全等三角形练习题及答案26384
全等三角形的三套测试卷及答案
全等三角形的三套测试卷一 •填空题(每题3分,共30分)1.如图,△ ABC^A DBC 且/ A 和/ D, / ABC 和/ DBC 是对应角,其对应边: _______ .2 .如图,△ ABD^A ACE 且/ BAD 和/ CAE,/ ABD 和/ ACE,/ ADB 和/ AEC 是对应角,则对应边3.已知:如图,△ ABC^A FED 且 BC=DE 则/ A=9. __________________________________________________________________ 如图,/仁/2,由AAS 判定厶ABD^A ACD 则需添加的条件是 ___________________________________ .10. 如图,在平面上将△ ABC 绕B 点旋转到厶A ' BC 的位置时,AA // BC , / ABC=70 ,则/CBC为 _______ 度. 二.选择题(每题3分,共30分)11.下列条件中,不能判定三角形全等的是 ( )A.三条边对应相等 B. 两边和一角对应相等C.两角的其中一角的对边对应相等D.两角和它们的夹边对应相等12. 如果两个三角形全等,则不正确的是()A. 它们的最小角相等B.它们的对应外角相等C.它们是直角三角形D.它们的最长边相等13. 如图,已知:△ ABE^A ACD,/仁/ 2, / B=/ C,不正确的等式是( )=AC B. / BAE / CAD =DC =DE 14. 图中全等的三角形是( )A. I 和UB. U 和WC. U 和川D. I 和川 15. 下列说法中不正确的是( )A.全等三角形的对应高相等B.全等三角形的面积相等,A D=4.如图,△ ABD^A ACE >则AB 的对应边是,/ BAD 的对应角是5.已知:如图,△ ABE^A ACD / B=/ C,则/ AEB= 一^ A '于 C, DEL AC 于 6.已知:如图, 8.如图,已知: 再证△ BDE^AD'△A',AE J ,AD£ AB 于 A , BC=:1 = / 2 , / 3=/4,要证 BD=CD ,需先证△ AEB^A A EC ,根据是 _ ,根据是 .7 .已知: BC^△A 'B ' B=5,贝U AD=贝殿ABC 的周长为 '的周长为12cC.全等三角形的周长相等D.周长相等的两个三角形全等16. AD=AE , AB=AC , BE、CD交于F ,则图中相等的角共有(除去/ DFE/ BFC()一.填空题:(每题3分,共30 分)1.如图 1,AD 丄AC D 为BC 的中点,则△ AB 医3.如图 AB H D& BE = CF,要证△ ABF3B D图3图1 DF 若 A AEB=100 , / ADB=30,贝u/BCF=龟4■-7 E1图 1 1AE , 1 27 , J 贝 2B ------------------ ----------- C5.如图 已知AB// CD AD// BC ,是BD 上两点,且 BF = DE \/A / DI 勺对角线相交于O 点且有AB// DC ,则图中共有对全等三角形.四边形A AD// BC ,则图中有 .对全等三角17.如图,OA=OB,OC=OD /O=60 , / C=25 则/ BED 的度数是()° B. 85° C. 65° D. 以上都不对18. 已知:如图,△ ABC^A DEF,AC/ DF,BC// EF.则不正确的等式是()=DF =BE =EF =EF 19.如图,/ A=Z D , OA=OD , / DOC=5°,求/ DBC 的度数为( )20. 如图,/ ABC M DCB=70 , / ABD=40 , AB=DC ,则/ BAC= ()三.解答题(每题8分,共40分)21. 已知:如图,四边形 ABC 冲,AB // CD , AD // BC.求证:△ ABD^A CDB.22. 如图,有一池塘,要测池塘两端A 、B 的距离,可先在平地上取一个可以直接到达 A 和B 的点C, 连结AC 并延长到D,使CD=CA 连结BC 并延长到E,使EC=CB 连结DE,量出DE 的长,就是A 、B 的距 离.写出你的证明.23. 已知:如图,点 B,E,C,F 在同一直线上,AB // DE,且 AB=DE,BE=C 求证:AC / DF. 24. 如图,已知:AD 是BC 上的中线,且DF=DE 求证:BE / CF.25. 如图,已知:AB 丄BC 于B , EF 丄AC 于G , DF 丄BC 于D , BC=DF .求证:AC=EF 25.(1)证DE=EC (2)设BE 与CD 交于F,通过全等证 DF=CF.全等三角形 B 卷(考试时间为90分钟,满分100分)2.如图 2,A C 需补充条件AB=DCAD=BC 是DB 上两点 BE A5, 6.如图 6,A7.“全等三角形对应角相等”的条件是11. 如图9,A ABC^A BAD A 和和D 分别是对应顶点,若 AB= 6cm, AO 4cm, BO5cm 贝U AD 的 长为 以上都不对 12. 下列说法正确的是 ()A. 周长相等的两个三角形全等B. 有两边和其中一边的对角对应相等的两个三角形全等C. 面积相等的两个三角形全等D. 有两角和其中一角的对边对应相等的两个三角形全等13. 在厶ABC 中,/ B =Z 。
中学数学 全等三角形 练习题(含答案)
解法三:如图,作 CG AG 的平分线 CF 交 AM 于 F ,
C
A
则 ACF MCF 45 ,即 ACF CBD 45 . ∵ AC BC , CD AM , ∴ CAF CMF BCD CMF 90 .∴ BM 1 .
AC 2 又 B CAD ,∴ ACF ≌ CBD .∴ CF BD . 又 CM BM ,MCF MBD . ∴ CFM ≌ BDM .∴ FMC DMB . 解法四:如图,过 D 作 DG CB .
然成立,请你说明理由.
F
E
C
C
E G
F
G
H
A
M
D
N
B
A
MD
NB
图1
图2
【答案】⑴ ∵ A 30,ACB 90 , D 是 AB 的中点,∴ BC BD , B 60
∴△BCD 是等边三角形.
又∵ CN DB ,∴ DN 1 DB , 2
∵ EDF 90 , BCD 是等边三角形. ∴ ADG 30 ,而 A 30 ,∴ GA GD .
M
F
D
B
C
M G
A
∵ B 45 , ∴ DG BG . ∵ DCG AMC FAC AMC 90 , ∴ DCG FAC . ∴ DCG ∽ MAC . ∴ DG∶CG CM∶AC 1∶2 ,则 BG∶CG 1∶2 . ∵ DG ∥ AC , ∴ BD∶AD 1∶2 ,而 BM∶AC 1∶2 , B CAD . ∴ BMD ∽ ACD , ∴ BMD ACD . 而 ACD AMC ,
A
D E
B
F
C
【答案】过 C 作 CH 垂直于 AC 交 AF 延长线于 H 点; 易证 ABD≌AHC , HC AD ;进而证明 FHC≌FDC ,得到 HC CD ,则 D 为 AC 中点.
三角形全等测试题及答案
三角形全等测试题及答案一、选择题1. 两个三角形全等的条件是()A. 有两条边和它们的夹角对应相等B. 三条边对应相等C. 有两条边和其中一条边的对角对应相等D. 有两条边和其中一条边的邻角对应相等答案:B2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 可能相似C. 一定相似D. 无法确定答案:B二、填空题3. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,那么AC=______。
答案:EF4. 如果两个三角形的两边和夹角对应相等,那么这两个三角形是______。
答案:全等三、判断题5. 如果两个三角形的对应边成比例,那么这两个三角形一定全等。
()答案:错误6. 如果两个三角形的两边和夹角对应相等,那么这两个三角形一定相似。
()答案:正确四、解答题7. 如图所示,已知三角形ABC与三角形DEF全等,且AB=5cm,BC=7cm,∠A=∠D=90°,求DE的长度。
答案:DE=7cm8. 已知三角形ABC与三角形DEF相似,且AB=3cm,BC=4cm,DE=6cm,求AC的长度。
答案:AC=8cm五、证明题9. 已知三角形ABC与三角形DEF全等,且∠A=∠D,AB=DE,证明:AC=EF。
证明:由于三角形ABC与三角形DEF全等,根据全等三角形的性质,对应边相等,所以AC=EF。
10. 已知∠A=∠D,AB=DE,AC=DF,求证:三角形ABC≌三角形DEF。
证明:根据SAS(边角边)判定方法,已知∠A=∠D,AB=DE,AC=DF,所以三角形ABC≌三角形DEF。
全等三角形经典题型50题(含答案)
全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延伸 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连结 BF 和 EF。
由于 BC=ED,CF=DF,∠ BCF=∠ EDF。
因此三角形 BCF 全等于三角形 EDF(边角边 )。
因此 BF=EF,∠ CBF=∠ DEF。
连结 BE。
在三角形BEF 中 ,BF=EF。
因此∠ EBF=∠ BEF。
又由于∠ ABC=∠AED。
因此∠ABE=∠AEB。
因此 AB=AE。
在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。
因此三角形 ABF 和三角形 AEF全等。
因此∠ BAF=∠ EAF (∠ 1=∠ 2)。
A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延伸线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD均分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连结(SASED∵ AD)均分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 均分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连结 CF 由于 CE⊥AB 因此∠CEB=∠ CEF= 90 °由于 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 由于∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°因此∠ D=∠ CFA 由于AC 均分∠ BAD 因此∠ DAC=∠ FAC 又由于AC= AC因此△ ADC≌ △ AFC( SAS)因此 AD= AF 因此 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别均分∠ ABC、∠ BCD,且点 E 在 AD 上。
全等三角形经典例题(含答案)
全等三角形经典例题(含答案)全等三角形是指两个三角形的所有对应边和对应角都相等。
判断两个三角形是否全等的条件有三种:SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)。
下面介绍几个经典的全等三角形例题:例题一:已知△ABC和△DEF,已知AB=DE,AC=DF,∠C=∠F,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。
解析:根据题目可知,已知△ABC和△DEF的所有对应边和对应角都相等,即满足ASA条件。
因此,可以断定△ABC≌△DEF。
因为已知条件满足△ABC和△DEF的全等条件。
例题二:已知△ABC和△DEF,已知AB=DE,BC=EF,AC=DF,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。
解析:根据题目可知,已知△ABC和△DEF的所有对应边都相等,即满足SSS条件。
因此,可以断定△ABC≌△DEF。
因为已知条件满足△ABC和△DEF的全等条件。
例题三:已知△AB C和△DEF,已知∠A=∠D,∠C=∠F,BC=EF,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。
解析:根据题目可知,已知△ABC和△DEF的对应角相等,BC=EF,但没有给出第三边的长度。
无法判断是否满足SSS或SAS条件,因此无法断定△ABC≌△DEF。
例题四:已知△ABC和△DEF,已知AB=DE,BC=EF,∠B=∠E,是否可以断定△ABC≌△DEF?如果可以,请说明理由;如果不可以,请给出反例。
解析:根据题目可知,已知△ABC和△DEF的对应边和对应角相等,即满足SAS条件。
因此,可以断定△ABC≌△DEF。
因为已知条件满足△ABC和△DEF的全等条件。
例题五:已知两个全等的三角形ABC和DEF,若∠A=60°,AC=6,DF=9,求BC和EF的长度。
解析:由于△ABC≌△DEF,根据全等三角形的性质可知BC=EF。
全等三角形题库(精品)(70题)-含答案
