册第3章字母表示数的基础上,进一步研究一元一次方程,本节课属于第一课时,研究一元一次方程概念.二、学情分析1.认知基础:在小学阶段学习过简易方程,不过与初中的要求相比,对知识的理解比较表层,大部分学生还没有真正体会到方程在解决实际问题时的优越性和重要性.2.活动经验基础:教材为学生提供了许多生动有趣的现实情境,七年级学生的思维活跃,喜欢参与探索活动,只要激发起兴趣,本课要贯彻的数学思想就能较好的实施.三、教学目标1.能根据给出的现实情境,找出其中的等量关系列出方程.2.通过观察,归纳出一元一次方程的概念.3.通过经历“建立数学模型”这一数学化的过程,提高学生的抽象概括能力.四、教学重点与难点教学重点:1.一元一次方程的概念.2.通过现实情境建立方程模型的思想.教学难点:1.对一元一次方程的概念、特征的理解.2.从现实情境中提炼等量关系.五、教法、学法1.教学方法:引导探究法2.学习方法:自主探究,合作交流3.教具准备:多媒体课件,配套学案【习得】建立方程数学模型知识点二:一元一次方程定义探究问题2:由上面得到的式子:40+5x=100; (1+147.30%)x=8930; 2[x+(2x-5=21; 2x-5=19.这些方程有什么共同点?【知识整理】定义:在一个方程中,只含有一个未知数代数式都是整式,未知数的指数都是1,这种方程叫做一元一次方程.。
北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教学设计一. 教材分析《一元一次方程》是北师大版七年级数学上册3.1.1的内容,这部分内容是在学生已经学习了有理数的运算、不等式的性质等知识的基础上进行学习的。
一元一次方程是初中数学中的一个重要概念,也是学习更高级数学的基础。
本节课的主要内容是一元一次方程的定义、性质和解法,通过学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的运算、不等式的性质等知识有一定的了解。
但是,对于一元一次方程的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解方程的过程和技巧还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解一元一次方程的概念和性质。
2.掌握一元一次方程的解法。
3.能够应用一元一次方程解决实际问题。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一元一次方程的概念和性质。
2.一元一次方程的解法。
3.应用一元一次方程解决实际问题。
五. 教学方法采用讲授法、案例分析法、练习法、小组合作学习法等方法进行教学。
通过实例和练习,引导学生理解一元一次方程的概念和性质,掌握一元一次方程的解法,并通过小组合作学习,培养学生的合作意识和解决问题的能力。
六. 教学准备1.PPT课件。
2.教学案例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元一次方程的概念,例如:小明的年龄问题是这样的:小明的年龄加上3等于13,请问小明的年龄是多少?引导学生思考和解答,从而引出一元一次方程的概念。
2.呈现(10分钟)通过PPT课件,呈现一元一次方程的定义和性质,让学生直观地了解一元一次方程的形式和特点。
同时,通过实例和练习,让学生进一步理解和掌握一元一次方程的性质。
北师大版数学七年级上册5.1《认识一元一次方程》教案1

北师大版数学七年级上册5.1《认识一元一次方程》教案1一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的内容是让学生初步了解一元一次方程的概念,学会解一元一次方程,培养学生解决实际问题的能力。
通过本节课的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、整式等基础知识,对数学符号和运算有一定的了解。
但是,对于一元一次方程这一概念,学生可能比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握一元一次方程的概念和解法。
三. 教学目标1.知识与技能:让学生了解一元一次方程的概念,学会解一元一次方程。
2.过程与方法:通过实际问题,让学生感受数学与生活的联系,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:理解一元一次方程的实际意义和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生思考,用案例教学法讲解一元一次方程的解法,小组合作法让学生在讨论中巩固知识。
六. 教学准备1.准备一些实际问题,用于引导学生思考和练习。
2.准备PPT,用于展示和讲解一元一次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,假设小明有3个苹果,每天吃掉1个,问5天后他还剩下几个苹果?这个问题可以引导学生思考如何用数学方法表示这个问题,从而引入一元一次方程的概念。
