正序、负序、零序电流的关系及相关保护

合集下载

正序负序零序电流

正序负序零序电流

正序电流、负序电流和零序电流正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

正序、负序、零序电流的关系及相关保护

正序、负序、零序电流的关系及相关保护

正序、负序、零序电流的关系及保护对称分量法零序、正序、负序的理解与计算1、求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端箭头处。

注意B相只是平移不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量些时是箭头对箭头这个向量就是三相向量之和。

最后取此向量幅值的三分一。

这就是零序分量的幅值方向与此向量是一样的。

2、求正序分量:对原来三相向量图先作下面的处理,A相的不动B相逆时针转120度C相顺时针转120度因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一这就得到正序的A相用A相向量的幅值按相差120度的方法分别画出B、C 两相。

这就得出了正序分量。

3、求负序分量注意原向量图的处理方法与求正序时不一样。

A相的不动B相顺时针转120度C相逆时针转120度因此得到新的向量图。

下面的方法就与正序时一样了。

对电机回路来说是三相三线线制Ia+Ib+Ic=0三相不对称时也成立。

当Ia+Ib+Ic≠0时必有一相接地对地有有漏电流对三相四线制则为Ia+Ib+Ic+Io=0成立只要无漏电三相不对称时也成立因此零序电流通常作为漏电故障判断的参数。

负序电流则不同其主要应用于三相三线的电机回路在没有漏电的情况下即Ia+Ib+Ic=0三相不对称时也会产生负序电流负序电流常作为电机故障判断注意了Ia+Ib+Ic=0与三相对称不是一回事Ia+Ib+Ic=0时三相仍可能不对称。

注意了三相不平衡与零序电流不可混淆呀三相不平衡时不一定会有零序电流的同样有零序电流时三相仍可能为对称的。

这句话对吗?前面好几位把两者混淆了吧正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时把三相的不对称分量分解成对称分量正、负序及同向的零序分量。

只要是三相系统一般针对三相三线制的电机回路就能分解出上述三个分量有点象力的合成与分解但很多情况下某个分量的数值为零。

对于理想的电力系统由于三相对称因此负序和零序分量的数值都为零。

什么是正序、负序、零序电流

什么是正序、负序、零序电流
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。下面的方法就与正序时一样了。
通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。
在这里再说说各分量与谐波的关系。由于谐波与基波的频率有特殊的关系,故在与基波合成时会分别表现出正序、负序和零序特性。但我们不能把谐波与这些分量等同起来。由上所述,之所以要把基波分解成三个分量,是为了方便对系统的分析和状态的判别,如出现零序很多情况就是发生单相接地,这些分析都是基于基波的,而正是谐
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平
移,不能转动。同方法把C相的平移到B相的顶端。此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。最后取此向量幅值的三分一,这就是零序分量的幅是负序电流,什么是零序电流
正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。由于上不了图,请大家按文字说明在纸上画图。

继电保护原理方向保护原理

继电保护原理方向保护原理

继电保护原理方向保护原理一、零序方向保护原理在系统正常运行时,只有正序分量,没有零序分量,当系统发生接地短路故障或不对称断线故障时才产生零序分量,因此零序分量是构成保护的一种很可利用的故障特征量。

要构成方向保护必须能够区分正、反方向故障。

接下来我们分析一下正、反方向短路故障时零序分量的方向性。

规定正方向:电流由母线指向线路为正方向;电压以电压升为正方向1、正方向短路故障:系统接线及零序序网如下图示由图可得:Uo=-Io×Xso通常情况下零序阻抗角按约75度考虑,所以正方向短路时Uo超前Io约-105度。

2、反方向短路故障:零序序网如下图示由图可得:Uo=Io×(Xlo+Xro)通常情况下零序阻抗角按约75度考虑,所以反方向短路时Uo超前Io约75度。

分析序网要切记一点,在计算某点电压时要由高电位点经过无电源端至低电位点构成回路,如果从电源端计算,则等于电源电压加(或减)两点间压降,而电源电压很可能也是一个未知数。

