2016年福州市九年级数学4月质检试题(含答案)

合集下载

福建省福州市2016年中考数学真题试题(含解析)

福建省福州市2016年中考数学真题试题(含解析)

2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a25.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= .14.若二次根式在实数范围内有意义,则的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若+y=10,y=1,则3y+y3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得>﹣1,解不等式②,得>3,由①②可得,>3,故原不等式组的解集是>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为+10﹣=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A 与B关于y轴对称,当>0时,y随的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当>0时,y随的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= (+2)(﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:2﹣4=(+2)(﹣2).故答案为:(+2)(﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则的取值范围是≥﹣1 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出的取值范围.【解答】解:若二次根式在实数范围内有意义,则:+1≥0,解得≥﹣1.故答案为:≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r .(填“<”“=”“<”)下【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若+y=10,y=1,则3y+y3的值是98 .【考点】代数式求值.【分析】可将该多项式分解为y(2+y2),又因为2+y2=(+y)2﹣2y,然后将+y与y的值代入即可.【解答】解:3y+y3=y(2+y2)=y[(+y)2﹣2y]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知+y与y 的值,则2+y2=(+y)2﹣2y,再将+y与y的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB 即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=,则∠ABD=,∠DBC=,∠C=2.∵∠A+∠ABC+∠C=180°,∴+2+2=180°.解得:=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=,则AQ=MQ=1+,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=,则AQ=MQ=1+,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(+1)2=32+2,解得:=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(﹣1)2+2,原点代入即可.(2)设抛物线为y=a2+b,则h=﹣,b=﹣2ah代入抛物线解析式,求出(用a、h表示),又抛物线y=t2也经过A(h,),求出,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣22+4.(2)∵抛物线经过原点,∴设抛物线为y=a2+b,∵h=﹣,∴b=﹣2ah,∴y=a2﹣2ah,∵顶点A(h,),∴=ah2﹣2ah,抛物线y=t2也经过A(h,),∴=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=2﹣上,∴=h2﹣h,又=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

历年福建省福州市中考数学试题(含答案)

历年福建省福州市中考数学试题(含答案)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题 (全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题! 毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .21 C .π D .-8 2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 2 5.不等式组⎩⎨⎧>->+0301x x 的解集是 A .x >-1 B .x >3 C .-1<x <3 D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21 C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是第2题A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10.下表是某校合唱团成员的年龄分布 年龄/岁 13 14 15 16 频数 5 15 x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-38+(-2016)0 .20.(7分)化简:a -b -ba b a ++2)( 21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .x y O x yO x y O x y O22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD . (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN的面积;(3)当射线BN 交线段CD 于点F 时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.。

2016年福建省福州市中考数学试卷(含详细答案)

2016年福建省福州市中考数学试卷(含详细答案)

数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前福建省福州市2016年初中毕业会考、高级中等学校招生考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列实数中的无理数是( ) A .0.7B .12C .πD .8- 2.如图是3个相同的小正方体组合成的几何体,它的俯视图是( )AB CD3.如图,直线a ,b 被直线c 所截,1∠与2∠的位置关系是 ( ) A .同位角 B .内错角 C .同旁内角D .对顶角 4.下列算式中,结果等于6a 的是( ) A .42a a +B .222a a a ++C .23a aD .222a aa5.不等式组10,30x x +⎧⎨-⎩>>的解集是( ) A .1x ->B .3x >C .13x -<<D .3x < 6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次 7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )ABCD8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是(,)A m n ,(2,1)B -,(,)C m n --,则点D 的坐标是( ) A .(2,1)-B .(2,1)--C .(1,2)--D .(1,2)-9.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB 上一点(不与A ,B 重合),连接OP ,设POB α∠=,则点P 的坐标是( ) A .(sin ,sin )αα B .(cos ,cos )αα C .(cos ,sin )ααD .(sin ,cos )αα10.对于不同的x ,下列关于年龄的统计量不会发生改变的是( )A .平均数,中位数B .众数,中位数毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)C .平均数,方差D .中位数,方差11.已知点(1,)A m -,(1,)B m ,(2,1)C m +在同一个函数图象上,这个函数图象可以是( )ABCD12.下列选项中,能使关于x 的一元二次方程240ax x c -+=一定有实数根的是 ( ) A .0a >B .0a =C .0c >D .0c =第Ⅱ卷(非选择题 共114分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 13.分解因式:24x -= .14.,则x 的取值范围是 .15.已知四个点的坐标分别是(1,1)-,(2,2),23(,)32,1(5,)5--,从中随机选取一个点,在反比例函数1y x=图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下(填“>”“=”“<”).17.若10x y +=,1xy =,则33x y xy +的值是 .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(O ∠)为60,A ,B ,C 都在格点上,则tan ABC ∠的值是 .三、解答题(本大题共9小题,共90分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分)计算:0|1|(2016)--.20.(本小题满分7分)化简:2()a b a b a b+--+.21.(本小题满分8分)一个平分角的仪器如图所示,其中AB AD =,BC DC =. 求证:BAC DAC ∠=∠.22.(本小题满分8分) 列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?23.(本小题满分10分)福州市2011—2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人; (2)与上一年相比,福州市常住人口数增加最多的年份是 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由. 24.(本小题满分12分)如图,正方形ABCD 内接于O ,M 为AD 的中点,连接BM ,CM . (1)求证:BM CM =;(2)当O 的半径为2时,求BM 的长.25.(本小题满分12分)数学试卷 第5页(共32页) 数学试卷 第6页(共32页)如图,在ABC △中,1AB AC ==,BC =,在AC 边上截取AD BC =,连接BD . (1)通过计算,判断2AD 与AC CD 的大小关系; (2)求ABD ∠的度数.26.(本小题满分13分)如图,矩形ABCD 中,4AB =,3AD =,M 是边CD 上一点,将ADM △沿直线AM 对折,得到ANM △.(1)当AN 平分MAB ∠时,求DM 的长;(2)连接BN ,当1DM =时,求ABN △的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.27.(本小题满分13分)已知,抛物线2(0)y ax bx c a =++≠经过原点,顶点为(,)(0)A h k h ≠. (1)当1h =,2k =时,求抛物线的解析式;(2)若抛物线2(0)y tx t =≠也经过A 点,求a 与t 之间的关系式; (3)当点A 在抛物线2y x x =-上,且21h -≤<时,求a 的取值范围.备用图福建省福州市2016年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷2.【答案】C【解析】人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】三视图3.【答案】B【解析】直线a,b被直线c所截,∠1与∠2是内错角.故选B.【提示】根据内错角的定义求解.【考点】同位角、内错角、同旁内角;对顶角、邻补角.4.【答案】D【考点】同底数幂的乘法;合并同类项.【解析】A.426a a a+≠,据此判断即可.B.根据合并同类项的方法,可得2222a a a a++=.3C.根据同底数幂的乘法法则,可得235=.a a aD.根据同底数幂的乘法法则,可得2226=.a a a a∵426+≠,a a a∴选项A的结果不等于a6;∵2222++=,3a a a a∴选项B的结果不等于a6;∵235=,a a a∴选项C的结果不等于a6;4∵2226a a a a=,∴选项D的结果等于a6.故选:D.5.【答案】B【解析】1030 xx+>⎧⎨->⎩解不等式①,得1x>-,解不等式②,得3x>,由①②可得,3x>,故原不等式组的解集是3x>.故选B.【提示】根据解不等式组的方法可以求得原不等式组的解集.【考点】解一元一次不等式组.6.【答案】A【解析】A.不可能事件发生的概率为0,所以A选项正确;B.随机事件发生的概率在0与1之间,所以B选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【提示】一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.【考点】概率的意义.7.【答案】B【解析】表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【提示】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【考点】相反数,数轴5 / 1668.【答案】A【解析】∵A (m ,n ),C (-m ,-n ), ∴点A 和点C 关于原点对称, ∵四边形ABCD 是平行四边形, ∴D 和B 关于原点对称, ∵B (2,-1),∴点D 的坐标是(-2,1). 故选:A .【提示】由点的坐标特征得出点A 和点C 关于原点对称,由平行四边形的性质得出D 和B 关于原点对称,即可得出点D 的坐标.【考点】平行四边形的性质,坐标与图形性质 9.【答案】C【解析】过P 作PQ ⊥OB ,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标. 过P 作PQ ⊥OB ,交OB 于点Q , 在Rt OPQ ∆中,1,POQ OP α=∠=, ∴sin ,cos PQ OQOP OPαα==,即 则P 的坐标为(cos sin αα,), 故选C .【考点】解直角三角形,坐标与图形性质 10.【答案】B【解析】由表可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=, 则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:14岁,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B .7 / 16【提示】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【考点】统计量的选择,频数(率)分布表 11.【答案】C【解析】∵点A (-1,m ),B (1,m ), ∴A 与B 关于y 轴对称,故A ,B 错误; ∵B (1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误. 故选C .【提示】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案. 【考点】坐标确定位置,函数的图象 12.【答案】D【解析】∵一元二次方程有实数根, ∴2(4)41640ac ac ∆=--=-≥,且0a ≠, ∴4ac ≤,且0a ≠;A 、若0a >,当1a =、5c =时,54ac =>,此选项错误;B 、0a ≠不符合一元二次方程的定义,此选项错误;C 、若0c >,当1a =、5c =时,54ac =>,此选项错误;D 、若0c =,则04ac =≤,此选项正确; 故选:D .【提示】根据方程有实数根可得4ac ≤,且0a ≠,对每个选项逐一判断即可。