2.呈现(10分钟)通过PPT展示一元一次方程的定义和解法。
一元一次方程的一般形式为ax+b=0,其中a和b是常数,x是未知数。
解一元一次方程的步骤为:移项、合并同类项、化简、求解。
3.操练(10分钟)让学生练习解一元一次方程。
1认识一元一次方程-初中七年级上册数学(教案)(北师大版)

一、教学内容
本节课选自北师大版初中七年级上册数学第三章《方程与不等式》的第一节“认识一元一次方程”。教学内容主要包括以下方面:
1.一元一次方程的定义:方程两边都是整式,只含有一个未知数,且未知数的最高次数为一次的方程。
2.一元一次方程的一般形式:ax + b = 0(a、b是常数,且a≠0)。
本节课的核心素养目标旨在引导学生通过探究一元一次方程的知识,培养其逻辑推理、数学建模、数据分析和数学抽象等方面的能力,符合新教材对学生核心素养的要求。
三、教学难点与重点
1.教学重点
-理解一元一次方程的定义及其一般形式:ax + b = 0(a、b是常数,且a≠0)。重点强调方程中“只含有一个未知数”和“未知数的最高次数为一次”的特点。
2.提升学生的数学建模能力:学会将现实生活中的问题抽象为一元一次方程,培养学生建立数学模型解决实际问题的能力。
3.增强学生的数据分析能力:在解决实际问题时,能够运用一元一次方程进行数据分析,提高学生处理和解读数据的能力。
4.培养学生的数学抽象能力:使学生掌握一元一次方程的一般形式,理解数学概念之间的内在联系,提高数学抽象思维。
-在实际问题中,可能会出现混淆,如在上述买书的例子中,若学生不确定笔的价格是y,而错误地将书的数量设为未知数,导致方程设置错误。
-在系数化为1的过程中,对于分数的乘除运算,学生可能不熟悉,例如将2x = 6中的系数2化为1时,需要两边同时除以2,得到x = 3。
四、教学流程
(一)导入新课(用时5分钟)
-掌握解一元一次方程的基本步骤,包括移项、合并同类项、系数化为1等操作,特别是对正负号变化的处理。
北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计

北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计一. 教材分析《一元一次方程(第1课时)》这一节内容是北师大版七年级数学上册的重点内容。
本节课的主要内容是一元一次方程的定义、性质和解法。
通过本节课的学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
教材中通过丰富的实例和具体的操作,引导学生逐步掌握一元一次方程的知识,同时培养学生的数学思维和解决问题的能力。
二. 学情分析七年级的学生已经具备了一些基本的数学知识,比如代数的初步知识,能够进行简单的代数运算。
但是学生对于一元一次方程的概念和解法可能还比较陌生,需要通过具体的实例和操作来理解和掌握。
学生的学习兴趣和积极性较高,对于新的知识有较强的求知欲,但也有一部分学生可能对于一些抽象的概念和理论感到困惑,需要教师耐心引导和讲解。
三. 教学目标1.知识与技能:学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养自己的数学思维和解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂学习,克服困难,自主探索,增强对数学的兴趣和信心。
四. 教学重难点1.重点:一元一次方程的概念、性质和解法。
2.难点:一元一次方程的解法和应用。
五. 教学方法1.情境教学法:通过具体的实例和实际问题,引发学生的思考和兴趣,引导学生主动参与学习。
2.启发式教学法:教师提出问题,引导学生思考和探索,激发学生的学习积极性和创造力。
3.合作学习法:学生通过小组合作,共同解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、教案、例题、练习题等。
2.学生准备:学生需要预习相关的知识,了解一元一次方程的基本概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入一元一次方程的概念,激发学生的兴趣和思考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.1认识一元一次方程
(第一课时)
教材分析
本节课是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用逆运算法解一些简单的方程。
本节课将带领学生继续学习方程,一元一次方程等内容,同时也为学生进一步学习一元一次方程的解法和应用起到铺垫作用。
教学目标
⒈通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
⒉通过观察,归纳一元一次方程的概念.