对于零序网络来说,短路点电压最高,可以看成是零序回路的电源。

由分析可以看出:在特定的正方向下,零序分量具有明确的方向性。

根据上述推导,如果要构成一个零序方向继电器,使它在正方向短路时动作,反方向短路时不动,则该继电器的最大动作灵敏角应为Uo超前Io约-105度。

据此我们可以画出零序方向继电器的动作特性图:由动作特性可得动作方程:165o≤arg3U O/3I O≤-15o当我们知道动作特性及动作方程后,就可以构成继电器。

二、负序方向保护原理同样在系统正常运行时,也没有负序分量,当系统发生不对称短路故障或不对称断线故障时才产生负序分量,因此负序分量也是构成保护的一种很可利用的故障特征量。

接下来我们看一下系统正、反方向短路故障时负序序网图:由图可得:正方向短路U2=-I2×Xs2反方向短路U2=I2×(Xl2+Xr2)通常情况下负序阻抗角按约75度考虑,所以正方向短路时U2超前I2约-105度。

正序-负序和零序

正序-负序和零序
电机负序控制
在电机负序控制中,主要关注的是三相电源的负序电压和 电流。通过控制电机的输入电压和电流的相位和幅值,可 以实现电机的负序启动、运行和停止。
电机零序控制
在电机零序控制中,主要关注的是三相电源的零序电压和 电流。通过控制电机的输入电压和电流的相位和幅值,可 以实现电机的零序启动、运行和停止。
行信号处理。
03
零序
零序的定义
零序的定义
01
在三相交流电系统中,如果三相的相电压或相电流的大小相等,
且相位相同,则该状态被称为零序。
零序的数学表示
02
在数学上,零序可以用向量表示,其大小等于其他两相的向量
和,方向与中性线相同。
零序的产生
03
在三相交流电系统中,当三相负载对称且三相电压或电流相等
时,就会产生零序。
正序的应用场景
正序的应用场景:正序主要应用于电力系统中的正常运行状态,如家庭用电、工业用电等。
在家庭用电中,我们通常使用的是单相交流电,而单相交流电本质上就是正序状电力供应,通常使用三相交流电,且为了保证电力系统的稳定运行,需要保持三相交流电的正序状态。 此外,在电力系统中的继电保护、同步发电机的运行等方面,也需要用到正序的概念。
在电气保护中的应用
正序保护
正序保护主要用于检测和切除三相电路中的正序故障,如相间短路等。通过比较三相电压 或电流的正序分量,可以判断是否存在正序故障,并采取相应的保护措施。
负序保护
负序保护主要用于检测和切除三相电路中的负序故障,如单相接地短路等。通过比较三相 电压或电流的负序分量,可以判断是否存在负序故障,并采取相应的保护措施。
负序无功补偿主要用于补偿三相电路 中的负序无功功率。通过在三相电路 中分别补偿负序无功功率,可以提高 电路的功率因数,减小线路损耗。

正序、负序、零序电流的关系及相关保护

正序、负序、零序电流的关系及相关保护

正序、负序、零序电流的关系及保护对称分量法零序、正序、负序的理解与计算1、求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端箭头处。

注意B相只是平移不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量些时是箭头对箭头这个向量就是三相向量之和。

最后取此向量幅值的三分一。

这就是零序分量的幅值方向与此向量是一样的。

2、求正序分量:对原来三相向量图先作下面的处理,A相的不动B相逆时针转120度C相顺时针转120度因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一这就得到正序的A相用A相向量的幅值按相差120度的方法分别画出B、C 两相。

这就得出了正序分量。

3、求负序分量注意原向量图的处理方法与求正序时不一样。

A相的不动B相顺时针转120度C相逆时针转120度因此得到新的向量图。

下面的方法就与正序时一样了。

对电机回路来说是三相三线线制Ia+Ib+Ic=0三相不对称时也成立。

当Ia+Ib+Ic≠0时必有一相接地对地有有漏电流对三相四线制则为Ia+Ib+Ic+Io=0成立只要无漏电三相不对称时也成立因此零序电流通常作为漏电故障判断的参数。