2016福建福州中考数学试题及答案(含答案)

2016福建福州中考数学试题及答案(含答案)

2016 年福州市初中毕业会考、高级中等学校招生考试数学试题(全卷共4页,三大题,27小题;满分150分;考试时间120分钟)友情提示:请把所有答案填写(涂)在答题卡上,请不要错位、越界答题!毕业学校 姓名 考生号一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项)1.下列实数中的无理数是A .0.7B .C .πD .-8212.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A. B .C. D .3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角4.下列算式中,结果等于a 6 的是A .a 4+a 2B .a 2+a 2+a 2C .a 4·a 2D .a 2·a 2·a 25.不等式组的解集是⎩⎨⎧>->+0301x x A .x >-1 B .x >3 C .-1<x <3 D .x <36.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是上一点(不⌒A B 与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10.下表是某校合唱团成员的年龄分布年龄/岁13141516第2频数515x 10-x对于不同的x ,下列关于年龄的统计量不会发生改变的是A .平均数,中位数B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0 二、填空题(共6小题,每题4分,满分24分)13.分解因式:x 2-4= .14.若二次根式在实数范围内有意义,则x 的取值范围是 .1-x 15.已知四个点的坐标分别是(-1,1),(2,2),(,),(-5,-),从中随机选一个点,在反比322351例函数y =图象上的概率是 .x116.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .三、解答题(共9 小题,满分90 分)19.(7分)计算:|-1|-+(-2016)0 .3820.(7分)化简:a -b -ba b a ++2)(21.(8分)一个平分角的仪器如图所示,其中AB =AD ,BC =DC ,求证:∠BAC =∠DAC .22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为中点,连接BM ,CM .⌒A D (1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求的长.⌒ BM 25.如图,在△ABC 中,AB =AC =1,BC =,在AC 边上截取AD =BC ,连接BD .215 (1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷及答案一、选择题(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是( )A.0.7B.C.πD.﹣8【解析】无理数就是无限不循环小数,最典型的就是π,选出答案即可.∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为整数,都属于有理数,π为无限不循环小数,∴π为无理数.故选C.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是( )A. B. C. D.【解析】根据从上边看得到的图形是俯视图,可得答案.人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选C.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A.同位角B.内错角C.同旁内角D.对顶角【解析】根据内错角的定义求解.直线a,b被直线c所截,∠1与∠2是内错角.故选B.4.下列算式中,结果等于a6的是( )A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【解析】∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B 的结果不等于a 6;∵a 2•a 3=a 5,∴选项C 的结果不等于a 6;∵a 2•a 2•a 2=a 6,∴选项D 的结果等于a 6.故选D.5.不等式组的解集是( )1030x x +>⎧⎨->⎩,A.x >﹣1 B.x >3 C.﹣1<x <3D.x <3【解析】根据解不等式组的方法可以求得原不等式组的解集.1030x x +>⎧⎨->⎩,①,②解不等式①,得x >﹣1,解不等式②,得x >3,由①②可得,x >3,故原不等式组的解集是x >3.故选B.6.下列说法中,正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【解析】A 、不可能事件发生的概率为0,所以A 选项正确;B 、随机事件发生的概率在0与1之间,所以B 选项错误;C 、概率很小的事件不是不可能发生,而是发生的机会较小,所以C 选项错误;D 、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D 选项错误.故选A.7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A.B.C.D.【解析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB 上的点与原点的距离就可以做出判断.表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B 选项的线段AB 符合,其余答案的线段的端点A,B 都在原点0的同一侧,所以可以得出答案为B.故选B.8.平面直角坐标系中,已知▱ABCD 的三个顶点坐标分别是A (m ,n ),B (2,﹣1),C (﹣m ,﹣n ),则点D 的坐标是( )A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【解析】由点的坐标特征得出点A 和点C 关于原点对称,由平行四边形的性质得出D 和B 关于原点对称,即可得出点D 的坐标.∵A (m ,n ),C (﹣m ,﹣n ),∴点A 和点C 关于原点对称,∵四边形ABCD 是平行四边形,∴D 和B 关于原点对称,∵B (2,﹣1),∴点D 的坐标是(﹣2,1).故选A.9.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P的坐标是( )A.(sin α,sin α)B.(cos α,cos α)C.(cos α,sin α)D.(sin α,cos α)【解析】过P 作PQ ⊥OB ,交OB 于点Q ,在Rt △OPQ 中,OP=1,∠POQ=α,∴sin α=,cos α=,即PQ=sin α,OQ=cos α,PQ OP OQOP 则P 的坐标为(cos α,sin α),故选C.10.下表是某校合唱团成员的年龄分布:年龄/岁13141516频数515x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是( )A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【解析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及按从小到大排列后,第15、16个数据的平均数,可得答案.由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为: =14(岁),即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数.故选B.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是( )A. B. C. D.【解析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是( )A.a>0B.a=0C.c>0D.c=0【解析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确.故选D.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4= .【解析】直接利用平方差公式进行因式分解即可.x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).14.x的取值范围是 .【解析】根据二次根式的性质可求出x的取值范围.在实数范围内有意义,则x-1≥0,解得x≥1.故答案为:x≥1.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是 .【解析】先判断四个点是否在反比例函数y=的图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴有2个点在反比例函数y=的图象上,∴随机选取一个点,在反比例函数y= 图象上的概率是2÷4=.故答案为:.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“<”“=”“<”)【解析】 如图,分别在两段弧上各选三个点,作出过这三个点的圆,显然.<.故答案为:<.r 上r 下17.若x+y=10,xy=1,则x 3y+xy 3的值是 .【解析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2﹣2xy ,然后将x+y 与xy 的值代入即可.x 3y+xy 3=xy (x 2+y 2)=xy[(x+y )2﹣2xy ]=1×(102﹣2×1)=98.故答案为:98.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .【解析】如图,连接EA、EC,易知E,C,B三点在一条直线上,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.如图,连接EA,EC,易知E,C,B三点在一条直线上,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a,∴∠AEB=90°,∴tan∠ABC===.故答案为.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【解】|﹣1|﹣+(﹣2016)0=1﹣2+1=0.20.化简:a﹣b ﹣.【解】原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【证明】在△ABC和△ADC中,有, AB AD BC DC AC AC=⎧⎪=⎨⎪=⎩,,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【解】设甲种票买了x 张,乙种票买了y 张.根据题意得35,2418750.x y x y +=⎧⎨+=⎩解得20,15.x y =⎧⎨=⎩答:甲种票买了20张,乙种票买了15张.23.福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【解】(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.97%,727720720-2013年增加:×100%≈0.96%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.(答案不唯一)故答案为:(1)7;(2)2014. 24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【证明】(1)∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM.【解】(2)∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【解】(1)∵AB=AC=1,BC=,∴AD=,DC=1﹣=.∴AD 2==,AC •CD=1×=.∴AD 2=AC •CD.(2)∵AD=BC ,AD 2=AC •CD ,∴BC 2=AC •CD ,即.BC CD AC BC 又∵∠C=∠C ,∴△BCD ∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD ,∠C=∠BDC.设∠A=x ,则∠ABD=x ,∠DBC=x ,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得x=36°.∴∠ABD=36°.26.如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM.(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM=1时,求△ABN 的面积;(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.【解】(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN=∠DAM ,∵AN 平分∠MAB ,∴∠MAN=∠NAB ,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=.(2)延长MN交AB延长线于点Q,如图1所示.∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=.(3)过点A作AH⊥BF于点H,如图2所示.∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴BC CF AH BH=∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M 三点共线,如图3所示.由折叠性质得AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,,,HBA BFCAHB BCF AH BC∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【解】(1)∵顶点为A (1,2),∴设抛物线为y=a (x ﹣1)2+2,∵抛物线经过原点,∴0=a (0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x 2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax 2+bx ,∵h=﹣,∴b=﹣2ah ,∴y=ax 2﹣2ahx ,∵顶点为A (h ,k ),∴k=ah 2﹣2ah 2,∵抛物线y=tx 2也经过A (h ,k ),∴k=th 2,∴th 2=ah 2﹣2ah 2,∵h≠0.∴t=﹣a.(3)∵点A 在抛物线y=x 2﹣x 上,∴k=h 2﹣h ,又k=ah 2﹣2ah 2,∴h=,∵﹣2≤h <1,∴﹣2≤<1,①当1+a >0,即a >﹣1时,,解得a >0,1111-21a a ⎧⎪⎪+⎨⎪⎪+⎩<,≥,②当1+a <0,即a <﹣1时,解得a ≤﹣,1111-21a a ⎧⎪⎪+⎨⎪⎪+⎩<,≥,综上所述,a 的取值范围是a >0或a≤﹣.。

