高考数学一轮复习 第十一章概率与统计11.8用样本估计总体收尾精炼 理 新人教A版

合集下载

高考数学一轮复习必备:第91课时:第十一章概率与统计率抽样方法总体分布的估计

高考数学一轮复习必备:第91课时:第十一章概率与统计率抽样方法总体分布的估计

高考数学一轮复习必备:第91课时:第十一章概率与统计率抽样方法总体分布的估计课题:抽样方法、总体分布的估量一.复习目标:抽样方法、总体分布的估量1.会用简单随机抽样法、系统抽样法、分层抽样法等常用方法从总体中抽取样本;2.了解统计的差不多思想,会用样本频率估量总体分布.二.知识要点: 1.〔1〕统计的差不多思想是 . 〔2〕平均数的概念 .〔3〕方差公式为 .2.常用的抽样方法是 .1.某公司甲、乙、丙、丁四个地区分不有150 个、120个、180个、150个销售点.公司为了调查产品销售的情形,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情形,记这项调查为②.那么完成①、②这两项调查宜采纳的抽样方法依次是〔 B 〕 ()A 分层抽样法,系统抽样法 ()B 分层抽样法,简单随机抽样法()C 系统抽样法,分层抽样法 ()D 简单随机抽样法,分层抽样法2.样本方差由102211(5)10i i s x ==-∑,求得,那么1210x x x +++=50.3.设有n 个样本12,,,n x x x ,其标准差为x s ,另有n 个样本12,,,n y y y ,且35k k y x =+ (1,2,,)k n =,其标准差为y s ,那么以下关系正确的选项是 〔 B 〕()A 35y x s s =+()B 3y x s s = ()C y x s = ()D 5y x s =+4.某校为了了解学生的课外阅读情形,随机调查了50名学生,得到他们在某一天各自课外阅读所用时刻的数据,结果用右侧的条形图表示. 依照条形图可得这50名学生这一天平均每人的课外阅读时刻为〔 B 〕()A 0.6小时 ()B 0.9小时()C 1.0小时 ()D 1.5小时时刻(小时)5.x 是12100,,x x x 的平均数,a 是1240,,x x x 的平均数,b 是4142100,,x x x 的平均数,那么x ,a ,b 之间的关系为4060100a b x +=.6.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;从女学生中抽取的人数为80人,那么n =112.7.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定假如在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,假设6m =,那么在第7组中抽取的号码是 63 .8.在样本的频率分布直方图中,共有11个小长方形,假设中间一个小长方形的面积等于其他10个小长方形的面积之和的14,且样本容量为160,那么中间一组的频数为 32 .四.例题分析:例1.某中学有职员160人,其中中高级教师48人,一样教师64人,治理人员16人,行政人员32人,从中抽取容量为20的一个样本.以此例讲明,不管使用三种常用的抽样方法中的哪一种方法,总体中的每个个体抽到的概率都相同.解:〔1〕〔简单随机抽样〕可采纳抽签法,将160人从1到160编号,然后从中抽取20个签,与签号相同的20个人被选出.明显每个个体抽到的概率为2011608=. 〔2〕〔系统抽样法〕将160人从1到160编号,,按编号顺序分成20组,每组8人,先在第一组中用抽签法抽出k 号〔18k ≤≤〕,其余组的8k n +(1,2,3,19)n =也被抽到,明显每个个体抽到的概率为18. 〔3〕〔分层抽样法〕四类人员的人数比为3:4:1:2,又34206,2081010⨯=⨯= 12202,2041010⨯=⨯=,因此从中高级教师、一样教师、治理人员、行政人员中分不抽取6人、8人、2人、4人,每个个体抽到的概率为18.例2.质检部门对甲、乙两种日光灯的使用时刻进行了破坏性试验,10次试验得到的两种日光灯的使用时刻如下表所示,咨询:哪一种质量相对好一些?甲乙解:甲的平均使用寿命为:甲x =101214032130321202211012100⨯+⨯+⨯+⨯+⨯ =2121〔h 〕, 甲的平均使用寿命为 : 乙x =101214022130521201211012100⨯+⨯+⨯+⨯+⨯=2121〔h 〕, 甲的方差为:2甲S =101999191142122222+⨯+⨯+⨯+=129〔h 2〕, 乙的方差为:2乙S =101214022130521201211012100⨯+⨯+⨯+⨯+⨯=109〔h 2〕, ∵甲x =乙x ,且2甲S >2乙S ,∴乙的质量好一些.例3〔1〔2〕画出频率分布直方图;〔3〕依照累积频率分布,估量小于134的数据约占多少百分比.解:〔1〕样本的频率分布表与累积频率表如下:频率直方下:〔3〕依照累积频率分布,小于134的数据约占23100%19.2%120⨯≈. 五.课后作业:1.一个单位有职工160人,其中业务人员96人,治理人员40人,后勤人员24人,为了解职工躯体情形,要从中抽取一个容量为20的样本,如用分层抽样,那么治理人员应抽到多少个 〔 〕()A 3 ()B 12 ()C 5 ()D 102.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估量每月的销售总额.现采纳如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是 〔 〕()A 简单随机抽样 ()B 系统抽样 ()C 分层抽样 ()D 其它方式的抽样3.在抽查某产品的尺寸过程中,将其尺寸分成假设干组,[,]a b 是其中一组,抽查出的个体数在该组上的频率为m ,该组上的直方图的高为h ,那么||a b -等于 〔 〕()A hm ()B h m ()C m h()D 与,m h 无关 4.一个总体的个数为n ,用简单随机抽样的方法,抽取一个容量为2的样本,个体a 第一次未被抽到,个体a 第一次未被抽到第二次被抽到,以及整个过程中个体a 被抽到的概率分不是 .5.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n = .6.有一组数据:)(,,,,321321n n x x x x x x x x ≤≤≤≤ ,它们的算术平均值为10,假设去掉其中最大的n x ,余下数据的算术平均值为9;假设去掉其中最小的1x ,余下数据的算术平均值为11,那么1x 关于n 的表达式为 ;n x 关于n 的表达式为 .7.为了比较甲、乙两位划艇运动员的成绩,在相同的条件下对他们进行了6次测验,测得他们的平均速度〔/m s 〕分不如下:甲:2.7 3.8 3.0 3.7 3.5 3.1乙:2.9 3.9 3.8 3.4 3.6 2.8试依照以上数据,判定他们谁更优秀.8.有一个容量为100的样本,数据的分组及各组的频数如下:〔19.100名学生分四个爱好小组参加物理、化学、数学、运算机竞赛辅导,人数不是30、27、23、20.〔1〕列出学生参加爱好小组的频率分布表;〔2〕画出表示频率分布的条形图.。