负序电流则不同其主要应用于三相三线的电机回路在没有漏电的情况下即Ia+Ib+Ic=0三相不对称时也会产生负序电流负序电流常作为电机故障判断注意了Ia+Ib+Ic=0与三相对称不是一回事Ia+Ib+Ic=0时三相仍可能不对称。

注意了三相不平衡与零序电流不可混淆呀三相不平衡时不一定会有零序电流的同样有零序电流时三相仍可能为对称的。

这句话对吗?前面好几位把两者混淆了吧正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时把三相的不对称分量分解成对称分量正、负序及同向的零序分量。

只要是三相系统一般针对三相三线制的电机回路就能分解出上述三个分量有点象力的合成与分解但很多情况下某个分量的数值为零。

对于理想的电力系统由于三相对称因此负序和零序分量的数值都为零。

电气基础讲座——什么是正序、负序、零序?

电气基础讲座——什么是正序、负序、零序?

电气基础讲座——什么是正序、负序、零序?什么是正序、负序、零序?对于非电气专业的人来说,这个问题或许困扰了许久。

就我个人感觉来讲,当初在学校学的时候也困惑了很久,确实不是非常好理解。

用最简单的语言概括如下:当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量对称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1 IB=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0――――――――――○2IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°,有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC)I2=Ia2= 1/3(IA +α2 IB +αIC)I0=Ia0= 1/3(IA +IB +IC)以上3个等式可以通过代数方法或物理意义(方法)求解。

正序阻抗负序阻抗零序阻抗关系

正序阻抗负序阻抗零序阻抗关系

正序阻抗负序阻抗零序阻抗关系
正序阻抗、负序阻抗和零序阻抗是在电力系统中用来描述三相
不平衡情况下电路的特性的概念。

在三相不平衡情况下,电路中的
正序、负序和零序分量会产生不同的影响,因此需要分别考虑它们
的阻抗。

首先,正序阻抗是指在三相不平衡情况下,每个相位上的正序
电压和正序电流之比的复数值。

正序阻抗描述了电路对正序信号的
阻抗特性。

负序阻抗则是描述了电路对负序信号的阻抗特性,它是
在三相不平衡情况下,每个相位上的负序电压和负序电流之比的复
数值。

零序阻抗是描述了电路对零序信号的阻抗特性,它是在三相
不平衡情况下,各相之间的零序电压和零序电流之比的复数值。

这三种阻抗之间的关系可以通过对称分量分析来描述。

在对称
分量分析中,正序、负序和零序分量可以通过对称分量变换得到。

根据对称分量分析的结果,正序阻抗、负序阻抗和零序阻抗之间存
在一定的关系。

一般来说,在对称系统中,正序阻抗等于负序阻抗,而零序阻抗通常与正序阻抗和负序阻抗不同。

总的来说,正序阻抗、负序阻抗和零序阻抗之间的关系是在电
力系统中描述三相不平衡情况下电路特性的重要概念。

它们通过对称分量分析相互关联,在实际工程中起着重要的作用。

电气基础讲座——什么是正序、负序、零序?之欧阳术创编

电气基础讲座——什么是正序、负序、零序?之欧阳术创编

电气基础讲座——什么是正序、负序、零序?什么是正序、负序、零序?对于非电气专业的人来说,这个问题或许困扰了许久。

就我个人感觉来讲,当初在学校学的时候也困惑了很久,确实不是非常好理解。

用最简单的语言概括如下:当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序负序和零序分量对称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

图1:正常运行的电力系统电压电流矢量图对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为3组三相对称的分量。

图2:正序相量、负序相量和零序相量(以电流为例)当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:IA=Ia1+Ia2+Ia0――――――――――――――――――――――――――○1IB=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0――――――――――○2 IC=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0―――――――――――○3对于正序分量:Ib1=α2 Ia1 ,Ic1=αIa1对于负序分量:Ib2=αIa2 ,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0 式中,α为运算子,α=1∠120°, 有α2=1∠240°, α3=1, α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(IA +αIB +α2 IC) I2=Ia2= 1/3(IA +α2 IB +αIC) I0=Ia0= 1/3(IA +IB +IC) 以上3个等式可以通过代数方法或物理意义(方法)求解。

