智能水电厂VXT24(1)
浅议电力24小时智能营业系统
![浅议电力24小时智能营业系统](https://img.taocdn.com/s3/m/a6d95e30b80d6c85ec3a87c24028915f804d8498.png)
浅议电力24小时智能营业系统1.电力24小时智能营业系统意义1.1直接意义(1)减少多种渠道服务系统重复建设,降低系统建设成本,从而有效地提高现有服务资源的利用率,降低服务运营成本,其经济效益相当明显。
(2)借助智能设备平台,智能营业系统可采用丰富多彩的多媒体技术来宣传电力公司的政策、法律法规、业务流程、电力相关信息等,更能让人印象深刻,从而节省了大笔广告费用。
(3)电力公司通过在24小时营业厅中架设最新科技的电子互动橱窗,宣传电力公司各项政策,同时市民可以通过触摸互动橱窗来实现人机交互,完成基本的各项查询功能。
(4)用户可以通过智能视听终端(俗称智能营业员)来与电力的95598客服人员建立视频连接,可以通过桌面共享,信息共享、手写留言、手写输入、和语音或手语等方式进行相互沟通,使电力公司客服服务进入可视化,高科技化的新阶段。
(5)既能有效地减少营业厅(所)人力、财力、物力的投入,又能有效地解决营业网点数量少,覆盖面窄与客户日益增长的缴费需求的实际矛盾,一举两得。
1.2 间接意义(1)提升电力企业高科技形象,在电力行业多渠道服务是一个新生事物。
(2)采用24小时智能营业系统可提供多种服务渠道,有效延长电力行业服务时间。
(3)采用智能营业系统,将拓展电力行业服务空间,其接入的智能营业尤其在现代化小区推广应用,更能很好地满足客户的实际需求。
(4)提高电力系统服务质量,提高客户满意度,为老百姓办实事。
1.3预期成果建成一套集中的,门禁出入、电费缴纳(现金、银联卡方式)、电量购买(IC卡)、充值卡售卡、充值卡充值、用电历史查询、发票补打、智能远程可视客服、业务指南、互动宣传(互动橱窗)、资费指南查询、监控等功能的服务系统平台。
2.电力24小时智能营业系统科技依据2.1项目背景当前,电力营业厅全面进入传统柜台服务转型阶段,都不约而同的根据核心产品、业务、主要客户群向科技化、智能化服务系统进行战略定位和战略转型,进而降低运行成本,服务功能多样化,从而实现更大的市场价值。
智慧水电厂系统建设方案
![智慧水电厂系统建设方案](https://img.taocdn.com/s3/m/1feb3a9b48649b6648d7c1c708a1284ac85005eb.png)
预期通过项目实施带来的经济效 益、社会效益和环境效益,如提 高发电量、减少人员投入、降低 能耗等。
02 总体架构设计
硬件设备选型与配置方案
01
02
03
关键设备选型
选择高性能、高可靠性的 服务器、网络设备和传感 器,确保系统稳定、可靠 运行。
设备配置方案
根据水电厂实际需求和规 模,制定合理的设备配置 方案,包括设备数量、布 局和连接方式等。
建立完善的安全防护体系, 确保系统稳定可靠运行。
未来发展趋势预测
01
物联网技术将进一步应用于水电厂设备监控和管理,实现更加智能化 的运行维护。
02
大数据和人工智能技术将促进水电厂经济运行和调度决策的优化升级 。
03
虚拟现实技术将为水电厂运行维护提供更加直观、高效的可视化手段 。
04
智慧水电厂系统将与智能电网、智慧能源等领域实现更紧密的融合。
对水电厂生产过程中的设备、设施、环境等进行 全面分析,识别潜在的危险源。
风险评估与分级
对识别出的危险源进行风险评估,确定风险等级 ,为制定防范措施提供依据。
制定防范措施
根据风险评估结果,制定针对性的防范措施,降 低事故发生概率。
应急预案编制和演练组织实施
编制应急预案
结合水电厂实际情况,编制完善的应急预案,明确应急组织、通 讯联络、现场处置等方面要求。
定期组织演练
按照应急预案要求,定期组织应急演练,提高员工应急处置能力。
演练评估与总结
对演练过程进行全面评估,总结经验教训,不断完善应急预案。
安全生产责任制落实情况监督检查
明确安全生产责任
建立水电厂各级安全生产责任制,明确各级人员安全生产职责。
2024年智慧电厂市场环境分析
![2024年智慧电厂市场环境分析](https://img.taocdn.com/s3/m/3504359229ea81c758f5f61fb7360b4c2e3f2a99.png)
2024年智慧电厂市场环境分析引言随着信息化和智能化技术的快速发展,智慧电厂作为一种新兴的能源产业模式,正在逐渐得到广泛应用。
在市场环境中,了解智慧电厂的发展前景以及各种因素对其影响是至关重要的。
本文将对智慧电厂市场环境进行分析,解析当前的市场状况和未来发展趋势。
1. 市场概况智慧电厂作为一种集成了信息技术、自动化技术和能源技术的新型能源供应模式,具有高效、可靠、安全等优势。
目前,智慧电厂市场呈现出快速增长的趋势。
根据市场研究报告显示,全球智慧电厂市场规模预计将在未来几年内以每年10%左右的增长率稳步增长。
2. 市场驱动因素2.1 能源消费结构调整随着环保意识的提高和能源消费结构调整的推进,新能源的利用和智能化电力系统的建设成为政府的重点支持方向。
这为智慧电厂的推广和应用提供了有力的市场需求。
2.2 信息技术的快速发展信息技术的快速发展为智慧电厂的发展提供了技术支持和条件。
云计算、大数据、人工智能等新技术的广泛应用,使得智慧电厂能够更高效地进行能源管理、运营优化等工作,提高能源利用效率和运行可靠性。
2.3 政府政策支持各国政府通过出台相关政策和法规,加大对智慧电厂的支持力度。
优惠的政策措施和财政扶持,为智慧电厂的发展提供了良好的市场环境。
同时,一些国家还推出了能源转型政策,鼓励企业进行智慧电厂改造,促进能源系统的升级和转型。
3. 市场挑战与问题3.1 技术风险智慧电厂的建设和运营需要涉及多个领域的技术,包括信息技术、自动化技术、能源技术等。
不同技术之间的协调和整合是一个巨大的挑战,技术风险较高。
3.2 高投资成本智慧电厂建设和运营的投资成本较高。
尤其是建设新能源电厂和智能化设备的投资需求较大,需要较高的资金支持。
这对一些中小型企业来说是一个较大的挑战。
3.3 安全风险智慧电厂的信息化程度较高,网络安全问题成为一个重要的挑战。
面临的威胁包括网络攻击、数据泄露、设备故障等。
保障智慧电厂的安全运行是一个亟待解决的问题。
智能变电站基础知识(GOOSE、SV介绍)
![智能变电站基础知识(GOOSE、SV介绍)](https://img.taocdn.com/s3/m/e56a75dbc77da26924c5b014.png)
8
智能变电站网络结构
●三层两网 ●逻辑结构与物理结构 ●站控层与过程层网络独立
站控层
工作站1 工作站2 远动站 GPS
IEC61850
MMS
间隔层
PCS 保护
PCS 测控
其他 IED
• 信息分类:
站控层/间隔层MMS、GOOSE;过
32
智能变电站过程层特点
● 过程层设备:
●电子式互感器:实现采样的数字化。 ●合并单元:实现采样的共享化。 ●智能终端:实现开关、刀闸开入开出命令和信号的数字化。
33
智能变电站过程层特点
● 过程层设备可靠性要求: ● 过程层信息的传输要求准确、可靠、快速。可分为两种: ● SV:周期性采样信号,要求保证传输的实时性和快速性。 ● GO:事件驱动的开入开出信号。实时性和可靠性要求高。
●SSD System Specification Description 系统规格文件
16
各文件之间的关系
17
GOOSE介绍
● 什么是GOOSE? 面向通用对象的变电站事件( GOOSE---Generic Object Oriented
Substation Event) 是IEC 61850标准中用于满足变电站自动化系统快速报 文需求的一种机制 ● GOOSE可以传输什么? 可以传输开入(智能终端的常规开入等),开出(跳闸,遥控,启动失灵, 联锁,自检信息等),实时性要求不高的模拟量(环境温湿度,直流量) ● GOOSE传输的数据类型?