北师大版版高考数学一轮复习第十一章统计与统计案例用样本估计总体教学案理

北师大版版高考数学一轮复习第十一章统计与统计案例用样本估计总体教学案理

一、知识梳理1.统计图表(1)频率分布直方图的画法步骤1求极差(即一组数据中最大值与最小值的差);2决定组距与组数;3将数据分组;4列频率分布表;5画频率分布直方图.(2)频率分布折线图1频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(3)茎叶图的画法步骤第一步:将每个数据分为茎(高位)和叶(低位)两部分;第二步:将最小茎与最大茎之间的数按大小次序排成一列;第三步:将各个数据的叶依次写在其茎的两侧.2.样本的数字特征(1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数.(2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.(3)平均数:把错误!称为a1,a2,…,a n这n个数的平均数.(4)标准差与方差:设一组数据x1,x2,x3,…,x n的平均数为错误!,则这组数据的标准差和方差分别是s=错误!s2=错误![(x1—错误!)2+(x2—错误!)2+…+(x n—错误!)2]常用结论1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示错误!,频率=组距×错误!.(2)在频率分布直方图中,各小长方形的面积总和等于1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,mx3+a,…,mx n+a 的平均数是m错误!+a.(2)数据x1,x2,…,x n的方差为s2.1数据x1+a,x2+a,…,x n+a的方差也为s2;2数据ax1,ax2,…,ax n的方差为a2s2.二、教材衍化1.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为()A.4B.8C.12D.16解析:选B.设频数为n,则错误!=0.25,所以n=32×错误!=8.2.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是()A.91.5和91.5B.91.5和92C.91和91.5D.92和92解析:选A.因为这组数据由小到大排列为87,89,90,91,92,93,94,96,所以中位数是错误!=91.5,平均数错误!=错误!=91.5.3.如图是100位居民月均用水量的频率分布直方图,则月均用水量为[2,2.5)范围内的居民数有________人.解析:由频率分布直方图可知,月均用水量为[2,2.5)范围内的居民所占频率为0.5×0.5=0.25,所以月均用水量为[2,2.5)范围内的居民数为100×0.25=25.答案:254.甲、乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是:甲0 10 220 3124乙23110 2110 1则机床性能较好的为________.解析:因为错误!甲=1.5,错误!乙=1.2,s错误!=1.65,s错误!=0.76,所以s错误!<s 错误!,所以乙机床性能较好.答案:乙一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)一组数据的方差越大,说明这组数据的波动越大.()(2)在频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间内的频率越大.()(3)茎叶图中的数据要按从小到大的顺序写,相同的数据可以只记一次.()(4)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.()(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数的估计值.()答案:(1)√(2)√(3)×(4)√(5)√二、易错纠偏错误!错误!(1)平均数与方差的性质理解出错;(2)中位数、众数、平均数的求法不清导致出错.1.若数据x1,x2,x3,…,x n的平均数错误!=5,方差s2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2B.16,2C.16,18 D.16,9解析:选C.因为x1,x2,x3,…,x n的平均数为5,所以错误!=5,所以错误!+1=3×5+1=16,因为x1,x2,x3,…,x n的方差为2,所以3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选C.2.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m,众数为n,平均数为错误!,则m,n,错误!的大小关系为________.(用“<”连接)解析:由题图可知,30名学生得分的中位数为第15个数和第16个数(分别为5,6)的平均数,即m=5.5;又5出现次数最多,故n=5;错误!=错误!(2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×10)≈5.97.故n<m<错误!.答案:n<m<错误!茎叶图(自主练透)1.如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()A.3,5B.5,5C.3,7 D.5,7解析:选A.根据两组数据的中位数相等可得65=60+y,解得y=5,又它们的平均值相等,所以错误!=错误!,解得x=3.故选A.2.(2020·陕西渭南模拟)已知甲,乙两名篮球运动员进行罚球训练,每人练习10组,每组罚球40个,每组投中个数的茎叶图如图所示,则下列结论错误的是()A.甲投中个数的极差是29B.乙投中个数的众数是21C.甲的投中率比乙高D.甲投中个数的中位数是25解析:选D.由茎叶图可知甲投中个数的极差为37—8=29,故A正确;易知乙投中个数的众数是21,故B正确;甲的投中率为错误!=0.535,乙的投中率为错误!=0.4225,所以甲的投中率比乙高,C正确;甲投中个数的中位数为错误!=23,D不正确,故选D.3.某学生在一门功课的22次考试中,所得分数的茎叶图如图所示,则此学生该门功课考试分数的极差与中位数之和为()A.117 B.118C.118.5D.119.5解析:选B.22次考试中,所得分数最高的为98,最低的为56,所以极差为98—56=42,将分数从小到大排列,中间两数为76,76,所以中位数为76,所以此学生该门功课考试分数的极差与中位数之和为42+76=118.错误!茎叶图中的三个关注点(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一.(2)重复出现的数据要重复记录,不能遗漏.(3)给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.频率分布直方图(多维探究)角度一求样本的频率、频数(2020·湖南五市十校联考)在某次赛车中,50名参赛选手的成绩(单位:min)全部介于13到18之间(包括13和18),将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18].其频率分布直方图如图所示,若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为()A.39 B.35C.15D.11【解析】由频率分布直方图知成绩在[15,18]内的频率为(0.38+0.32+0.08)×1=0.78.所以成绩在[13,15)内的频率为1—0.78=0.22.则成绩在[13,15)内的选手有50×0.22=11(人),即这50名选手中获奖的人数为11,故选D.【答案】D角度二求样本的数字特征(2019·高考全国卷Ⅲ改编)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【解】(1)由已知得0.70=a+0.20+0.15,故a=0.35.b=1—0.05—0.15—0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.角度三与概率结合的问题(2020·安徽芜湖一模)某社区为了解该社区退休老人每天的平均户外活动时间,从该社区退休老人中随机抽取了100位老人进行调查,获得了每人每天的平均户外活动时间(单位:时),活动时间按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成样本的频率分布直方图如图所示.(1)求图中a的值;(2)估计该社区退休老人每人每天的平均户外活动时间的中位数;(3)在[1,1.5),[1.5,2)这两组中采用分层抽样的方法抽取7人,再从这7人中随机抽取2人,求抽取的2人恰好在同一个组的概率.【解】(1)由频率分布直方图,可知平均户外活动时间在[0,0.5)内的频率为0.08×0.5=0.04.同理,平均户外活动时间在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5)内的频率分别为0.08,0.20,0.25,0.07,0.04,0.02,由1—(0.04+0.08+0.20+0.25+0.07+0.04+0.02)=0.5a+0.5a,解得a=0.30.(2)设中位数为m时.因为前5组的频率之和为0.04+0.08+0.15+0.20+0.25=0.72>0.5,而前4组的频率之和为0.04+0.08+0.15+0.20=0.47<0.5,所以2≤m<2.5.所以0.50×(m—2)=0.5—0.47,解得m=2.06.故可估计该社区退休老人每人每天的平均户外活动时间的中位数为2.06时.(3)由题意得平均户外活动时间在[1,1.5),[1.5,2)内的人数分别为15,20.按分层抽样的方法在[1,1.5),[1.5,2)内分别抽取3人,4人,从7人中随机抽取2人,共有C错误!=21种方法,抽取的两人恰好都在同一个组有C错误!+C错误!=9种方法,故抽取的2人恰好在同一个组的概率P=错误!=错误!.错误!频率、频数、样本容量的计算方法错误!=频率,错误!=样本容量,样本容量×频率=频数.[提醒] 制作好频率分布表后,可以利用各组的频率之和是否为1来检验该表是否正确.1.在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是()A.15B.18C.20 D.25解析:选A.根据频率分布直方图,得第二小组的频率是0.04×10=0.4,因为频数是40,所以样本容量是错误!=100,又成绩在80~100分的频率是(0.01+0.005)×10=0.15,所以成绩在80~100分的学生人数是100×0.15=15.故选A.2.(2020·安徽淮南二模)某乡镇为了打赢脱贫攻坚战,决定盘活贫困村的各项经济发展要素,实施了产业、创业、就业“三业并举”工程.在实施过程中,引导某贫困村农户因地制宜开展种植某经济作物.该类经济作物的质量以其质量指标值来衡量,质量指标值越大表明质量越好,记其质量指标值为k,其质量指标的等级划分如表:质量指标值k产品等级k≥90优秀80≤k<90良好75≤k<80合格k<75不合格品种的各10 000件产品,测量了每件产品的质量指标值,得到下面产品质量指标值频率分布直方图(图甲和图乙).(1)若将频率视为概率,从乙品种产品中有放回地随机抽取3件,记“抽出乙品种产品中至少有1件优等品(质量指标值k≥80为优等品)”为事件A,求事件A发生的概率P(A);(结果保留小数点后3位)(2)若甲、乙两个品种的销售利润率y与质量指标值k满足下表:质量指标值k k≥9080≤k<9075≤k<80k<75销售利润率y3t5t2t2—t其中错误!<t<解:(1)设“从乙品种产品中抽取1件为优等品”的概率为P,则根据频率分布直方图可得P=(0.03+0.08+0.04+0.02)×5=0.85,则P(A)=1—C错误!(1—P)3=1—0.153≈0.997.(2)由频率分布直方图可得,甲品种产品的利润率的分布列为y3t5t2t2P0.20.70.1Ey甲=0.2×3t+0.7×5t2+22;乙品种产品的利润率的分布列为y3t5t2t2—tP0.30.550.10.05Ey乙=0.3×3t+0.55×5t2+0.1×t2+0.05×(—t)=2.85t2+0.85t.Ey甲—E(y)乙=3.6t2+0.6t—(2.85t2+0.85t)=0.75t2—0.25t=0.25t(3t—1),由于错误!<t<错误!,所以Ey甲—Ey乙<0,即Ey甲<Ey乙.故种植乙品种的平均利润率较大.样本数字特征的求解与应用(师生共研)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员第1次第2次第3次第4次第5次甲8791908993乙8990918892(2)甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图:1分别求出两人得分的平均数与方差;2根据图和上面算得的结果,对两人的训练成绩作出评价.【解】(1)错误!甲=错误!(87+91+90+89+93)=90,错误!乙=错误!(89+90+91+88+92)=90,s错误!=错误![(87—90)2+(91—90)2+(90—90)2+(89—90)2+(93—90)2]=4,s错误!=错误![(89—90)2+(90—90)2+(91—90)2+(88—90)2+(92—90)2]=2.故填2.(2)1由题图可得甲、乙两人五次测试的成绩分别为甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.错误!甲=错误!=13;错误!乙=错误!=13,s错误!=错误![(10—13)2+(13—13)2+()2+(14—13)2+(16—13)2]=4;s错误!=错误![(13—13)2+(14—13)2+()2+()2+(14—13)2]=0.8.2由s错误!>s错误!,可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.错误!(1)众数、中位数、平均数及方差的意义1平均数与方差都是重要的数字特征,是对总体的一种简明地描述;2平均数、中位数、众数描述其集中趋势,方差和标准差描述波动大小.(2)在计算平均数、方差时可利用平均数、方差的有关结论.1.甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则()A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差解析:选C.错误!甲=错误!(4+5+6+7+8)=6,错误!乙=错误!(5×3+6+9)=6,甲的成绩的方差为错误!(22×2+12×2)=2,乙的成绩的方差为错误!(12×3+32×1)=2.4.甲的成绩的中位数为6,乙的成绩的中位数为5,甲的成绩的极差为4,乙的成绩的极差为4,故选C.2.(2020·贵阳市监测考试)在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的6次模拟测试成绩(百分制)的茎叶图(如图).若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由.解:学生甲的平均成绩错误!甲=错误!=82,学生乙的平均成绩错误!乙=错误!=82,又s错误!=错误!×[(68—82)2+(76—82)2+(79—82)2+(86—82)2+(88—82)2+(95—82)2]=77,s错误!=错误!×[(71—82)2+(75—82)2+(82—82)2+(84—82)2+(86—82)2+(94—82)2]=错误!,则错误!甲=错误!乙,s错误!>s错误!,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.[基础题组练]1.(2019·高考全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差解析:选A.记9个原始评分分别为a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知e 为7个有效评分与9个原始评分的中位数,故不变的数字特征是中位数,故选A.2.(2020·陕西商洛质检)在一次53.5千米的自行车个人赛中,25名参赛选手成绩(单位:分钟)的茎叶图如图所示,现将参赛选手按成绩由好到差编为1~25号,再用系统抽样的方法从中选取5人,已知选手甲的成绩性为85分钟,若甲被选取,则被选取的其余4名选手的成绩的平均数为()A.95B.96C.97 D.98解析:选C.由系统抽样法及已知条件可知被选中的其他4人的成绩分别是88,94,99,107,故平均数为错误!=97,故选C.3.(2020·广东珠海摸底)某班级在一次数学竞赛中设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为一等奖20元,二等奖10元,三等奖5元,参与奖2元,获奖人数的分配情况如图所示,则以下说法不正确的是()A.获得参与奖的人数最多B.各个奖项中三等奖的总费用最高C.购买奖品的平均费用为9.25元D.购买奖品的费用的中位数为2元解析:选C.设全班人数为a.由扇形统计图可知.一等奖占5%,二等奖占10%,三等奖占30%,参与奖占55%,获得参与奖的人数最多,故A正确;一等奖的总费用为5%a×20=a.二等奖的总费用为10%a×10=a,三等奖的总费用为30%a×5=错误!a,参与奖的总费用为55%a×2=错误!a,所以各个奖项中三等奖的总费用最高,故B正确;购买奖品的平均费用为5%×20+10%×10+30%×5+55%×2=4.6(元),故C错误;参与奖占55%,所以购买奖品的费用的中位数为2元,故D 正确.故选C.4.(2020·安徽六安毛坦厂中学月考)某位教师的家庭总收入为80 000元,各种用途占比统计如下面的折线图.收入的各种用途占比统计如下面的条形图,已知的就医费用比增加了4750元,则该教师的家庭总收入为()A.100 000元B.95000元C.90 000元D.85000元解析:选D.由已知得,2017年的就医费用为80 000×10%=8 000(元).故的就医费用为8 000+4750=12750(元),所以该教师的家庭总收入为错误!=85000(元).故选D.5.甲、乙两名同学6次考试的成绩统计如图所示,甲、乙两组数据的平均数分别为错误!甲,错误!乙,标准差分别为σ甲,σ乙,则()A.错误!甲<错误!乙,σ甲<σ乙B.错误!甲<错误!乙,σ甲>σ乙C.错误!甲>错误!乙,σ甲<σ乙D.错误!甲>错误!乙,σ甲>σ乙解析:选C.由题图可知,甲同学除第二次考试成绩略低于乙同学外,其他考试成绩都远高于乙同学,可知错误!甲>错误!乙,题图中数据显示甲同学的成绩比乙同学稳定,故σ甲<σ乙.6.某中学奥数培训班共有14人,分为两个小组,在一次阶段测试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则n—m的值是________.解析:由甲组学生成绩的平均数是88,可得错误!=88,解得m=3.由乙组学生成绩的中位数是89,可得n=9,所以n—m=6.答案:67.已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________、________.解析:由题图甲可知学生总人数是10 000,样本容量为10 000×2%=200,抽取的高中生人数是2000×2%=40,由题图乙可知高中生的近视率为50%,所以抽取的高中生的近视人数为40×50%=20.答案:200 208.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理后,作出了如图所示的频率分布直方图.已知图中从左到右的前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,则被抽查的美术生的人数是________.解析:设被抽查的美术生的人数为n,因为后2个小组的频率之和为(0.037 5+0.0125)×5=0.25,所以前3个小组的频率之和为0.75.又前3个小组的频率之比为1∶3∶5,第2个小组的频数为15,所以前3个小组的频数分别为5,15,25,所以n=错误!=60.答案:609.我国是世界上严重缺水的国家,城市缺水问题较为突出.某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准x(吨),月用水量不超过x的部分按平价收费,超出x的部分按议价收费.为了了解全市居民用水量的分布情况,通过抽样,获得了100位居民某年的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求频率分布直方图中a的值;(2)已知该市有80万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值,并说明理由.解:(1)由频率分布直方图,可得(0.08+0.16+a+0.40+0.52+a+0.12+0.08+0.04)×0.5=1,解得a=0.30.(2)由频率分布直方图知,100位居民每人月均用水量不低于3吨的频率为(0.12+0.08+0.04)×0.5=0.12.由以上样本频率分布,可以估计全市80万居民中月均用水量不低于3吨的人数为800 000×0.12=96 000.(3)因为前6组的频率之和为(0.08+0.16+0.30+0.40+0.52+0.30)×0.5=0.88>0.85,前5组的频率之和为(0.08+0.16+0.30+0.40+0.52)×0.5=0.73<0.85,所以2.5≤x<3.由0.3×(x—2.5)=0.85—0.73,解得x=2.9.因此,估计月用水量标准为2.9吨时,85%的居民每月的用水量不超过标准.10.有A,B,C,D,E五位工人参加技能竞赛培训.现分别从A,B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据:(1)A,B二人预赛成绩的中位数分别是多少?(2)现要从A,B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;(3)若从参加培训的5位工人中选2人参加技能竞赛,求A,B二人中至少有一人参加技能竞赛的概率.解:(1)A的中位数是错误!=84,B的中位数是错误!=83.(2)派B参加比较合适.理由如下:错误!B=错误!(78+79+81+82+84+88+93+95)=85,错误!A=错误!(75+80+80+83+85+90+92+95)=85,s错误!=错误![(78—85)2+(79—85)2+(81—85)2+(82—85)2+(84—85)2+(88—85)2+(93—85)2+(95—85)2]=35.5,s错误!=错误![(75—85)2+(80—85)2+(80—85)2+(83—85)2+(85—85)2+(90—85)2+(92—85)2+(95—85)2]=41,因为错误!A=错误!B,但s错误!<s错误!,说明B稳定,派B参加比较合适.(3)5位工人中选2人有10种:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E);A,B都不参加的有3种:(C,D),(C,E),(D,E),A,B二人中至少有一人参加技能竞赛的概率P=1—错误!=错误!.[综合题组练]1.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据环保部门某日早6点至晚9点在A县、B县两个地区附近的PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,A县、B县两个地区浓度的方差较小的是()A.A县B.B县C.A县、B县两个地区相等D.无法确定解析:选A.根据茎叶图中的数据可知,A县的数据都集中在0.05和0.08之间,数据分布比较稳定,而B县的数据分布比较分散,不如A县数据集中,所以A县的方差较小.2.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x—y|的值为()A.1B.2C.3D.4解析:选D.由题意知这组数据的平均数为10,方差为2,可得:x+y=20,(x—10)2+(y—10)2=8,设x=10+t,y=10—t,由(x—10)2+(y—10)2=8,得t2=4,所以|x—y|=2|t|=4.3.设样本数据x1,x2,…,x2017的方差是4,若y i=2x i—1(i=1,2,…,2017),则y,y2,…,y2017的方差为________.1解析:设样本数据的平均数为错误!,则y i=2x i—1的平均数为2错误!—1,则y1,y2,…,y20的方差为错误![(2x1—1—2错误!+1)2+(2x2—1—2错误!+1)2+…+(2x2017—117—2错误!+1)2]=4×错误![(x1—错误!)2+(x2—错误!)2+…+(x2017—错误!)2]=4×4=16.答案:164.我市某高中从高三年级甲、乙两个班中各选出7名学生参加全国高中数学联赛(河南初赛),他们取得的成绩(满分140分)的茎叶图如图所示,其中甲班学生成绩的中位数是81,乙班学生成绩的平均数是86,若正实数a,b满足a,G,b成等差数列且x,G,y成等比数列,则错误!+错误!的最小值为________.解析:由甲班学生成绩的中位数是81,可知81为甲班7名学生的成绩按从小到大的顺序排列的第4个数,故x=1.由乙班学生成绩的平均数为86,可得(—10)+(—6)+(—4)+(y—6)+5+7+10=0,解得y=4.由x,G,y成等比数列,可得G2=xy=4,由正实数a,b满足a,G,b 成等差数列,可得G=2,a+b=2G=4,所以错误!+错误!=(错误!+错误!)×(错误!+错误!)=错误!(1+错误!+错误!+4)≥错误!×(5+4)=错误!(当且仅当b=2a时取等号).故错误!+错误!的最小值为错误!.答案:错误!5.(2020·东北三省三校二模)一个经销鲜花产品的微店,为保障售出的百合花品质,每天从某省鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,某省空运来的百合花每支进价1.6元,本地供应商处的百合花每支进价1.8元,微店这10天的订单中百合花的日需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.(1)求今年四月前10天订单中百合花日需求量的平均数和众数,并完成频率分布直方图;(2)预计四月的后20天,订单中百合花日需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(1)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从某省固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?解:(1)四月前10天订单中百合需求量众数为255,平均数错误!=错误!×(231+241+243+244+251+252+255+255+263+265)=250.频率分布直方图如图:(2)设订单中百合花的日需求量为a(支),由(1)中频率分布直方图知,a可能取值为235,245,255,265,相应频率分别为0.1,0.3,0.4,0.2.所以20天中a=235,245,255,265相应的天数为2天,6天,8天,4天.1若空运250支,a=235,当日利润为235×2—250×1.6=70(元),a=245,当日利润为245×2—250×1.6=90(元),a=255,当日利润为255×2—250×1.6—5×1.8=101(元),a=265,当日利润为265×2—250×1.6—15×1.8=103(元),20天总利润为70×2+90×6+101×8+103×4=1900(元).2若空运255支,a=235,当日利润为235×2—255×1.6=62(元),a=245,当日利润为245×2—255×1.6=82(元),a=255,当日利润为255×2—255×1.6=102(元),a=265,当日利润为265×2—255×1.6—10×1.8=104(元),20天总利润为62×2+82×6+102×8+104×4=1848(元).因为1900>1848,所以每天空运250支百合花,四月后20天总利润更大.6.某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X的分布列和均值.解:(1)错误!甲=错误!(7+9+11+13+13+16+23+28)=15,错误!乙=错误!(7+8+10+15+17+19+21+23)=15,s错误!=错误![(—8)2+(—6)2+(—4)2+(—2)2+(—2)2+12+82+132]=44.75,s错误!=错误![(—8)2+(—7)2+(—5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P1=错误!,P2=错误!,两人失分均超过15分的概率为P1P2=错误!,X的所有可能取值为0,1,2.依题意,X~B错误!,P(X=k)=C错误!错误!错误!错误!错误!,k=0,1,2,则X的分布列为X012P错误!错误!错误!X的均值EX=2×错误!。