正序负序零序的理解-整理完整

正序负序零序的理解-整理完整

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

****************.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

正序负序零序的理解-整理完整

正序负序零序的理解-整理完整

正序负序与零序电力三相不平衡作图法对称分量法1:三相不平衡的的电压(或电流),可以分解为平衡的正序、负序和零序2:零序为3相电压向量相加,除以33:正序将BC相旋转120度到A相位置,这样3个向量相加会较长,3个向量相加,除以34:负序将BC相旋转120度到A相相反位置,这样3个向量相加会较短,3个向量相加,除以3个人为理解三相不平衡做的总结。

总没有理解三相不平衡,因为我没有上过电力系统的课程,实际上课本上有,所以百度上很少。

有很多东西,网上没有的原因是因为实际很简单,专家们都不好意思写。

对称分量法参考借用了东南大学电器工程学院的PPT的图片。

作图法用CAD的平移很方便,求3分点位置还网上查了下。

****************.,欢迎补充、更正、交流。

1:不过我仍没有了解三相不平衡的各种保护方法。

零序保护倒是理解,用开口三角即可。

负序保护难道采样后用算,那一个周波都过了,保护时间是否足够。

2:similink是否可以仿真故障并做相序分析3:可以方便的实现matlab编程,将不平衡的三相精确地分解为正序、负序与零序(曾经有简单估算方法)。

计算程序需要输入每相的幅值与相角。

不平衡保护设备现场计算需要采集幅值与相角作为输入参数吗?这个问题肯定很简单,但我没查到文章介绍实现方法。

4:暂态过程的不平衡一致吗5:希望理解或仿真电力系统故障导致的不平衡,并以此判定系统故障,本次仍没能实现,希望下次再突击阅读理解。

欢迎推荐文章。

一:理解1 相序在三相电力系统中,各相电压或电流依其先后顺序分别达到最大值(以正半波幅值为准)的次序,称为相序。

正相序:分别达到最大值的次序为A、B、C;负相序:分别达到最大值的次序为A、C、B。

对于理想的电力系统,只有正序分量。

以电压为例。

对称的三相系统:三相中的电压Ua 、Ub 、Uc 对称,只有一个独立变量。

如三相相序为a 、b 、c ,由Ua 得出其余两相a c ab U U U U αα== 2式中α为复数算子j120e =α2不对称运行状态的主要原因(1)外施电压不对称,三相电流也不对称。

正序-负序和零序的介绍

正序-负序和零序的介绍

算法优化
针对正序、负序和零序的分析算 法将不断优化,以提高分析的精 度和效率。
新技术融合
随着新技术的不断发展,正序、 负序和零序的概念将与新技术融 合,如人工智能、大数据等,以 实现更广泛的应用。
THANKS谢谢Fra bibliotek正序的特点
总结词
正序具有有序性、递增性和连续性等特点。
详细描述
正序是一种有序的数据排列方式,每个数据点都有其固定的位置,且数据值是 递增的,即后一个数据点总比前一个数据点大。这种连续性使得正序在信号处 理中具有很好的应用价值。
正序的应用场景
总结词
正序在信号处理、数据分析、数据库排序等领域有广泛应用。
在电力系统中的影响
正序分量对电力系统的正常运行具有重要影响,它是保证三相电压和电流 对称的关键因素。
负序分量会对电力系统的设备造成额外的负担,加速设备的磨损和老化。
零序分量在正常运行时对电力系统的影响较小,但在某些故障情况下,零 序分量的出现可能会对保护装置产生干扰。
在信号处理中的应用
正序、负序和零序分量在信号处理中具有广泛的 应用,特别是在通信、音频处理等领域。
实际应用
在电力系统和信号处理中,正序、负序和零序的应用广泛, 如电力系统的故障诊断、信号处理中的滤波器设计等。
理论价值
正序、负序和零序的概念是电力系统和信号处理领域的基 础理论之一,对于深入理解相关领域的基本原理和发展趋 势具有理论价值。
在电力系统和信号处理中的意义
1 2 3
电力系统稳定
正序和负序是电力系统稳定性的重要指标,对于 预防和解决电力系统中的故障具有重要意义。
相位关系
在正常运行情况下,三相 零序电流和零序电压具有 相同的相位。