智能变电站基础知识
目录
智能变电站简介 智能变电站与常规站的区别 智能变电站常用名词解释
2024年度智慧电力解决方案(智能电网解决方案)
![2024年度智慧电力解决方案(智能电网解决方案)](https://img.taocdn.com/s3/m/3b827558f08583d049649b6648d7c1c708a10baf.png)
01
02
03
通过实时监测和预警系 统,及时发现并处理电 网故障,减少停电时间
和范围。
利用先进的信息技术和 通信技术,实现对电网 设备的远程监控和操作
,提高运维效率。
采用智能化的安全防护 措施,保障电网设备和 数据的安全,防止恶意
攻击和破坏。
2024/2/3
24
优化资源配置,降低运营成本
通过精确的需求预测和负荷管理,合理调度电 力资源,避免浪费和短缺。
通信信道
采用230MHz无线专网、GPRS/CDMA无线公网、光纤专网等多种 通信方式,确保用电信息采集的实时性和准确性。
16
分布式能源接入设备与系统
分布式电源接入设备
包括光伏逆变器、风电变流器、储能变流器等,实现分布式电源 的灵活接入和高效利用。
微电网控制系统
实现微电网的并网运行、孤岛运行以及两种模式间的平滑切换, 提高供电可靠性和电能质量。
2024/2/3
03
人工智能与大数据技术应用
人工智能和大数据技术在智慧电力领域的应用将越来越广泛,包括智能
调度、故障诊断、负荷预测等。
29
面临挑战及应对策略建议
2024/2/3
网络安全与数据保护挑战
随着智慧电力的发展,网络安全和数据保护问题日益突出,需要 采取有效的技术手段和管理措施加以应对。
体制机制与政策环境制约
发展趋势
未来智慧电力将朝着更加智能化、绿 色化、高效化的方向发展,同时加强 与互联网、物联网等技术的融合。
2024/2/3
5
智能电网在智慧电力中地位
核心地位
智能电网是智慧电力的核心组成部分,是实现电力系统智能 化的关键。
2024/2/3
浅析智能电网
![浅析智能电网](https://img.taocdn.com/s3/m/1e1c38aff524ccbff1218408.png)
3 智能 电网发展 历史 及趋 势 因此 , 能 电网 是我 国 电网发 展 的 必然 趋 势 , 先进 智 其 智 能 电网是 一个 完整 的信 息 架构和 基 础 设施体 系 , 性和 重 大意 义体 现在 :具备 强 大 的资 源优 化 配 置 能力 : 实 具 现 对 电力 客 户 、 电力 资产 、 电力 运 营 的持 续 监视 , 用 “ 利 随 备 更高 的安 全稳定 运 行水 平 。适应 并促 进清 洁 能源 发展 。 需应 变” 的信 息 提高 电网公 司 的管理水 平 、 工作 效率 、 网 实现高度 智 能化 的 电网调 度。满足 电动 汽车等 新 型 电力 用 电 可靠 性和 服务 水平 。2 1世纪 初智 能 电网在 欧美 的发展 , 户 的服 务 要 求 :实现 电网资 产高 效 利 用和 全 寿 命 周 期 管 为 实现 电力 用户 与 电网之 间 的便 捷互 动 : 实现 电 网管理 全 世 界 电力 工业 在 安 全 可靠 、 质 高 效 、 色环 保 等 方面 理 : 优 绿
参考文献 :
… ( ) 肯 巴赫 . 文 版 E c l 0 0高 级 V A 编 程 宝 典 . 美 沃 中 xe 2 1 B f MJ 清 华 大 学 出版 社 .0 2 1 1 21— —.