全等三角形题库(70题)一、解答题(本大题共70小题,共560.0分)1.如图,在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD.AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何.【答案】解:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠BFC=∠BEC=∠BEA=90°∴∠BAC+∠ACF=90°,∠BAC+∠ABE=90°,∠G+∠GAF=90°,∴∠ABE=∠ACF.在△ABD和△GCA中,{BD=AC∠ABE=∠ACF AB=CG,∴△ABD≌△GCA(SAS),∴AD=GA,(2)结论:AG⊥AD.理由:∵△ABD≌△GCA(SAS),∴∠BAD=∠G,∴∠BAD+∠GAF=90°,∴AG⊥AD.【解析】(1)先由条件可以得出∠ABE=∠ACF,就可以得出△ABD≌△GCA,就有AD= GA,∠BAD=∠G;(2)结论:AG⊥AD.由(1)可以得出∠GAD=90°,进而得出AG⊥AD.本题考查了全等三角形的判定及性质的运用、直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会利用等量代换证明垂直,属于中考常考题型.2.如图,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;【答案】解:作DM⊥AF于M,EN⊥AF于N,∵BC⊥AF,∴∠BFA=∠AMD=90°,∵∠BAD=90°,∴∠1+∠2=∠1+∠B=90°,∴∠B=∠2,在△ABF与△DAM中,{∠BFA=∠AMD ∠B=∠2AB=AD,∴△ABF≌△DAM(AAS),∴AF=DM,同理,△ACF≌△EAN(AAS),AF=EN,∴EN=DM,∵DM⊥AF,EN⊥AF,∴∠GMD=∠GNE=90°,在△DMG与△ENG中,{∠DMG =∠ENG ∠DGM =∠EGN DM =EN, ∴△DMG≌△ENG(AAS),∴DG =EG ,即点G 是DE 的中点.【解析】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.作DM ⊥AF 于M ,EN ⊥AF 于N ,根据余角的性质得到∠B =∠2,根据全等三角形的性质得到AF =DM ,同理AF =EN ,求得EN =DM ,由全等三角形的性质得到DG =EG ,于是得到点G 是DE 的中点.3. 如图,将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =12∠DAB.试猜想DE ,BF ,EF 之间有何数量关系,并证明你的猜想.【答案】解:猜想:DE +BF =EF.证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF = 12∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,{∠4=∠1AB =AD ∠ABG =∠ADE, ∴△AGB≌△AED(ASA),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,{AG =AE ∠GAF =∠EAF AF =AF, ∴△AGF≌△AEF(SAS),∴GF =EF ,∴DE +BF =EF .【解析】本题考查了全等三角形的判定与性质,解题的关键是作辅助角,将DE 和BF 放在一起,便于数量关系的猜想和证明.通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.4. 已知△ABC 为等边三角形,点D 为直线BC 上一动点(点D 不与点B ,点C 重合).以AD 为边作等边三角形ADE ,连接CE .(1)如图1,当点D 在边BC 上时.①求证:△ABD≌△ACE ;②直接判断结论BC =DC +CE 是否成立(不需证明);(2)如图2,当点D 在边BC 的延长线上时,其他条件不变,请写出BC ,DC ,CE 之间存在的数量关系,并写出证明过程.【答案】解:(1)①∵△ABC 和△ADE 是等边三角形,∴∠BAC =∠DAE =60°,AB =BC =AC ,AD =DE =AE .∴∠BAC −∠DAC =∠DAE −∠DAC ,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中{AB=AC∠BAD=∠EAC AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD;【解析】(1)①根据等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE,进而就可以得出△ABD≌△ACE;②由△ABD≌△ACE就可以得出BC= DC+CE;(2)由等边三角形的性质就可以得出∠BAC=∠DAE=60°,AB=BC=AC,AD=DE= AE,进而就可以得出△ABD≌△ACE,就可以得出BC+CD=CE.本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.5.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.【答案】(1)证明:如图1,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,∵∠CBE+∠ADC=180°,∠CDF+∠ADC=180°,∴∠CBE=∠CDF,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS)∴BC=DC;(2)解:AD−AB=2BE,理由如下:如图2,过点C作CF⊥AD,垂足为F,∵AC平分∠MAN,CE⊥AB,CF⊥AD,∴CE=CF,AE=AF,∵∠ABC+∠ADC=180°,∠ABC+∠CBE=180°,∴∠CDF=∠CBE,在△BCE和△DCF中,{∠CBE=∠CDF∠CEB=∠CFD=90°CE=CF,∴△BCE≌△DCF(AAS),∴DF=BE,∴AD=AF+DF=AE+DF=AB+BE+DF=AB+2BE,∴AD−AB=2BE;(3)解:如图3,在BD上截取BH=BG,连接OH,∵BH=BG,∠OBH=∠OBG,OB=OB在△OBH和△OBG中,{BH=BG∠OBH=∠OBG OB=OB,∴△OBH≌△OBG(SAS)∴∠OHB=∠OGB,∵AO是∠MAN的平分线,BO是∠ABD的平分线,∴点O到AD,AB,BD的距离相等,∴∠ODH=∠ODF,∵∠OHB=∠ODH+∠DOH,∠OGB=∠ODF+∠DAB,∴∠DOH=∠DAB=60°,∴∠GOH=120°,∴∠BOG=∠BOH=60°,∴∠DOF=∠BOG=60°,∴∠DOH=∠DOF,在△ODH和△ODF中,{∠DOH=∠DOF OD=OD∠ODH=∠ODF,∴△ODH≌△ODF(ASA),∴DH=DF,∴DB=DH+BH=DF+BG=2+1=3.【解析】(1)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,证明△BCE≌△DCF,根据全等三角形的性质证明结论;(2)过点C作CF⊥AD,根据角平分线的性质得到CE=CF,AE=AF,证明△BCE≌△DCF,得到DF=BE,结合图形解答即可;(3)在BD上截取BH=BG,连接OH,证明△OBH≌△OBG,根据全等三角形的性质得到∠OHB=∠OGB,根据角平分线的判定定理得到∠ODH=∠ODF,证明△ODH≌△ODF,得到DH=DF,计算即可.本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.6.如图,在△ABC和△ADE中,AB=AD,AC=AE,∠1=∠2.(1)求证:△ABC≌△ADE;(2)找出图中与∠1、∠2相等的角(直接写出结论,不需证明).【答案】(1)证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠BAC=∠DAE,在△BAC和△DAE中{AB=AD∠BAC=∠DAE AC=AE,∴△ABC≌△ADE(SAS);(2)解:∵△ABC≌△ADE,∴∠B=∠D,∵∠AMB=∠DMF,∴∠1=∠MFD,∵∠MFD=∠NFC,∴∠1=∠NFC,∴与∠1、∠2相等的角有∠NFC,∠MFD.【解析】(1)根据等式的性质可得∠BAC=∠DAE,然后利用SAS判定△ABC≌△ADE;(2)利用三角形内角和定理可得∠1=∠MFD,再由对顶角相等可得∠1=∠NFC.此题主要考查了全等三角形的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.7.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:①△ADC≌△CEB.②DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD−BE;(3)当直线MN绕点C旋转到图(3)的位置时,请写出DE,AD,BE之间的等量关系.【答案】解:(1)①∵AD⊥MN,BE⊥MN,∴∠ADC=∠ACB=90°=∠CEB,∴∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE;(2)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS);∴CE=AD,CD=BE,∴DE=CE−CD=AD−BE;(3)当MN旋转到题图(3)的位置时,AD,DE,BE所满足的等量关系是:DE=BE−AD.理由如下:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=∠ACB=90°,∴∠CAD=∠BCE,∵在△ADC和△CEB中,{∠CAD=∠BCE ∠ADC=∠CEB AC=BC,∴△ADC≌△CEB(AAS),∴CE=AD,CD=BE,∴DE=CD−CE=BE−AD.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质的综合应用,解题时注意:全等三角形的对应边相等,同角的余角相等,解决问题的关键是根据线段的和差关系进行推导,得出结论.(1)①根据AD⊥MN,BE⊥MN,∠ACB=90°,得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB;②根据全等三角形的对应边相等,即可得出CE=AD,CD=BE,进而得到DE=CE+CD=AD+BE;(2)先根据AD⊥MN,BE⊥MN,得到∠ADC=∠CEB=∠ACB=90°,进而得出∠CAD=∠BCE,再根据AAS即可判定△ADC≌△CEB,进而得到CE=AD,CD=BE,最后得出DE=CE−CD=AD−BE;(3)DE=BE−AD,与(2)同理,即可证明:DE=BE−AD.8.如图,已知∠AOB=∠COD=90°,AB=CD,OA=OC.求证:(1)△AOB≌△COD(2)DE=BF.【答案】证明:(1)∵∠AOB=∠COD=90°,∴在Rt△AOB和Rt△COD中,{AB=CDOA=OC,∴Rt△AOB≌Rt△COD(HL),即△AOB≌△COD;(2)∵△AOB≌△COD∴OD=OB,∠A=∠C,∵∠AOB=∠COD=90°∴∠AOB−∠EOF=∠COD−∠EOF,即∠AOE=∠COF在△AOE和△COF中,{∠AOE=∠COF OA=OF∠A=∠C,∴△AOE≌△COF(ASA),∴OE=OF,∵OD=OB,∴OD−OE=OB−OF,即DE=BF.【解析】(1)根据题意,利用HL定理可以证明结论成立;(2)根据(1)中的结论,再根据三角形全等的性质和判定,可以证明结论成立.本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求结论需要的条件,利用数形结合的思想解答.9. 以点A 为顶点作两个等腰直角三角形(△ABC,△ADE),如图1所示放置,使得一直角边重合,连接BD ,CE .(1)试说明:BD =CE ;(2)延长BD 交CE 于点F ,求∠BFC 的度数;(3)若如图2放置,上面的结论还成立吗?请简单说明理由.【答案】解:(1)∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,∠BAD =∠EAC =90°,AD =AE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE .(2)∵△ADB≌△AEC ,∴∠ACE =∠ABD ,而在△CDF 中,∠BFC =180°−∠ACE −∠CDF ,又∵∠CDF =∠BDA ,∴∠BFC =180°−∠DBA −∠BDA =∠DAB =90°.(3)BD =CE 成立,且两线段所在直线互相垂直,即∠BFC =90°.理由如下:∵△ABC 、△ADE 是等腰直角三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =90°,∵∠BAC +∠CAD =∠EAD +∠CAD ,∴∠BAD =∠CAE ,∵在△ADB 和△AEC 中,{AD =AE ∠DAB =∠EAC AB =AC,∴△ADB≌△AEC(SAS),∴BD =CE ,∠ACE =∠DBA ,【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等,对应角相等.也考查了等腰直角三角形的性质.(1)根据等腰直角三角形的性质得到AB=AC,∠BAD=∠EAC=90°,AD=AE,利用“SAS”可证明△ADB≌△AEC,则BD=CE;(2)由△ADB≌△AEC得到∠ACE=∠DBA,利用三角形内角和定理可以得到∠BFC= 180°−∠ACE−∠CDF=180°−∠DBA−∠BDA=∠DAB=90°;(3)与(1)一样可证明△ADB≌△AEC,得到BD=CE,∠ACE=∠DBA,利用三角形内角和定理得到∠BFC=∠CAB=90°.10.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF.【答案】证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵{AE=AB∠EAC=∠BAF AF=AC,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°−∠ABF−∠BDM=180°−90°=90°,所以EC⊥BF.【解析】(1)先求出∠EAC=∠BAF,然后利用“边角边”证明△ABF和△AEC全等,根据全等三角形对应边相等即可证明;(2)根据全等三角形对应角相等可得∠AEC=∠ABF,设AB、CE相交于点D,根据∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根据三角形内角和定理推出∠BMD=90°,从而得证.本题考查了全等三角形的判定与性质,根据条件找出两组对应边的夹角∠EAC=∠BAF 是证明的关键,也是解答本题的难点.11.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,{AB=AD∠BAC=∠DAE AC=AE,(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,{BF=GF∠AFB=∠AFG AF=AF,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,{∠GCA=∠DCA ∠CGA=∠CDA AG=AD,∴△CGA≌△CDA(AAS),∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【解析】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.(1)根据题意和题目中的条件可以找出△BAC≌△DAE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.12.如图1,四边形ABCD是正方形,点E是边BC上的动点(不与B,C重合),将线段AE绕点E顺时针旋转90°得到线段EF,连接AF,EF、AF分别与CD交于点M、N,作FG⊥BC于点G;(1)求证:BE=CG(2)探究线段BE、EN、DN间的等量关系,并说明理由;(3)如图2,当点E运动到BC的中点时,若AB=6,求MN的长.【答案】(1)证明:∵EF⊥AE,∴∠AEB+∠GEF=90°,又∵∠AEB+∠BAE=90°∴∠GEF=∠BAE,又∵FG⊥BC,∴∠ABE=∠EGF=90°,在△ABE与△EGF中,{∠ABE=∠EGF ∠BAE=∠GEF AE=EF,∴△ABE≌△EGF(AAS),∴AB=EG,∴BE=CG.(2)解:结论:EN=BE+DN.理由:如图1中,延长EB到K,使得BK=DN.∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠D=∠ABC=∠ABK=90°,∵DN=BK,∴△ADN≌△ABK(SAS),∴AK=AN,∠BAK=∠DAN,∵EA=EF,∠AEF=90°,∴∠EAF=45°,∴∠KAE=∠BAK+∠BAE=∠DAN+∠BAE=45°,∴∠EAK=∠EAN=45°,∵AE=AE,∴△EAK≌△EAN(SAS),∴EN=EK,∵EK=BK+BE=DN+BE,∴EN=BE+DN.(3)解:如图2中,作FK⊥AB于K,交CD于J.∵BE=CE=3,∴FG=BE=CG=3,∵AB//CD,∴∠FKB=∠FJC=90°,∵∠G=∠JCG=90°,∴四边形FGCJ是矩形,∵CG=FG,∴四边形FGCJ是正方形,CG=FG=3,∵EC=CG,CM//FG,∴CM=12FG=32,∴JM=CJ−CM=32,∵四边形BGFK是矩形,∴FK=BG=9,BK=FG=AK=3,∵JN//AK,∴NJAK =FJFK,∴NJ3=39,∴NJ=1,∴MN=NJ+JM=1+32=52.【解析】(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等即可解决问题.(2)结论:EN=BE+DN.如图1中,延长EB到K,使得BK=DN.构造全等三角形解决问题即可.(3)如图2中,作FK⊥AB于K,交CD于J.分别求出NJ,JM即可解决问题.此题属于四边形综合题,涉及的知识有:全等三角形的判定与性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.13.已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图1,若∠ACD=60゜,则∠AFB=________;(2)如图2,若∠ACD=α,则∠AFB=_____________(用含α的式子表示);(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.【答案】解:(1)120°;(2)180°−α;(3)∠AFB=180°−α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB,∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD=∠DBC+∠CEB+∠EBC=∠CEB+∠EBC=180°−∠ECB=180°−α,即∠AFB=180°−α.【解析】本题考查了全等三角形的性质和判定,三角形外角性质,三角形的内角和定理(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.【解答】解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=∠CDA+∠DAC=180°−60°=120°,故答案为:120°;(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中{AC=DC∠ACE=∠DCB CE=CB∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE=∠CDA+∠DAE+∠BAE=180°−∠ACD=180°−α,故答案为:180°−α;(3)见答案.14.(1)问题发现:如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,则线段AE、BD的数量关系为_______,AE、BD所在直线的位置关系为________;(2)深入探究:在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.【答案】解:(1)AE=BD,AE⊥BD;(2)结论:AD=2CM+BD,理由:如图2中,∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠BDC=∠AEC=135°.∴∠ADB=∠BDC−∠CDE=135°−45°=90°;在等腰直角三角形DCE中,CM为斜边DE上的高,∴CM=DM=ME,∴DE=2CM.∴AD=DE+AE=2CM+BD.【解析】【分析】本题属于三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.(1)结论:AE=BD,AE⊥BD.如图1中,延长AE交BD于点H,AH交BC于点O.只要证明△ACE≌△BCD(SAS),即可解决问题;(2)结论:AD=2CM+BD,只要证明△ACE≌△BCD(SAS),即可解决问题.【解答】解:(1)结论:AE=BD,AE⊥BD.理由:如图1中,延长AE交BD于点H,AH交BC于点O.∵△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,CD=CE,∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD,∠CAE=∠CBD,∵∠CAE+∠AOC=90°,∠AOC=∠BOH,∴∠BOH+∠CBD=90°∴∠AHB=90°,∴AE⊥BD.故答案为AE=BD,AE⊥BD.(2)见答案.15.如图,△ABC是等腰直角三角形,∠ACB=90°,AC=BC,D在线段BC上,E是线段AD上一点.现以CE为直角边,C为直角顶点,在CE的下方作等腰直角△ECF,连接BF.(1)如图1,求证:∠CAE=∠CBF;(2)当A、E、F三点共线时,取AF的中点G,连接CG,求证:AE2+EF2=4CG2;(3)如图3,若AC=BC=3√3,∠BAD=15°,连接DF,当E运动到使得∠ACE=30°时,求△DEF的面积.【答案】(1)证明:∵△ABC,△ECF都是等腰直角三角形,∴CA=CB,CE=CF,∠ACB=∠ECF=90°,∴∠ACE=∠BCF,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF;(2)解:延长AC至点H,使CH=AC,连接HF,BE.由(1)得:△ACE≌△BCF,∴AE=BF,且∠CAD=∠DBF,∵∠ADB=∠CAD+∠ACD=∠DBF+∠DFB,∴∠DFB=∠ACD=90°,∴BF2+EF2=BE2,易证△CEB≌△CFH,∴BE=HF=2CG,∴BF2+EF2=BE2=4CG2;(3)解:过点F作FH⊥BC于H,如图3所示:∵△ABC是等腰直角三角形,∠ACB=90°,AC=BC,∴∠BAC=∠ABC=45°,∵∠BAD=15°,∴∠CAE=45°−15°=30°,∴∠ACE=∠CAE=30°,∴AE=CE=CF,同(1)得:△ACE≌△BCF(SAS),∴BF=AE,∠ACE=∠BCF=30°,∴CF=BF,∴∠BCF=∠CBF=30°,∵FC=FB,FH⊥BC,∴CH=BH=12BC=3√32,FH=√33CH=32,CF=BF=2FH=3,∵∠CED=∠CAE+∠ACE=60°,∠ECD=90°−30°=60°,∴△ECD是等边三角形,∴EC=CF=CD=3,∴S△DEF=S△ECD+S△CDF−S△ECF=√34×32+12×3×32−12×3×3=9√3−94.【解析】(1)证明△ACE≌△BCF(SAS),即可解决问题;(2)延长AC至点H,使CH=AC,连接HF,BE,由(1)得△ACE≌△BCF,进而得到BF2+ EF2=BE2,易证△CEB≌△CFH,即可解决问题;(3)过点F作FH⊥BC于H,如图3所示,同(1)得△ACE≌△BCF,再证明△BCF是底角为30°的等腰三角形,再求出CH,FB,CF的长,然后根据S△DEF=S△ECD+S△CDF−S△ECF 计算即可.本题属于三角形综合题,考查了等腰直角三角形的性质,含30°角的直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.16.平面直角坐标系中,A(a,0),B(b,b),C(0,c),且满足:√a−4+(2b−a−c)2+|b−c|=0,E、D分别为x轴和y轴上动点,满足∠DBE=45°.(1)求A、B、C三点坐标;(2)如图1,若D为线段OC中点,求E点坐标;(3)当E,D在x轴和y轴上运动时,试探究CD、DE和AE之间的关系.【答案】解:(1)∵√a−4+(2b−a−c)2+|b−c|=0,∴a=4,b=c,2b−a−c=0,∴b=4,c=4,∴点A(4,0),点B(4,4),点C(0,4);(2)如图1,将△BCD绕点B逆时针旋转90°得到△BAH,∵点A(4,0),点B(4,4),点C(0,4),∴OA=OC=BC=AB=4,∵D为线段OC中点,∴CD=DO=2,∵将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∴BD=BH,∠CBD=∠HBA,CD=AH=2,∵∠DBE=45°,∴∠CBD+∠EBA=45°,∴∠EBA+∠ABH=45°=∠HBE=∠DBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∵OH=OA+AH=4+2=6,∴DE=EH=6−OE,∵DE2=OD2+OE2,∴(6−OE)2=4+OE2,∴OE=8,3,0);∴点E坐标为(83(3)如图1,若点E在x轴正半轴,点D在y轴正半轴上,由(2)可知:DE=EH,AH=CD,∴DE=AE+AH=AE+CD,如图2,点E在x轴负半轴,点D在y轴正半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴AE=AH+EH=CD+DE;如图3,点E在x轴正半轴,点D在y轴负半轴,将△BCD绕点B逆时针旋转90°得到△BAH,∴△BCD≌△BAH,∠DBH=90°,∴BD=BH,∠CBD=∠HBA,CD=AH,∵∠DBE=45°,∴∠DBE=45°=∠HBE,且BD=BH,BE=BE,∴△DBE≌△HBE(SAS)∴DE=EH,∴CD=AH=AE+EH=AE+DE.【解析】(1)由非负性可求a,b,c的值,即可求解;(2)将△BCD绕点B逆时针旋转90°得到△BAH,可得BD=BH,∠CBD=∠HBA,CD= AH=2,由“SAS”可证△DBE≌△HBE,可得DE=EH,由勾股定理可求OE的长,即可求E点坐标;(3)分三种情况讨论,由旋转的性质,全等三角形的性质可求解.本题是四边形综合题,考查了非负性,正方形的性质,旋转的性质,全等三角形的判定和性质,利用分类讨论思想解决问题是本题的关键.17.如图,在锐角三角形AOB中,分别以OA、OB为腰在△AOB外作等腰直角三角形OAE和等腰直角三角形OBD.(1)如图1,连接BE、AD,求证:BE=AD.(2)如图2,以O为原点、AB边上的高OC所在的直线为y轴.建立平面直角坐标系,连接ED与y轴交于点F.