福建省福州市2016年中考数学试题(word版-含答案)

福建省福州市2016年中考数学试题(word版-含答案)

福州市中考考试数学试题一、选择题7.A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD 的三个顶点坐标分别是A (m ,n ),B ( 2,-l ),C (-m ,-n ),则点D 的坐标是A .(-2 ,l )B .(-2,-l )C .(-1,-2 )D .(-1,2 )9.如图,以O 为圆心,半径为1 的弧交坐标轴于A ,B 两点,P 是⌒AB 上一点(不与A ,B 重合),连接OP ,设∠POB =α,则点P 的坐标是A .(sin α,sin α)B .( cos α,cos α)C .(cos α,sin α)D .(sin α,cos α)10年龄/岁13 14 15 16 频数 5 15 x 10-x对于不同的A .平均数,中位数 B .众数,中位数C .平均数,方差D .中位数,方差11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0二、填空题13.分解因式:x 2-4= .14.若二次根式1-x 在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)17.若x +y =10,xy =1 ,则x 3y +xy 3= .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .19. 计算:|-1|-38+(-2016)0 . 20. 化简:a -b -ba b a ++2)(22. 列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?x y O x y O x y O x y O24. 如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM . (1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.25.如图,在△ABC 中,AB =AC =1,BC =215 ,在AC 边上截取AD =BC ,连接BD .(1)通过计算,判断AD 2与AC ·CD 的大小关系;(2)求∠ABD 的度数.26. 如图,矩形ABCD 中,AB =4,AD =3,M 是边CD 上一点,将△ADM 沿直线AM 对折,得到△ANM .(1)当AN 平分∠MAB 时,求DM 的长;(2)连接BN ,当DM =1时,求△ABN 的面积(3)当射线BN 交线段CD 于点F 时,求DF 的最大值.27. 已知,抛物线y =ax 2+bx +c ( a ≠0)经过原点,顶点为A ( h ,k ) (h ≠0).(1)当h =1,k =2时,求抛物线的解析式; (7、BACBCD ,14、X>=1,15、1/2,16、< 17、98 18、)(2)若抛物线y =tx 2(t ≠0)也经过A 点,求a 与t 之间的关系式;(3)当点A 在抛物线y =x 2-x 上,且-2≤h <1时,求a 的取值范围.。

2016年福建省福州市中考数学试卷(含解析版)

2016年福建省福州市中考数学试卷(含解析版)

2016年福建省福州市中考数学试卷一、选择题1.(2016•福州)下列实数中的无理数是()A. 0.7B.C. πD. ﹣82.(2016•福州)如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.3.(2016•福州)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 对顶角4.(2016•福州)下列算式中,结果等于a6的是()A. a4+a2B. a2+a2+a2C. a2•a3D. a2•a2•a25.(2016•福州)不等式组的解集是()A. x>﹣1B. x>3C. ﹣1<x<3D. x<36.(2016•福州)下列说法中,正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.(2016•福州)A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.8.(2016•福州)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A. (﹣2,1)B. (﹣2,﹣1)C. (﹣1,﹣2)D. (﹣1,2)9.(2016•福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A. (sinα,sinα)B. (cosα,cosα)C. (cosα,sinα)D. (sinα,cosα)10.(2016•福州)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差11.(2016•福州)已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B.C. D.12.(2016•福州)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A. a>0B. a=0C. c>0D. c=0二、填空题(共6小题,每小题4分,满分24分)13.(2016•福州)分解因式:x2﹣4=________.14.(2016•福州)若二次根式在实数范围内有意义,则x的取值范围是________.15.(2016•福州)已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.16.(2016•福州)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r下.(填“<”“=”“<”)17.(2016•福州)若x+y=10,xy=1,则x3y+xy3的值是________.18.(2016•福州)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是________.三、解答题(共9小题,满分90分)19.(2016•福州)计算:|﹣1|﹣+(﹣2016)0.20.(2016•福州)化简:a﹣b﹣.21.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.(2016•福州)列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.(2016•福州)福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了________万人;(2)与上一年相比,福州市常住人口数增加最多的年份是________;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.(2016•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.(2016•福州)如图,在△ABC中,AB=AC=1,BC= ,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.(2016•福州)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、选择题1.(2016•福州)下列实数中的无理数是()A. 0.7B.C. πD. ﹣8【答案】C【考点】无理数的认识【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为整数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.(2016•福州)如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【分析】根据从上边看得到的图形是俯视图,可得答案.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(2016•福州)如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 对顶角【答案】B【考点】对顶角、邻补角,同位角、内错角、同旁内角【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【分析】根据内错角的定义求解.本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.(2016•福州)下列算式中,结果等于a6的是()A. a4+a2B. a2+a2+a2C. a2•a3D. a2•a2•a2【答案】D【考点】同底数幂的乘法【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.(2016•福州)不等式组的解集是()A. x>﹣1B. x>3C. ﹣1<x<3D. x<3【答案】B【考点】解一元一次不等式组【解答】解:解不等式,得x>﹣1,解不等式,得x>3,由可得,x>3,故原不等式组的解集是x>3.故选B.【分析】根据解不等式组的方法可以求得原不等式组的解集.本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.(2016•福州)下列说法中,正确的是()A. 不可能事件发生的概率为0B. 随机事件发生的概率为C. 概率很小的事件不可能发生D. 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【考点】概率的意义【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.(2016•福州)A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B.C. D.【答案】B【考点】数轴及有理数在数轴上的表示,相反数及有理数的相反数【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.(2016•福州)平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A. (﹣2,1)B. (﹣2,﹣1)C. (﹣1,﹣2)D. (﹣1,2)【答案】A【考点】坐标与图形性质,平行四边形的性质【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.(2016•福州)如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A. (sinα,sinα)B. (cosα,cosα)C. (cosα,sinα)D. (sinα,cosα)【答案】C【考点】坐标与图形性质,解直角三角形【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα= ,cosα= ,即PQ=sinα,OQ=cosα,则P的坐标为(c osα,sinα),故选C.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.(2016•福州)下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差【答案】B【考点】频数(率)分布表,常用统计量的选择【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.(2016•福州)已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B.C. D.【答案】C【考点】坐标确定位置,函数的图象【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A 与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.(2016•福州)下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A. a>0B. a=0C. c>0D. c=0【答案】D【考点】根的判别式【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.(2016•福州)分解因式:x2﹣4=________.【答案】(x+2)(x﹣2)【考点】因式分解﹣运用公式法【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【分析】直接利用平方差公式进行因式分解即可.本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.(2016•福州)若二次根式在实数范围内有意义,则x的取值范围是________.【答案】x≥﹣1【考点】二次根式有意义的条件【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【分析】根据二次根式的性质可求出x的取值范围.主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.(2016•福州)已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y= 图象上的概率是________.【答案】【考点】概率公式,反比例函数图象上点的坐标特征【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y= 图象上,∴在反比例函数y= 图象上的概率是2÷4= .故答案为:.【分析】先判断四个点的坐标是否在反比例函数y= 图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y= 图象上的概率,依此即可求解.考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(2016•福州)如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r下.(填“<”“=”“<”)【答案】<【考点】弧长的计算【解答】解:如图,r上<r下.故答案为<.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l= (弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.(2016•福州)若x+y=10,xy=1,则x3y+xy3的值是________.【答案】98【考点】代数式求值,因式分解-提公因式法【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2﹣2xy,然后将x+y 与xy的值代入即可.本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.(2016•福州)如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是________.【答案】【考点】菱形的性质,解直角三角形【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE= a,EB=2a∴∠AEB=90°,∴tan∠ABC= = = .故答案为.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC= ,求出AE、EB即可解决问题.本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.(2016•福州)计算:|﹣1|﹣+(﹣2016)0.【答案】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【考点】有理数的混合运算,立方根,零指数幂【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(2016•福州)化简:a﹣b﹣.【答案】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【考点】分式的加减法【分析】先约分,再去括号,最后合并同类项即可.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(2016•福州)一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【答案】证明:在△ABC和△ADC中,有,所以△ABC≌△ADC(SSS),所以∠BAC=∠DAC.【考点】全等三角形的性质【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(2016•福州)列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【答案】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张【考点】二元一次方程组的实际应用-鸡兔同笼问题【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(2016•福州)福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了________万人;(2)与上一年相比,福州市常住人口数增加最多的年份是________;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【答案】(1)7(2)2014(3)解:预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人【考点】折线统计图【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;故答案为:(1)7;(2)2014.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(2016•福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴= ,∵M为中点,∴= ,∴+ = + ,即= ,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长= ×4π= π【考点】正方形的性质,圆内接四边形的性质【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.(2016•福州)如图,在△ABC中,AB=AC=1,BC= ,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【答案】(1)解:∵AB=BC=1,BC= ,∴AD= ,DC=1﹣= .∴AD2= = ,AC•CD=1× = .∴AD2=AC•CD(2)解:∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°【考点】相似三角形的判定【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(2016•福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【答案】(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB= S△NAQ= ×AN•NQ= ××3×4= ;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH= = = ,∴CF= ,∴DF的最大值=DC﹣CF=4﹣【考点】角平分线的性质,矩形的性质【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM= 即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例= ,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(2016•福州)已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【答案】(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h= ,∵﹣2≤h<1,∴﹣2≤ <1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣【考点】抛物线与x轴的交点,二次函数的应用【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a 的不等式即可解决问题.本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中考数学试题附参考答案