E d u n S b
这段 代码 会将 文档 中全 部工 作表 显 示
Su h wAI) bS o l (
1 0行 单 元格 。 最 后执 行 “ ie宏 ” 就可 以实 现工 作 表 —1 Hd , 隐藏 了。
注 意 :a s r p s wod工 作 表 中 A 列 1 O行 单 元格 填 写 —1 工作 表 名 称一 定 要 和 当前 E c l 作 簿 中表 名 称 完 全 相 xe工 同 , 则 会导致 代码 运行 错 误。 否 以上 是几 种 隐藏 工作 表 的 方法 , 最后 1种 方法 是使 用 起 来 最 方便 的。每 次只 需 导入 宏代 码 ,然后 建 立 “ a s ps— wod工作 表 ” 再在 A1 A 0单元格 中填 入 要 隐藏 的工作 r , 一 1 表 名称 , 后执 行相 应 的宏 就完 成 了。 最
GLX24环网柜说明书
![GLX24环网柜说明书](https://img.taocdn.com/s3/m/80eca43887c24028915fc369.png)
气箱
防护等级
熔断器仓 环网柜
① 注:熔断器组合柜额定电流受熔断器限制
IP 67 IP 67 IP 4X
24kV 环网柜技术参数
项目
单位 负荷开关 柜
额定电压
kV
24
工 频 耐 压 相间及相地 kV
50
(1min)
断口间
kV
60
雷电冲
相间及相地 kV
125
击耐压
断口间
kV
145
额定频率
Hz
60
额定电流
A
630
额定短路开断电流
kA
额定短时耐受电流 3s
kA
20
额定峰值耐受电流
kA
50
额定短路关合电流
kA
50关合电流(峰值)来自kA额定转移电流
A
额定有功负荷开断电流
A
630
额定闭环开断电流
A
630
5%额定有功负荷开断电流
A
31.5
整柜重量
kg
160
机械寿命
次
5000
气箱不锈钢厚度
mm
SF6 额定压力
kPa
机械寿命
气箱不锈钢厚度
SF6 额定压力 年泄漏率
浸水试验
燃弧试验
单位
kV kV kV kV kV Hz A kA kA kA kA kA A A A A kg 次 mm kPa
负荷开关 柜 12 42 48 75 85 50 630
20 50 50
630 630 31.5 160 5000
熔断器
简易式
630
630
630
630
31.5
2024年无人值班水电厂消防系统的自动化管(3篇)
![2024年无人值班水电厂消防系统的自动化管(3篇)](https://img.taocdn.com/s3/m/208aa8d8bdeb19e8b8f67c1cfad6195f312be8ea.png)
2024年无人值班水电厂消防系统的自动化管随着科技的进步和智能化的发展,无人值班水电厂消防系统的自动化管理已成为现实。
在2024年的水电厂中,消防系统将通过自动化管理实现更高效、更安全的运行。
本文将探讨无人值班水电厂消防系统自动化管理的各个方面,并提出一些解决方案。
首先,无人值班水电厂消防系统的自动化管理将基于先进的传感器技术。
传感器将安装在各个关键位置,监测火灾、漏水等安全风险。
当传感器检测到异常情况时,系统将立即发出警报并采取相应的紧急措施。
例如,当传感器检测到火灾时,系统将立即触发自动喷水系统,并通知相关人员前往处理。
其次,无人值班水电厂消防系统的自动化管理将借助于人工智能和大数据分析技术。
通过分析历史数据和实时监测数据,系统能够预测潜在的安全风险,并采取相应的措施进行预防。
同时,人工智能还能够学习和优化消防系统的运行策略,提高系统的自适应能力和反应速度。
第三,无人值班水电厂消防系统的自动化管理还将实现与其他设备和系统的智能互联。
例如,与水厂的供水系统、电厂的供电系统等相互连接,实现资源的共享和协同工作。
当传感器发现火灾或漏水时,系统将自动停止供电和供水,避免事态的扩大。
同时,消防系统还可以通过与安防监控系统的联动,快速定位事发地点并通知相关人员前往处置。
第四,无人值班水电厂消防系统的自动化管理还将实现远程监控和控制。
通过互联网和远程通信技术,管理人员可以随时随地监控水电厂的消防系统,并对系统进行远程操作和控制。
这不仅提高了效率,还能够有效地节约人力成本和资源。
然而,实现无人值班水电厂消防系统的自动化管理也面临一些挑战。
首先,技术的成本和复杂性是一个主要的问题。
为了实现自动化管理,需要投入大量的资金和人力来安装和维护各种设备和系统。
此外,技术的复杂性也需要专业的人员进行管理和操作,需要加强培训和人才引进。
其次,网络安全是一个重要的考虑因素。
无人值班水电厂消防系统的自动化管理需要与互联网相连接,这也给系统带来了网络攻击和数据泄露的风险。
富士智能2021产品选型手册说明书
![富士智能2021产品选型手册说明书](https://img.taocdn.com/s3/m/25cfa62349d7c1c708a1284ac850ad02de8007a1.png)
产品参数
外观颜色 机箱 面板 外观尺寸 工作温度 工作湿度 电源电压 通讯方式 主控器 最优识别距离 最大识别⻆度 语音对讲
香槟金 1.5mm钣金喷塑工艺 防眩光AG玻璃 380*344*1500mm -25℃〜70℃ ≤95%,无凝露 AC220V±10%50Hz TCP/IP通讯 ⻋牌识别控制器+无刷道闸控制器 3~5M ⻋牌与⻋道夹⻆≤45° 对讲距离≤1米
01
PRODUCTION
INTRODUCTION
COMPANY
公司简介
COMPANY INTRODUCTION
富士智能 ,成立于2004年 ,是智能出入口管理设备供 应商 、出入口管理系统解决方案提供商 ,智慧生态 环境 解 决方案专业供应商。
富 士 智 能,坚 持 以 人 为 本 、以 质 量 求 生 存 、以 服 务 创 市 场的信念,⻓期致力于智慧社区、智慧写字楼、智慧商业综 合体 、智慧景区、智慧园区 、智慧 校园 等 智慧生态 环境建 设 ,持续为数十万场景守好⻔ 、把好关 、收好费 ,已经成为 出入口智能管理和智慧城市生态环境建设的重要实践者、 推动者和引领者。
306 mm
230 mm
w w w. f u j i c a . c o m . c n
09
智能停⻋场管理系统
全球智慧城市生态环境建设重要实践者和引领者
FJC-TZ286
“金刚”机器人无人值守智慧⻋场管家
智慧通行卓然出众
产品特点
采用高强度新合金科技材料打造,无惧岁月洗礼,品质坚若磐石 17英寸LCD高亮触摸屏可显示停⻋时⻓、收费信息等,闲时可播放 广 告 或物管通知,为物业增值创收的同时提高管理效率 全方位出入方式:动态二维码、⻋牌识别等多种出入方式,安全、高效、 顺畅通行 多样化缴费形式:支持使用微信/支付宝/聚合码等扫码( 主扫/被扫)缴 费出场,支持使用现金缴费出场,可通过微信扫码找零 支持电子发票 一键问询:⻋主可通过远程协助按钮一键发起远程服务请求,与服务中 心进行双向语音通话,迅速获取人性化服务 远程对讲:支持服务中心主动远程连接现场,为⻋主提供协助服务 ,从 而打造无人值守的工作环境,彻底取代值守岗亭,降低人力成本 具备出色的系统稳定性、扩展性及实用性,适用于各种高端停⻋场
智能变电站基础知识(GOOSE、SV介绍)
![智能变电站基础知识(GOOSE、SV介绍)](https://img.taocdn.com/s3/m/332a706a5727a5e9856a61be.png)
.
智能变电站常用名词解释
智能变电站简介 智能变电站与常规站的区别 智能变电站常用名词解释
.
智能变电站常用名词
ICD CID SCD SSD GOOSE SV
MMS MU 智能终端 过程层 虚端子 客户端 电子式互感器
电缆
电缆
开关
.