陕西省普通高等学校职业教育单独招生考试数学复习一本通第十一章概率与统计初步

陕西省普通高等学校职业教育单独招生考试数学复习一本通第十一章概率与统计初步
3.概率的统计定义
4.概率的性质
知识清单 知识点二 古典概型
1.古典概型的相关定义
知识清单 知识点二 古典概型
2.古典概型的概率公式
3.求古典概型的基本步骤
知识清单
知识点三 互斥事件和对立事件
1.互斥事件的定义 不可能同时发生的两个事件叫互斥事件。 2.对立事件的定义 必有一个发生的互斥事件叫作对立事件,事件A的对立事件通常记 作A 3.互斥事件概率的加法公式
知识清单
知识点二 排列与组合的基础知识
3. 解决排列与组合问题的常见方法
(5)分排问题直排处理:分若干排的问题可按一排处理. (6)同元分组问题“隔板法”:各个元素不加区别,用隔板插入计算分组情况数. (7)对于排列与组合综合问题,需先分组后排列:对于元素较多,情形较复杂的问题,可根据 结果要求,先分为不同的类型的几组,然后对每一组分别进行排列,最后求和.
真题链接
巩固训练
真题链接
谢谢观看
知识清单 知识点四 离散型随机变量及其分布、数字特征
4.离散型随机变量的概率分布列
知识清单 知识点四 离散型随机变量及其分布、数字特征
5.数学期望与方差
知识清单 知识点四 离散型随机变量及其分布、数字特征
6.二项分布
典例精析

典例精析

典例精析

典例精析

典例精析

典例精析

典例精析
典例精析

典例精析

典例精析

典例精析

典例精析

典例精析

典例精析

典例精析

巩固训练
基础实战

高三数学一轮复习 第十一章 统计、统计案例 11.2用样本估计总体课件 新人教B版

高三数学一轮复习 第十一章 统计、统计案例 11.2用样本估计总体课件 新人教B版
解析 x=20-(2+3+5+4+2)=4, P=2+3+204+5=0.7 或 P=1-4+202=170 =0.7.
.
4.(2010·福建)若某校高一年级 8 个班参加 合唱比赛的得分如茎叶图所示,则这组 数据的中位数和平均数分别是( )
A.91.5 和 91.5 C.91 和 91.5
B.91.5 和 92 D.92 和 92
.
解析 将这组数据从小到大排列,得 87,89, 90,91,92,93,94,96. 故平均数 x =87+89+90+91+8 92+93+94+96 =91.5, 中位数为91+2 92=91.5,故选 A. 答案 A
.
5.某工厂对一批电子元件进行了抽样检测,根据抽样检测后元 件使用寿命(单位:小时)的数据绘制的频率分布直方图如图 所示,其中元件使用寿命的范围是[100,600],样本数据分组 为[100,200),[200,300),[300,400),[400,500),[500,600], 若样本元件的总数为 1 000 个,则样本中使用寿命大于或等 于 200 小时并且小于 400 小时的元件的个数是( )
第十一章 统计、统计案例
§11.2 用样本估计总体
基础知识 自主学习
要点梳理
1.频率分布直方图 (1)通常我们对总体作出的估计一般分成两种,一种 是用 样本的频率分布估计总体的分布 ,另一 种是用 样本的数字特征估计总体的数字特征. (2)在频率分布直方图中,纵轴表示频 组率 距,数据落在 各小组内的频率用 各小长方形的面积 表示.各 小长方形的面积总和等于 1.
请结合频率分布直方图提供的信息,解答下列问题:
.
(1)样本的容量是多少? (2)列出频率分布表; (3)成绩落在哪个范围内的人数最多?并求该小组的 频数、频率; (4)估计这次竞赛中,成绩不低于 60 分的学生占总人 数的百分比. 解 (1)由于各组的组距相等,所以各组的频率与各 小长方形的高成正比且各组频率的和等于 1,那么各 组的频率分别为116,136,166,146,126.设该样本容量 为 n,则6n=126,所以样本容量为 n=48.

高考数学一轮复习 第十一章 概率课件 新人教版

高考数学一轮复习 第十一章 概率课件 新人教版
第十页,共41页。
四、互斥事件有一个发生的概率 (1)如果事件A、B互斥,则P(A+B)=P(A)+P(B). 推广:如果事件A1,A2,…An两两互斥(彼此互斥), 那么事件A1+A2+…+An发生的概率,等于(děngyú)这n个 事件分别发生的概率的和,即P(A1+A2+…+An)=P(A1) +P(A2)+…+P(An).
第十一页,共41页。
●易错知识 一、不理解概率的意义(yìyì)失误 1.某医院治疗一种疾病的治愈率为10%,那么前9个病 人都没有治愈,第10个人就一定能治愈吗? 回答:_______________________________________. 答案:如果把治疗一个病人作为一次试验,治愈率是 10%,指随着试验次数的增加,即治疗的病人数的增加,大 约有10%的人能够治愈,对于一次试验来说,其结果是随机 的,因此前9个病人没有治愈是可能的,对第10个人来说, 其结果仍然是随机的,即有可能治愈,也可能没有治愈.
第二十五页,共41页。
判定以下四个命题的真假: ①将一枚硬币抛掷(pāozhì)二次,设事件A:“二次都 出现正面”,事件B:“二次都出现反面”.则事件A与事 件B是对立事件. ②在命题①中,事件A与事件B是互斥事件. ③在10件产品中有3件是次品,从中任取3件.事件A: “所取3件中最多有2件是次品.”事件B:“所取3件中至 少有2件是次品”.则事件A与事件B是互斥事件. ④两事件对立是这两个事件互斥的充分不必要条件.
第二十二页,共41页。
(1)A与C;(2)B与E;(3)B与D;(4)B与C; (5)C与E. [分析] 对照互斥事件、对立事件的定义(dìngyì)进行判 断. [解析] (1)由于事件C“至多订一种报”中有可能只订甲 报,即事件A与事件C有可能同时发生,故A与C不是互斥事 件.