2016年福建省福州市中考数学试题附参考答案

2016年福建省福州市中考数学试题一、选择题(共12 小题,每题3分.满分36分;每小题只有一个正确选项) 1.下列实数中的无理数是A .0.7B .21C .πD .-8 【考点】无理数. 【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可. 【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,-8为正数,都属于有理数, π为无限不循环小数, ∴π为无理数. 故选:C .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是A .B .C .D .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1, 故选:C .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a 、b 被直线C 所截,∠1和∠2的位置关系是A .同位角B .内错角C .同旁内角D .对顶角第2题【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是A.a4+a2B.a2+a2+a2C.a4·a2D.a2·a2·a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组⎩⎨⎧>->+0301x x 的解集是A .x >-1B .x >3C .-1<x <3D .x <3【考点】解一元一次不等式组. 【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集. 【解答】解解不等式①,得 x >-1, 解不等式②,得 x >3,由①②可得,x >3,故原不等式组的解集是x >3. 故选B .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是A .不可能事件发生的概率为0B .随机事件发生的概率为21C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为 P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率 P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是8.平面宜角坐标系中,已知□ABCD的三个顶点坐标分别是A(m,n),B ( 2,-l ),C(-m,-n),则点D的坐标是A.(-2 ,l )B.(-2,-l ) C.(-1,-2 ) D .(-1,2 )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(-m,-n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,-1),∴点D的坐标是(-2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.AB上一点(不9.如图,以O 为圆心,半径为1 的弧交坐标轴于A,B 两点,P是⌒与A,B重合),连接OP,设∠POB=α,则点P的坐标是A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴,,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是A.平均数,中位数B.众数,中位数C.平均数,方差D.中位数,方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10, 则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:B .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A (-l ,m ),B ( l ,m ),C ( 2,m +l )在同一个函数图象上,这个函数图象可以是A B C D【考点】坐标确定位置;函数的图象.【分析】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【解答】解:∵点A (-1,m ),B (1,m ), ∴A 与B 关于y 轴对称,故A ,B 错误; ∵B(1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误. 故选C .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x 的一元二次方程ax 2-4x +c =0一定有实数根的是A .a >0B .a =0C .c >0D .c =0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(-4)2-4ac=16-4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每题4分,满分24分)13.分解因式:x2-4=.【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2-4=(x+2)(x-2).故答案为:(x+2)(x-2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式1x在实数范围内有意义,则x的取值范围是.-【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式1x在实数范围内有意义,则:x+1≥0,解得x≥-1.-故答案为:x≥-1.【点评】主要考查了二次根式的意义和性质: 概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(-1,1),(2,2),(32,23),(-5,-51),从中随机选一个点,在反比例函数y =x1图象上的概率是 . 【考点】概率公式;反比例函数图象上点的坐标特征. 【分析】先判断四个点的坐标是否在反比例函数图象上,再让在反比例函数图象上点的个数除以点的总数即为在反比例函数图象上的概率,依此即可求解.【解答】解:∵-1×1=-1, 2×2=4,,,∴2个点的坐标在反比例函数图象上,∴在反比例函数图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“>“,”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上<r下.故答案为<.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1 ,则x3y+xy3=.【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2-2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2-2xy]=1×(102-2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2-2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C 都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形. 【专题】网格型.【分析】如图,连接EA 、EB ,先证明∠AEB=90°,根据,求出AE 、EB 即可解决问题.【解答】解:如图,连接EA ,EC ,设菱形的边长为a ,由题意得∠AEF=30°,∠BEF=60°,,EB=2a∴∠AEB=90°, ∴.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9 小题,满分90 分) 19.(7分)计算:|-1|-38+(-2016)0 .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案. 【解答】解:|-1|-38+(-2016)0 =1-2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.(7分)化简:a -b -ba b a ++2)(【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可. 【解答】解:原式=a-b-(a+b ) =a-b-a-b =-2b .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.(8分)一个平分角的仪器如图所示,其中AB=AD,BC=DC,求证:∠BAC=∠DAC .【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.(8分)列方程(组)解应用题:某班去看演出,甲种票每张24 元,乙种票每张18 元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.(10分)福州市2011~2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是万人;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750-743=7(万人);(2)由图可知2012年增加:,2013年增加:,2014年增加:,2015年增加:,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.(12分)如图,正方形ABCD 内接于⊙O ,M 为⌒AD 中点,连接BM ,CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2 时,求⌒BM 的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB=CD, ∴, ∵M 为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π, ∴的长=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=215,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD 的大小关系;(2)求∠ABD 的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵A D=BC=1,,∴AD=,DC=1-=.∴AD2=,AC•CD=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.(13分)如图,矩形ABCD 中,AB=4,AD=3,M 是边CD 上一点,将△ADM沿直线AM 对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN ,当DM=1时,求△ABN的面积;(3)当射线BN 交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出 NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F 重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:,∴DF的最大值=DC-CF=.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.(13分)已知,抛物线y=ax2+bx+c ( a≠0)经过原点,顶点为A ( h,k ) (h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2-x上,且-2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x-1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则,b=-2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x-1)2+2,∵抛物线经过原点,∴0=a(0-1)2+2,∴a=-2,∴抛物线解析式为y=-2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵,∴b=-2ah,∴y=ax2-2ahx,∵顶点A(h,k),∴k=ah2-2ah2=-ah2,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2-2ah2,∴t=-a,(3)∵点A在抛物线y=x2-x上,∴k=h2-h,又k=ah2-2ah2,∴,∵-2≤h<1,∴-2≤<1,①当1+a>0时,即a>-1时,,解得a>0,②当1+a<0时,即a<-1时,解得,综上所述,a的取值范围a>0或.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中考数学试卷(含答案)

2016年福建省福州市中考数学试卷(含答案)

2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2C.a2•a3 D.a2•a2•a25.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D 的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布对于不同的x ,下列关于年龄的统计量不会发生改变的是( )A .平均数、中位数B .众数、中位数C .平均数、方差D .中位数、方差11.已知点A (﹣1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,这个函数图象可以是( )A .B .C .D .12.下列选项中,能使关于x 的一元二次方程ax 2﹣4x+c=0一定有实数根的是( )A .a >0B .a=0C .c >0D .c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x 2﹣4= .14.若二次根式在实数范围内有意义,则x 的取值范围是 .15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是 .16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 r 下.(填“<”“=”“<”)17.若x+y=10,xy=1,则x 3y+xy 3的值是 .18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A ,B ,C 都在格点上,则tan∠ABC 的值是 .三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a ﹣b ﹣.21.一个平分角的仪器如图所示,其中AB=AD ,BC=DC .求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p 附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D 的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D 和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为: =14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B.C. D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4= (x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x 2﹣4=(x+2)(x ﹣2).故答案为:(x+2)(x ﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x 的取值范围是 x≥﹣1 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x 的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式; 性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是 .【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x3y+xy3的值是98 .【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2﹣2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS 证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x ,则AQ=MQ=1+x ,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ 中,由勾股定理得:AQ 2=AN 2+NQ 2,∴(x+1)2=32+x 2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S △NAB =S △NAQ =×AN•NQ=××3×4=;(3)过点A 作AH⊥BF 于点H ,如图2所示:∵四边形ABCD 是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N 、H 重合(即AH=AN )时,AH 最大,BH 最小,CF 最小,DF 最大,此时点M 、F 重合,B 、N 、M 三点共线,如图3所示:由折叠性质得:AD=AH ,∵AD=BC,∴AH=BC,在△ABH 和△BFC 中,,∴△ABH≌△BFC(AAS ),由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