感性认识GOOSE(母差跳闸)
1 仿真故障 2 跳闸 3 新位置
测试仪输入
闭锁重合
线路保护A
SV输入或模拟量
母差保护A 线路保护B
智能终端A
GOOSE
闭锁重合 智能终端B
电缆
开关
.
电缆
电缆
GOOSE报文
.
注释1:stNum,sqNum
• stNum: 范围(1-4294967295)状态序号,状态改变 一次+1,溢出后从1开始; • sqNum: 范围(0-4294967295)顺序序号,初始值为1, 状态不变化时,每发送一次+1,溢出后从1 开始; 0专为stNum变化时首帧传输保留。
传统变电站结构图
电缆 过程层
CT/PT
GOOSE
电缆
智能单元
传统互感器 智能化开关
智能变电站结构图
.
与传统变电站的比较
IEC61850 规约带来的变电站二次系统物理结构 的变化
(1) 基本取消了硬接线,所有的开入、模拟量的采集均在就地 完成,转换为数字量后通过标准规约从网络传输。
(2) 所有的开出控制也通过网络通信完成。 (3) 继电保护的联闭锁以及控制的联闭锁也由网络通信
智能变电站基础知识
2024年水电站自动控制系统项目建议书及建设实施方案
![2024年水电站自动控制系统项目建议书及建设实施方案](https://img.taocdn.com/s3/m/7f1a1286d4bbfd0a79563c1ec5da50e2534dd173.png)
水电站自动控制系统项目建议书及建设实施方案目录序言 (4)一、行业、市场分析 (4)(一)、完善体制机制,加快XXX市场化步伐 (4)(二)、推动规模化发展,支撑构建新型系统 (6)(三)、强化技术攻关,构建XXX创新体系 (7)二、运营管理 (8)(一)、公司经营宗旨 (8)(二)、公司的目标、主要职责 (9)(三)、各部门职责及权限 (10)(四)、财务会计制度 (12)三、法人治理 (14)(一)、股东权利及义务 (14)(二)、董事 (16)(三)、高级管理人员 (17)(四)、监事 (20)四、SWOT分析 (21)(一)、优势分析(S) (21)(二)、劣势分析(W) (23)(三)、机会分析(O) (24)(四)、威胁分析(T) (25)五、建筑工程可行性分析 (27)(一)、水电站自动控制系统项目工程设计总体要求 (27)(二)、建设方案 (29)(三)、建筑工程建设指标 (30)(四)、水电站自动控制系统项目选址原则 (30)(五)、水电站自动控制系统项目选址综合评价 (32)六、创新驱动 (33)(一)、企业技术研发分析 (33)(二)、水电站自动控制系统项目技术工艺分析 (34)(三)、质量管理 (37)(四)、创新发展总结 (39)七、水电站自动控制系统项目环境影响评估 (40)(一)、水电站自动控制系统项目环境影响评估 (40)(二)、环境保护措施与治理方案 (41)八、产品规划方案 (42)(一)、建设规模及主要建设内容 (42)(二)、产品规划方案及生产纲领 (43)九、创新驱动 (44)(一)、企业技术研发分析 (44)(二)、水电站自动控制系统项目技术工艺分析 (45)(三)、质量管理 (46)(四)、创新发展总结 (47)十、人力资源管理与开发 (48)(一)、人力资源规划 (48)(二)、人力资源开发与培训 (49)十一、知识产权管理与保护 (50)(一)、知识产权管理体系建设 (50)(二)、知识产权保护措施 (51)十二、水电站自动控制系统项目沟通与合作机制 (52)(一)、沟通体系构建 (52)(二)、合作伙伴选择与合作方式 (55)(三)、利益相关方管理 (57)(四)、团队协作与合作文化 (59)(五)、跨部门协同与协作平台 (61)(六)、沟通与合作中的问题解决 (63)(七)、共享资源与互惠机制 (64)(八)、沟通与合作绩效评估 (65)序言在当前企业竞争激烈和市场环境多变的背景下,项目可行性研究报告及运营方案成为了确保项目顺畅推进与完成的关键性文件。
LX-2000智能高压脉冲电网使用说明书
![LX-2000智能高压脉冲电网使用说明书](https://img.taocdn.com/s3/m/2c3ded275901020206409c01.png)
在安装使用电网装置前,须认真阅读本手册。
读后请保留!系统简介Lanstar®是周界安防系统的专业品牌,LX-2000系列智能电网监防系统是该品牌下的代表产品,我公司根据多年从事监狱、看守所及军事武器库安全防范的专业工作经验,借鉴国内外先进的周界防范技术,自主开发的高科技数字化产品。
经公安部指定的国家级专业试验室测试,及公安部型式检测,该产品完全符合中华人民共和国公共安全行业标准GA247-2000《监所周界高压电网装置》的指标要求,其先进的设计思路,精良的制作工艺得到了专家的认可,并成为公安部指定推广产品。
该系统在设计上,充分利用微计算机技术,并采用液晶显示、轻触式铵钮,操作简单、显示清晰,标准并口微型打印机、RS485远程控制端口、并预留了报警扩展端口,可外接打印机、计算机等,形成多功能的现代化周界防范系统。
本系统省电省力,安装使用方便,能在各种不同环境下运行,广泛适用于看守所、监狱、军械弹药库、金库、无人值守变电站、转播台、机场、保密工厂、大型养殖场等地方。
系统特点:●符合GA247-2000《监所周界高压电网装置》公共安全行业标准。
●采用LCD液晶显示,全面监控电网的各项数据。
●报警翻查功能:可以查阅最近的12条报警信息(报警时间、报警防区及报警类别)。
●标准的4U工控机设计,以便系统集成时更为方便、可靠。
接头输出,使售后服务更为简捷。
●报警触发阀值智能预测算法,可根据环境(晴、雨等)自动确定最合适的触发阀值,环境适应性强,操作简单。
●随意设置触网触发阀值,存储器保存(出厂时已按常规预设)满足其他特定要求。
●采用多项冗余,数据多重校验,确保系统稳定工作。
●RS485、标准并口、DC12V、常开/常闭等输出方式,可实现微机远程控制、独立打印、外接警灯/警号、报警联动等功能。
●备用脉冲输出端口,保证现场工作连续。
●计算机远程控制软件界面友好,鼠标操作,记录不受限制。
技术指标:输入电压:180~240V (50HZ ) 额定输出:1~4路5000V 高压脉冲 触网打击电量:40mc 信号灯输出:AC220V ≤6A 消耗功率:<50W报警输出:DC12V 、常开/常闭、并口打印机及RS485输出工作原理:220V 市电经正弦UPS 电源(备电)稳压后进入主机箱。
【精品】智能水电厂29汇总ppt课件
![【精品】智能水电厂29汇总ppt课件](https://img.taocdn.com/s3/m/7360f95f87c24028905fc34f.png)
智能化水电厂的优点
? 基于高速工业以太网交换技术,实现了全站信 息的共享。采用“点对点”方式只能在间隔内 共享过程层信息。采用高速工业以太网交换技 术可以共享全部过程层实时数据,使间隔层装 置可以基于全厂电压、电流信息和开关量信息 实现保护和控制功能。
? 实现了自动化功能的整合,简化现有的水电厂 监测设备,系统更为经济、可靠。仅用一套间 隔层测控装置实现保护、测控、录波、测距、 选线等自动化功能,使现场设备大大减少和简 化,显著降低了一次性设备成本和运行维护成 本;同时由于装置减少和消除了复杂的电缆接 线,大大提高了整个系统的可靠性。
? 全厂经济运行 :完成水情、气象、水调和防汛 决策指挥等系统的智能化建设,实现白山梯级 水库智能化联合调度,提高全厂经济运行水平。
? 状态检修:完成全厂状态检修系统的智能化建 设,实现对水轮发电机组、变压器、断路器等 主要发电设备及水工建筑物的在线状态监测和 故障智能诊断,提高设备故障诊断水平,减少 运行维护及检修成本。
白山水电厂智能化规划设计方案 ——计算机监控系统
? 2010年3月东北电网公司“白山发电厂智能化水电厂改造规划设计”研 讨会的邀请,北京中水科水电科技开发有限公司、国网电力科学研究院 等5家设计、科研单位应邀出席了会议。
? 2010年5月东北电网公司对《东北电网有限公司直属水电厂智能化规划 纲要》、《白山发电厂智能化水电厂规划设计》等纲领性文件的评审, 东北电网公司直属水电厂智能化规划等工作基本告一段落,水电厂智能 化改造进入全面建设阶段。
? PLC更换为支持 IEC61850 的PLC,具有接入 非常规PT/CT和开关控制器的能力, LCU与站 控层通信采用私有规约。
? 间隔层设备 (包括机组LCU、开关站LCU、公 用LCU)的数据来自合并单元,合并单元可以 IEC61850-9-1 ,IEC61850-9-2 发送采样值。 间隔层设备对开关量的控制通过向开关控制器 发送GOOSE报文实现
智能基础设施电液阀值电机4561说明书
![智能基础设施电液阀值电机4561说明书](https://img.taocdn.com/s3/m/d6c4b630f4335a8102d276a20029bd64793e6210.png)
4561Electrohydraulic actuators for valveswith a 20 mm stroke SKD32.. SKD82.. SKD62.. SKD60..•SKD32.. Operating voltage AC 230 V, 3-position control signal•SKD82.. Operating voltage AC 24 V, 3-position control signal•SKD6.. Operating voltage AC 24 V, control signal DC 0…10 V, 4…20 mA or0...1000 Ω•SKD6.. Choice of flow characteristic, position feedback, stroke calibration,LED status indication, override control•SKD62UA w ith functions choice of direction of operation, stroke limit control,sequence control with adjustable start point and operating range,operation of frost protection monitors QAF21.. and QAF61..