北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 概率与统计中的综合问题

北师版高考数学一轮总复习课后习题 第十一章 计数原理、概率、随机变量及其分布 概率与统计中的综合问题

解答题专项六概率与统计中的综合问题解答题专项练《素养分级练》P3961.(河北张家口三模)港珠澳大桥桥隧全长55千米,桥面为双向六车道高速公路,设计速度为100千米/小时,限制速度为90~120千米/小时,通车后由桥上监控显示每辆车行车和通关时间的频率分布直方图如图所示:(1)估计车辆通过港珠澳大桥的平均时间t(单位:分钟)(精确到0.1);(2)以(1)中的平均时间t作为μ,车辆通过港珠澳大桥的时间X近似服从正态分布N(μ,36),任意取通过大桥的1 000辆汽车,求所用时间少于39.5分钟的车辆大致数目(精确到整数).附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.6826,P(μ-2σ<X≤μ+2σ)≈0.954 4.解:(1)由频率分布直方图可得t =32.5×0.015+37.5×0.18+42.5×0.27+47.5×0.3+52.5×0.2+57.5×0.035≈45.5(分钟). (2)由题知X~N(45.5,36),所以P(X<39.5)=P(X<μ-σ)=12[1-P(μ-σ<X≤μ+σ)]=0.1587,所以1000×0.1587≈159,故所用时间少于39.5分钟的车辆大致数目为159. 2.一场科普知识竞答比赛由笔试和抢答两部分组成,若笔试和抢答满分均为100分,其中5名选手的成绩如下表所示:对于这5名选手,根据表中的数据,试解答下列两个小题: (1)求y 关于x 的线性回归方程;(2)现要从笔试成绩在90分或90分以上的选手中选出2名参加一项活动,以ξ表示选中的选手中笔试和抢答成绩的平均分高于90分的人数,求随机变量ξ的分布列及数学期望E(ξ). 附:b ^=∑i=1n(x i -x )(y i -y )∑i=1n(x i -x )2,a ^=y −b ^x .解:(1)x =87+90+91+92+955=91,y =86+89+89+92+945=90,∑i=15(x i -x )2=(-4)2+(-1)2+02+12+42=34,∑i=15(x i -x )(y i -y )=(-4)×(-4)+(-1)×(-1)+0×(-1)+1×2+4×4=35,所以b ^=3534,a ^=y −b ^x =90-3534×91=-12534,故线性回归方程为y ^=3534x-12534.(2)随机变量ξ的可能取值为0,1,2.因为笔试成绩在90分或90分以上的选手有S 2,S 3,S 4,S 5,共4人,他们笔试和抢答的成绩平均分分别为89.5,90,92,94.5,平均分高于90分的有2人,所以P(ξ=0)=C 22C2=16;P(ξ=1)=C 21C 21C 2=23;P(ξ=2)=C 22C 2=16,故ξ的分布列为所以E(ξ)=0×16+1×23+2×16=1.3.(湖北襄阳高三检测)为落实教育部的双减政策,义务教育阶段充分开展课后特色服务.某校初中部的篮球特色课深受学生喜爱,该校期末将进行篮球定点投篮测试,规则为:每人至多投3次,先在M 处投一次三分球,投进得3分,未投进不得分,以后均在N 处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如下图表:甲乙若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)已知该校有300名学生的投篮水平与甲同学相当,求这300名学生通过测试人数的数学期望;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.解:(1)甲同学两分球投篮命中的概率为510+410+310+610+7105=0.5,甲同学三分球投篮命中的概率为110+0+110+210+1105=0.1,设甲同学累计得分为X,则P(X=4)=0.9×0.5×0.5=0.225,P(X=5)=0.1×0.5+0.1×0.5×0.5=0.075,则P(X≥4)=P(X=4)+P(X=5)=0.3,所以甲同学通过测试的概率为0.3.设这300名学生通过测试的人数为Y,由题设Y~B(300,0.3),所以E(Y)=300×0.3=90.(2)乙同学两分球投篮命中率为210+410+310+510+6105=0.4,乙同学三分球投篮命中率为110+210+310+110+3105=0.2.设乙同学累计得分为Y,则P(Y=4)=0.8×0.4×0.4=0.128,P(Y=5)=0.2×0.4+0.2×0.6×0.4=0.128.设“甲得分比乙得分高”为事件A,“甲、乙两位同学均通过了测试”为事件B,则P(AB)=P(X=5)·P(Y=4)=0.075×0.128=0.0096,P(B)=[P(X=4)+P(X=5)]·[P(Y=4)+P(Y=5)]=0.0768,由条件概率公式可得P(A|B)=P(AB)P(B)=0.00960.0768=18.4.(山东潍坊三模)盲盒,是指消费者不能提前得知具体产品款式的玩具盒子,具有随机性.因其独有的新鲜性、刺激性及社交属性而深受各个年龄段人们的喜爱.已知M系列盲盒共有12个款式,一批盲盒中,每个盲盒随机装有一个款式,甲同学已经买到3个不同款,乙、丙同学分别已经买到m 个不同款,已知三个同学各自新购买一个盲盒,且相互之间无影响,他们同时买到各自的不同款的概率为13.(1)求m;(2)设X 表示三个同学中各买到自己不同款的总人数,求X 的分布列和数学期望.解:(1)由题意三个同学同时买到各自的不同款的概率为912×12-m 12×12-m 12=13,解得m=20或4,因为0<m≤12,所以m=4.(2)由题意知X 的所有可能取值为0,1,2,3, P(X=0)=312×412×412=136; P(X=1)=912×412×412+312×812×412×2=736;P(X=2)=912×812×412×2+312×812×812=49;P(X=3)=13. 其分布列为所以数学期望E(X)=0×136+1×736+2×49+3×13=2512.5.一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)是否可以认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”,P(B|A)|A)P(B|A)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:R=P(A|B)·(A|B) P(A|B);(ⅱ)利用该调查数据,给出P(A|B),P(A|B)的估计值,并利用(ⅰ)的结果给出R的估计值.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).解:(1)由题意可知,n=200,所以χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=200×(40×90-10×60)2100×100×50×150=24>6.635,所以我们有99%的把握可以推断患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(ⅰ)证明:R=P(B|A)P(B|A)P(B|A)=P(B|A)·(B|A) P(B|A)=P(AB)P(A)P(AB)P(A)·P(AB)P(A)P(AB)P(A)=(AB)P(AB)·P(AB)=P(AB)P(B)P(AB)P(B)·(AB)P(B)P(AB)P(B)=P(A|B)·(A|B)P(A|B).(ⅱ)P(A|B)=P(AB)P(B)=n(AB)n(B)=40100=0.4,P(A|B)=AB)P(B)=AB)n(B)=10100=0.1,同理P(A|B)=(AB)P(B)=(AB)n(B)=90100=0.9,P(A|B)=P(AB)P(B)=n(AB)n(B)=60100=0.6,所以R=P(A|B)·(A|B)P(A|B)=0.4×0.90.6×0.1=6.所以指标R的估计值为6.6.(江西鹰潭二模)为迎接北京冬季奥运会,某市对全体高中学生举行了一次关于冬季奥运会相关知识的测试.统计人员从全市高中学生中随机抽取200名学生成绩作为样本进行统计,测试满分为100分,统计后发现所有学生的测试成绩都在区间[40,100]内,并制成如下所示的频率分布直方图.(1)估计这200名学生的平均成绩(同一组中的数据用该区间的中点值为代表);(2)在这200名学生中用分层随机抽样的方法从成绩在[70,80),[80,90),[90,100]的三组中抽取了10人,再从这10人中随机抽取3人,记X为3人中成绩在[80,90)的人数,求X的分布列和数学期望; (3)规定成绩在[90,100]的为A等级,成绩在[70,90)的为B等级,其他为C 等级.以样本估计总体,用频率代替概率,从所有参加测试的同学中随机抽取10人,其中获得B等级的人数恰为k(k≤10)人的概率为P,当k为何值时P的值最大?解:(1)这200名学生的平均成绩为(45×0.005+55×0.02+65×0.025+75×0.03+85×0.015+95×0.005)×10 =69.5(分).(2)由[70,80),[80,90),[90,100]的三组频率之比为0.3∶0.15∶0.05=6∶3∶1,从[70,80),[80,90),[90,100]中分别抽取6人,3人,1人,X所有可能取值为0,1,2,3,则P(X=0)=C 73C 103=724,P(X=1)=C 72C 31C 103=2140,P(X=2)=C 71C 32C 103=740,P(X=3)=C 33C 103=1120.故X 的分布列为故E(X)=0×724+1×2140+2×740+3×1120=910.(3)依题意,B 等级的概率为(0.03+0.015)×10=0.45,且k~B(10,0.45), 所以P(k)=C 10k0.45k (1-0.45)10-k ,而{P (k )≥P (k -1),P (k )≥P (k +1),则{C 10k 0.45k (1-0.45)10-k≥C 10k -10.45k -1(1-0.45)10-k+1,C 10k 0.45k (1-0.45)10-k ≥C 10k+10.45k+1(1-0.45)10-k -1,即{10-k+1k×0.45≥0.55,0.55≥0.45×10-(k+1)+1k+1,解得7920≤k≤9920, 因为k ∈N *,所以k=4.。