零序电流正序电流负序电流

零序电流正序电流负序电流

零序电流正序电流负序电流
零序电流、正序电流和负序电流是交流电力系统中常见的电流分量。

这些电流分量对于电力系统的运行和保护具有重要意义。

零序电流是指三相电流之和为零的电流分量。

在正常情况下,零序电流应该为零,因为三相电流的相位相差 120 度,它们的和应该为零。

然而,当系统中发生接地故障时,零序电流会不为零,并且会通过接地电阻或接地线返回电源。

零序电流保护是一种常见的保护方式,可以用于检测接地故障,并及时切断故障电路,以保护设备和人员的安全。

正序电流是指三相电流相位相差 120 度的电流分量。

正序电流是电力系统正常运行时的主要电流分量,它的大小和相位关系反映了系统的负载情况和功率因数。

正序电流保护也是一种常见的保护方式,可以用于检测系统中的短路故障,并及时切断故障电路,以保护设备和人员的安全。

负序电流是指三相电流相位相差 180 度的电流分量。

负序电流通常是由于系统中的不对称负载或故障引起的。

负序电流会对电力系统的运行产生不良影响,例如导致电机过热、降低功率因数等。

因此,负序电流保护也是一种常见的保护方式,可以用于检测系统中的不对称故障,并及时切断故障电路,以保护设备和人员的安全。

总之,零序电流、正序电流和负序电流是交流电力系统中重要的电流分量,它们对于电力系统的运行和保护具有重要意义。

在电力系统的设计和运行中,需要充分考虑这些电流分量的影响,并采取相应的保护措施,以确保系统的安全和稳定运行。

继电保护原理方向保护原理

继电保护原理方向保护原理

继电保护原理方向保护原理一、零序方向保护原理在系统正常运行时,只有正序分量,没有零序分量,当系统发生接地短路故障或不对称断线故障时才产生零序分量,因此零序分量是构成保护的一种很可利用的故障特征量。

要构成方向保护必须能够区分正、反方向故障。

接下来我们分析一下正、反方向短路故障时零序分量的方向性。

规定正方向:电流由母线指向线路为正方向;电压以电压升为正方向1、正方向短路故障:系统接线及零序序网如下图示由图可得:Uo=-Io×Xso通常情况下零序阻抗角按约75度考虑,所以正方向短路时Uo超前Io约-105度。

2、反方向短路故障:零序序网如下图示由图可得:Uo=Io×(Xlo+Xro)通常情况下零序阻抗角按约75度考虑,所以反方向短路时Uo超前Io约75度。

分析序网要切记一点,在计算某点电压时要由高电位点经过无电源端至低电位点构成回路,如果从电源端计算,则等于电源电压加(或减)两点间压降,而电源电压很可能也是一个未知数。

对于零序网络来说,短路点电压最高,可以看成是零序回路的电源。

由分析可以看出:在特定的正方向下,零序分量具有明确的方向性。

根据上述推导,如果要构成一个零序方向继电器,使它在正方向短路时动作,反方向短路时不动,则该继电器的最大动作灵敏角应为Uo超前Io约-105度。

据此我们可以画出零序方向继电器的动作特性图:由动作特性可得动作方程:165o≤arg3U O/3I O≤-15o当我们知道动作特性及动作方程后,就可以构成继电器。

二、负序方向保护原理同样在系统正常运行时,也没有负序分量,当系统发生不对称短路故障或不对称断线故障时才产生负序分量,因此负序分量也是构成保护的一种很可利用的故障特征量。

接下来我们看一下系统正、反方向短路故障时负序序网图:由图可得:正方向短路U2=-I2×Xs2反方向短路U2=I2×(Xl2+Xr2)通常情况下负序阻抗角按约75度考虑,所以正方向短路时U2超前I2约-105度。