①若A点坐标为(n,m),请用n、m表示;E点的坐标(________,________)及D点的横坐标为________.②△AOB的面积S△AOB与△EOD的面积S△EOD有什么数量关系?请写出你的结果,并给出证明.【答案】解:(1)∵△OAE、△OBD均为等腰直角三角形,∴OD=OB,OA=OE,∠DOB=∠AOE=90°.∴∠EOA+∠AOB=∠BOD+∠AOB,即∠EOB=∠AOD.在Rt△EOB和Rt△AOD中,∴Rt△EOB≌Rt△AOD.∴BE=AD.(2)①m;−n;−m.②S△AOB=S△EOD,证明如下:如图所示:过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M.∵∠EOD+∠DOM=180°,∠EOD+∠NOB=180°,∴∠DOM=∠NOB.在△OBN和△ODM中,∴△OBN≌△ODM.∴MD=BN.又∵AO=OE,∴12AO⋅BN=12OE⋅DM,即S△AOB=S△EOD.【解析】【分析】本题主要考查三角形全等的性质与判定,等腰直角三角形的性质与判定,点的坐标的确定等知识的综合运用.(1)依据等腰直角三角形的性质可得到OD=OB,OA=OE,∠DOB=∠AOE=90°,然后依据等式的性质可证明∠EOB=∠AOD,接下来,依据SAS可证明Rt△EOB≌Rt△AOD,最后,依据全等三角形的性质可得到BE=AD.(2)①过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.先证明∠OEG=∠AOC,然后再证明△OEG≌△AOC,依据全等三角形的性质可得到OG=AC,EG=OC,从而可得到点E的坐标,接下来再证明△ODH≌△OBC.从而可得到OH=OC,故此可得到点D的横坐标;②过点B作BN⊥OA,垂足为N,过点D作DM⊥OE,垂足为M,先证明△OBN≌△ODM,从而可得到MD=BN,最后,依据三角形的面积公式求解即可.【解答】(1)见答案;(2)①如图所示:过点E作EG⊥y轴,垂足为G,过点D作DH⊥x轴,垂足为H.∵∠EOA=90°,∴∠EOG+∠AOC=90°.又∵∠EOG+∠OEG=90°,∴∠OEG=∠AOC.在△OEG和△AOC中,∴△OEG≌△AOC.∴OG=AC,EG=OC.∵A(n,m)∴E(m,−n).∵∠DOH+∠HOB=90°,∠HOB+∠BOC=90°,∴∠DOH=∠BOC.在△ODH和△OBC中,∴△ODH≌△OBC.∴OH=OC.∴点D的横坐标为−m.故答案为:m;−n;−m;②见答案.18.已知,△ABC是等边三角形,D是直线BC上一点,以D为顶点做∠ADE=60°.DE交过C且平行于AB的直线于E,求证:AD=DE;当D为BC的中点时,(如图1)小明同学很快就证明了结论:他的做法是:取AB的中点F,连结DF,然后证明△AFD≌△DCE.从而得到AD=DE,我们继续来研究:(1)如图2、当D是BC上的任意一点时,求证:AD=DE(2)如图3、当D在BC的延长线上时,求证:AD=DE(3)当D在CB的延长线上时,请利用图4画出图形,并说明上面的结论是否成立(不必证明).【答案】(1)证明:在AB上截取AF=DC,连接FD,如图2所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠BFD=60°,∴∠AFD=120°,又∵AB//CE,∴∠DCE=120°=∠AFD,而∠EDC+∠ADE=∠ADC=∠FAD+∠B∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(2)证明:在BA的延长线上截取AF=DC,连接FD,如图3所示:∵△ABC是等边三角形,∴AB=BC,∠B=60°,又∵AF=DC,∴BF=BD,∴△BDF是等边三角形,∴∠F=60°,又∵AB//CE,∴∠DCE=60°=∠F,而∠FAD=∠B+∠ADB,∠CDE=∠ADE+∠ADB,又∵∠ADE=∠B=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDEAF=CD∠F=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE;(3)解:AD=DE仍成立.理由如下:在AB的延长线上截取AF=DC,连接FD,如图4所示:∵△ABC是等边三角形,∴AB=BC,∠ABC=60°,∴∠FAD+∠ADB=60°,又∵AF=DC,∴BF=BD,∵∠DBF=∠ABC=60°,∴△BDF是等边三角形,∴∠AFD=60°,又∵AB//CE,∴∠DCE=∠ABC=60°,∴∠AFD=∠DCE,∵∠ADE=∠CDE+∠ADB=60°,∴∠FAD=∠CDE,在△AFD和△DCE中,{∠FAD=∠CDE AF=CD∠AFD=∠DCE,∴△AFD≌△DCE(ASA),∴AD=DE.【解析】(1)在AB上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(2)在BA的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形得出∠F=60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论;(3)在AB的延长线上截取AF=DC,连接FD,证明△BDF是等边三角形,得出∠BFD= 60°,证出∠FAD=∠CDE,由ASA证明△AFD≌△DCE,即可得出结论.本题是三角形综合题目,考查了全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质、三角形的外角性质等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解题的关键.19.如图,在△ABC中,∠ABC为锐角,点D为直线BC上一动点,以AD为直角边且在AD的右侧作等腰直角三角形ADE,∠DAE=90°,AD=AE.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时,如图1,线段CE、BD的位置关系为______,数量关系为______;②当点D在线段BC的延长线上时,如图2,①中的结论是否仍然成立,请说明理由;(2)如图3,如果AB≠AC∠BAC≠90°,点D在线段BC上运动.探究:当∠ACB多少度时,CE ⊥BC ?小明通过(1)的探究,猜想∠ACB =45°时,CE ⊥BC.他想过点A 做AC 的垂线,与CB 的延长线相交,构建图2的基本图案,寻找解决此问题的方法.小明的想法对吗?如不对写出你的结论;如对按此方法解决问题并写出理由.【答案】垂直 相等【解析】解:(1)CE 与BD 位置关系是CE ⊥BD ,数量关系是CE =BD .理由:如图1,∵∠BAD =90°−∠DAC ,∠CAE =90°−∠DAC ,∴∠BAD =∠CAE .又BA =CA ,AD =AE ,∴△ABD≌△ACE (SAS)∴∠ACE =∠B =45°且CE =BD .∵∠ACB =∠B =45°,∴∠ECB =45°+45°=90°,即CE ⊥BD .故答案为:垂直,相等;②都成立∵∠BAC =∠DAE =90°,∴∠BAC +∠DAC =∠DAE +∠DAC ,∴∠BAD =∠CAE在△DAB 与△EAC 中,{AD =AE ∠BAD =∠CAE AB =AC∴△DAB≌△EAC(SAS),∴CE =BD ,∠B =∠ACE ,∴∠ACB +∠ACE =90°,即CE ⊥BD(2)小明的想法对的当∠ACB =45°时,CE ⊥BD理由:过点A 作AG ⊥AC 交CB 的延长线于点G ,则∠GAC =90°,∵∠ACB=45°,∠AGC=90°−∠ACB,∴∠AGC=90°−45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,在△GAD与△CAE中,{AC=AG∠DAG=∠EAC AD=AE∴△GAD≌△CAE(SAS),∴∠ACE=∠AGC=45°,∠BCE=∠ACB+∠ACE=45°+45°=90°,即CE⊥BC(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.本题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.20.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B、C作过点A的直线的垂线BD、CE,垂足为D、E.求证:(1)△ABD≌△CAE;(2)DE=BD+CE.【答案】证明:(1)∵BD⊥DE,CE⊥DE,∴∠D=∠E=90°,∵∠BAC=90°,∴∠DAB+∠DBA=∠DAB+∠EAC,∴∠DBA=∠EAC;在△ABD与△CAE中,∵{∠DBA=∠EAC ∠BDA=∠AEC AB=AC,∴△ABD≌△CAE(AAS),(2)由(1)得:△ABD≌△CAE,∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE.【解析】证明∠DBA=∠EAC,这是解决该题的关键性结论;证明△ABD≌△CAE,得到BD=AE,AD=CE,即可解决问题.该题主要考查了全等三角形的判定及其性质的应用问题;准确找出命题中隐含的等量关系,是证明全等三角形的关键.21.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,且∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE= BD+CE是否成立?如成立;请你给出证明;若不成立,请说明理由.【答案】证明:(1)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,∵在△ADB和△CEA中{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.【解析】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.(1)根据BD⊥直线l,CE⊥直线l得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA,则AE=BD,AD= CE,于是DE=AE+AD=BD+CE;(2)利用∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°−α,得出∠CAE=∠ABD,进而得出△ADB≌△CEA即可得出答案.22.如图①,已知CA=CB,CD=CE,∠ACB=∠DCE=ɑ,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含ɑ的式子表示∠AMB的度数(3)当ɑ=90°时,AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.【答案】解:(1)如图①,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE,在△ACD和△BCE中,{CA=CB;∠ACD=∠BCECD=CE,∴△ACD≌△BCE(SAS),∴BE=AD;(2)如图①,∵△ACD≌△BCE,∴∠CAD=∠CBE,∵△ABC中,∠BAC+∠ABC=180°−α,∴∠BAM+∠ABM=180°−α,∴△ABM中,∠AMB=180°−(180°−α)=α;(3)△CPQ为等腰直角三角形.证明:如图②,由(1)可得,BE=AD,∵AD,BE的中点分别为点P、Q,∴AP=BQ,∵△ACD≌△BCE,∴∠CAP=∠CBQ,在△ACP和△BCQ中,{CA=CB∠CAP=∠CBQ AP=BQ,∴△ACP≌△BCQ(SAS),∴CP=CQ,且∠ACP=∠BCQ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ为等腰直角三角形.【解析】本题属于三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的判定以及三角形内角和定理的综合应用.等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.解题时注意掌握全等三角形的对应边相等,对应角相等的运用.(1)由CA=CB,CD=CE,∠ACD=∠BCE,利用SAS即可判定△ACD≌△BCE;(2)根据△ACD≌△BCE,得出∠CAD=∠CBE,即可得到∠AMB=∠ACB=α;(3)先根据SAS判定△ACP≌△BCQ,再根据全等三角形的性质,得出CP=CQ,∠ACP=∠BCQ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ为等腰直角三角形.23.据图回答问题(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE= BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE ∠BDA=∠CEA AB=AC,。
全等三角形测试题及答案
全等三角形测试题及答案一、选择题(每题5分,共20分)1. 若两个三角形的对应角相等,对应边成比例,则这两个三角形是:A. 相似三角形B. 全等三角形C. 等腰三角形D. 直角三角形答案:B2. 在全等三角形中,对应边的长度关系是:A. 不相等B. 相等C. 互为相反数D. 无法确定答案:B3. 以下哪个条件不能判定两个三角形全等?A. SSS(三边相等)B. SAS(两边及其夹角相等)C. ASA(两角及其夹边相等)D. SSA(两边及其中一边的对角相等)答案:D4. 如果两个三角形的两边和一角对应相等,且这角是两边的夹角,则这两个三角形:A. 一定全等B. 不一定全等C. 一定不全等D. 无法确定答案:A二、填空题(每题5分,共20分)1. 如果两个三角形的三边对应相等,根据______判定这两个三角形全等。