高考数学一轮复习 第十一章 统计 11.2 用样本估计总体 理

高考数学一轮复习 第十一章 统计 11.2 用样本估计总体 理

【步步高】(江苏专用)2017版高考数学一轮复习第十一章统计11.2 用样本估计总体理1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体分布的密度曲线(1)频率分布折线图:将频率分布直方图中各个相邻的矩形的上底边的中点顺次连结起来,就得到频率分布折线图.(2)总体分布的密度曲线:将样本容量取得足够大,分组的组距取得足够小,那么相应的频率折线图趋于一条光滑曲线,称这条光滑曲线为总体分布的密度曲线. 3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶是从茎的旁边生长出来的数. 4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离. (2)标准差:s =1n[x 1-x2+x 2-x2+…+x n -x2].(3)方差:s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2](x n 是样本数据,n 是样本容量,x是样本平均数). 【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示频率组距,频率=组距×频率组距.(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观. 2.平均数、方差的公式推广(1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 的方差为s 2.①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2; ②数据ax 1,ax 2,…,ax n 的方差为a 2s 2. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √ ) (2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( × ) (3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( √ )(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( × )(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ×)1.(2015·陕西改编)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为________.答案137解析由题干扇形统计图可得该校女教师人数为:110×70%+150×(1-60%)=137.2.若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是__________.答案91.5和91.5解析∵这组数据由小到大排列为87,89,90,91,92,93,94,96,∴中位数为12×(91+92)=91.5.平均数为18×(87+89+90+91+92+93+94+96)=91.5.3.在“世界读书日”前夕,为了了解某地 5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是________. 答案 总体解析 调查的目的是“了解某地5 000名居民某天的阅读时间”,所以“5 000名居民的阅读时间的全体”是调查的总体.4.(教材改编)某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别为________.答案 19,135.(教材改编)甲、乙两人在相同条件下各射靶10次,每次命中环数如下: 甲 4 7 10 9 5 6 8 6 8 8 乙 7 8 6 8 6 7 8 7 5 9 试问10次射靶的情况较稳定的是________. 答案 乙解析 x 甲=4+7+10+9+5+6+8+6+8+810=7.1,x 乙=7+8+6+8+6+7+8+7+5+910=7.1.s 2甲=110[(4-7.1)2+(7-7.1)2+…+(8-7.1)2]=3.09, s 2乙=110[(7-7.1)2+(8-7.1)2+…+(9-7.1)2]=1.29. s 2甲>s 2乙,∴乙较稳定.题型一频率分布直方图的绘制与应用例1 (2015·课标全国Ⅱ)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图图①B地区用户满意度评分的频数分布表(1)评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:解(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.思维升华(1)明确频率分布直方图的意义,即图中的每一个小矩形的面积是数据落在该区间上的频率,所有小矩形的面积和为1.(2)对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.(1)(2014·山东改编)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为________.答案12解析志愿者的总人数为200.16+0.24×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.(2)某校从参加高一年级期中考试的学生中随机抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图,观察图形的信息,回答下列问题:①求分数在[70,80)内的频率,并补全这个频率分布直方图;②统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试中的平均分.解①设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.010+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示.②平均分:45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(分). 题型二 茎叶图的应用例2 (1)(2015·山东)为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为________.(2)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x ,y 的值分别为__________. 答案 (1)①④ (2)5,8解析 (1)甲地5天的气温为:26,28,29,31,31, 其平均数为x 甲=26+28+29+31+315=29;方差为s 2甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3.6;标准差为s 甲= 3.6.乙地5天的气温为:28,29,30,31,32,其平均数为x 乙=28+29+30+31+325=30;方差为s 2乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2;标准差为s 乙= 2. ∴x 甲<x 乙,s 甲>s 乙.(2)由茎叶图及已知得x =5,又乙组数据的平均数为16.8,即9+15+10+y +18+245=16.8,解得y =8. 引申探究1.本例(2)中条件不变,试比较甲、乙两组哪组成绩较好. 解 由原题可知x =5,则甲组平均分为9+12+15+24+275=17.4.而乙组平均分为16.8,所以甲组成绩较好.2.在本例(2)条件下:①求乙组数据的中位数、众数;②求乙组数据的方差. 解 ①由茎叶图知,乙组中五名学生的成绩为9,15,18,18,24. 故中位数为18,众数为18.②s 2=15[(9-16.8)2+(15-16.8)2+(18-16.8)2×2+(24-16.8)2]=23.76.思维升华 茎叶图的优缺点由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较烦琐.(2014·课标全国Ⅱ)某市为了考核甲,乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲,乙两部门评分的中位数; (2)分别估计该市的市民对甲,乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲,乙两部门的评价.解 (1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75. 50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+682=67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲,乙部门的评分高于90的比率分别为550=0.1,850=0.16,故该市的市民对甲,乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.) 题型三 用样本的数字特征估计总体的数字特征例3 甲、乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价. 解 (1)由题图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13;x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4;s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.思维升华 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.(2015·广东)某工厂36名工人的年龄数据如下表.(1)年龄数据为44,列出样本的年龄数据; (2)计算(1)中样本的均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间的有多少人?所占的百分比是多少(精确到0.01%)?解 (1)44,40,36,43,36,37,44,43,37.(2)x =44+40+36+43+36+37+44+43+379=40.s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009.(3)40-103=1103,40+103=1303在⎝ ⎛⎭⎪⎫1103,1303的有23个,占63.89%.9.高考中频率分布直方图的应用典例 (14分)(2015·广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户? 规范解答解 (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1得:x =0.007 5, 所以直方图中x 的值是0.007 5.[3分](2)月平均用电量的众数是220+2402=230.[4分]因为(0.002+0.009 5+0.011)×20=0.45<0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002+0.009 5+0.011)×20+0.012 5×(a -220)=0.5得:a =224,所以月平均用电量的中位数是224.[8分](3)月平均用电量为[220,240)的用户有0.012 5×20×100=25(户),月平均用电量为[240,260)的用户有0.007 5×20×100=15(户),月平均用电量为[260,280)的用户有0.005×20×100=10(户),月平均用电量为[280,300]的用户有0.002 5×20×100=5(户),抽取比例=1125+15+10+5=15,所以月平均用电量在[220,240)的用户中应抽取25×15=5(户).[14分]温馨提醒本题的难点是对频率分布直方图意义的理解以及利用这个图提供的数据对所提问题的计算,频率分布直方图中纵轴上的数据是频率除以组距,组距越大该数据越小,在解答这类问题时要特别注意.[方法与技巧]1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布;难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.3.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x +b,方差为a2s2.[失误与防范]频率分布直方图的纵坐标为频率/组距,每一个小长方形的面积表示样本个体落在该区间内的频率;条形图的纵坐标为频数或频率,把直方图视为条形图是常见的错误.A组专项基础训练(时间:40分钟)1.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为________.答案0.4解析10个数据落在区间[22,30)内的数据有22,22,27,29,共4个,因此,所求的频率为410=0.4.2.(2014·陕西改编)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为____________.答案x+100,s2解析x1+x2+…+x1010=x,y i=x i+100,所以y1,y2,…,y10的均值为x+100,方差不变.3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是________.答案50解析由频率分布直方图,知低于60分的频率为(0.01+0.005)×20=0.3.∴该班学生人数n=150.3=50.4.在某次测量中得到的A样本数据如下:42,43,46,52,42,50,若B样本数据恰好是A样本数据每个都减5后所得数据,则A,B两样本的数字特征对应相同的是__________.答案标准差解析利用平均数、标准差、众数、中位数等统计特征数的概念求解.由B样本数据恰好是A样本数据每个都减5后所得数据,可得平均数、众数、中位数分别是原来结果减去5,即与A样本不相同,标准差不变.5.如图是某青年歌手大奖赛上七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则一定有________.①a1>a2②a2>a1③a1=a2④a1,a2的大小与m的值有关答案②解析去掉一个最高分和一个最低分后,甲选手叶上的数字之和是20,乙选手叶上的数字之和是25,故a2>a1.6.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为___________. 答案 2解析 由题意可知样本的平均值为1,所以a +0+1+2+35=1,解得a =-1,所以样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.7.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为________. 答案367解析 由题意知87+94+90+91+90+90+x +917=91,解得x =4.所以s 2=17[(87-91)2+(94-91)2+(90-91)2+(91-91)2+(90-91)2+(94-91)2+(91-91)2] =17(16+9+1+0+1+9+0)=367. 8.从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =____________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.答案 0.030 3解析 ∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]内的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人.9.某校高一某班的某次数学测试成绩(满分为100分)的茎叶图和频率分布直方图都受了不同程度的破坏,但可见部分如图,据此解答下列问题:(1)求分数在[50,60]的频率及全班人数;(2)求分数在[80,90]之间的频数,并计算频率分布直方图中[80,90]间的矩形的高. 解 (1)分数在[50,60]的频率为0.008×10=0.08. 由茎叶图知,分数在[50,60]之间的频数为2, 所以全班人数为20.08=25.(2)分数在[80,90]之间的频数为25-2-7-10-2=4,频率分布直方图中[80,90]间的矩形的高为425÷10=0.016.10.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36.(1)求样本容量及样本中净重大于或等于98克并且小于104克的产品的个数;(2)已知这批产品中每个产品的利润y (单位:元)与产品净重x (单位:克)的关系式为y =⎩⎪⎨⎪⎧3,96≤x <98,5,98≤x <104,4,104≤x ≤106,求这批产品平均每个的利润.解 (1)产品净重小于100克的频率为(0.050+0.100)×2=0.300.设样本容量为n . ∵样本中产品净重小于100克的个数是36, ∴36n=0.300,∴n =120.∵样本中净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.750,∴样本中净重大于或等于98克并且小于104克的产品的个数是120×0.750=90.(2)产品净重在[96,98),[98,104),[104,106]内的频率分别为0.050×2=0.100,(0.100+0.150+0.125)×2=0.750,0.075×2=0.150,∴其相应的频数分别为120×0.100=12,120×0.750=90,120×0.150=18, ∴这批产品平均每个的利润为1120×(3×12+5×90+4×18)=4.65(元). B 组 专项能力提升 (时间:30分钟)11.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示,以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是________.答案①解析由于频率分布直方图的组距为5,排除③、④,又[0,5),[5,10)两组各一人,排除②,①符合条件,故①正确.12.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.答案24解析底部周长在[80,90)的频率为0.015×10=0.15,底部周长在[90,100)的频率为0.025×10=0.25,样本容量为60,所以树木的底部周长小于100 cm的株数为(0.15+0.25)×60=24. 13.(2015·湖北)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.答案(1)3 (2)6 000解析由频率分布直方图及频率和等于1可得0.2×0.1+0.8×0.1+1.5×0.1+2×0.1+2.5×0.1+a×0.1=1,解得a=3.于是消费金额在区间[0.5,0.9]内频率为0.2×0.1+0.8×0.1+2×0.1+3×0.1=0.6,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6×10 000=6 000,故应填3,6 000.14.若某产品的直径长与标准值的差的绝对值不超过1 mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:(1)(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.解(1)如下表所示频率分布表.(2)由频率分布表知,(1,3]内的概率约为0.50+0.20=0.70.(3)设这批产品中的合格品数为x件,依题意505 000=20x+20,解得x=5 000×2050-20=1 980.所以该批产品的合格品件数是1 980. 15.(2014·广东)某车间20名工人年龄数据如下表:(1)求这20(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.解(1)这20名工人年龄的众数为:30;这20名工人年龄的极差为:40-19=21.(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图如下:(3)这20名工人年龄的平均数为:(19+28×3+29×3+30×5+31×4+32×3+40)÷20=30;所以这20名工人年龄的方差为:1 20(30-19)2+320(30-28)2+320(30-29)2+520(30-30)2+420(30-31)2+320(30-32)2+120(30-40)2=12.6.。

高考数学一轮复习 第十一章概率与统计11.8用样本估计总体教学案 理 新人教A版

高考数学一轮复习 第十一章概率与统计11.8用样本估计总体教学案 理 新人教A版

11.8 用样本估计总体考纲要求1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.1.用样本的频率分布估计总体分布(1)频率分布表与频率分布直方图频率分布表和频率分布直方图,是从各个小组数据在样本容量中所占比例大小的角度,来表示数据分布规律,它可以使我们看到整个样本数据的频率分布情况.在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.绘制频率分布直方图的步骤为:①________;②__________________;③____________;④__________________;⑤__________________.(2)频率分布折线图连接频率分布直方图中______________,就得到频率分布折线图.(3)总体密度曲线总体密度曲线反映了总体在各个范围内取值的百分比,它能给我们提供更加精细的信息.(4)茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指____的一列数,叶是从茎的____生长出来的数.2.用样本的数字特征估计总体的数字特征(1)众数:一组数据中出现次数最多的数.(2)中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数.(3)平均数:x=____________,反映了一组数据的平均水平.(4)标准差:s=______________________________,反映了样本数据的离散程度.(5)方差:s2=________________,反映了样本数据的离散程度.1.某部门计划对某路段进行限速,为调查限速60 km/h是否合理,对通过该路段的300辆汽车的车速进行检测,将所得数据按[40,50),[50,60),[60,70),[70,80]分组,绘制成如图所示的频率分布直方图,则这300辆汽车中车速低于限速的汽车有( ).A.75辆B.120辆C.180辆D.270辆2.一个样本数据按从小到大的顺序排列为:13,14,19,x,23,27,28,31,其中,中位数为22,则x等于( ).A.21 B.22 C.23 D.203.(2012湖北八校联考)如图是湖北省教育厅实施“课内比教学,课外访万家”活动中,七位评委为某位参加教学比赛的数学教师打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为__________,方差为__________.4.甲、乙两人比赛射击,两人所得的平均环数相同,其中甲所得环数的方差为5,乙所得环数如下:5,6,9,10,5,那么这两人中成绩较稳定的是__________.5.某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数为__________.一、用样本的频率分布估计总体分布【例1-1】为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是__________.【例1-2】从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下(单位:分):[40,50),2;[50,60),3;[60,70),10;[70,80),15;[80,90),12;[90,100],8.(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例.方法提炼频率分布直方图是从各个小组数据在样本容量中所占比例大小的角度,表示数据分布的规律.图中各小长方形的面积等于相应各组的频率,它直观反映了数据在各个小组的频率的大小.请做演练巩固提升2,4二、用样本的数字特征估计总体【例2】从甲、乙两种玉米苗中各抽取10株,分别测得它们的株高如下:(单位:cm) 甲:25,41,40,37,22,14,19,39,21,42;乙:27,16,44,27,44,16,40,40,16,40.问:(1)哪种玉米的苗长得高?(2)哪种玉米的苗长得齐?方法提炼1.用样本的平均数、方差可以估计总体的平均数和方差.平均数可反映总体取值的平均水平,方差可以反映总体的稳定性,方差越大,稳定性越差,方差越小,稳定性越好.2.茎叶图的优点是保留了原始数据,便于记录及表示,能反映数据在各段上的分布情况.但是茎叶图不能直接反映总体的分布情况,往往要根据茎叶图所给数据求出其数字特征,进一步估计总体情况.请做演练巩固提升1,3巧用中点值来估算【典例】 (12分)(2012广东高考)某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中a的值;(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.分数段[50,60)[60,70)[70,80)[80,90)x∶y 1∶12∶13∶44∶5规范解答:(1)由题意得:(2a+0.02+0.03+0.04)×10=1,解得a=0.005.(3分)(2)平均分约为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.(7分)(3)易得数学成绩在[50,90)内的人数为5+20+40+25=90,(10分)∴数学成绩在[50,90)之外的人数为100-90=10.(12分)答题指导:1.用样本频率分布来估计总体分布的重点是频率分布表和频率分布直方图的绘制及用样本频率分布估计总体分布,难点是频率分布表和频率分布直方图的理解及应用.在计数和计算时一定要准确,在绘制小矩形时,宽窄要一致.通过频率分布表和频率分布直方图可以对总体作出估计.2.若取值x1,x2,…,x n的频率分别为p1,p2,…,p n,则其平均值为x1p1+x2p2+…+x n p n;若x1,x2,…,x n的平均数为x,方差为s2,则ax1+b,ax2+b,…,ax n+b的平均数为a x+b,方差为a2s2.1.(2012陕西高考) 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( ).A.46,45,56 B.46,45,53C.47,45,56 D.45,47,532.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则( ).A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<x3.(2012湖北英山一中高三高考模拟)下图是七位评委为甲、乙两名参赛歌手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名歌手得分的平均数分别为a和b,则一定有( ).A.a>b B.a<bC.a=b D.a,b的大小与m的值有关4.(2012山东高考)如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为__________.参考答案基础梳理自测知识梳理1.(1)①求极差 ②决定组距与组数 ③将数据分组 ④列频率分布表 ⑤画频率分布直方图(2)各小长方形上端的中点 (4)中间 旁边2.(3)x 1+x 2+…+xn n (4)1n[(x 1-x )2+(x 2-x )2+…+(xn -x )2] (5)1n[(x 1-x )2+(x 2-x )2+…+(xn -x )2] 基础自测1.C 解析:据直方图可得300辆中车速低于限速的汽车所占的频率为10×0.025+10×0.035=0.6,故其频数为300×0.6=180.2.A 解析:因为样本数据个数为偶数,中位数为x +232=22,故x =21. 3.92 10.8 解析:由已知的茎叶图,去掉一个最高分和一个最低分后,七位评委为某位参加教学比赛的数学教师打出的分数为:88,88,94,95,95.所剩数据的平均数x =88+88+94+95+955=92; 方差s 2=15[(88-92)2+(88-92)2+(94-92)2+(95-92)2+(95-92)2]=10.8. 4.乙 解析:x 乙=5+6+9+10+55=7,s 2乙=15[(5-7)2+(6-7)2+(9-7)2+(10-7)2+(5-7)2]=4.4,∵s 2甲>s 2乙,∴乙的成绩较稳定.5.30 解析:样本数据在[1,4)和[5,6]上的频率为(0.05+0.10+0.15+0.40)×1=0.7,故样本数据在[4,5)上的频率为1-0.7=0.3,其频数为100×0.3=30.考点探究突破【例1-1】 48 解析:据图可得第4小组及第5小组的频率之和为5×(0.037+0.013)=0.25,故前3个小组的频率之和为1-0.25=0.75,即第2小组的频率为0.75×26=0.25.又第2小组的频数为12,故样本容量为120.25=48. 【例1-2】 解:(1)频率分布表如下:成绩分组 频数 频率[40,50) 2 0.04[50,60) 3 0.06[60,70) 10 0.20[70,80) 15 0.30[80,90) 12 0.24[90,100] 8 0.16合计 50 1.00(2)频率分布直方图如图所示.(3)成绩在[60,90)的学生比例即为学生成绩在[60,90)的频率,即估计成绩在[60,90)分的学生比例为(0.20+0.30+0.24)×100%=74%.【例2】 解:(1)x 甲=110(25+41+40+37+22+14+19+39+21+42)=30, x 乙=110(27+16+44+27+44+16+40+40+16+40)=31, ∴x 甲<x 乙.(2)s 2甲=110[(25-30)2+(41-30)2+(40-30)2+(37-30)2+(22-30)2+(14-30)2+(19-30)2+(39-30)2+(21-30)2+(42-30)2]=104.2同理s 2乙=128.8,∴s 2甲<s 2乙.∴乙种玉米的苗长得高,甲种玉米的苗长得整齐.演练巩固提升1.A 解析:由茎叶图可知中位数为46,众数为45,极差为68-12=56.故选A.2.D 解析:由题目所给的统计图示可知,30个得分中,按大小顺序排好后,中间的两个得分为5,6,故中位数me =6+52=5.5, 又众数mo =5,平均值x =3×2+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930,∴mo <me <x . 3.B 解析:由题意知,去掉一个最高分和一个最低分以后,两组数据都有五个数据,代入数据可以求得甲和乙的平均分分别为a =1+4+5×35+80=84,b =4×3+6+75+80=85,故a <b .4.9 解析:由于组距为1,则样本中平均气温低于22.5 ℃的城市频率为0.10+0.12=0.22.平均气温低于22.5 ℃的城市个数为11,所以样本容量为110.22=50.而平均气温高于25.5 ℃的城市频率为0.18,所以,样本中平均气温不低于25.5 ℃的城市个数为50×0.18=9.。