•Positioning force 1000 N•Actuator versions with or without spring-return function•For direct mounting on valves; no adjustments required•Manual adjuster and position indicator•Optional functions with auxiliary switches, potentiometer, stem heater andmechanical stroke inverter•SKD..U are UL-approvedCM1N4561en2/20UseFor the operation of Siemens 2-port and 3-port valves, types VVF.., VVG.., VXF.. and VXG.. with a 20 mm stroke as control and safety shut-off valves in heating, ventilation and air conditioning systems.Types1) Approbation: CE 3)Direction of operation, stroke limit control, sequence control, signal addition2)Approbation: CE, ULWhen ordering please specify the quantity, product name and type code. Example: 1 actuator, type SKD32.50 and 1 potentiometer, type ASZ7.3 and 1 dual auxiliary switches ASC9.3The actuator, valve and accessories are supplied in separate packaging and not assembled prior to delivery.See overview, section «Replacement parts», page 19.AccessoriesOrderingDeliverySpare parts3/20Equipment combinationsFor admissible differential pressures ∆p max and closing pressures ∆p s , refer to the relevant valve data sheets. 1)Valves are phased-outThird-party valves with str okes between 6…20 mm can be motorized, provided they are «closed with the de-energized» fail-safe mechanism and provided that the necessary mechanical coupling is available. For SKD32.. and SKD82.. the Y1 signal must be routed via an additional freely-adjustable end switch (ASC9.3) to limit the stroke.We recommend that you contact your local Siemens office for the necessary information.Overview table, see page 20.Technology1 Manual adjuster2 Pressure cylinder3 Suction chamber4 Return spring5 Solenoid valve6 Hydraulic pump7 Piston8 Pressure chamber 9 Position indicator (0 to 1) 10 Coupling 11 Valve stem 12 Plug Valve closed Valve openNoteRev. no. Principle ofelectro-hydraulic actuators4/20The hydraulic pump (6) forces oil from the suction chamber (3) to the pressure chamber (8) and thereby moving the pressure cylinder (2) downwards. The valve stem (11) retracts and the valve opens. Simultaneously the return spring (4) is compressed. Activating the solenoid valve (5) allows the oil in the pressure chamber to flow back into the suction chamber. The compressed return spring moves the pressure cylinder upwards. The valve stem extends and the valve closesTurning the manual adjuster (1) clockwise moves the pressure cylinder downwards and opens the valve. Simultaneously the return spring is compressed.In the manual operation mode the control signals Y and Z can further open the valve but cannot move to the «0%» stroke position of the valve. To retain the manually set position, switch off the power supply or disconnect the control signals Y and Z. The red indicator marked «MAN» is visible.When setting the controller for a longer time period to manual operation, werecommend adjusting the actuator with the manual adjuster to the desired position. This guarantees that the actuator remains in this position for that time period. Attention: Do not forget to switch back to automatic operation after the controller is set back to automatic control.Turn the manual adjuster counterclockwise to the end stop. The pressure cylinder moves upward to the «0%» stroke position of the valve. The red indicator marked «MAN» is no longer visible.The actuator can manually be adjusted to a stroke position > 0 % allowing its use in applications requiring constantly a minimal volumetric flow.The SKD32.51, SKD32.21, SKD82.51.. and SKD62.. actuators, which feature a spring-return function, incorporate a solenoid valve which opens if the control signal or power fails. The return spring causes the actuator to move to the «0 %» stroke position and closes the valve.The actuator is controlled by a 3-position signal either via terminals Y1 or Y2 and generates the desired stroke by means of above described principle of operation. • Voltage on Y1 piston extends valve opens • Voltage on Y2 piston retracts valve closes • No voltage on Y1 and Y2 piston / valve stem remain in the respective positionThe valve is either controlled via terminal Y or override control Z. The positioning signal Y generates the desired stroke by means of above described principle of operation. • Signal Y increasing: piston extends valve opens • Signal Y decreasing: piston retracts valve closes • Signal Y constant: piston / valve stem remain in the respective position • Override control Z see description of override control input, page 8A frost protection thermostat can be connected to the SKD6.. actuator. The added signals from the QAF21.. and QAF61.. require the use of SKD62UA actuators. Notes on special programming of the electronics are described under «Enhanced electronics» on page 5.