答案:SSS2. 两个三角形的两角和一边对应相等,根据______判定这两个三角形全等。
答案:ASA3. 如果两个三角形的两角和其中一角的对边对应相等,根据______判定这两个三角形全等。
答案:AAS4. 两个三角形的两边和其中一边的对角对应相等,根据______判定这两个三角形全等。
答案:HL(直角三角形的斜边和一条直角边对应相等)三、解答题(每题15分,共40分)1. 已知三角形ABC和三角形DEF,AB=DE=5cm,BC=EF=7cm,∠A=∠D=60°,求证:△ABC≌△DEF。
证明:在△ABC和△DEF中,AB=DE,BC=EF,∠A=∠D,∴由SAS判定,△ABC≌△DEF。
2. 若△ABC≌△DEF,且AB=DE,AC=DF,∠B=∠E,求证:BC=EF。
证明:由于△ABC≌△D EF,∴AB=DE,AC=DF,∠B=∠E,∴BC=EF(全等三角形的对应边相等)。
结束语:以上是全等三角形的测试题及答案,希望同学们通过这些题目能够更好地理解和掌握全等三角形的判定方法和性质。
(完整版)全等三角形练习题及答案
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
初二英语全等三角形测试题及答案
初二英语全等三角形测试题及答案一、选择题(共10题,每题1分,共10分)1. 在全等三角形中,下列哪一项是真正的全等条件?A. 边边边(SSS)B. 角边角(SAS)C. 角角角(AAA)D. 边角边(ASA)2. 下面四个图形中,哪个是全等三角形?![Triangle A](triangle_A.jpg)![Triangle B](triangle_B.jpg)![Triangle C](triangle_C.jpg)![Triangle D](triangle_D.jpg)A. Triangle AB. Triangle BC. Triangle CD. Triangle D3. 已知两个角分别为30°和60°,则这两个角的全等三角形边长之比为:A. 1:1B. 1:2C. 1:3D. 2:34. 在空间直角坐标系中,点A(3,4)和点B(5,2)分别表示平面上的两个点,当将AB作为一线段时,这条线段的全等三角形的斜边长度为:A. 2B. 3C. 4D. 55. 已知三个角分别为60°、60°和60°,则这三个角的全等三角形边长之比为:A. 1:1:1B. 1:2:3C. 1:2:1D. 2:1:16. 下图所示的两个三角形,是否全等?![Triangle E](triangle_E.jpg)![Triangle F](triangle_F.jpg)A. 全等B. 不全等7. 在平面上,连结一个已知点到一个未知点,你一共需要连接几条线段,才能唯一确定一个全等的三角形?A. 2B. 3C. 4D. 58. 若两个三角形的两个角分别全等,则这两个三角形是:A. 全等三角形B. 相似三角形C. 等腰三角形D. 直角三角形9. 下图所示的两个三角形,是否全等?![Triangle G](triangle_G.jpg)![Triangle H](triangle_H.jpg)A. 全等B. 不全等10. 若两个三角形的两个边分别全等,则这两个三角形是:A. 全等三角形B. 相似三角形C. 等腰三角形D. 直角三角形二、判断题(共5题,每题1分,共5分)11. 当有两个角分别相等时,可以确定两个三角形全等。
全等三角形测试题及答案
全等三角形测试题及答案一、选择题1. 下列选项中,哪两个三角形是全等的?A. ∠A=∠B,AB=BCB. ∠A=∠B,AC=BDC. ∠A=∠C,AB=ACD. ∠A=∠B,AB=BC,AC=BD2. 如果两个三角形的对应边成比例,且夹角相等,这两个三角形是:A. 相似但不全等B. 必然全等C. 不一定全等D. 无法判断二、填空题3. 根据全等三角形的性质,如果两个三角形的对应角相等,且对应边成比例,那么这两个三角形是_________。
4. SAS全等条件指的是_________。
三、判断题5. 如果两个三角形的三边对应相等,那么这两个三角形一定全等。
()6. 根据HL全等条件,直角三角形中,如果斜边和一条直角边对应相等,那么这两个直角三角形全等。
()四、解答题7. 已知三角形ABC和三角形DEF,其中∠A=∠D=90°,AB=DE,AC=DF,求证:三角形ABC全等于三角形DEF。
8. 如图所示,三角形ABC和三角形DEF在平面直角坐标系中,点A(2,3),B(4,5),C(1,1),点D(-1,-2),E(1,-1),F(-2,-4)。
若AB=DE,AC=DF,∠BAC=∠EDF,请证明三角形ABC全等于三角形DEF。
五、综合题9. 在三角形ABC中,点D在BC上,若AD平分∠BAC,且BD=DC,求证:AB=AC。
10. 已知三角形ABC和三角形DEF,其中AB=DE,∠B=∠D,∠C=∠E,求证:三角形ABC全等于三角形DEF。
答案:一、选择题1. 答案:D2. 答案:A二、填空题3. 答案:相似4. 答案:边角边三、判断题5. 答案:正确6. 答案:正确四、解答题7. 解:由于∠A=∠D=90°,AB=DE,AC=DF,根据直角三角形的HL全等条件,我们可以得出三角形ABC全等于三角形DEF。
8. 解:由于AB=DE,AC=DF,∠BAC=∠EDF,根据SAS全等条件,我们可以得出三角形ABC全等于三角形DEF。
(完整版)全等三角形基础练习及答案
全等三角形判断一一、选择题1. △ABC和△中,若AB=,BC=,AC=.则()A.△ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2. 如图,已知AB=CD,AD=BC,则下列结论中错误的是()A.AB∥DCB.∠B=∠DC.∠A=∠CD.AB=BC3. 下列判断正确的是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4. 如图,AB、CD、EF相交于O,且被O点平分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1对B. 2对C. 3对D. 4对5. 如图,将两根钢条,的中点O连在一起,使,可以绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判定△OAB≌△的理由是( )A.边角边B.角边角C.边边边D.角角边6. 如图,已知AB⊥BD于B,ED⊥BD于D,AB=CD,BC=ED,以下结论不正确的是()A.EC⊥ACB.EC=ACC.ED +AB =DBD.DC =CB二、填空题7. 如图,AB=CD,AC=DB,∠ABD=25°,∠AOB=82°,则∠DCB=_________.8. 如图,在四边形ABCD中,对角线AC、BD互相平分,则图中全等三角形共有_____对.9. 如图,在△ABC和△EFD中,AD=FC,AB=FE,当添加条件_______时,就可得△ABC≌△EFD(SSS)10. 如图,AC=AD,CB=DB,∠2=30°,∠3=26°,则∠CBE=_______.11. 如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB=AC,若∠B =20°,则∠C=______.12. 已知,如图,AB=CD,AC=BD,则△ABC≌______,△ADC≌ ______.三、解答题13. 已知:如图,四边形ABCD中,对角线AC、BD相交于O,∠ADC=∠BCD,AD=BC,求证:CO=DO.14. 已知:如图,AB∥CD,AB=CD.求证:AD∥BC.分析:要证AD∥BC,只要证∠______=∠______,又需证______≌______.证明:∵ AB∥CD (),∴∠______=∠______ (),在△______和△______中,∴Δ______≌Δ______ ().∴∠______=∠______ ().∴ ______∥______().15. 如图,已知AB=DC,AC=DB,BE=CE求证:AE=DE.答案与解析一.选择题1. 【答案】B;【解析】注意对应顶点写在相应的位置.2. 【答案】D;【解析】连接AC或BD证全等.3. 【答案】D;4. 【答案】C;【解析】△DOF≌△COE,△BOF≌△AOE,△DOB≌△COA.5. 【答案】A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6. 【答案】D;【解析】△ABC≌△EDC,∠ECD+∠ACB=∠CAB+∠ACB=90°,所以EC⊥AC,ED +AB =BC+CD=DB.二.填空题7. 【答案】66°;【解析】可由SSS证明△ABC≌△DCB,∠OBC=∠OCB=,所以∠DCB=∠ABC=25°+41°=66°.8. 【答案】4;【解析】△AOD≌△COB,△AOB≌△COD,△ABD≌△CDB,△ABC≌△CDA.9. 【答案】BC=ED;10.【答案】56°;【解析】∠CBE=26°+30°=56°.11.【答案】20°;【解析】△ABE≌△ACD(SAS)12.【答案】△DCB,△DAB;【解析】注意对应顶点写在相应的位置上.三.解答题13.【解析】证明:在△ADC与△BCD中,14. 【解析】3,4;ABD,CDB;已知;1,2;两直线平行,内错角相等;ABD,CDB;AB,CD,已知;∠1=∠2,已证;BD=DB,公共边;ABD,CDB,SAS;3,4,全等三角形对应角相等;AD,BC,内错角相等,两直线平行.15.【解析】证明:在△ABC和△DCB中∴△ABC≌△DCB(SSS)∴∠ABC=∠DCB,在△ABE和△DCE中∴△ABE≌△DCE(SAS)∴AE=DE.全等三角形判断二一、选择题1. 能确定△ABC≌△DEF的条件是()A.AB=DE,BC=EF,∠A=∠EB.AB=DE,BC=EF,∠C=∠EC.∠A=∠E,AB=EF,∠B=∠DD.∠A=∠D,AB=DE,∠B=∠E2.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4-3A.甲和乙 B.乙和丙 C.只有乙 D.只有丙3.AD是△ABC的角平分线,作DE⊥AB于E,DF⊥AC于F,下列结论错误的是()A.DE=DF B.AE=AF C.BD=CD D.∠ADE=∠ADF4.如图,已知MB=ND,∠MBA=∠NDC,下列条件不能判定△ABM≌△CDN的是()A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN5. 某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.①②③都带去6.如图,∠1=∠2,∠3=∠4,下面结论中错误的是()A.△ADC≌△BCD B.△ABD≌△BACC.△ABO≌△CDO D.△AOD≌△BOC二、填空题7. 如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是_________.(填上你认为适当的一个条件即可).8. 在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=,则这两个三角形_________全等.(填“一定”或“不一定”)9. 已知,如图,AB∥CD,AF∥DE,AF=DE,且BE=2,BC=10,则EF=________.10. 如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有______对.11. 如图, 已知:∠1 =∠2 , ∠3 =∠4 , 要证BD =CD , 需先证△AEB ≌△AEC , 根据是_________ ,再证△BDE ≌△_________,根据是_________.12. 已知:如图,∠B=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“ASA”为依据,还缺条件_________(2)若以“AAS”为依据,还缺条件_________(3)若以“SAS”为依据,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD相交于点O,且OA=OB,∠A=∠C.那么△AOD与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD≌△COB.证明:在△AOD和△COB中,∴△AOD≌△COB (ASA).问:这位同学的回答及证明过程正确吗?为什么?14. 已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF,求证:AC与BD互相平分.15. 已知:如图, AB∥CD,OA = OD, BC过O点, 点E、F在直线AOD上, 且AE = DF.求证:EB∥CF.答案与解析【答案与解析】一.选择题1. 【答案】D;【解析】A、B选项是SSA,没有这种判定,C选项字母不对应.2. 【答案】B;【解析】乙可由SAS证明,丙可由ASA证明.3. 【答案】C;【解析】可由AAS证全等,得到A、B、D三个选项是正确的.4. 【答案】C;【解析】没有SSA定理判定全等.5. 【答案】C;【解析】由ASA定理,可以确定△ABC.6. 【答案】C;【解析】△ABO与△CDO中,只能找出三对角相等,不能判定全等.二、填空题7. 【答案】∠B=∠C;【解析】可由AAS来证明三角形全等.8. 【答案】一定;【解析】由题意,△ABC≌△,注意对应角和对应边.9. 【答案】6;【解析】△ABF≌△CDE,BE=CF=2,EF=10-2-2=6.10.【答案】5;【解析】△ABO≌△CDO,△AFO≌△CEO,△DFO≌△BEO,△AOD≌△COB,△ABD≌△CDB.11.【答案】ASA,CDE,SAS;【解析】△AEB ≌△AEC后可得BE=CE.12.【答案】(1)∠A=∠D;(2)∠ACB=∠F;(3) BC=EF.三、解答题13. 【解析】解:这位同学的回答及证明过程不正确.因为∠D所对的是AO,∠C所对的是OB,证明中用到了OA=OB,这不是一组对应边,所以不能由ASA去证明全等.14.【解析】证明:∵BF=DE,∴BF-EF=DE-EF,即BE=DF在△ABE和△CDF中,∴△ABE≌△CDF(SSS)∴∠B=∠D,在△ABO和△CDO中∴△ABO≌△CDO(AAS)∴AO=OC,BO=DO,AC与BD互相平分.15.【解析】证明:∵AB∥CD,∴∠CDO=∠BAO在△OAB和△ODC中,∴△OAB≌△ODC(ASA)∴OC=OB又∵AE = DF,∴AE+OA=DF+OD,即OE=OF在△OCF和△OBE中∴△OCF≌△OBE(SAS)∴∠F=∠E,∴CF∥EB.。