高考数学一轮复习 第十一章概率与统计11.8用样本估计

高考数学一轮复习 第十一章概率与统计11.8用样本估计

课时作业62 用样本估计总体一、选择题1.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( ).A .±14B .±12C .±128D .无法求解 2.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ).A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.63.为了了解某地区10 000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图.根据图示,请你估计该地区高三男生中体重在[56.5,64.5] kg 的学生人数是( ).A .40B .400C .4 000D .4 4004.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,纤维的长度小于20 mm 的棉花根数为( ).A .20B .30C .40D .505.(2012山东高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( ).A .众数B .平均数C .中位数D .标准差6.从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( ).A .甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐B .甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐C .乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐D .乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐7.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为s A 和s B ,则( ).A .A x >B x ,s A >s B B .A x <B x ,s A >s BC .A x >B x ,s A <s BD .A x <B x ,s A <s B二、填空题8.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是__________.9.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10学生 1号 2号 3号 4号 5号甲班 6 7 7 8 7乙班 6 7 6 7 910.(2012广东高考)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________.(从小到大排列)三、解答题11.(2012安徽高考)若某产品的直径长与标准值的差的绝对值不超过1 mm 时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:分组频数频率[-3,-2)0.10[-2,-1)8(1,2]0.50(2,3]10(3,4]合计50 1.00(1)将上面表格中缺少的数据填在相应位置上;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.12.在某次测验中,有6位同学的平均成绩为75分,用x n表示编号为n(n=1,2, (6)编号n 1234 5成绩x n7076727072(1)求第6位同学的成绩x6及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.参考答案一、选择题1.B 解析:这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4.又因为这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2] =(3d )2+(2d )2+d 2+0+d 2+(2d )2+(3d )27=1,即4d 2=1,解得d =±12. 2.D 解析:每一个数据都加上60时,平均数也加上60,而方差不变.3.C 解析:依题意得,估计该地区高三男生中体重在[56.5,64.5] kg 的学生人数是10 000×(0.03+2×0.05+0.07)×2=4 000.4.B 解析:由频率分布直方图观察得棉花纤维长度小于20 mm 的根数为(0.01+0.01+0.04)×5×100=30(根). 5.D 解析:由s =(x 1-x )2+(x 2-x )2+…+(x n -x )2n ,可知B 样本数据每个变量增加2,平均数也增加2,但(x n -x )2不变,故选D.6. D 解析:根据茎叶图计算得甲种树苗的平均高度为27,而乙种树苗的平均高度为30,但乙种树苗的高度分布不如甲种树苗的高度分布集中,即甲种树苗比乙种树苗长得整齐.7.B 解析:A x =2.5+10+5+7.5+2.5+106=37.56, B x =15+10+12.5+10+12.5+106=706, 显然A x <B x ,s 是标准差,反映的是数据的波动程度,可以看出A 图中数据的波动较大,而B 图则较为有规律,而且改变多为一格,所以B 的稳定性好,稳定性好的标准差小,选B.二、填空题8.600 解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这3 000名学生在该次数学考试中成绩小于60分的学生数约是3 000×0.2=600.9.25解析:甲:平均数为 6+7+7+8+75=7, 方差为(6-7)2+3(7-7)2+(8-7)25=25. 乙:平均数为6+7+6+7+95=7, 方差为2(6-7)2+2(7-7)2+(9-7)25=65. ∴两组数据的方差中较小的一个为25. 10.1,1,3,3 解析:设该组数据依次为x 1≤x 2≤x 3≤x 4,则x 1+x 2+x 3+x 44=2,x 2+x 32=2,∴x 1+x 4=4,x 2+x 3=4.∵x 1,x 2,x 3,x 4∈N *,∴⎩⎪⎨⎪⎧ x 1=1,x 2=1,x 3=3,x 4=3,或⎩⎪⎨⎪⎧ x 1=2,x 2=2,x 3=2,x 4=2.又∵标准差为1,∴x 1=1,x 2=1,x 3=3,x 4=3.三、解答题11.解:(1)分组 频数 频率[-3,-2) 5 0.10[-2,-1) 8 0.16(1,2] 25 0.50(2,3] 10 0.20(3,4] 2 0.04合计 50 1.00(2)间(1,3]内的概率约为0.50+0.20=0.70;,(3)设这批产品中的合格品数为x 件,依题意有505 000=20x +20,解得x =5 000×2050-20=1 980. 所以该批产品的合格品件数估计是1 980件.12.解:(1)由题意知x 1+x 2+x 3+x 4+x 5+x 6=75×6=450,∴x 6=450-(70+76+72+70+72)=90.∴s 2=(70-75)2+(76-75)2+…+(90-75)26=49.∴s =7.(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有10种结果,满足条件的事件是恰有1位同学成绩在区间(68,75)中,共有4种结果,根据古典概型得到P =410=0.4.。

高考数学(理)一轮资源库 第十一章 11.2用样本估计总体

高考数学(理)一轮资源库  第十一章  11.2用样本估计总体
思图维,升观华察图频形率的分信布息直,方回图答直下观列形问象题地:表示了样本的频率分布,从 这(1)个求直分方数图在上[70可,8以0)内求的出频样率本,数并据补在全各这个个组频的率频分率布分直布方.根图据;频率分 布(2)直统方计图方估法计中样,本同(一或组者数总据体常)的用平该均组值区时间,的一中般点是值采作取为组代中表值,乘据以此 各估组计的本频次率考的试方中法的.平均分.
内的频率用 各小长方形的面积 表示,各小长方形的面积
总和等于 1 .
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
(3)连结频率分布直方图中各小长方形上端的中点,就得到频率 分布折线图.随着 样本容量 的增加,作图时所分的 组数 增 加,组距减小,相应的频率分布折线图就会越来越接近于一条 光滑的曲线,统计中称之为 总体分布的密度曲线 ,它能 够更加精细的反映出 总体在各个范围内取值的百分比 . (4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但 可以保留所有信息 ,而且可以随时记录 ,给数据的 记录 和
表示 都带来方便.
基础知识
题型分类
思想方法
练出高分
基础知识·自主学习
要点梳理
知识回顾 理清教材
2.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数 众数:在一组数据中,出现次数 最多 的数据叫做这组数据的 众数. 中位数:将一组数据按大小依次排列,把处在 最中间 位置的一 个数据(或最中间两个数据的平均数)叫做这组数据的中位数.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
跟踪训练 1 (2013·陕西改编)对一批产品的长度(单位:mm)进行 抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长 度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为 二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率, 现从该批产品中随机抽取一件,则其为二等品的概率为__0_._4_5___.

高三数学一轮复习第十一章统计统计案例第二节用样本估计总体课件理

高三数学一轮复习第十一章统计统计案例第二节用样本估计总体课件理

A.30辆 B.40辆
C.60辆 D.80辆
答案 B 从频率分布直方图可知,车速大于或等于70 km/h的频率为
0.02×10=0.2,而样本容量为200,所以被处罚的汽车约有200×0.2=40辆.
4.如图是某班8位学生诗词比赛得分的茎叶图,那么这8位学生得分的众
数和中位数分别为
答案 93,92
.
866 9013336
解析 依题意,结合茎叶图,将题中的数由小到大依次排列得到:86,86,
90,91,93,93,93,96,因此这8位学生得分的众数是93,中位数是 9 1 = 9923 .
2
5.某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.
(1)平均命中环数为
频 率
横轴表示样本数据,纵轴表示④ 组 距 ,每个小矩形的面积表示样本
落在该组内的⑤ 频率 . (3)茎叶图的画法: 第一步:将每个数据分为茎(高位)和叶(低位)两部分; 第二步:将各个数据的茎按⑥ 大小 次序排成一列; 第三步:将各个数据的叶依次写在其茎的右(左)侧.
2.样本的数字特征 (1)众数、中位数、平均数
理数
课标版
第二节 用样本估计总体
教材研读
1.常用统计图表 (1)频率分布表的画法:
极 差
第一步:求① 值所在区间取左闭右开区间,最后一 组取闭区间; 第三步:登记频数,计算频率,列出频率分布表.
(2)频率分布直方图:反映样本频率分布的直方图.
s=⑩
1 n[(x1 . x)2(x2x)2 (xnx)2]
(ii)方差:标准差的平方s2叫做方差.
1
s2= n [(xx1- )2+(xx2- )2+…+x(xn- )2] ,其中xi(i=1,2,3,…,n)是 样本数