正序电抗负序电抗零序电抗

正序电抗负序电抗零序电抗

正序电抗负序电抗零序电抗
电力系统中常用的三种电抗分别是正序电抗、负序电抗和零序电抗。

它们在电力系统的稳定性、电压控制和故障保护等方面起着重要的作用。

首先,正序电抗是指三相对称工作状态下,正序电压和正序电流之比
的虚部,它是电力系统中的基本电抗。

正序电抗主要用于三相负载的
分配、传输和分界线的确定。

在正常工作状态下,正序电抗不会引起
电力系统的不稳定和故障。

其次,负序电抗是指电力系统中不对称状态下,负序电压和负序电流
之比的虚部,它主要与电力系统中的不对称故障相关。

负序电抗可以
抑制或补偿不对称故障,保证电力系统的稳定运行。

除此之外,负序
电抗还可以用于电力系统的逆变器和无功补偿设备。

最后,零序电抗是指电力系统中三相对称但有公共中点(即星形接法)状态下,中性点电压对零序电流之比的虚部,它是电力系统中保护和
耦合控制的关键参数。

零序电抗可以用于保护电力系统中的设备免受
地故障引起的冲击和潜在地电压升高。

总的来说,正序电抗、负序电抗和零序电抗在电力系统中扮演着不同
的角色,它们的作用与价值不尽相同,对于电力系统的运行和安全都至关重要。

正序、负序、零序

正序、负序、零序

正序、负序、零序什么是正序、负序、零序?对于非电气专业的人来说,这个问题或许困扰了许久。

就我个人感觉来讲,当初在学校学的时候也困惑了很久,确实不是非常好理解。

用最简单的语言概括如下:当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

(ABC)负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

(BAC)零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量。

对称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为三组三相对称的分量。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:I A=Ia1+Ia2+Ia0--------------------------------------------○1I B=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0------------○2I C=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0-------------○3对于正序分量:Ib1=α2 Ia1,Ic1=αIa1对于负序分量:Ib2=αIa2,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°,有α2=1∠240°,α3=1,α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(I A +αI B +α2 I C)I2=Ia2= 1/3(I A +α2 I B +αI C)I0=Ia0= 1/3(I A +I B +I C)以上3个等式可以通过代数方法或物理意义(方法)求解。

正负零序

正负零序

负序正序零序电流正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。

只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。

由于上不了图,请大家按文字说明在纸上画图。

从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。

1)求零序分量:把三个向量相加求和。

即A 相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。

最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。

2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A相向量的幅值按相差120度的方法分别画出B、C两相。

这就得出了正序分量。

3)求负序分量:注意原向量图的处理方法与求正序时不一样。

A相的不动,B相顺时针转120度,C相逆时针转120度,因此得到新的向量图。

下面的方法就与正序时一样了。

通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。

不同短路情况下正序、负序、零序分量的变化规律

不同短路情况下正序、负序、零序分量的变化规律

不同短路情况下正序、负序、零序分量的变化规律短路是电气系统中常见的故障之一,当电气系统中发生短路时,会导致电流异常增大,可能造成设备损坏甚至引发火灾等严重后果。

在短路情况下,正序、负序和零序分量的变化规律对于故障诊断和处理具有重要意义。

正序、负序和零序分量是描述电气系统中电压和电流的一种分解方式,通过这种方式可以将复杂的电信号分解为直流偏差成分,正、负和零序成分这三种基本分量。

在短路情况下,这三种分量的变化规律如下:1.正序分量的变化规律在短路情况下,正序分量通常不受影响,因为短路故障主要影响的是相间的电流和电压关系,而正序分量主要描述的是相序电压和电流的关系,因此在短路故障发生时,正序分量通常保持不变。

2.负序分量的变化规律负序分量描述的是电气系统中出现的不对称故障,因此在短路情况下,负序分量往往会有比较明显的变化。

当系统发生短路故障时,负序分量会出现异常增大,因为负序分量主要反映了电气系统中的不均衡故障,短路故障会导致系统中出现大量的不均衡电流和电压,从而使得负序分量异常增大。