全等三角形练习题(含答案)
全等三角形练习题12.1全等三角形1.下列各组的两个图形属于全等图形的是()2.如图,△ABD≌△ACE,则∠B与________,∠AEC与________,∠A与________是对应角;则AB与________,AE与________,EC与________是对应边.第2题图第3题图3.如图,△ABC≌△CDA,∠ACB=30°,则∠CAD的度数为________.4.如图,若△ABO≌△ACD,且AB=7cm,BO=5cm,则AC=________cm.第4题图第5题图5.如图,△ACB≌△DEB,∠CBE=35°,则∠ABD的度数是________.6.如图,△ABC≌△DCB,∠ABC与∠DCB是对应角.(1)写出其他的对应边和对应角;(2)若AC=7,DE=2,求BE的长.12.2三角形全等的判定第1课时“边边边”1.如图,下列三角形中,与△ABC全等的是()A.①B.②C.③D.④2.如图,已知AB=AD,CB=CD,∠B=30°,则∠D的度数是()A.30° B.60° C.20° D.50°第2题图第3题图3.如图,AB=DC,请补充一个条件:________,使其能由“SSS”判定△ABC≌△DCB. 4.如图,A,C,F,D在同一直线上,AF=DC,AB=DE,BC=EF.求证:△ABC≌△DEF.5.如图,AB=AC,AD=AE,BD=CE.求证:∠ADE=∠AED.第2课时“边角边”1.如图,已知点F、E分别在AB、AC上,且AE=AF,请你补充一个条件:________,使其能直接由“SAS”判定△ABE≌△ACF.第1题图第2题图2.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是________.3.如图,AB=AD,∠1=∠2,AC=AE. 求证:△ABC≌△ADE.4.如图,AE∥DF,AE=DF,AB=CD.求证:(1)△AEC≌△DFB;(2)CE∥BF.第3课时“角边角”“角角边”1.如图,已知∠1=∠2,∠B=∠C,若直接推得△ABD≌△ACD,则其根据是() A.SAS B.SSS C.ASA D.AAS第1题图第2题图2.如图,在△ABD与△ACD中,已知∠CAD=∠BAD,在不添加任何辅助线的前提下,直接由“ASA”证明△ABD≌△ACD,需再添加一个条件,正确的是()A.∠B=∠C B.∠CDA=∠BDAC.AB=AC D.BD=CD3.如图,已知MA∥NC,MB∥ND,且MB=ND.求证:△MAB≌△NCD.4.如图,在△ABC中,AD是BC边上的中线,E,F为直线AD上的两点,连接BE,CF,且BE∥CF.求证:(1)△CDF≌△BDE;(2)DE=DF.第4课时“斜边、直角边”1.如图,∠BAD=∠BCD=90°,AB=CB,可以证明△BAD≌△BCD的理由是() A.HL B.ASA C.SAS D.AAS第1题图第2题图2.如图,在Rt△ABC与Rt△DCB中,∠A=∠D=90°,请你添加一个条件(不添加字母和辅助线),使Rt△ABC≌Rt△DCB,你添加的条件是________.3.如图,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:∠AEB=∠F.4.如图,点C,E,B,F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.12.3 角的平分线的性质第1课时 角平分线的性质1.如图,在Rt △ACB 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于点E .若CD =6,则DE 的长为( )A .9B .8C .7D .6第1题图 第2题图2.如图,在△ABC 中,∠C =90°,按以下步骤作图:①以点B 为圆心,以小于BC 的长为半径画弧,分别交AB ,BC 于点E ,F ;②分别以点E ,F 为圆心,以大于12EF 的长为半径画弧,两弧相交于点G ;③作射线BG ,交AC 边于点D .若CD =4,则点D 到斜边AB 的距离为________.3.如图,Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AB =10,S △ABD =15,求CD 的长.4.如图,CD ⊥AB 于点D ,BE ⊥AC 于点E ,BE ,CD 相交于点O ,且AO 平分∠BAC .求证:OB =OC .第2课时角平分线的判定1.如图,DE⊥AB于点E,DF⊥BC于点F,且DE=DF.若∠DBC=50°,则∠ABC的度数为()A.50° B.100° C.150° D.200°第1题图第3题图2.在三角形内部,到三角形的三边距离都相等的点是()A.三角形三条高的交点B.三角形三条角平分线的交点C.三角形三条中线的交点D.以上均不对3.如图,∠ABC+∠BCD=180°,点P到AB,BC,CD的距离都相等,则∠PBC+∠PCB 的度数为________.4.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为E,F,AE=AF.求证:(1)PE=PF;(2)AP平分∠BAC.5.如图,B是∠CAF内的一点,点D在AC上,点E在AF上,且DC=EF,△BCD与△BEF的面积相等.求证:AB平分∠CAF.第十二章 全等三角形 12.1 全等三角形1.D 2.∠C ∠ADB ∠A AC AD DB 3.30° 4.7 5.35°6.解:(1)对应边:AB 与DC ,AC 与DB ,BC 与CB .对应角:∠A 与∠D ,∠ACB 与∠DBC .(2)由(1)可知DB =AC =7,∴BE =BD -DE =7-2=5.12.2 三角形全等的判定第1课时 “边边边”1.C 2.A 3.AC =BD4.证明:∵AF =DC ,∴AF -CF =DC -CF ,即AC =DF .在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,BC =EF ,∴△ABC ≌△DEF (SSS).5.证明:在△ABD 与△ACE 中,⎩⎪⎨⎪⎧AB =AC ,AD =AE ,BD =CE ,∴△ABD ≌△ACE (SSS),∴∠ADB =∠AEC .∵∠ADB +∠ADE =180°,∠AEC +∠AED =180°,∴∠ADE =∠AED .第2课时 “边角边”1.AB =AC 2.SAS3.证明:∵∠1=∠2,∴∠BAC =∠DAE .在△ABC 与△ADE 中,∵⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).4.证明:(1)∵AE ∥DF ,∴∠A =∠D .∵AB =CD ,∴AC =DB .在△AEC 与△DFB 中,⎩⎪⎨⎪⎧AE =DF ,∠A =∠D ,AC =DB ,∴△AEC ≌△DFB (SAS). (2)由(1)知△AEC ≌△DFB ,∴∠ECA =∠FBD ,∴CE ∥BF .第3课时 “角边角”“角角边”1.D 2.B3.证明:∵MB ∥ND ,∴∠MBA =∠D .∵MA ∥NC ,∴∠A =∠NCD .在△MAB 与△NCD 中,⎩⎪⎨⎪⎧∠MBA =∠D ,∠A =∠NCD ,MB =ND ,∴△MAB ≌△NCD (AAS). 4.证明:(1)∵AD 是△ABC 的中线,∴BD =CD .∵BE ∥CF ,∴∠FCD =∠EBD .在△CDF 和△BDE 中,⎩⎪⎨⎪⎧ ∠FCD =∠EBD ,CD =BD ,∠CDF =∠BDE ,∴△CDF ≌△BDE (ASA).(2)由(1)知△CDF ≌△BDE ,∴DF =DE .第4课时 “斜边、直角边”1.A 2.AB =DB (答案不唯一)3.证明:∵∠ABC =90°,∴∠CBF =90°.在Rt △ABE 和Rt △CBF 中, ∵⎩⎪⎨⎪⎧AE =CF ,AB =CB ,∴Rt △ABE ≌Rt △CBF (HL).∴∠AEB =∠F .4.证明:∵AB ⊥CF ,DE ⊥CF ,∴∠ABC =∠DEF =90°.在Rt △ABC 和Rt △DEF 中,⎩⎪⎨⎪⎧AC =DF ,AB =DE ,∴Rt △ABC ≌Rt △DEF (HL),∴BC =EF ,∴BC -BE =EF -BE ,即CE =BF . 12.3 角的平分线的性质第1课时 角平分线的性质1.D 2.43.解:∵S △ABD =15,AB =10,∴点D 到AB 的距离h =2×1510=3.∵AD 平分∠BAC ,∠C =90°,∴DC =h =3. 4.证明:∵CD ⊥AB ,BE ⊥AC ,AO 平分∠BAC ,∴OD =OE ,∠ODB =∠OEC =90°.在△DOB与△EOC 中,⎩⎪⎨⎪⎧∠DOB =∠EOC ,OD =OE ,∠ODB =∠OEC ,∴△DOB ≌△EOC (ASA),∴OB =OC .第2课时 角平分线的判定1.B 2.B 3.90°4.证明:(1)∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP =90°.在Rt △AEP 和Rt △AFP 中,⎩⎪⎨⎪⎧AP =AP ,AE =AF ,∴Rt △AEP ≌Rt △AFP (HL),∴PE =PF .(2)∵PE⊥AB,PF⊥AC,PE=PF,∴点P在∠BAC的平分线上,故AP平分∠BAC. 5.证明:∵DC=EF,△DCB和△EFB的面积相等,∴点B到AC,AF的距离相等,∴AB 平分∠CAF.。
全等三角形考试题及答案
全等三角形考试题及答案一、选择题1. 两个三角形全等的条件是:A. 两个角相等B. 三条边相等C. 两边夹一角相等D. 两角夹一边相等答案:D2. 已知△ABC≌△DEF,其中AB=DE,AC=DF,∠A=∠D,那么BC与EF 的关系是:A. BC=EFB. BC>EFC. BC<EFD. 不能确定答案:A二、填空题1. 如果两个三角形的对应边成比例,且对应角相等,则这两个三角形______。
答案:相似2. 在△ABC中,∠A=∠B=50°,则∠C=______。
答案:80°三、解答题1. 已知△ABC≌△DEF,且AB=5cm,BC=7cm,求DE的长度。
答案:DE=5cm2. 已知△ABC≌△DEF,且∠A=∠D=60°,∠B=∠E=50°,求∠C和∠F 的度数。
答案:∠C=∠F=70°四、证明题1. 已知△ABC≌△DEF,且∠A=∠D=90°,AB=DE,AC=DF,证明:BC=EF。
答案:根据直角三角形全等的判定定理HL,因为∠A=∠D,AB=DE,AC=DF,所以△ABC≌△DEF,因此BC=EF。
2. 已知△ABC≌△DEF,且∠A=∠D,∠B=∠E,证明:∠C=∠F。
答案:根据全等三角形对应角相等的性质,因为△ABC≌△DEF,所以∠C=∠F。
五、应用题1. 一块三角形的木板ABC需要与另一块三角形的木板DEF进行拼接,已知AB=DE,BC=EF,∠A=∠D,∠B=∠E,判断两块木板是否可以拼接。
答案:可以拼接,因为根据SAS判定定理,△ABC≌△DEF。
2. 已知一个等腰三角形ABC,其中AB=AC,∠A=50°,求∠B和∠C的度数。
答案:因为AB=AC,所以∠B=∠C,又因为三角形内角和为180°,所以∠B=∠C=(180°-50°)/2=65°。
全等三角形练习题及答案
全等三角形练习题及答案全等三角形是几何学中的一个重要概念,它指的是具有相同形状和大小的两个三角形。
在解决几何问题时,判断两个三角形是否全等是常见的步骤之一。
本文将提供一些全等三角形的练习题,并附带答案供参考。
练习题一:已知△ABC和△DEF,其中∠B=∠E,∠C=∠F,AC=DF。
判断△ABC与△DEF是否全等,请给出理由并画出示意图。
答案:根据已知条件可知,在△ABC和△DEF中,有两对对应全等的角度,即∠B=∠E,∠C=∠F。
另外,还已知AC=DF。
根据SAS(边-角-边)全等三角形的判定条件,当两个三角形的两边及夹角分别相等时,它们是全等三角形。
因此,根据给定的条件,可以判断△ABC与△DEF是全等三角形。
下图是△ABC与△DEF的示意图:A D/\/\B––– C E–––F练习题二:已知△PQR和△RST,满足条件PR=RS,PR∥RS,∠Q=∠T。
请判断△PQR与△RST是否全等,并给出理由。
答案:根据已知条件可知,在△PQR和△RST中,有两对对应全等的角度,即∠Q=∠T。
另外,还已知PR=RS。