福建省福州市2016年中考数学真题试题(含解析)

福建省福州市2016年中考数学真题试题(含解析)

2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a25.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= .14.若二次根式在实数范围内有意义,则的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若+y=10,y=1,则3y+y3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.>﹣1 B.>3 C.﹣1<<3 D.<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得>﹣1,解不等式②,得>3,由①②可得,>3,故原不等式组的解集是>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P (A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B 关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为+10﹣=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当>0时,y随的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当>0时,y随的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于的一元二次方程a2﹣4+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:2﹣4= (+2)(﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:2﹣4=(+2)(﹣2).故答案为:(+2)(﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则的取值范围是≥﹣1 .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出的取值范围.【解答】解:若二次根式在实数范围内有意义,则:+1≥0,解得≥﹣1.故答案为:≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上= r .(填“<”“=”“<”)下【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若+y=10,y=1,则3y+y3的值是98 .【考点】代数式求值.【分析】可将该多项式分解为y(2+y2),又因为2+y2=(+y)2﹣2y,然后将+y与y的值代入即可.【解答】解:3y+y3=y(2+y2)=y[(+y)2﹣2y]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知+y与y 的值,则2+y2=(+y)2﹣2y,再将+y与y的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB 即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7 万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014 ;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=,则∠ABD=,∠DBC=,∠C=2.∵∠A+∠ABC+∠C=180°,∴+2+2=180°.解得:=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=,则AQ=MQ=1+,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=,则AQ=MQ=1+,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(+1)2=32+2,解得:=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=a2+b+c(a≠0)经过原点,顶点为A(h,)(h≠0).(1)当h=1,=2时,求抛物线的解析式;(2)若抛物线y=t2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=2﹣上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(﹣1)2+2,原点代入即可.(2)设抛物线为y=a2+b,则h=﹣,b=﹣2ah代入抛物线解析式,求出(用a、h表示),又抛物线y=t2也经过A(h,),求出,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣22+4.(2)∵抛物线经过原点,∴设抛物线为y=a2+b,∵h=﹣,∴b=﹣2ah,∴y=a2﹣2ah,∵顶点A(h,),∴=ah2﹣2ah,抛物线y=t2也经过A(h,),∴=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=2﹣上,∴=h2﹣h,又=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福州市初中毕业班质量检测数学试卷

2016年福州市初中毕业班质量检测数学试卷
AB x 轴, AC y 轴,垂足分别为 B , C ,连接 BC ,
B A

.
tan tan .
17.如图,△ABC 的三个顶点分别在边长为 1 的正方形网格
第 17 题
C
y
C D O B 第 18 题 x A
交函数图象于点 D ,则 CD 的值为 BC
.
2
三、解答题(共 9 小题,满分 90 分) 19.(7 分)计算: 22 8 (1)0 .
(1)请把折线统计图(图 1)补充完整; (2)如果这所中学共有学生 900 名,那么请你估算最喜爱科普类书籍的学生人数.
3
24.(12 分)已知点 A(m,n) 在 y 6 的图象上,且 m(n 1) ≥ 0 . x (1)求 m 的取值范围; (2)当 m,n 为正整数时,写出满足题意的点 A 坐标,并从中随机抽取一个点,求该点 在直线 y x 6 下方的概率. 25.(12 分)如图,△ABC 中, AB AC , A 30 ,以 B 为圆心,BC 长为半径的 EC 交 A AC 于点 D,交 AB 于点 E. (1)求 ABD 的度数; (2)若 BC 2 ,求图中阴影部分的面积.
A
C O B 第9题
8.5 8.3 8.1 0.15 如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是 A.平均数 B.中位数 C.众数 D.方差 11.无论 m 为何值,点 A(m,5 2m) 不可能 在 ... A.第一象限 离是 A. 3 C. 2 5 B .4 D. 12 13 13 . .
D A 第 12 题 C
B.第二象限
o
C.第三象限
D.第四象限
B

2016年福建省福州市中学考试数学试卷含问题详解

2016年福建省福州市中学考试数学试卷含问题详解

实用文档文案大全2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B. C.π D.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角 B.内错角 C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2 C.a2?a3 D.a2?a2?a25.不等式组的解集是()A.x>﹣1B.x>3 C.﹣1<x<3D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0 B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B. C. D.8.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C (﹣m,﹣n),则点D的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)实用文档文案大全9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cos α)对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A. B. C. D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=14.若二次根式在实数范围内有意义,则x的取值范围是15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r 下.(填“<”“=”“<”)实用文档文案大全17.若x+y=10,xy=1,则x3y+xy3的值是18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.实用文档文案大全24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC?CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.实用文档文案大全2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B. C.π D.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()实用文档文案大全A.同位角 B.内错角 C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2 B.a2+a2+a2 C.a2?a3 D.a2?a2?a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2?a3=a5.D:根据同底数幂的乘法法则,可得a2?a2?a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2?a3=a5,∴选项C的结果不等于a6;实用文档文案大全∵a2?a2?a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1B.x>3 C.﹣1<x<3D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0 B.随机事件发生的概率为实用文档文案大全C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A. B. C. D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.实用文档文案大全8.平面直角坐标系中,已知?ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα) B.(cosα,cosα) C.(cosα,sinα) D.(sinα,cos α)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,实用文档文案大全则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数 B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为: =14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()实用文档文案大全A. B. C. D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0 【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)实用文档文案大全13.分解因式:x2﹣4=(x+2)(x﹣2)【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,实用文档文案大全∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=..故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上=r下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r上=r下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R);正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x3y+xy3的值是98【考点】代数式求值.【分析】可将该多项式分解为xy(x2+y2),又因为x2+y2=(x+y)2﹣2xy,然后将x+y与xy的值代入即可.【解答】解:x3y+xy3=xy(x2+y2)实用文档文案大全=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a ∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.实用文档文案大全【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1 =0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b =﹣2b..【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.实用文档文案大全【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.实用文档文案大全【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;实用文档文案大全(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC?CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC?CD的值,从而可得到AD2与AC?CD的关系;(2)由(1)可得到BD2=AC?CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC?CD=1×=.∴AD2=AC?CD.(2)∵AD=BD,AD2=AC?CD,∴BD2=AC?CD,即.又∵∠C=∠C,∴△BCD∽△ABC.实用文档文案大全∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x..∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°解得:x=36°∴∠ABD=36°【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD?tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三实用文档文案大全点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD?tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN?NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,实用文档文案大全∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=实用文档文案大全【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h 表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x..(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,实用文档文案大全(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

福建省福州市2016届中考数学试卷(解析版)

福建省福州市2016届中考数学试卷(解析版)