核按钮(新课标)高考数学一轮复习第十一章统计11.2用样本估计总体习题理

核按钮(新课标)高考数学一轮复习第十一章统计11.2用样本估计总体习题理

核按钮(新课标)高考数学一轮复习第十一章统计11.2用样本估计总体习题理1.用样本的频率分布估计总体分布(1)通常我们对总体作出的估计一般分成两种:一种是用样本的__________估计总体的__________;另一种是用样本的________估计总体的__________.(2)在频率分布直方图中,纵轴表示________,数据落在各小组内的频率用________________表示.各小长方形的面积总和等于________.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布________.随着样本容量的增加,作图时所分的________增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称之为______________,它能够更加精细地反映出__________________.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以____________________,而且可以______________,给数据的记录和表示都带来方便.2.用样本的数字特征估计总体的数字特征 (1)众数,中位数,平均数众数:在一组数据中,出现次数________的数据叫做这组数据的众数.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或者最中间两个数据的________)叫做这组数据的中位数.平均数:样本数据的算术平均数,即x =______________.在频率分布直方图中,中位数左边和右边的直方图的面积应该________. (2)样本方差,样本标准差 标准差s =])()()[(122221x x x x x x nn -+⋯+-+-,其中x n 是__________________,n 是________,x 是________.标准差是反映总体__________的特征数,样本方差是样本标准差的__________.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.自查自纠1.(1)频率分布 分布 数字特征 数字特征 (2)频率组距 各小长方形的面积 1 (3)折线图 组数 总体密度曲线 总体在各个范围内取值的百分比 (4)保留所有信息 随时记录2.(1)最多 平均数 1n(x 1+x 2+…+x n ) 相等(2)样本数据的第n 项 样本容量 平均数 波动大小 平方在频率分布直方图中,各个长方形的面积表示( ) A .落在相应各组的数据的频数 B .相应各组数据的频率 C .该样本所分成的组数 D .该样本的样本容量解:在频率分布直方图中,小长方形面积=组距×频率组距=频率,所以每个小长方形的面积是相应各组数据的频率.故选B .(2015·陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167解:由扇形统计图可得,该校女教师人数为110×70%+150×(1-60%)=137.故选C . 有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5)2 [15.5,19.5)4 [19.5,23.5)9 [23.5,27.5)18 [27.5,31.5)11[31.5,35.5)12 [35.5,39.5)7 [39.5,43.5)3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是( ) A.16 B.13 C.12 D.23解:落在[31.5,43.5)的频数为22,所以概率约为13.故选B .(2013·上海)某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75,80,则这次考试该年级学生平均分数为____________.解:该年级学生平均分数为x =75×40%+80×60%=78.故填78.(2015·湖南)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示. 13 140034566888911122233445556678012233315 0122333若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.解:由题意可知,这35名运动员的分组情况为,第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在区间[139,151]上的运动员恰有4组,故所求人数为4.故填4.类型一 数字特征及其应用工人编号年龄 工人编号 年龄 工人编号 年龄 工人编号 年龄 1 40 10 36 19 27 28 34 2 44 11 31 20 43 29 39 3 40 12 38 21 41 30 43 4 41 13 39 22 37 31 38 5 33 14 43 23 34 32 42 6 40 15 45 24 42 33 53 7 45 16 39 25 37 34 37 8 42 17 38 26 44 35 49 943183627423639(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x 和方差s 2;(3)36名工人中年龄在x -s 与x +s 之间有多少人?所占的百分比是多少(精确到0.01%)?解:(1)根据系统抽样的方法,抽取容量为9的样本,因此分成9组,每组4人,由于第一组中用随机抽样抽到的年龄数据为44,且编号间隔为4,因此,依次抽到的年龄数据为:44,40,36,43,36,37,44,43,37.(2) x =19(44+40+36+43+36+37+44+43+37)=40,s 2=19[(44-40)2+(40-40)2+(36-40)2+(43-40)2+(36-40)2+(37-40)2+(44-40)2+(43-40)2+(37-40)2]=1009.(3)s =s 2=1009=103, x -s =3623,x +s =4313,在x -s 与x +s 之间的数据是37,38,39,40,41,42,43,处在此年龄阶段的工人一共有23人,所占比例为2336×100%≈63.89%.【点拨】(1)根据系统抽样的定义和性质,结合题意,直接列举样本;(2)利用均值、方差的概念求解样本的均值x 及方差s 2;(3)利用(2)的结果,计算得到年龄在x -s 与x +s 之间的人数,再求解百分比.本题主要考查系统抽样及平均数、方差的知识,意在考查学生的数据处理能力和计算能力.某汽车制造厂分别从A ,B 两种轮胎中各随机抽取了8个进行测试,列出了每一个轮胎行驶的最远里程数(单位:1000 km):轮胎A 96 112 97 108 100 103 86 98 轮胎B 108 101 94 105 96 93 97 106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差; (3)根据以上数据,你认为哪种型号轮胎的性能更加稳定? 解:(1)A 轮胎行驶的最远里程的平均数为: 96+112+97+108+100+103+86+988=100,中位数为:100+982=99;B 轮胎行驶的最远里程的平均数为: 108+101+94+105+96+93+97+1068=100,中位数为:101+972=99.(2)A 轮胎行驶的最远里程的极差为:112-86=26,标准差为:s =(-4)2+122+(-3)2+82+02+32+(-14)2+(-2)28=2212≈7.43; B 轮胎行驶的最远里程的极差为:108-93=15,标准差为:s =82+12+(-6)2+52+(-4)2+(-7)2+(-3)2+628=1182≈5.43.(3)虽然A轮胎和B轮胎的最远行驶里程的平均数相同,但B轮胎行驶的最远里程的极差和标准差相对于A轮胎较小,所以B轮胎性能更加稳定.类型二频率分布表、频率分布直方图及其应用(2014·全国Ⅰ)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标[75,85)[85,95)[95,105)[105,115)[115,125) 值分组频数62638228(1)在下图中作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?解:(1)这些数据的频率分布直方图为:(2)质量指标值的样本平均数为x=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,质量指标值的样本方差为s2=(-20)2×0.06+(-10)2×0.26+02×0.38+102×0.22+202×0.08=104,所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.【点拨】(1)先利用表中的数据正确计算每组的频率,再据此作出频率分布直方图,注意纵坐标是频率组距;(2)求平均值时注意利用区间中点值;(3)只须将满足题意的各组数据的频率相加,再进行判断.(2014·广东)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 80.32(40,45] n 1 f 1 (45,50]n 2f 2(1)确定样本频率分布表中n 1,n 2,f 1和f 2的值; (2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.解:(1)根据已知数据统计出n 1=7,n 2=2,计算得f 1=0.28,f 2=0.08.(2)由于组距为5,用频率组距得各组的纵坐标分别为0.024,0.040,0.064,0.056,0.016.不妨以0.008为纵坐标的一个单位长,5为横坐标的一个单位长画出样本频率分布直方图如下.(3)根据样本频率分布直方图,以频率估计概率,则在该厂任取1人,其日加工零件数落在区间(30,35]的频率为0.2,估计其概率为0.2.∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率P =1-C 04(0.2)0(1-0.2)4=0.590 4.类型三 茎叶图及其应用以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中各随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.注:方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数.解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是8,8,9,10,所以平均数为x =8+8+9+104=354;方差为s 2=14[⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫8-3542+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542]=1116.(2)当X =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,P (Y =17)=216=18. 同理可得P (Y =18)=14;P (Y =19)=14;P (Y =20)=14;P (Y =21)=18.所以随机变量Y 的分布列为:Y17 18 19 2021P 18 14 14 1418E (Y )=17×18+18×14+19×14+20×14+21×18=19.【点拨】(1)根据茎叶图的意义可得甲、乙各组的数据并进一步计算平均数和方差;(2)得到甲、乙各组的数据后计算随机事件所含的基本事件数及运用古典概型概率计算公式求概率,进而求随机变量的分布列及随机变量的期望值.(2013·广东)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.1 7 92 0 1 5 3(1)根据茎叶图计算样本平均值;(2)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率.解:(1)样本均值x =17+19+20+21+25+306=22.(2)根据题意,抽取的6名员工中优秀员工有2人,优秀员工所占比例为26=13,故可推断12名员工中优秀员工人数为13×12=4(人).(3)记事件A 为“抽取的2名工人中恰有1名为优秀员工”,由于优秀员工为4人,非优秀员工为8人,所以事件A 发生的概率为P (A )=C 14C 18C 212=3266=1633,即抽取的2名工人中恰有1名为优秀员工的概率为1633.1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.3.茎叶图的优点是原有信息不会抹掉,能够展示数据分布情况,但当样本数据较多或数据位数较多时,茎叶图就显得不太方便了.4.标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据的离散程度越小.因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差都是测量样本数据离散程度的工具,但在解决实际问题时,一般多采用标准差.1.(2014·四川)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( )A .总体B .个体C .样本的容量D .从总体中抽取的一个样本解:5000名居民的阅读时间的全体是总体,每名居民的阅读时间是个体,200是样本容量.故选A .分组 [10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数234542则样本数据落在区间[10,40)的频率为( )A.0.35 B.0.45 C.0.55 D.0.65解:由频率分布表可知:样本数据落在区间[10,40)内的频数为2+3+4=9,样本总数为20,故样本数据落在区间[10,40)的频率为920=0.45.故选B.3.(2014·陕西)设样本数据x1,x2,…,x10的均值和方差分别为1和4,若y i=x i+a(a 为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为( ) A.1+a,4 B.1+a,4+aC.1,4 D.1,4+a解:若a为常数,则E(X+a)=E(X)+a=1+a,D(X+a)=D(X)=4.故选A.4.(2014·山东)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6 B.8 C.12 D.18解:由题意,第一组和第二组的频率之和为0.24+0.16=0.4,故样本容量为200.4=50,又第三组的频率为0.36,故第三组的人数为50×0.36=18,故该组中有疗效的人数为18-6=12.故选C.5年龄3839404142人数53 2由于电脑故障,有两个数字在表格中不能显示出来,则下列说法正确的是( )A.年龄数据的中位数是40,众数是38B.年龄数据的中位数和众数一定相等C.年龄数据的平均数x∈(39,40)D.年龄数据的平均数一定大于中位数解:根据表中数据,得120(5×38+10×39+3×41+2×42)<x<120(5×38+10×40+3×41+2×42),解得39.35<x<39.85,∴x∈(39,40).故选C.6.从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x甲,x乙,中位数分别为m甲,m乙,则( )甲 乙 8 6 5 08 8 4 0 0 1 0 2 87 5 2 2 0 2 3 3 7 8 0 0 3 1 2 4 4 8 3 1 4 2 3 8A. x 甲<x 乙,m 甲>m 乙 B .x 甲<x 乙,m 甲<m 乙 C .x 甲>x 乙,m 甲>m 乙 D .x 甲>x 乙,m 甲<m 乙解:易知x 甲=21.5625,x 乙=28.5625,m 甲=20,m 乙=29,∴x 甲<x 乙,m 甲<m 乙.故选B .7.(2014·江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有________株树木的底部周长小于100 cm.解:由频率分布直方图可知树木底部周长小于100 cm 的频率是(0.025+0.015)×10=0.4,又样本容量是60,所以频数是0.4×60=24.故填24.运动员 第1次 第2次 第3次 第4次 第5次 甲 8.7 9.1 9.0 8.9 9.3 乙8.99.09.18.89.2则成绩较为稳定(方差较小)的那位运动员成绩的方差为________.解:x 甲=8.7+9.1+9.0+8.9+9.35=9.0,x 乙=8.9+9.0+9.1+8.8+9.25=9.0,s 2甲=15[(8.7-9.0)2+(9.1-9.0)2+(9.0-9.0)2+(8.9-9.0)2+(9.3-9.0)2]=0.04,s 2乙=15[(8.9-9.0)2+(9.0-9.0)2+(9.1-9.0)2+(8.8-9.0)2+(9.2-9.0)2]=0.02,s 2乙<s 2甲,∴成绩较为稳定的运动员乙成绩的方差为0.02.故填0.02.9.(2014·广东)年龄(岁) 工人数(人)19 1 28329 3 30 5 31 4 32 3 40 1 合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.解:(1)由题可知,这20名工人年龄的众数是30,极差是40-19=21. (2)这20名工人年龄的茎叶图如图所示:(3)这20名工人年龄的平均数为x =120(19+3×28+3×29+5×30+4×31+3×32+40)=30,∴这20名工人年龄的方差为 s 2=120 i =120(x i -x )2=112+6×22+7×12+5×02+10220=25220=12.6.10.(2013·全国课标Ⅰ)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ),试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)A 药B 药 0. 1. 2.3.解:(1)计算得A x =2.3,x B =1.6,从计算结果来看,A 药的疗效更好.(2)A 药B 药60. 5 5 6 8 98 5 5 2 21. 1 2 2 3 4 6 7 8 9 9 8 7 7 6 5 4 3 3 22. 1 4 5 6 75 2 1 03.2 从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.11.(2014·北京)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:组号 分组 频数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7 [12,14) 6 8 [14,16) 2 9 [16,18) 2 合计100(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10名,所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以a =频率组距=0.172=0.085,课外阅读时间落在组[8,10)的有25人,频率为0.25,所以b =频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为( )A.9 B.10 C.11 D.12解:不妨设样本数据为x1,x2,x3,x4,x5且x1<x2<x3<x4<x5,则由样本方差为4可知:(x1-7)2+(x2-7)2+(x3-7)2+(x4-7)2+(x5-7)2=20.五个整数的平方和为20,则这五个整数的平方只能在集合{0,1,4,9,16}中选取(每个数字最多出现2次):当这五个整数的平方中最大的为16时,分析可知,总不满足和为20;当这五个整数的平方中最大的为9时,{0,1,1,9,9}这组数满足要求,此时对应的样本数据为:x1=4,x2=6,x3=7,x4=8,x5=10;当这五个整数的平方中最大的数不超过4时,总不满足要求,因此不存在满足条件的另一组数据.故选B.。