根据ASA(角-边-角)全等三角形的判定条件,当两个三角形的两个夹角及夹角间的边分别相等时,它们是全等三角形。
因此,根据给定的条件,可以判断△PQR与△RST是全等三角形。
练习题三:已知△ABC和△DEF,满足条件∠A=∠D,BC=EF,AC=DF。
请判断△ABC与△DEF是否全等,并给出理由。
答案:根据已知条件可知,在△ABC和△DEF中,有一对对应全等的角度,即∠A=∠D。
另外,还已知BC=EF和AC=DF。
根据SSS(边-边-边)全等三角形的判定条件,当两个三角形的三条边分别相等时,它们是全等三角形。
因此,根据给定的条件,可以判断△ABC与△DEF是全等三角形。
练习题四:已知△XYZ和△UVW,满足条件XY=VW,YZ=UW,且∠X=∠U。
请判断△XYZ与△UVW是否全等,并给出理由。
完整版全等三角形练习题及答案
全等三角形练习题及答案下列判定直角三角形全等的方法,不正确的是(在^ ABC 中,Z B =・Z C ,与△ ABC 全等的三角形有一个角是 100 °,那么在^)D . Z C=Z F在^ ABC ^A ABC 中有① ABA ' B ,② BC =B C ,③ A(=A C ,④Z A =Z A ,⑤Z B= Z B ,⑥Z C =Z C ,则下列各组条件中不能保证^ ABC^A ABC 的是如图,△ ABC^A ADE 若Z BAE=120°,Z BA[=40°,则Z BAC 的度数为A 、 两条直角边对应相等。
B 、斜边和一锐角对应相等。
C 、 斜边和一条直角边对应相等。
D 、两锐角相等。
ABC 中与这100 °角对应相等的角是 下列各条件中,不能作岀唯一三角形的是(A.已知两边和夹角B. 角 D.已知三边 已知两角和夹边C.已知两边和其中一边的对D. / B 或/ C4、在△ ABC <A DEF 中, △ ABC WA DEF 全等的是已知 AB=DE / A / D;再加一个条件,却不能判断A . BC=EFB . AC=DFC .使两个直角三角形全等 •的条件是A . 锐角对应相等 B.两锐角对应相等C . 一条边对应相等D.两条直角边对应相等 A 、①②③ B 、①②⑤ C 、①②④ D 、②⑤⑥A 、 如图,已知Z 1 = Z 2,欲得到△ ABD^A ACD 还须从下列条件中补选一个,错误的选法是 )Z ADB=Z ADCB 、/ B=ZC C 、DB=DCD 、 AB=ACA. 40 °B. 8 .0°C.120 °D.不能确定CA9、 如图, AE = AF , AB = AC EC 与 BF 交于点 O, / A = 60°,/ B = 25°,则/ EOB 的度数为( )10、 如图,已知 AB= DC,AD= BC,E.F 在 DB 上两点且 BF = DE,若/ AEB= 120°12、下列条件中,不能判定两个三角形全等的是(B .两边和一角对应相等(A )(C)AM=aN14、如图,AB 与 CC 交于点 0, 0爪 OC OD= OB / A=50°, / B= 30则/D 的度数为(A.150 °B.40 °C.80 °D. 90 ° 11、①两角及一边对应相等 应相等,以上条件能判断两个三角形全等的是 ②两边及其夹角对应相等 )③两边及一边所对的角对应相等 ④两角及其夹边■对 A .①③B .②④C .②③④D .①②④ A . 600 B . 700 C. 750 D. 850,/ ADB= 30°,则/ BCF= (A .三条边对应相等C .两角及其一角的对边对应相等D .两角和它们的夹边对应相等13、如图,已知ZWDt? ,下列条件中不能判定/腼胞 rCDW 的是(15、如图,△ ABC 中,AD 丄BC 于D, BE 丄AC 于E , AD 与BE 相交于点F ,若BF = AC,则/ ABC 的度数是16、在^ ABC 和 △川决 C'中,/ A=44°,Z B=67°,/ C '=69 °,/ 5’ =44 °,且 AC 必'C '则这两个三角全等(填“一定”或“不一定”)17、如图,4 7 C , 口在同一直线上,加三CD , DE II AF ,若要使△ ACF,则还需要补充一个条件:如图,△ ABD △ ACE 都是正三角形, BE 和CD 交于0点,则/ BOC=已知:如图,/ ABC=Z DEF , AB= DE,要说明△ ABC^A DEF,A . 50° B . 30° C . 80 D .10018、(只需填写一个你认为适合的条件)如图,已知/是 CAB 玄DBA 要使△ ABC^A BAD 需增加的一个条件21、22、 E(1)若以“SAS' 为依据,还须添加的一个条件为(2)若以“ASA为依据,还须添加的一个条件为(3)若以“AAS' 为依据,还须添加的一个条件为23、如图4, 如果AB= AC, ,即可判定△ ABD^A ACEA24、如图2, / 仁/ 2,由AAS判定△ACD,则需添加的条件是25、如图, 已知/ ACB=/ BDA只要再添加一个条件: ,就能使△ ACB^A BDA (填一个即可)26、已知,如图2:Z ABC=/ DEF, AB=DE 要说明A ABC^A DEF若以“ SAS'为依据,还要添加的条件为若以“ ASA”为依据,还要添加的条件为Rt △ ABC R Rt △ DC 冲,AB=DC / A / D=90° , AC 与 BD 交于_____ ,其判定依据是 _____________ ,还有△ ,其判定依据是 ____________ .点 B 、E 、C 、F 在同一直线上, AB= DE, /A=Z D, AC // DF.AE=DE BE=CE AC 禾R BD 相交于点 E ,求证:AB=DC已知/ A=Z D=90° , E 、F 在线段BC 上,DE 与AF 交于点 O,且AB=CD 求证:(1) Rt △ ABF ^ Rt △ DCE ( 2) OE=OF . 27、如图9所示, 只需填一个]。
全等三角形测试题含答案
《全等三角形》整章水平测试题一、认认真真选,沉着应战! 1.下列命题中正确的是(.下列命题中正确的是( ) A .全等三角形的高相等.全等三角形的高相等 B .全等三角形的中线相等.全等三角形的中线相等 C .全等三角形的角平分线相等.全等三角形的角平分线相等 D .全等三角形对应角的平分线相等.全等三角形对应角的平分线相等 2. 下列各条件中,不能作出惟一三角形的是(下列各条件中,不能作出惟一三角形的是( ) A .已知两边和夹角.已知两边和夹角 B .已知两角和夹边.已知两角和夹边 C .已知两边和其中一边的对角.已知两边和其中一边的对角 D .已知三边.已知三边 4.下列各组条件中,能判定△ABC ≌△DEF 的是( ) A .AB =DE ,BC =EF ,∠A =∠DB .∠A =∠D ,∠C =∠F ,AC =EFC .AB =DE ,BC =EF ,△ABC 的周长= △DEF 的周长的周长D .∠A =∠D ,∠B =∠E ,∠C =∠F5.如图,在△ABC 中,∠A :∠B :∠C =3:5:10,又△MNC ≌△ABC , 则∠BCM :∠BCN 等于(等于( )A .1:2 B .1:3C .2:3 D .1:4 6.如图,.如图, ∠AOB 和一条定长线段A ,在∠AOB 内找一点P ,使P 到OA 、OB 的距离都等于A ,做法如下:(1)作OB 的垂线NH , 使NH =A ,H 为垂足.(2)过N 作NM ∥OB .(3)作∠AOB 的平的平 分线OP ,与NM 交于P .(4)点P 即为所求. 其中(3)的依据是()的依据是( ) A .平行线之间的距离处处相等平行线之间的距离处处相等B .到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上C .角的平分线上的点到角的两边的距离相等角的平分线上的点到角的两边的距离相等D .到线段的两个端点距离相等的点在线段的垂直平分线上到线段的两个端点距离相等的点在线段的垂直平分线上7. 如图,△ABC 的三边AB 、BC 、CA 长分别是20、30、40,其三条,其三条 角平分线将△ABC 分为三个三角形,则S △ABO ︰S △BCO ︰S △CAO 等于(等于( ) A .1︰1︰1 B .1︰2︰3 C .2︰3︰4 D .3︰4︰5 8.如图,从下列四个条件:①BC =B ′C , ②AC =A ′C ,③∠A ′CB =∠B ′CB ,④AB =A ′B ′中,任取三个为条件,中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是(余下的一个为结论,则最多可以构成正确的结论的个数是( )A .1个B .2个C .3个D .4个9.要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线B F 上 取两点C ,D ,使CD =BC ,再定出B F 的垂线DE ,使A ,C ,E 在同在同 一条直线上,如图,可以得到EDC ABC @,所以ED =AB ,因,因 此测得ED 的长就是AB 的长,判定EDC ABC @的理由是(的理由是( ) A .SAS B .ASA C .SSS D .HLA CB DFENAMCBFCEABD10.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边 翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度的度 数为(数为( ) A .80° B .100° C .60° D .45°.二、仔仔细细填,记录自信!11.如图,在△ABC 中,AD=DE ,AB=BE ,∠A=80°, 则∠CED=_____.12.已知△DE F ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4 =4 cm cm ,则△DE F 的边中必有一条边等于______.13. 在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD ︰DC =5︰3,则D 到AB 的距离为_____________.14. 如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.AB C D E15. 如图,AD AD ¢¢,分别是角锐角三三角形ABC 和锐角三角形A B C ¢¢¢中,BC B C ¢¢边上的高,且AB A B AD A D ¢¢¢¢==,.若使ABC A B C ¢¢¢△≌△,请你补充条件___________.(填写一个你认为适当的条件即可) 17. 如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.19. 如右图,已知在ABC 中,90,,A AB AC CD Ð=°=平分ACB Ð,DE BC ^于E ,若15cm BC =,则DEB △的周长为的周长为 cm .BCA DEAB C D'A'B 'D 'CABCDE20.在数学活动课上,小明提出这样一个问题:∠B =∠C =900,E 是BC 的中点,DE 平分∠ADC ,∠CED =350,如图,则∠EAB 是多少是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、平心静气做,展示智慧!21.如图,公园有一条“Z ”字形道路ABCD ,其中,其中AB ∥CD ,在,,E M F 处各有一个小石凳,且BE CF =,M 为BC 的中点,请问三个小石凳是否在一条直线上?的中点,请问三个小石凳是否在一条直线上? 说出你推断的理由.22.如图,给出五个等量关系:①AD BC = ②AC BD = ③CE DE = ④D C Ð=Ð ⑤DAB CBA Ð=Ð.请你以其中两个为条件,另三个中的一个为结论,推出一个正确.请你以其中两个为条件,另三个中的一个为结论,推出一个正确 的结论(只需写出一种情况),并加以证明.,并加以证明.已知:已知: 求证:求证:证明:证明:23.如图,在∠AOB 的两边OA ,OB 上分别取OM =ON ,OD =OE , DN 和EM 相交于点C .求证:点C 在∠AOB 的平分线上. 四、发散思维,游刃有余!24. (1)如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石 铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和平方米,内圈的所有三角形的面积之和 是b 平方米,这条小路一共占地多少平方米?平方米,这条小路一共占地多少平方米?ABDCEOM ND ACBEMF DCBAEA BC ED A G FC BD E (图1)(图1)90四边形90180AB ,180EAG BAC Ð+\Ð=FA GCEMNACM AGN \△≌△ 1122ABC AEG CM GNS AB CM S AE GN\===△△, ABC AEG S S \=△△(2)解:由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和 \这条小路的面积为(2)a b +平方米.平方米.。
全等三角形测试题及答案
全等三角形测试题及答案一、选择题1. 在以下四组线段中,哪个组合的线段可以构成全等三角形?A) AB = 6 cm, AC = 6 cm, BC = 5 cmB) AB = 4 cm, AC = 3 cm, BC = 5 cmC) AB = 5 cm, AC = 7 cm, BC = 5 cmD) AB = 8 cm, AC = 6 cm, BC = 10 cm答案:B) AB = 4 cm, AC = 3 cm, BC = 5 cm2. 在△ABC中,AB = 5 cm, AC = 6 cm, BC = 7 cm。