2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项) .下列实数中的无理数是(). . . .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . ..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于 的是(). . . . .不等式组的解集是(). >﹣ . > .﹣ < < . <.下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . ..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , ) .下表是某校合唱团成员的年龄分布年龄 岁频数﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . ..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ..若二次根式在实数范围内有意义,则 的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填 < < ).若 , ,则 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简: ﹣ ﹣..一个平分角的仪器如图所示,其中 , .求证: ..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是(). . . .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是 ,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,为无限不循环小数,为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题..如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线 , 被直线 所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于 的是(). . . .【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】 : ,据此判断即可.:根据合并同类项的方法,可得 .:根据同底数幂的乘法法则,可得 .:根据同底数幂的乘法法则,可得 .【解答】解: ,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果等于 .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确: 底数必须相同; 按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是(). >﹣ . > .﹣ < < . <【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式 ,得>﹣ ,解不等式 ,得> ,由 可得, > ,故原不等式组的解集是 > .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法. .下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 ( ) 、不可能发生事件的概率 ( ) 对 、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解: 、不可能事件发生的概率为 ,所以 选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选 .【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件 发生的频率 会稳定在某个常数 附近,那么这个常数 就叫做事件 的概率,记为 ( ) ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 ( ) ;不可能发生事件的概率 ( ) .. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段 上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段 符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段 上的点与原点的距离..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点 和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ( , ), (﹣ ,﹣ ),点 和点 关于原点对称,四边形 是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选: .【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , )【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ,交 于点 ,在直角三角形 中,利用锐角三角函数定义表示出 与 ,即可确定出 的坐标.【解答】解:过 作 ,交 于点 ,在 中, , ,, ,即 , ,则 的坐标为( , ),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁频数﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为 ﹣ ,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的 ,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . .【考点】坐标确定位置;函数的图象.【分析】由点 (﹣ , ), ( , ), ( , )在同一个函数图象上,可得 与 关于 轴对称,当 > 时, 随 的增大而增大,继而求得答案.【解答】解: 点 (﹣ , ), ( , ),与 关于 轴对称,故 , 错误;( , ), ( , ),当 > 时, 随 的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .【考点】根的判别式.【分析】根据方程有实数根可得 ,且 ,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ﹣ ,且 ,,且 ;、若 > ,当 、 时, > ,此选项错误;、 不符合一元二次方程的定义,此选项错误;、若 > ,当 、 时, > ,此选项错误;、若 ,则 ,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ( )( ﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解: ﹣ ( )( ﹣ ).故答案为:( )( ﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则 的取值范围是 ﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出 的取值范围.【解答】解:若二次根式在实数范围内有意义,则: ,解得 ﹣ .故答案为: ﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子( )叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数 图象上,再让在反比例函数 图象上点的个数除以点的总数即为在反比例函数 图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数 图象上,在反比例函数 图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填< < )【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,上下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ( )弧长公式: (弧长为 ,圆心角度数为 ,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若 , ,则 的值是 .【考点】代数式求值.【分析】可将该多项式分解为 ( ),又因为 ( ) ﹣ ,然后将 与 的值代入即可.【解答】解:( )( ) ﹣( ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知 与 的值,则 ( ) ﹣ ,再将 与 的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接 、 ,先证明 ,根据 ,求出 、 即可解决问题.【解答】解:如图,连接 , ,设菱形的边长为 ,由题意得 , , ,,.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简: ﹣ ﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ﹣ ﹣( )﹣ ﹣ ﹣﹣ .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中 , .求证: .【考点】全等三角形的性质.【分析】在 和 中,由三组对边分别相等可通过全等三角形的判定定理( )证得 ,再由全等三角形的性质即可得出结论.【解答】证明:在 和 中,有,( ),.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了 张,乙种票买了 张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了 张,乙种票买了 张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ,年增加: ,年增加: ,年增加: ,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形 是正方形,,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ,的长 .【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数.【考点】相似三角形的判定.【分析】( )先求得 、 的长,然后再计算出 与 的值,从而可得到 与 的关系;( )由( )可得到 ,然后依据对应边成比例且夹角相等的两三角形相似证明 ,依据相似三角形的性质可知 , ,然后结合等腰三角形的性质和三角形的内角和定理可求得 的度数.【解答】解:( ) , ,, ﹣ ., ..( ) , ,,即.又 ,., .., .设 ,则 , , .,.解得: ..【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 是解题的关键..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ,证出 ,由三角函数得出即可;( )延长 交 延长线于点 ,由矩形的性质得出 ,由折叠性质得出 , , ,得出 ,证出 ,设 ,则 ,证出 ,在 中,由勾股定理得出方程,解方程求出 , ,即可求出 的面积;( )过点 作 于点 ,证明 ,得出对应边成比例 ,得出当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,由折叠性质得: ,由 证明 ,得出 ,由勾股定理求出 ,得出 ,即可得出结果.【解答】解:( )由折叠性质得: ,,平分 , ,,四边形 是矩形,,,;( )延长 交 延长线于点 ,如图 所示:四边形 是矩形,,,由折叠性质得: ,, , ,,,设 ,则 ,,,在 中,由勾股定理得: , ( ) ,解得: ,, ,, ,;( )过点 作 于点 ,如图 所示: 四边形 是矩形,,,,,,, ,当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,如图 所示:由折叠性质得: ,,,在 和 中,,( ),,由勾股定理得: ,,的最大值 ﹣ ﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为 ( ﹣ ) ,原点代入即可.( )设抛物线为 ,则 ﹣, ﹣ 代入抛物线解析式,求出 (用 、 表示),又抛物线 也经过 ( , ),求出 ,列出方程即可解决.( )根据条件列出关于 的不等式即可解决问题.【解答】解:( ) 顶点为 ( , ),设抛物线为 ( ﹣ ) ,抛物线经过原点,( ﹣ ) ,﹣ ,抛物线解析式为 ﹣ .( ) 抛物线经过原点,设抛物线为 ,﹣,﹣ ,﹣ ,顶点 ( , ),﹣ ,抛物线 也经过 ( , ),,﹣ ,﹣ ,( ) 点 在抛物线 ﹣ 上,﹣ ,又 ﹣ ,,﹣ < ,﹣ < ,当 > 时,即 >﹣ 时,,解得 > ,当 < 时,即 <﹣ 时,解得 ﹣,综上所述, 的取值范围 > 或 ﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福州市中考数学试卷及答案解析.doc