人教A版高考总复习一轮数学精品课件 第十一章 解答题专项 概率与统计中的综合问题

人教A版高考总复习一轮数学精品课件 第十一章 解答题专项 概率与统计中的综合问题

条件的矩形比较多,也可以用对立事件的概率公式求解;
(3)分别计算“任选1人年龄位于区间[40,50)的概率”和“任选1人年龄位于区
间[40,50)且患这种疾病的概率”,根据条件概率公式计算.
规律方法 频率分布直方图、条形图等是考查数据收集和整理的常用依据,
掌握图中常见数据的提取方法,将频率看作概率是解决这类问题的关键.
=(5×0.001+15×0.002+25×0.012+35×0.017+45×0.023+55×0.020+65×0.017
+75×0.006+85×0.002)×10=47.9(岁). .............................................................3 分
2
∑ ( -)
=1
^
^
= − .
6
6
=1
=1
参考数据: ∑ xiyi=4 066, ∑ 2 =434.2.

∑ -
= =1
∑ 2 -
=1
2
,
解 (1)(ⅰ) =
8+8.2+8.4+8.6+8.8+9
=8.5,
6
=
90+84+83+80+75+68
=
C 38
0,1,2,3,P(ξ=0)=C 3
11
=
56
C 28 C 13
,P(ξ=1)=
165
C 311
=
故 ξ 的分布列为

ξ
0
1
2

核按钮(新课标)高考数学一轮复习 第十一章 统计 11.2 用样本估计总体课件 理

核按钮(新课标)高考数学一轮复习 第十一章 统计 11.2 用样本估计总体课件 理

[35.5,39.5)7 [39.5,43.5)3
根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是
()
1
1
1
2
A.6
B.3
C.2
D.3
解:落在[31.5,43.5)的频数为 22,所以概率约为13.故选 B.
(2013·上海)某学校高一年级男生人数占 该年级学生人数的 40%.在一次考试中,男、女生平 均分数分别为 75,80,则这次考试该年级学生平均 分数为____________.
差是样本标准差的__________.通常用样本方差估计总体方差,当样本容量接近
总体容量时,样本方差很接近总体方差.
自查自纠
1.(1)频率分布 分布 数字特征 数字特征 频率
(2)组距 各小长方形的面积 1 (3)折线图 组数 总体密度曲线
总体在各个范围内取值的百分比 (4)保留所有信息 随时记录 2.(1)最多 平均数 1n(x1+x2+…+xn) 相等 (2)样本数据的第 n 项 样本容量 平均数 波动大小 平方
42
33
53
7
45
16
39
25
37
34
37
8
42
17
38
26
44
35பைடு நூலகம்
49
9
43
18
36
27
42
36
39
(1)用系统抽样法从 36 名工人中抽取容量为 9 的样本,且在第一分段里用随机抽样法抽到的年龄数据为 44,
列出样本的年龄数据;
(2)计算(1)中样本的平均值 x 和方差 s2;
(3)36 名工人中年龄在 x -s 与 x +s 之间有多少人?所占的百分比是多少(精确到 0.01%)?

高考数学一轮总复习 第十一章 11.3 用样本估计总体

高考数学一轮总复习 第十一章 11.3 用样本估计总体

4.众数、中位数、平均数
数字特征
概念
优点与缺
众数
一组数据中重复出现次数 _最__多__的数
众数通常用于描述变量 多的数.但显然它对其 视使它无法客观地反映
把一组数据按_从__小__到__大__顺 中位数等分样本数据所
序排列,处在_中__间__位置的 少数几个极端值的影响 中位数
一个数据(或两个数据的平 下是优点,但它对极端
3 课时作业
PART THREE
基础保分练
1.某教育局为了解“跑团”每月跑步的平均里程,收集并整 2018年11月期间“跑团”每月跑步的平均里程(单位:公里)的 面的折线图.
根据折线图,下列结论正确的是 A.月跑步平均里程的中位数为6月份对应的里程数 B.月跑步平均里程逐月增加 C.月跑步平均里程高峰期大致在8,9月
解析 从茎叶图中知共16个数据, 按照从小到大排序后中间的两个数据为32,34, 所以这组数据的中位数为33; 45出现的次数最多,所以这组数据的众数为45; 最大值是47,最小值是12,故极差是35.
√D.1月至5月的月跑步平均里程相对于6月至11月,波动性更小
解析 由折线图知,月跑步平均里程的中位数为5月份对应的 月跑步平均里程不是逐月增加的; 月跑步平均里程高峰期大致在9,10月份,故A,B,C错.
2.如图是某样本数据的茎叶图,则该样本的中位数、众数、
√ A.32 34 32 B.33 45 35 C.34 45 32 D.3
6.为了普及环保知识,增强环保意识,某大学随机抽取30名 识测试,得分(十分制)如图所示,假设得分的中位数为m, 为 x ,则m,n, x 的大小关系为__n_<_m_<__x_.(用“<”连接)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习 第十一章概率与统计11.8用样本估计总体
收尾精炼 理 新人教A 版 一、选择题
1.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( ).
A .±14
B .±12
C .±128
D .无法求解 2.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( ).
A .55.2,3.6
B .55.2,56.4
C .64.8,63.6
D .64.8,3.6
3.为了了解某地区10 000名高三男生的身体发育情况,抽查了该地区100名年龄为17~18岁的高三男生体重(kg),得到频率分布直方图如图.根据图示,请你估计该地区高三男生中体重在[56.5,64.5] kg 的学生人数是( ).
A .40
B .400
C .4 000
D .4 400
4.某棉纺厂为了了解一批棉花的质量,从中随机抽测了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则在抽测的100根中,纤维的长度小于20 mm 的棉花根数为( ).
A.20 B.30 C.40 D.50
5.(2012山东高考)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( ).
A.众数 B.平均数
C.中位数 D.标准差
6.从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( ).
A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐
7.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为x A和x B,样本标准差分别为s A和s B,则( ).
A.x A>x B,s A>s B B.x A<x B,s A>s B
C.x A>x B,s A<s B D.x A<x B,s A<s B
二、填空题
8.某中学为了解学生数学课程的学习情况,在3 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图).根据频率分布直方图推测,这3 000名学生在该次数学考试中成绩小于60分的学生数是__________.
9.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10
学生1号2号3号4号5号
甲班67787
乙班67679
10.(2012广东高考)由正整数组成的一组数据x1,x2,x3,x4,其平均数和中位数都是2,且标准差等于1,则这组数据为__________.(从小到大排列)
三、解答题
11.(2012安徽高考)若某产品的直径长与标准值的差的绝对值不超过1 mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5 000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标准
值的差(单位:mm),将所得数据分组,得到如下频率分布表: 分组 频数 频率
[-3,-2) 0.10 [-2,-1) 8
(1,2] 0.50
(2,3] 10
(3,4]
合计 50 1.00
(1)将上面表格中缺少的数据填在相应位置上;
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.
12.在某次测验中,有6位同学的平均成绩为75分,用x n 表示编号为n (n =1,2,…,
6)的同学所得成绩,且前5位同学的成绩如下:
编号n 1 2 3 4 5
成绩x n 70 76 72 70 72
(1)求第6位同学的成绩x 6及这6位同学成绩的标准差s ;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
参考答案
一、选择题
1.B 解析:这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47
=a 4. 又因为这组数据的方差等于1,所以
17
[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2] =(3d )2+(2d )2+d 2+0+d 2+(2d )2+(3d )27=1,即4d 2=1,解得d =±12
. 2.D 解析:每一个数据都加上60时,平均数也加上60,而方差不变.
3.C 解析:依题意得,估计该地区高三男生中体重在[56.5,64.5] kg 的学生人数是10 000×(0.03+2×0.05+0.07)×2=4 000.
4.B 解析:由频率分布直方图观察得棉花纤维长度小于20 mm 的根数为(0.01+0.01+0.04)×5×100=30(根).
5.D 解析:由s =
(x 1-x )2+(x 2-x )2+…+(x n -x )
2n ,可知B 样本数据每个变量增加2,平均数也增加2,但(x n -x )2不变,故选D.
6. D 解析:根据茎叶图计算得甲种树苗的平均高度为27,而乙种树苗的平均高度为30,但乙种树苗的高度分布不如甲种树苗的高度分布集中,即甲种树苗比乙种树苗长得整齐.
7.B 解析:x A =2.5+10+5+7.5+2.5+106=37.56
, x B =15+10+12.5+10+12.5+106=706
, 显然x A <x B ,s 是标准差,反映的是数据的波动程度,可以看出A 图中数据的波动较大,而B 图则较为有规律,而且改变多为一格,所以B 的稳定性好,稳定性好的标准差小,选B.
二、填空题
8.600 解析:由题意知,在该次数学考试中成绩小于60分的频率为(0.002+0.006+0.012)×10=0.2,故这3 000名学生在该次数学考试中成绩小于60分的学生数约是3 000×0.2=600. 9.25解析:甲:平均数为6+7+7+8+75
=7, 方差为(6-7)2+3(7-7)2+(8-7)25=25
. 乙:平均数为6+7+6+7+95
=7, 方差为2(6-7)2+2(7-7)2+(9-7)25=65
. ∴两组数据的方差中较小的一个为25
. 10.1,1,3,3 解析:设该组数据依次为x 1≤x 2≤x 3≤x 4,则x 1+x 2+x 3+x 44=2,x 2+x 32
=2,∴x 1+x 4=4,x 2+x 3=4.
∵x 1,x 2,x 3,x 4∈N +,∴⎩⎪⎨⎪⎧ x 1=1,x 2=1,x 3=3,x 4=3,或⎩⎪⎨⎪⎧ x 1=2,x 2=2,x 3=2,x 4=2.
又∵标准差为1,∴x 1=1,x 2=1,x 3=3,x 4=3.
三、解答题
11.解:(1)频率分布表
分组 频数 频率
[-3,-2) 5 0.10
[-2,-1) 8 0.16
(1,2] 25 0.50
(2,3] 10 0.20
(3,4] 2 0.04
合计 50 1.00
(2)由频率分布表知,该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率约为0.50+0.20=0.70;
(3)设这批产品中的合格品数为x 件,依题意有505 000=20x +20,解得x =5 000×2050
-20=1 980.
所以该批产品的合格品件数估计是1 980件.
12.解:(1)由题意知
x 1+x 2+x 3+x 4+x 5+x 6=75×6=450,
∴x 6=450-(70+76+72+70+72)=90.
∴s 2=(70-75)2+(76-75)2+…+(90-75)26
=49. ∴s =7.
(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有10种结果,满足条件的事件是恰有1位同学成绩在区间(68,75)中,共有4种结果,根据古
典概型得到P =410
=0.4.。

相关文档
最新文档