教学重点和难点
重点:一元一次方程的概念.
难点:列一元一次方程.
教学过程
一、联系生活实际,创设问题情境
【当学生看到自己所学的知识与“现实世界”息息相关时,学生通常会更主动。
】情景:两学生表演(小彬和小明)
一天,小明在公园里认识了新朋友小彬。
小明:小彬,我能猜出你的年龄。
小彬:不信。
小明:你的年龄乘2减5得数是多少?小彬:21
小明:你的今年是13岁。
(21+5)÷2=13
小彬心里嘀咕:他怎么知道的我是年龄是13岁的呢?
如果设小彬的年龄为x岁,那么“乘2再减5”就是2x-5,所以得到等式: 2x-5=21。
在小学里我们已经知道,像这样含有未知数的等式叫做方程。
:判断下列各式是不是方程,是的打“√”,不是的打“x”。
(1)5x=0; (2)42÷6=7;(3) y2=4+y; (4)3m+2=1-m;
(5)1+3x; (6) -2+5=3; (7) 3χ-1=7; (8) m=0;
初中-数学-打印版
(9) χ﹥ 3; (10) χ+y=8; (11) 2χ2-5χ+1=0; (12) 2a +b.
判断方程①有未知数②是等式
:思考下列情境中的问题,列出方程。
情境1:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周升高约15厘米,大约几周后树苗长高到1米?
如果设x周后树苗升高到1米,那么可以得到方程:
情境 2:某长方形足球场的面积为5850平方米,长和宽之差为25米,这个足球场的长与宽分别是多少米?
如果设这个足球场的宽为X米,那么长为(X+25)米。
由此可以得到方程:
情境 3:第六次全国人口普查统计数据, 2010年全国每10万人中具有大学文化程度的人数为8930人,它比2000年增长了147.30%,求2000年每10万人中约有多少人具有大学文化程度?
设2000年每10万人中约有x人具有大学文化程度,那么可以得到方程:
三个情境中的方程为:
(1)40+15χ=100
(2)χ(χ+25) =310
(3) χ(1+147.30%)=8930
议一议:上面情境中的三个方程有什么共同点?
在一个方程中,只含有一个未知数χ(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程
使方程左、右两边的值相等的未知数的值,叫做方程的解
(我国古代称未知数为元,只含有一个未知数的方程叫做一元方程。
)
练习题
一、填空题:
1、在下列方程中:①2χ+1=3; ②y2-2y+1=0; ③2a+b=3;④2-6y=1;⑤2χ2+5=6;属于一元
初中-数学-打印版
一次方程有_________。
2、方程3x m-2 + 5=0是一元一次方程,则代数式 4m-5=_____。
3、方程(a+6)x2 +3x-8=7是关于x的一元一次方程,则a= _____。
二、根据条件列方程。
某数χ的相反数比它的 3/4 大1
三、根据题意,列出方程:
(1)在一卷公元前1600年左右遗留下来的古埃及草卷中,记载着一些数学问题。
其中一个问题翻译过来是:“啊哈,它的全部,它的 1/7 ,其和等于19。
”你能求出问题中的“它”吗?
(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分。
甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22 分,甲队胜了多少场?平了多少场?
解:设甲队胜了χ场,则乙胜了10 -χ场. 3 χ +(10-χ)=22
请联系自己生活中的例子编一道应用题,并列出方程
小结:
1、方程的概念
2、一元一次方程的概念
3、列方程的一般步骤
(1)设未知数,用字母表示。
(2)关键找等量关系。
(3)列出方程。
作业:(P132)
习题5.1 知识技能 1、问题解决3
初中-数学-打印版。