2016年福州市中考数学试卷及答案解析.doc

2016年福建省福州市中考数学试卷一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣82.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a25.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<36.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=.14.若二次根式在实数范围内有意义,则x的取值范围是.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.16.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上r下.(填“<”“=”“<”)17.若x+y=10,xy=1,则x3y+xy3的值是.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.20.化简:a﹣b﹣.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了万人;(2)与上一年相比,福州市常住人口数增加最多的年份是;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.2016年福建省福州市中考数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,每小题只有一个正确选项)1.下列实数中的无理数是()A.0.7 B.C.πD.﹣8【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.2.如图是3个相同的小正方体组合而成的几何体,它的俯视图是()A.B. C.D.【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.如图,直线a,b被直线c所截,∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角 D.对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线a,b被直线c所截,∠1与∠2是内错角.故选B.【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.4.下列算式中,结果等于a6的是()A.a4+a2B.a2+a2+a2C.a2•a3 D.a2•a2•a2【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】A:a4+a2≠a6,据此判断即可.B:根据合并同类项的方法,可得a2+a2+a2=3a2.C:根据同底数幂的乘法法则,可得a2•a3=a5.D:根据同底数幂的乘法法则,可得a2•a2•a2=a6.【解答】解:∵a4+a2≠a6,∴选项A的结果不等于a6;∵a2+a2+a2=3a2,∴选项B的结果不等于a6;∵a2•a3=a5,∴选项C的结果不等于a6;∵a2•a2•a2=a6,∴选项D的结果等于a6.故选:D.【点评】(1)此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(2)此题还考查了合并同类项的方法,要熟练掌握.5.不等式组的解集是()A.x>﹣1 B.x>3 C.﹣1<x<3 D.x<3【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式①,得x>﹣1,解不等式②,得x>3,由①②可得,x>3,故原不等式组的解集是x>3.故选B.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.6.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率P(A)=1、不可能发生事件的概率P(A)=0对A、B、C进行判定;根据频率与概率的区别对D进行判定.【解答】解:A、不可能事件发生的概率为0,所以A选项正确;B、随机事件发生的概率在0与1之间,所以B选项错误;C、概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D、投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件A发生的频率mn会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.7.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB 上的点与原点的距离.8.平面直角坐标系中,已知▱ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1) C.(﹣1,﹣2) D.(﹣1,2)【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点A和点C关于原点对称,由平行四边形的性质得出D和B关于原点对称,即可得出点D的坐标.【解答】解:∵A(m,n),C(﹣m,﹣n),∴点A和点C关于原点对称,∵四边形ABCD是平行四边形,∴D和B关于原点对称,∵B(2,﹣1),∴点D的坐标是(﹣2,1).故选:A.【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出D和B关于原点对称是解决问题的关键.9.如图,以圆O为圆心,半径为1的弧交坐标轴于A,B两点,P是上一点(不与A,B重合),连接OP,设∠POB=α,则点P的坐标是()A.(sinα,sinα)B.(cosα,cosα)C.(cosα,sinα)D.(sinα,cosα)【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过P作PQ⊥OB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标.【解答】解:过P作PQ⊥OB,交OB于点Q,在Rt△OPQ中,OP=1,∠POQ=α,∴sinα=,cosα=,即PQ=sinα,OQ=cosα,则P的坐标为(cosα,sinα),故选C.【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键.10.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差 D.中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.11.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.【考点】坐标确定位置;函数的图象.【分析】由点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,可得A与B关于y 轴对称,当x>0时,y随x的增大而增大,继而求得答案.【解答】解:∵点A(﹣1,m),B(1,m),∴A与B关于y轴对称,故A,B错误;∵B(1,m),C(2,m+1),∴当x>0时,y随x的增大而增大,故C正确,D错误.故选C.【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.12.下列选项中,能使关于x的一元二次方程ax2﹣4x+c=0一定有实数根的是()A.a>0 B.a=0 C.c>0 D.c=0【考点】根的判别式.【分析】根据方程有实数根可得ac≤4,且a≠0,对每个选项逐一判断即可.【解答】解:∵一元二次方程有实数根,∴△=(﹣4)2﹣4ac=16﹣4ac≥0,且a≠0,∴ac≤4,且a≠0;A、若a>0,当a=1、c=5时,ac=5>4,此选项错误;B、a=0不符合一元二次方程的定义,此选项错误;C、若c>0,当a=1、c=5时,ac=5>4,此选项错误;D、若c=0,则ac=0≤4,此选项正确;故选:D.【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.二、填空题(共6小题,每小题4分,满分24分)13.分解因式:x2﹣4=(x+2)(x﹣2).【考点】因式分解-运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.14.若二次根式在实数范围内有意义,则x的取值范围是x≥﹣1.【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出x的取值范围.【解答】解:若二次根式在实数范围内有意义,则:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】主要考查了二次根式的意义和性质:概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.已知四个点的坐标分别是(﹣1,1),(2,2),(,),(﹣5,﹣),从中随机选取一个点,在反比例函数y=图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数y=图象上,再让在反比例函数y=图象上点的个数除以点的总数即为在反比例函数y=图象上的概率,依此即可求解.【解答】解:∵﹣1×1=﹣1,2×2=4,×=1,(﹣5)×(﹣)=1,∴2个点的坐标在反比例函数y=图象上,∴在反比例函数y=图象上的概率是2÷4=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.如图所示的两段弧中,位于上方的弧半径为r 上,下方的弧半径为r 下,则r 上 = r 下.(填“<”“=”“<”)【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,r 上=r 下.故答案为=.【点评】本题考查了弧长公式:圆周长公式:C=2πR (2)弧长公式:l=(弧长为l ,圆心角度数为n ,圆的半径为R );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一.17.若x+y=10,xy=1,则x 3y+xy 3的值是 98 .【考点】代数式求值.【分析】可将该多项式分解为xy (x 2+y 2),又因为x 2+y 2=(x+y )2﹣2xy ,然后将x+y 与xy 的值代入即可.【解答】解:x 3y+xy 3=xy (x 2+y 2)=xy[(x+y)2﹣2xy]=1×(102﹣2×1)=98.故答案为:98.【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知x+y与xy的值,则x2+y2=(x+y)2﹣2xy,再将x+y与xy的值代入即可.18.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE=a,EB=2a∴∠AEB=90°,∴tan∠ABC===.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共9小题,满分90分)19.计算:|﹣1|﹣+(﹣2016)0.【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解:|﹣1|﹣+(﹣2016)0=1﹣2+1=0.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键.20.化简:a﹣b﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式=a﹣b﹣(a+b)=a﹣b﹣a﹣b=﹣2b.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.21.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.【考点】全等三角形的性质.【分析】在△ABC和△ADC中,由三组对边分别相等可通过全等三角形的判定定理(SSS)证得△ABC≌△ADC,再由全等三角形的性质即可得出结论.【解答】证明:在△ABC和△ADC中,有,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出△ABC≌△ADC.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键.22.列方程(组)解应用题:某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了x张,乙种票买了y张.然后根据购票总张数为35张,总费用为750元列方程求解即可.【解答】解:设甲种票买了x张,乙种票买了y张.根据题意得:.解得:.答:甲种票买了20张,乙种票买了15张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键.23.福州市2011﹣2015年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:(1)福州市常住人口数,2015年比2014年增加了7万人;(2)与上一年相比,福州市常住人口数增加最多的年份是2014;(3)预测2016年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】(1)将2015年人数减去2014年人数即可;(2)计算出每年与上一年相比,增加的百分率即可得知;(3)可从每年人口增加的数量加以预测.【解答】解:(1)福州市常住人口数,2015年比2014年增加了750﹣743=7(万人);(2)由图可知2012年增加:×100%≈0.98%,2013年增加:×100%≈0.97%,2014年增加:×100%≈1.2%,2015年增加:×100%≈0.94%,故与上一年相比,福州市常住人口数增加最多的年份是2014年;(3)预测2016年福州市常住人口数大约为757万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是7万人,由此可以预测2016年福州市常住人口数大约为757万人.故答案为:(1)7;(2)2014.【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键.24.如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】(1)根据圆心距、弦、弧之间的关系定理解答即可;(2)根据弧长公式计算.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∴的长=×4π=π.【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键.25.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【考点】相似三角形的判定.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD 的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AB=BC=1,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BD,AD2=AC•CD,∴BD2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ABC.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠D.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.26.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.【考点】矩形的性质;角平分线的性质.【分析】(1)由折叠性质得∠MAN=∠DAM,证出∠DAM=∠MAN=∠NAB,由三角函数得出DM=AD•tan∠DAM=即可;(2)延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=3,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=4,AQ=5,即可求出△ABN的面积;(3)过点A作AH⊥BF于点H,证明△ABH∽△BFC,得出对应边成比例=,得出当点N、H 重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,由折叠性质得:AD=AH,由AAS证明△ABH≌△BFC,得出CF=BH,由勾股定理求出BH,得出CF,即可得出结果.【解答】解:(1)由折叠性质得:△ANM≌△ADM,∴∠MAN=∠DAM,∵AN平分∠MAB,∠MAN=∠NAB,∴∠DAM=∠MAN=∠NAB,∵四边形ABCD是矩形,∴∠DAB=90°,∴∠DAM=30°,∴DM=AD•tan∠DAM=3×tan30°=3×=;(2)延长MN交AB延长线于点Q,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=32+x2,解得:x=4,∴NQ=4,AQ=5,∵AB=4,AQ=5,∴S△NAB=S△NAQ=×AN•NQ=××3×4=;(3)过点A作AH⊥BF于点H,如图2所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴=,∵AH≤AN=3,AB=4,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图3所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH===,∴CF=,∴DF的最大值=DC﹣CF=4﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键.27.已知,抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.【考点】二次函数综合题.【分析】(1)用顶点式解决这个问题,设抛物线为y=a(x﹣1)2+2,原点代入即可.(2)设抛物线为y=ax2+bx,则h=﹣,b=﹣2ah代入抛物线解析式,求出k(用a、h表示),又抛物线y=tx2也经过A(h,k),求出k,列出方程即可解决.(3)根据条件列出关于a的不等式即可解决问题.【解答】解:(1)∵顶点为A(1,2),设抛物线为y=a(x﹣1)2+2,∵抛物线经过原点,∴0=a(0﹣1)2+2,∴a=﹣2,∴抛物线解析式为y=﹣2x2+4x.(2)∵抛物线经过原点,∴设抛物线为y=ax2+bx,∵h=﹣,∴b=﹣2ah,∴y=ax2﹣2ahx,∵顶点A(h,k),∴k=ah2﹣2ah,抛物线y=tx2也经过A(h,k),∴k=th2,∴th2=ah2﹣2ah2,∴t=﹣a,(3)∵点A在抛物线y=x2﹣x上,∴k=h2﹣h,又k=ah2﹣2ah2,∴h=,∵﹣2≤h<1,∴﹣2≤<1,①当1+a>0时,即a>﹣1时,,解得a>0,②当1+a<0时,即a<﹣1时,解得a≤﹣,综上所述,a的取值范围a>0或a≤﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福建省福州市中考数学试卷-答案