«Connection diagrams» for operation with frost protection thermostat or frost protection monitor refer to page 16.Opening the valveClosing the valveManual operation modeNote: Controller in manual operationAutomatic modeMinimal volumetric flow Spring-return facilitySKD32../SKD82..3-position control signalSKD62.., SKD60.. Y control signal DC 0...10 V and/orDC 4...20 mA, 0…1000 ΩFrost protection monitorFrost protectionthermostat5/201 Connection terminals2 Mode DIL switches3 LED status indication4 Slot for calibration0163811Connection terminals 2 DIL switches 3 LED status indication4 Stroke calibration 5Rotary switch Up (factory setting 0) 6Rotary switch Lo420 mAStandard electronics SKD62.., SKD60..DIL switches SKD62.., SKD60..Enhanced electronics SKD62UADIL switches SKD62UA6/20• With normally-closed valves, «direct-acting» means that with a signal input of 0 V, the valve closes (applies to all Siemens valves listed under «equipment combinations» on page 3)• With normally-open valves, «direct-acting» means that with a signal input of 0 V, the valve is open.100 %0 %4 mA 0 Ω20 mA 1000 ΩThe mechanical spring-return function is not affected by the direction of operation selected.Selection of direction of operation SKD62UANote7/20Prerequisites• • Actuator must be in «Automatic operation» enabling stroke calibration to capture the effective 0 % and 100 % values • AC 24 V power supply • Housing cover removed Calibration1. Short-circuit contacts in calibration slot (e.g. with a screwdriver)2. Actuator moves to «0 %» stroke position (1) (valve closed)3. Actuator moves to «100 %» stroke position (2) (valve open)4.Measured values are storedgreen LED flashes; position feedback U inactiveA lit red LED indicates a calibration error.The calibration can be repeated any number of times.Stroke limit control and sequence control SKD62UAStroke control withQAF21.. / QAF61.. signal addition SKD62UA onlyCalibrationSKD62.., SKD60..8/20The LED status indication indicates operational status with dual-colored LED and is visible with removed cover.LED Indication FunctionRemarks, troubleshootingGreen LitNormal operationAutomatic operation; everything o.k.FlashingCalibration in progressWait until calibration is finished (LED stops flashing, green or red LED will be lit) RedLitFaulty stroke calibration Check mountingRestart stroke calibration (by short-circuiting calibration slot)Internal errorReplace electronics FlashingInner valve jammed Check valveBothDarkNo power supply Electronics faultyCheck mains network, check wiring Replace electronicsAs a general rule, the LED can assume only the states shown above (continuously red or green, flashing red or green, or off).Override control input can be operated in following different modes of operationZ-modeno functionfully openclosedoverride with 0…1000 ΩSignal addition SKD62UA onlyC o n n e c t i o n sT r a n s f e r linear or equal-percentagelinear or equal-percentagelinear or equal-percentage• Z-contact not connected • Valve stroke follows Y-input• Z-contact connected directly to G • Y-input has no effect • Z-contact connected directly to G0 • Y-input has no effect • Z-contact connected to M via resistor R • Starting position at50 Ω / end position at 900 Ω• Y-input has no effect • Z-contact is connected to R ofthe frost protection monitor QAF21.. or QAF61.. • Valve stroke followssignals Y and R(Z)Shown operation modes are based on the factory setting «direct acting» Y-input has no effect in Z-mode.Indication of operating state SKD62.., SKD60..Override control input ZSKD62.., SKD60..Note9/20Accessories ASZ6.6 (S55845-Z108) stem heater• for media below 0 °C• mount between valve and actuatorASC9.3double auxiliary switchASZ7.3potentiometerASK50stroke inverter4561Z 05005154561Z 10adjustable switching points0…1000 Ω0 % actuator stroke corresponds to 100 % valve stroke; mount between valve and actuatorFor the combination SIMATIC S5/S7 and position feedback message, we recommend actuators with DC 0…9.8 V feedback signals.The signal peaks that occur in the potentiometer ASZ7.3 may result in error messages on Siemens SIMATIC.This is not the case when combined with Siemens HVAC controllers.The reason is that SIMATIC has a higher resolution and faster response time.ASC1.6auxiliary switchswitching point 0…5 % strokeSee section «Technical data» on page 13 for more information.SKD..SKD32.., SKD82..Note: ASZ7.3SKD62.., SKD60..10/20Engineering notesConduct the electrical connections in accordance with local regulations on electrical installations as well as the internal or connection diagrams.Safety regulations and restrictions designed to ensure the safety of people and property must be observed at all times!The plant operator must also ensure compliance with applicable guidelines on cable insulation when using a safety limiter. Failure to comply may cause the safety limiter function to fail.For media below 0 °C the ASZ6.6 stem heater is required to keep the valve from freezing. For safety reasons the stem heater is designed for an operating voltage of AC 24 V / 30 W.For this case, do not insulate the actuator bracket and the valve stem, as air circulation must be ensured. Do not touch the hot parts without prior protective measures to avoid burns.Non-observance of the above may result in accidentsand fires!Recommendation: Above 140 °C insulating the valves is strictly recommended.Observe admissible temperatures, refer to «Use» on page 2 and «Technical data» on page 13.If an auxiliary switch is required, its switching point should be indicated on the plant schematic.Every