下列哪个陈述是正确的?A) △ABC是全等三角形B) △ABC是直角三角形C) △ABC是等腰三角形D) △ABC不存在答案:A) △ABC是全等三角形二、填空题3. 完成下面的等式: △ABC ≌△___。
答案:ACD4. 如果两个三角形的对应顶点对应着相等的角度,那么这两个三角形是______的。
答案:全等三、解答题5. 已知图中的三个三角形,判断是否可以证明它们是全等三角形。
如果可以,请说明理由;如果不可以,请说明其中的不等条件。
(插入三个全等三角形的图示)答案:根据提供的图示,可以确定△ABC和△DEF是全等三角形。
理由是它们的对应边和对应角相等:AB = DE, AC = DF, BC = EF, ∠A= ∠D, ∠B = ∠E, ∠C = ∠F。
而△XYZ无法和△ABC或△DEF证明全等,其中的不等条件为对应的角度不相等。
6. 已知三角形ABC和DEF,如果AB = DE, AC = DF,并且∠A =∠D,请说明能否得出△ABC ≌△DEF的结论,并解释理由。
答案:不能得出△ABC ≌△DEF的结论。
因为仅仅知道两个边和一个角相等,不足以确定两个三角形全等的条件,还需要更多的信息,如另外两个边和对应的角度。
总结:全等三角形测试题及答案包括选择题、填空题和解答题。
通过在题目中提供三角形的边长和角度等信息,考察学生对全等三角形的理解和判断能力。
全等三角形测试题及答案
全等三角形测试题及答案一、选择题(每题5分,共20分)1. 若两个三角形的对应角相等,则这两个三角形一定是全等三角形。
A. 正确B. 错误答案:B2. 根据SAS(边-角-边)公理,如果两个三角形的两边和夹角相等,则这两个三角形全等。
A. 正确B. 错误答案:A3. 已知三角形ABC和三角形DEF,若AB=DE,BC=EF,且∠A=∠D,则三角形ABC≌三角形DEF。
A. 正确B. 错误答案:A4. 如果两个三角形的对应边成比例,并且对应角相等,则这两个三角形全等。
A. 正确B. 错误答案:B二、填空题(每题5分,共20分)1. 根据AAS(角-角-边)公理,如果两个三角形的两个角和其中一个角的对边相等,则这两个三角形______。
答案:全等2. 在全等三角形中,对应边______。
答案:相等3. 如果两个三角形的三边对应相等,则这两个三角形______。
答案:全等4. 根据HL(斜边-直角边)公理,如果两个直角三角形的斜边和一条直角边相等,则这两个三角形______。
答案:全等三、解答题(每题15分,共40分)1. 已知三角形ABC和三角形DEF,AB=DE=5cm,BC=EF=7cm,∠A=∠D=90°,求证:三角形ABC≌三角形DEF。
证明:∵AB=DE,BC=EF,∠A=∠D∴根据HL公理,三角形ABC≌三角形DEF。
2. 已知三角形ABC和三角形DEF,∠A=∠D=60°,AC=DF=6cm,AB=3cm,DE=3cm,求证:三角形ABC≌三角形DEF。
证明:∵∠A=∠D,AC=DF∴∠B=∠E(等角的补角相等)∵AB=DE∴根据ASA(角-边-角)公理,三角形ABC≌三角形DEF。
四、证明题(每题20分,共20分)1. 已知三角形ABC和三角形DEF,AB=DE=5cm,∠B=∠E,∠A=∠D,求证:三角形ABC≌三角形DEF。
证明:∵∠A=∠D,∠B=∠E∴∠C=∠F(三角形内角和定理)∵AB=DE∴根据ASA公理,三角形ABC≌三角形DEF。
全等三角形测试题(答案)
全等三角形测试题姓名成绩一、填空题(每小题2分,共28分)1.在ΔABC中,AB=5,BC=8,则AC的取值范围是。
2.三角形按角分为、和直角三角形。
3.判定两个三角形全等,其中一个条件肯定是。
4.如图1,E是AB边上的一点,且点E到AC和BC的距离相等,则点E是与AB的交点;D是BC边上的一点,线段AD使SΔABD=SΔADC,则AD是△ABC的线。
图1 图2 图35.如图2,RtΔAEF和RtΔABC中,∠B=∠E=90°,∠C=∠F,AF=AC,则图中有对三角形全等,它们是。
6.如图3,正方形ABCD中,AB绕A点旋转至E点,连接BE、DE,∠ABE=55°,则∠AED的度数为。
7.如图4,RtΔABC中,AB⊥BC,∠BAC的角平分线AE与BC交于E点,过点E作ED⊥AC于D,作EF//BD 交AC于F点,连接BD,则图中与∠BAE相等的角共有个,分别是。
图4 图5 图68.如图5,已知AC∥DF, D、B在AE上,∠C=∠F。
请再补充一个条件,使ΔABC≌ΔDEF,补充的条件是。
9.如图6,已知AD⊥BC,CF⊥AB,垂足为D、F,且EF=BF,则∠BAC的度数为。
10.已知ΔABC,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,连接EF,交AD于O点,则AD 与EF的位置关系是。
二.选择题(每小题3分,共30分)1.如图7,□BFEC中, CF、BE交于点O,过O点作AD∥EC,分别交BC、EF于M、N,使AM=DN,连接AC、AB、DE、DF,则图中共有()种全等三角形。
A.9种B.10种C.11种D.12种图7 图8 图92.如图8,ΔABC中,AC⊥AB,AC=AB,BD是∠ABC的角平分线,交AC于D,过D点作DE⊥BC于E,若BC=10,那么ΔCDE的周长为()A.15B.10C.8D.123.如图9,已知AB=AC,AF平分∠CAB,则图中全等三角形共有()A.2对B.3对C.4对D.5对4.已知ΔABC≌ΔDEF,∠A=80︒,∠F=40︒,∠B的外角度数为()A.60︒ B.140︒ C.100︒ D.120︒5.下列命题中正确的有()①三个角对应相等的两个三角形全等;②任意两边对应相等的两个直角三角形全等;③三边对应相等的两个三角形全等;④任意两边对应相等的两个等腰三角形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形练习题及答案1、下列判定直角三角形全等的方法,不正确的是()A、两条直角边对应相等。
B、斜边和一锐角对应相等。
C、斜边和一条直角边对应相等。
D、两锐角相等。
2、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C3、下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角 D.已知三边4、在△ABC与△DEF中,已知AB=DE;∠A=∠D;再加一个条件,却不能判断△ABC与△DEF全等的是().A. BC=EF B.AC=DFC.∠B=∠E D.∠C=∠F5、使两个直角三角形全等的条件是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等6、在△ABC和△A'B'C'中有①AB=A'B',②BC=B'C',③AC=A'C',④∠A=∠A',⑤∠B=∠B',⑥∠C=∠C',则下列各组条件中不能保证△ABC≌△A'B'C'的是()A、①②③B、①②⑤C、①②④D、②⑤⑥7、如图,已知∠1=∠2,欲得到△ABD≌△ACD,还须从下列条件中补选一个,错误的选法是()A、∠ADB=∠ADCB、∠B=∠CC、DB=DCD、AB=AC8、如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC的度数为A. 40°B. 80°C.120°D. 不能确定9、如图,AE=AF,AB=AC,EC与BF交于点O,∠A=600,∠B=250,则∠EOB的度数为()A.600 B.700C.750D.85010、如图,已知AB=DC,AD=BC,E.F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF= ( )A. 150°B.40°C.80°D. 90°11、①两角及一边对应相等②两边及其夹角对应相等③两边及一边所对的角对应相等④两角及其夹边对应相等,以上条件能判断两个三角形全等的是( )A.①③ B.②④ C.②③④ D.①②④12、下列条件中,不能判定两个三角形全等的是()A.三条边对应相等 B.两边和一角对应相等C.两角及其一角的对边对应相等 D.两角和它们的夹边对应相等13、如图,已知,,下列条件中不能判定⊿≌⊿的是()(A)(B)(C)(D)∥14、如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为().A.50° B.30° C.80° D.100°15、如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC的度数是.16、在△ABC和△中,∠A=44°,∠B=67°,∠=69°,∠=44°,且AC=则这两个三角形全等(填“一定”或“不一定”)17、如图,,,,在同一直线上,,,若要使,则还需要补充一个条件:或.18、(只需填写一个你认为适合的条件)如图,已知∠CAB=∠DBA,要使△ABC≌△BAD,需增加的一个条件是。
21、如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则∠BOC=__________.22、已知:如图,∠ABC=∠DEF,AB=DE,要说明△ABC≌△DEF,(1)若以“SAS”为依据,还须添加的一个条件为________________.(2)若以“ASA”为依据,还须添加的一个条件为________________.(3)若以“AAS”为依据,还须添加的一个条件为________________.23、如图4,如果AB=AC,,即可判定ΔABD≌ΔACE。
24、如图2,∠1=∠2,由AAS判定△ABD≌△ACD,则需添加的条件是__________.25、如图,已知∠ACB=∠BDA,只要再添加一个条件:__________,就能使△ACB≌△BDA.(填一个即可)26、已知,如图2:∠ABC=∠DEF,AB=DE,要说明ΔABC≌ΔDEF(1) 若以“SAS”为依据,还要添加的条件为______________;(2) 若以“ASA”为依据,还要添加的条件为______________;27、如图9所示,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的一个条件为 [答案不唯一,只需填一个]。
29、如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与BD交于点O,则有△__________≌△__________,其判定依据是__________,还有△__________≌△__________,其判定依据是__________.31、已知:点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:⑴△ABC≌△DEF;⑵BE=CF.34、如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC35、如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:(1)Rt△ABF≌Rt△DCE;(2)OE=OF .36、如图,已知AB=AD,AC=AE,∠1=∠2,求证△ABC≌△ADE.37、已知:如图,点E、F在线段BD上,AB=CD,∠B=∠D,BF=DE.求证:(1)AE=CF(2)AF//CE参考答案一、选择题1、D2、A3、C;4、 A5、 D6、C7、C;8、B9、B、10、、D11、D12、B13、C14、B二、填空题15、4516、一定;17、∠A=∠D或∠ACF=∠DBE;18、AC=BD,(答案不唯一)19、等(不惟一)20、2.7cm21、120°22、BC=EF ∠A=∠D ∠ACB=∠DFE ;23、∠B=∠C(答案不唯一)24、∠B=∠C25、∠CAB=∠DBA或∠CBA=∠DAB26、BC=EF;∠A=∠D27、AC=CD。
28、BE=CF等29、ABC DCB HL ABO DCO AAS30、∠B=∠C_或BD=C D等(答案不唯一)_三、简答题31、证明:(1)∵AC∥DF∴∠ACB=∠F在△ABC与△DEF中∴△ABC≌△DEF(2) ∵△ABC≌△DEF∴BC=EF∴BC–EC=EF–EC即BE=CF32、证明:∵GF=GB,∴∠GFB=∠GBF,……1分∵AF=DB,∴AB=DF,………2分而∠A=∠D,∴△ACB≌△DEF, ………4分∴BC=FE,………5分由GF=GB,可知CG=EG .……7分33、证明:∵AD//CB∴∠A=∠C······························ 2分在△ADF和△CBE中,又∵AD=CB,∠D=∠B·························· 3分∴△ADF≌△CBE···························· 5分∴AF=CE······························· 6分∴AF+EF=EF+CE,∴AE=CF······························· 7分34、略35、证明:(1)∵BE=CF,∴ BE+EF=CF+EF; 即BF=CE. 1分∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中, ;∴Rt△ABF≌Rt△DCE(HL). 5(2)∵ Rt△ABF≌Rt△DCE(已证) . 6∴∠AFB=∠DEC .8∴OE=OF.36、证明:∵∠1=∠2∴∠DAE=∠BAC∵ AB=AD,AC=AE∴△ABC≌△ADE37、证明:(1)……1分(SAS) ……3分……4分(2) 先证明……6分得……7分……8分(方法不唯一,其他证明方法酌情给分)38、。