3.零序分量的变化规律零序分量主要描述的是电气系统中的接地故障情况,当系统发生短路故障时,会导致系统中的接地电流异常增大,从而使得零序分量出现异常变化。

在短路情况下,零序分量会出现明显的增大,因为短路故障会导致系统中出现大量的接地电流,从而使得零序分量异常增大。

综上所述,短路情况下,正序、负序和零序分量的变化规律主要表现为:正序分量通常保持不变,负序分量会出现异常增大,而零序分量也会出现异常增大。

通过分析这些分量的变化规律,可以帮助我们判断和定位短路故障,从而有效地进行故障诊断和处理。

除了根据正序、负序和零序分量的变化规律进行故障诊断外,我们还可以利用这些分量进行短路故障的保护和控制。

通过检测和监测正序、负序和零序分量的变化,可以及时判断系统中是否存在短路故障,并对系统进行保护和控制。

正序、负序和零序分量的变化规律在短路故障诊断和处理中具有重要的意义,通过对这些分量的变化规律进行分析和研究,可以帮助我们更好地理解和把握短路故障的特点和规律,从而提高故障诊断和处理的效率和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正序、负序、零序电流的关系及保护
对称分量法零序、正序、负序的理解与计算1、求零序分量:把三个向量相加求和。

即A相不动,B相的原点平移到A相的顶端箭头处。

注意B相只是平移不能转动。

同方法把C相的平移到B相的顶端。

此时作A相原点到C相顶端的向量些时是箭头对箭头这个向量就是三相向量之和。

最后取此向量幅值的三分一。

这就是零序分量的幅值方向与此向量是一样的。

2、求正序分量:对原来三相向量图先作下面的处理,A相的不动B相逆时针转120度C相顺时针转120度因此得到新的向量图。

按上述方法把此向量图三相相加及取三分一这就得到正序的A相用A相向量的幅值按相差120度的方法分别画出B、C 两相。

这就得出了正序分量。

3、求负序分量注意原向量图的处理方法与求正序时不一样。

A相的不动B相顺时针转120度C相逆时针转120度因此得到新的向量图。

下面的方法就与正序时一样了。

对电机回路来说是三相三线线制Ia+Ib+Ic=0三相不对称时也成立。

当Ia+Ib+Ic≠0时必有一相接地对地有有漏电流对三相四线制则为Ia+Ib+Ic+Io=0成立只要无漏电三相不对称时也成立因此零序电流通常作为漏电故障判断的参数。

负序电流则不同其主要应用于三相三线的电机回路在没有漏电的情况下即Ia+Ib+Ic=0三相不对称时也会产生负序电流负序电
流常作为电机故障判断
注意了
Ia+Ib+Ic=0与三相对称不是一回事
Ia+Ib+Ic=0时三相仍可能不对称。

注意了
三相不平衡与零序电流不可混淆呀
三相不平衡时不一定会有零序电流的
同样有零序电流时三相仍可能为对称的。

这句话对吗?
前面好几位把两者混淆了吧
正序、负序、零序的出现是为了分析在系统电压、电流出现
不对称现象时把三相的不对称分量分解成对称分量正、负
序及同向的零序分量。

只要是三相系统一般针对三相三线制的电机回路就能分解
出上述三个分量有点象力的合成与分解但很多情况下某个
分量的数值为零。

对于理想的电力系统由于三相对称因此
负序和零序分量的数值都为零。

这就是我们常说正常状态下
只有正序分量的原因。

当系统出现故障时三相变得不对称了这时就能分解出有幅
值的负序和零序分量度了有时只有其中的一种因此通过检
测这两个不应正常出现的分量就可以知到系统出了毛病特
别是单相接地时的零序分量。

三相四线电路中:三相电流的相量和等于零即Ia+Ib+IC=0
如果在三相四线中接入一个电流互感器这时感应电流为零。

当电路中发生触电或漏电故障时回路中有漏电电流流过
这时穿过互感器的三相电流相量和不等零其相量和为
Ia+Ib+Ic=I(漏电电流) 这样互感器二次线圈中就有一
个感应电压此电压加于检测部分的电子放大电路与保护区
装置预定动作电流值相比较如大于动作电流即使灵敏继电
器动作作用于执行元件掉闸。