actuator must be driven by a dedicated controller (refer to«Connection diagrams», page 16).11/20Mounting instructionsMounting Instruction 74 319 0325 0 for fitting the actuator to the valve are by packed in the actuator packaging. The instructions for accessories are enclosed with the accessories themselves.Commissioning notesWhen commissioning the system, check the wiring and functions, and set any auxiliary switches and potentiometers as necessary, or check the existing settings. Coupling fully retracted→stroke = 0%Coupling fully extended→ stroke = 100 %The manual adjuster must be rotated counterclockwise to the end stop, i.e. until the red indicator marked «MAN» is no longer visible. This causes the Siemens valves, types VVF.., VVG.., VXF.. and VXG.. to close (stroke = 0%).Manual operation «M A N»Automatic operation« A U T O »Orientation12/20Maintenance notesThe SKD.. actuators are maintenance-free.When servicing the actuator:• Switch off pump of the hydronic loop• Interrupt the power supply to the actuator • Close the main shutoff valves in the system• Release pressure in the pipes and allow them to cool down completely • If necessary, disconnect electrical connections from the terminals• The actuator must be correctly fitted to the valve before recommissioning. Recommendation SKD6..: trigger stroke calibration.«Replacement parts», see page 19.A damaged housing or cover represents an injury risk• NEVER uninstall an actuator from the valve• Uninstall the valve-actuator combination (actuating device) as a complete device• Use only properly trained technicians to uninstall the unit• Send the actuating device together with an error report to your local Siemens representative for analysis and disposal• Properly mount the new actuating device (valve and actuator)Parts could fly ultimately resulting in injuries from uninstalling an actuator with a damaged valve housing due to the tensioned return spring.DisposalWarrantyTechnical data on specific applications are valid only together with Siemens products listed under "Equipment combinations", page 3. Siemens rejects any and all warranties in the event that third-party products are used.RepairTechnical dataPower supplySignal inputsPositionfeedbackElectricalconnectionsStandards,directives andapprovals13/2014/20Environmental compatibilityDimensions / weightMaterialsThe documents can be downloaded from /bt/download .Accessories ASC1.6 ASC9.3 double ASZ7.3 Potentiometer ASZ6.6 stem heaterSKD62UA enhanced functionsDirection of operationDirect-acting, reverse-actingDC 0...10 V / DC 10...0 V DC 4...20 mA / DC 20...4 mA 0...1000 Ω / 1000...0 Ω Stroke limit control Range of lower limit Range of upper limit 0...45 % adjustable 100...55 % adjustable Sequence controlTerminal YStarting point of sequence Operating range of sequence0...15 V adjustable 3...15 V adjustable Signal additionZ connected to R ofFrost protection monitor QAF21.. Frost protection monitor QAF61..0...1000 Ω, added to Y signal DC 1.6 V, added to Y signalAmbient conditions and protection dataClassification to IEC/EN 60730 Automatic action: Type 1AA / Type 1AC / Modulation Action Pollution degree: 2Housing protection as perIEC/EN 60529IP54 Environmental conditionsTransportation(in transport packaging) to IEC/EN 60721-3-2 Class 2K3Temperature -30...65 °CHumidity 5...95 % (no condensation)Operationto IEC/EN 60721-3-3 Class 3K5Temperature -15...50 °CHumidity 5...95 % (no condensation)Storageto IEC/EN 60721-3-1 Class 1K3Temperature -15...50 °CHumidity 5...95 % (no condensation)Internal diagramsSKD32.51, SKD32.21 AC 230 V, 3-PositionCm1end switchn solenoid valve for spring-returnc1, c2ASC9.3 double auxiliaryswitcha, b, c ASZ7.3 potentiometerY1Positioning signal «open»Y2Positioning signal «close» 21spring-return functionN neutral conductorSKD32.50AC 230 V, 3-PositionY2Positioning signal «close»21spring-return functionG System potentialSKD82.50AC 24 V, 3-PositionSKD60, SKD60U,SKD62,SKD62U, SKD62UAAC 24 V, DC 0…10 V,4…20 mA, 0…1000 ΩU position indicationZ override controlY positioning signalM measuring neutralG0operating voltage AC 24 V:system neutral (SN)G operating voltage AC 24 V:system potential (SP)Switching without power asa spring return function15/2016/20Connection terminals U ZG 0G Y M operating voltage AC 24 V: system neutral (SN) operating voltage AC 24 V: system potential (SP)Positioning signal DC 0...10 (30) V or DC 4...20 mA Measuring neutral (= G0)Position indication DC 0...10 V or DC 4...20 mAOverride control (functionality see page 8)Connection diagrams SKD32.21, SKD32.51SKD32.50F1 safety limiter (eg.temperature limiter) N1, N2 controller Y1, Y2actuatorsL Phase N neutralY1 Positioning signal «open» Y2 Positioning signal «close» 21Spring-return functionSKD6..Auxiliary switch ASC1.6SKD32.. AC 230 V 3-Position17/20SKD82.51, SKD82.51USKD82.50, SKD82.50USNSPSNSPSNSPSPAC 24 VF1 safety limiter (eg temperature limiter) N1, N2 controller Y1, Y2 actuators SP Systempotential AC 24 V SN System neutral (Y1), (Y2) controller contactsY1 Positioning signal «open» Y2 Positioning signal «close» 21 Spring-return functionSKD60SKD60USKD82.. AC 24 V 3-PositionSKD6..AC 24 VDC 0…10 V, 4…20 mA, 0…1000 Ω18/20SKD62 SKD62U SKD62UAY1 actuator N1 controllerF1 safety limiter (eg temperature limiter) F2frost protection thermostatterminals: 1 – 2 frost hazard / sensor is interrupted (thermostat closes with frost) 1 – 3 normal operation F3 Temperature detector F4 Frost protection monitor with 0…1000 Ω signal output, e.g. QAF21.. or QAF61.. (only SKC62UA) * G (SP) System potential AC 24 V G0 (SN) System neutral* Only with sequence control and the appropriate selector switch settings (see page 5ff)When using the safety limiter F1, ensure that no mistakes may occur on cableinsulation that may cancel out the temperature limiter function (applies to both 230 V as well as 24 V types).For SN earthing (e.g. PELV) comply under all circumstances with the note above.19/20DimensionsAll dimensions in mm*Height of actuator from valve plate without stroke inverter ASK50 = 300 mm Height of actuator from plate with stroke inverter ASK50 = 357 mm** SKD..U with knockouts for standard ½" conduit connectors (Ø 21.5 mm) ► = >100 mm ⎧ Minimum clearance from ceiling or wall for mounting, ►► = >200 mm ⎩ connection, operation, maintenance etc.20*109,535444456,5108181,580∅∅4561M 02* Maximum stroke = 20 mmReplacement partsOrder numbers for replacement partsCoverHand control 1)Control unitActuator typeSKD32.50 410456348 426855048 SKD32.51 410456348 426855048 SKD32.21 410456348 426855048 SKD82.50 410456348 426855048 SKD82.50U 410456348 426855048 SKD82.51 410456348 426855048 SKD82.51U 410456348 426855048SKD62 410456348 426855048 466857488 SKD62U 410456348 426855048 466857488 SKD60 410456348 426855048 466857598 SKD60U 410456348 426855048 466857598 SKD62UA4104563484268550484668575181)hand control, blue with mechanical partsASK50 stroke inverterRevision numbersPublished by:Siemens Switzerland Ltd. Building Technologies Division International Headquarters Gubelstrasse 226301 ZugSwitzerlandTel. +41 58-724 24 24/buildingtechnologies© Siemens Switzerland Ltd 1998 Delivery and technical specifications subject to change20/20。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要应用功能
智能水电厂VXT24(1)
经济安全运行系统
梯级优化调度流程
水文预报 负荷预测 预测 发电能力预测
计划
考虑大坝安全、设备状态 等,制定防洪、发电调度 方案
水电 调度
分析 评估 风险分析
水文预报精度评定 节水增发电考核
考核 评估
执行 跟踪执行、 计划修正
水库来水预报
水库来水预报功能支持对前 期和实时水文气象要素的分析比对, 提供多种数值预报方法,实现对水文 要素未来趋势和过程的准确预报。根 据预见期的长短,分为短期洪水预报、 日径流预报和中长期径流预报。
机网协调
智能水电厂VXT24(1)
计算机监控系统
提供了实时高效、安全可靠的 监控内核,功能强大、实用方便的 组态工具,精细美观的图形界面, 符合国际标准的数据接口,紧贴水 利水电用户和梯级集控调度应用需 求的各种常规及高级功能。
智能水电厂VXT24(1)
信息管理区处于安全分区中的 Ⅲ、Ⅳ区,其组织结构图如下图所 示,该区通过底层应用支撑服务与 其余系统进行同步。
主要内涵
坚强可靠 经济高效 集成开放 友好互动
基本特征
信息标准化 系统整体化 决策智能化
智能水电厂VXT24(1)
智能调度
经济优化
智能化水电厂
组成环节
统一标准接口
智能高级应用
基本专业应用 统一支撑平台 通信 信息
智运资 能行产 评维管 估护理
硬件支撑设备
状态监控
来水预测
大坝安全
智能水电厂VXT24(1)
分布在该区的主要应用系统有:
• 培训仿真系统 • 生产管理信息系统 • 专家系统 • 在线监测与状态检修专家系统 • 大坝安全检测与分析评估专家系统 • OA、档案系统
信息管理系统
智能水电厂VXT24(1)
生产管理信息系统
生产管理信息系统以设备管理为核心,包括从设备投运到设备退役的全 过程闭环管理。建设思路:从基于中心及中心驱动的基本设计思想出发,PMS 被设计成一个由五大中心及围绕五大中心分布的众多外围应用组成的有机体。
统
智
一
能
坚强
以提高安全稳定性、资源利用率、节能 经济运行水平、辅助决策能力、网厂协调能 力为目标,满足社会经济发展的需要,提高 供电可靠性和供电质量,更好地体现社会效 益和企业效益。
智能水电厂VXT24(1)
内涵与特征
智能化水电厂以坚强智能电网为服务对象,以网厂协调发展的 “无人值班”(少人值守)模式为基础,以通信平台为支撑,以信息化、 自动化、互动化为特征,实现“电力流、信息流、业务流”的高度一 体化融合。
以计算机、自动化技术为代表的信息自动化技术日新月异,已 经成为当今世界上发展最快的领域之一。相关智能调度系统的成功 建设提供了宝贵的经验和指导。水电厂生产运行各环节积累了大量 的专家知识库。
智能水电厂VXT24(1)
概述
智能化发电厂建立在可靠、高速的通信网 络的基础上,通过应用先进的传感和测量技术、 稳定的设备、可靠的控制方法以及智能化的决 策支持技术,实现发电厂的可靠、经济、高效、 环境友好和使用安全的目标。
信息管理软件由采集、 报表、图形、数据表格、 测点管理、数据管理、任 务管理七个部分组成。
大坝及工程运行安全评估专家系统通过对安全 监测数据的大规模自动化处理、分析、统计、比较、 判断,进而对大坝等建筑物安全状况进行综合评价, 使安全监测成果及时发挥应有的作用,为大坝的工 程运行管理提供专家决策支持。
智能水电厂VXT24(1)
OA业务
OA、档案管理系统(也称协同办公系统)主要包括公文管理、档案管 理、电子签章、办公助手、出差管理、会议管理、网络视频会议、信访管 理、调研管理、新闻宣传与采编、移动办公、公司通讯录等功能模块。
• 接入层:通过企业门户集成,提供定制 个性化服务、提供单点登录、身份认证 和多渠道接入等功能。
智能水电厂VXT24(1)
水库调度应用
梯级优化调度
为保证电网安全、发挥水电站经济效益、 提高防洪减灾能力以及发挥节能减排作用提 供了重要支撑。
主要包括:水情监测、水文预报 、调 洪演算 、水电优化调度 、水库调度风险分 析 、水库三维展示及应用等内容。
智能水电厂VXT24(1)
实时监控系统
监控系统
智能水电厂VXT24(1)
状态检修管理系统
建立设备信息资源
数 据
目录体系,将资源目录
调 体系内基于CIM模型的数
用 据模型与远程监测诊断
与 中心平台的数据进行映
处 射,定时、触发、定时
理 或手工方式进行数据的
获取和更新。
专家系统
智能水电厂VXT24(1)
大坝安全信息管理与分析评估
大坝安全稳定运行是电厂智能化的基础,大坝 安全信息管理与分析评估系统实现了无人值守下的 分布式数据采集、集中统一管理和安全评估。
智能水电厂VXT24(1)
2020/11/16
智能水电厂VXT24(1)
智能化水电厂建设背景近年来水电 Nhomakorabea业得到了飞速发展。截至2009年底,全国水电装 机容量为1.97亿千瓦,占发电装机总容量的23%,年发电量约5500 亿度。
随着时代的发展,现有水电厂自动化系统逐渐显露出一体化及 智能化程度低、标准差异性大、网厂协调能力差、电力安全防护较 弱等问题,智能决策困难,难以实现效率和效益的最大化,制约了 水电产业的发展与壮大。
• 设备中心代表了整个电厂生产管理的 核心对象、基本出发点和最终目标; • 计划任务中心代表了整个电厂生产管 理的工作方式和组织策划; • 运行工作中心代表了整个电厂生产管 理的执行过程、工作内容及工作结果; • 评价中心代表了整个电厂生产管理的 评估监督和价值取向; • 标准中心代表了整个电厂生产管理的 规范化和标准化力度和水平。
集控中心计算机监控系统具备 实时数据采集和处理,综合数据计 算、控制与调节、安全运行监视和 事故追忆等基本功能。
实时监控
发电计划
AGC EDC
AVC
保护系统
智能控制
发电 运行
高级功能有: • 自动发电控制AGC(Automatic Generation Control) • 自动电压控制AVC(Automatic Voltage Control) • 梯级电站经济运行调度系统EDC • 梯级集控中心与电网联合智能调度 • 视频联动 • 与状态检修专家系统的结合 • 与培训仿真系统的有机结合