负序过负荷指负序过电压;通常一些大型变压器我们会看到这样的保护——“负序电压启动的过流保护”,为什么要用负序电压来启动过流保护作为后备保护,因为负序电压是在系统三相不平衡短路(除了三相同时短路属于平衡短路,其他的短路都属于不平衡短路)的情况下会发生,而系统短路的情况基本都属于不平衡短路,所以对于一些大型变压器,断电之后会有很大的经济或者其他损失,为了保证其保护的准确性,通常会在过流保护加装负序电压启动。

负序过电流:零序电流保护的基本原理是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即∑I=0,它是用零序C.T作为取样元件。

在线路与电气设备正常的情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序C.T的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。

当发生接地故障时的各相电流的矢量和不为零,故障电流使零序C.
T的环形铁芯中产生磁通,零序C.T的二次侧感应电压使执行元件动作,带动脱扣装置,切换供电网络,达到接地故障保护的目的。

零序电流保护一般适合使用于TN接地系统。

因为当发生一相接地时,对TN-S系统Id回路阻抗包括相线阻抗Z1,PE
线阻抗ZPE和接触阻抗Zf,即Zs=Z1+ZPE+Zf;对于TN-C系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN和接触电阻Zf,即ZS=Z1+ZPEN+Zf;对于TN-C-S系统,Id回路阻抗包括相线阻抗Z1,PEN线阻抗ZPEN,PE线阻抗ZPE和接触电阻Zf,即ZS=Z1+ZPEN+ZPE+Zf,产生的单相接地故障电流Id=220/ZS,明显大于无故障时的三相不平衡电流,只要整定合适,就可检测出发生接地故障时的零序电流,以切断故障回路。

而对IT系统,一般均是使用对供电可靠性要求较高、对单相接地不必要立即切断供电回路、但需发出绝缘破坏监察信号、以维持继续供电一段时间。

工矿企业内的不配出中性线的三相三线配电线路。

当单相接地时,该故障线路上流过的零序电流是全系统非故障系统电容电流之和,因而容易检测出接地故障电流,故可用零序电流保护装置来监察相对地第一次接地故障。

TT接地系统常应用于工农业、民用建筑的照明、动力混合供电的三相四线配电系统中,常发现三相不平衡电流较大,当发生一相接地时,Id回路阻抗包括相线阻抗Z1,PE线阻抗ZPE,负载侧接地电阻RA和电源侧接地电阻RB,接触阻抗Zf,即ZS=Z1+ZPE+R A+RB+Zf,接地故障电流Id=220/ZS,由于RA+RB>>Z1+ZP
E+Zf,且RA+RB数值一般均较大,很明显TT系统的故障环路阻抗大,产生的单接故障电流Id,远远小于不平衡电流,很难检测出故障电流,故不适用于TT接地系统。

零序电流的定义是什么?零序电流和不平衡电流区
别?
1中性点不接地系统中,有没有零序电流。

2三相负载不平衡时产生的不平衡电流是不是零序电流。

3主要是什么地方采用零序电流保护。

、在中性点不接地系统,Ia+Ib+Ic=0,没有零序电流。

当单相接地时,故障点流过其它两相对地的电容电流。

(也有人称其为零序电流)
2、在中性点接地系统,Ia+Ib+Ic+In=0,即Ia+Ib+Ic=-In,当三相不平衡时即有In存在,即有零线电流。

3、相间保护对单相接地故障灵敏度不够时,应该单独设置零序电流保护。

追问:
1、中性点不接地系统中,出现三相负载不平衡,
零序电流是否出现。

2、我所在项目电厂6KV开关柜中,电缆室有一个
零序电流互感器怎么理解,厂用电中性点没有接地

追答:
1、中性点不接地系统,三相负载不平衡,没有零序电流出现。

2、电缆室的零序电流互感器,测量的就是单相接地故障时的电容电流,作为接地保护使用的。

相关文档
最新文档