2016年福建省福州市中考数学试卷-答案

福建省福州市2016年初中毕业会考、高级中等学校招生考试数学答案解析第Ⅰ卷2.【答案】C【解析】人站在几何体的正面,从上往下看,正方形个数从左到右依次为2,1,故选:C.【提示】根据从上边看得到的图形是俯视图,可得答案.【考点】三视图3.【答案】B【解析】直线a,b被直线c所截,∠1与∠2是内错角.故选B.【提示】根据内错角的定义求解.【考点】同位角、内错角、同旁内角;对顶角、邻补角.4.【答案】D【考点】同底数幂的乘法;合并同类项.【解析】A.426a a a+≠,据此判断即可.B.根据合并同类项的方法,可得2222++=.a a a a3C.根据同底数幂的乘法法则,可得235=.a a aD.根据同底数幂的乘法法则,可得2226=.a a a a∵426+≠,a a a∴选项A的结果不等于a6;∵2222a a a a++=,3∴选项B的结果不等于a6;∵235a a a=,∴选项C的结果不等于a6;∵2226a a a a=,∴选项D的结果等于a6.故选:D.5.【答案】B【解析】1030 xx+>⎧⎨->⎩解不等式①,得1x>-,解不等式②,得3x>,由①②可得,3x>,故原不等式组的解集是3x>.故选B.【提示】根据解不等式组的方法可以求得原不等式组的解集.【考点】解一元一次不等式组.6.【答案】A【解析】A.不可能事件发生的概率为0,所以A选项正确;B.随机事件发生的概率在0与1之间,所以B选项错误;C.概率很小的事件不是不可能发生,而是发生的机会较小,所以C选项错误;D.投掷一枚质地均匀的硬币100次,正面朝上的次数可能为50次,所以D选项错误.故选A.【提示】一般地,在大量重复实验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p 就叫做事件A的概率,记为P(A)=p;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=0.【考点】概率的意义.7.【答案】B【解析】表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B【提示】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【考点】相反数,数轴8.【答案】A【解析】∵A (m ,n ),C (-m ,-n ),∴点A 和点C 关于原点对称,∵四边形ABCD 是平行四边形,∴D 和B 关于原点对称,∵B (2,-1),∴点D 的坐标是(-2,1).故选:A .【提示】由点的坐标特征得出点A 和点C 关于原点对称,由平行四边形的性质得出D 和B 关于原点对称,即可得出点D 的坐标.【考点】平行四边形的性质,坐标与图形性质9.【答案】C【解析】过P 作PQ ⊥OB ,交OB 于点Q ,在直角三角形OPQ 中,利用锐角三角函数定义表示出OQ 与PQ ,即可确定出P 的坐标.过P 作PQ ⊥OB ,交OB 于点Q ,在Rt OPQ ∆中,1,POQ OP α=∠=, ∴sin ,cos PQ OQ OP OPαα==,即 则P 的坐标为(cos sin αα,),故选C .【考点】解直角三角形,坐标与图形性质10.【答案】B【解析】由表可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:14岁,即对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选:B .【提示】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【考点】统计量的选择,频数(率)分布表11.【答案】C【解析】∵点A (-1,m ),B (1,m ),∴A 与B 关于y 轴对称,故A ,B 错误;∵B (1,m ),C (2,m+1),∴当x >0时,y 随x 的增大而增大,故C 正确,D 错误.故选C .【提示】由点A (-1,m ),B (1,m ),C (2,m+1)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案.【考点】坐标确定位置,函数的图象12.【答案】D【解析】∵一元二次方程有实数根,∴2(4)41640ac ac ∆=--=-≥,且0a ≠,∴4ac ≤,且0a ≠;A 、若0a >,当1a =、5c =时,54ac =>,此选项错误;B 、0a ≠不符合一元二次方程的定义,此选项错误;C 、若0c >,当1a =、5c =时,54ac =>,此选项错误;D 、若0c =,则04ac =≤,此选项正确;故选:D .【提示】根据方程有实数根可得4ac ≤,且0a ≠,对每个选项逐一判断即可。

2016年福建省福州市中考数学试卷(含答案)

2016年福建省福州市中考数学试卷(含答案)

2016年福建省福州市中考数学试卷一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项) .下列实数中的无理数是(). . . .﹣.如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . ..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角.下列算式中,结果等于 的是(). . . . .不等式组的解集是(). >﹣ . > .﹣ < < . <.下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . ..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , ).如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , ) .下表是某校合唱团成员的年龄分布年龄 岁频数﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差.已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . ..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ..若二次根式在实数范围内有意义,则 的取值范围是..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填 < < ).若 , ,则 的值是..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) ..化简: ﹣ ﹣..一个平分角的仪器如图所示,其中 , .求证: ..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?.福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了万人;( )与上一年相比,福州市常住人口数增加最多的年份是;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.年福建省福州市中考数学试卷参考答案与试题解析一、(共 小题,每小题 分,满分 分,每小题只有一个正确选项).下列实数中的无理数是(). . . .﹣【考点】无理数.【专题】计算题.【分析】无理数就是无限不循环小数,最典型就是 ,选出答案即可.【解答】解: 无理数就是无限不循环小数,且 为有限小数,为有限小数,﹣ 为正数,都属于有理数,为无限不循环小数,为无理数.故选: .【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题..如图是 个相同的小正方体组合而成的几何体,它的俯视图是(). . . .【考点】简单组合体的三视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为 , ,故选: .【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图..如图,直线 , 被直线 所截, 与 的位置关系是().同位角 .内错角 .同旁内角 .对顶角【考点】同位角、内错角、同旁内角;对顶角、邻补角.【分析】根据内错角的定义求解.【解答】解:直线 , 被直线 所截, 与 是内错角.故选 .【点评】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线..下列算式中,结果等于 的是(). . . .【考点】同底数幂的乘法;合并同类项.【专题】计算题;推理填空题.【分析】 : ,据此判断即可.:根据合并同类项的方法,可得 .:根据同底数幂的乘法法则,可得 .:根据同底数幂的乘法法则,可得 .【解答】解: ,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果不等于 ;,选项 的结果等于 .故选: .【点评】( )此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确: 底数必须相同; 按照运算性质,只有相乘时才是底数不变,指数相加.( )此题还考查了合并同类项的方法,要熟练掌握..不等式组的解集是(). >﹣ . > .﹣ < < . <【考点】解一元一次不等式组.【专题】方程与不等式.【分析】根据解不等式组的方法可以求得原不等式组的解集.【解答】解:解不等式 ,得>﹣ ,解不等式 ,得> ,由 可得, > ,故原不等式组的解集是 > .故选 .【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法. .下列说法中,正确的是().不可能事件发生的概率为.随机事件发生的概率为.概率很小的事件不可能发生.投掷一枚质地均匀的硬币 次,正面朝上的次数一定为 次【考点】概率的意义.【分析】根据概率的意义和必然发生的事件的概率 ( ) 、不可能发生事件的概率 ( ) 对 、 、 进行判定;根据频率与概率的区别对 进行判定.【解答】解: 、不可能事件发生的概率为 ,所以 选项正确;、随机事件发生的概率在 与 之间,所以 选项错误;、概率很小的事件不是不可能发生,而是发生的机会较小,所以 选项错误;、投掷一枚质地均匀的硬币 次,正面朝上的次数可能为 次,所以 选项错误.故选 .【点评】本题考查了概率的意义:一般地,在大量重复实验中,如果事件 发生的频率 会稳定在某个常数 附近,那么这个常数 就叫做事件 的概率,记为 ( ) ;概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现.必然发生的事件的概率 ( ) ;不可能发生事件的概率 ( ) .. , 是数轴上两点,线段 上的点表示的数中,有互为相反数的是(). . . .【考点】相反数;数轴.【专题】数形结合.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段 上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点 的左右两侧,从四个答案观察发现,只有 选项的线段 符合,其余答案的线段都在原点 的同一侧,所以可以得出答案为 .故选:【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段 上的点与原点的距离..平面直角坐标系中,已知 的三个顶点坐标分别是 ( , ), ( ,﹣ ), (﹣ ,﹣ ),则点 的坐标是().(﹣ , ) .(﹣ ,﹣ ) .(﹣ ,﹣ ) .(﹣ , )【考点】平行四边形的性质;坐标与图形性质.【分析】由点的坐标特征得出点 和点 关于原点对称,由平行四边形的性质得出 和 关于原点对称,即可得出点 的坐标.【解答】解: ( , ), (﹣ ,﹣ ),点 和点 关于原点对称,四边形 是平行四边形,和 关于原点对称,( ,﹣ ),点 的坐标是(﹣ , ).故选: .【点评】本题考查了平行四边形的性质、关于原点对称的点的坐标特征;熟练掌握平行四边形的性质,得出 和 关于原点对称是解决问题的关键..如图,以圆 为圆心,半径为 的弧交坐标轴于 , 两点, 是上一点(不与 , 重合),连接 ,设 ,则点 的坐标是().( , ) .( , ) .( , ) .( , )【考点】解直角三角形;坐标与图形性质.【专题】计算题;三角形.【分析】过 作 ,交 于点 ,在直角三角形 中,利用锐角三角函数定义表示出 与 ,即可确定出 的坐标.【解答】解:过 作 ,交 于点 ,在 中, , ,, ,即 , ,则 的坐标为( , ),故选 .【点评】此题考查了解直角三角形,以及坐标与图形性质,熟练掌握锐角三角函数定义是解本题的关键..下表是某校合唱团成员的年龄分布年龄 岁频数﹣ 对于不同的 ,下列关于年龄的统计量不会发生改变的是().平均数、中位数 .众数、中位数.平均数、方差 .中位数、方差【考点】统计量的选择;频数(率)分布表.【分析】由频数分布表可知后两组的频数和为 ,即可得知总人数,结合前两组的频数知出现次数最多的数据及第 、 个数据的平均数,可得答案.【解答】解:由表可知,年龄为 岁与年龄为 岁的频数和为 ﹣ ,则总人数为: ,故该组数据的众数为 岁,中位数为: 岁,即对于不同的 ,关于年龄的统计量不会发生改变的是众数和中位数,故选: .【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键..已知点 (﹣ , ), ( , ), ( , )在同一个函数图象上,这个函数图象可以是(). . . .【考点】坐标确定位置;函数的图象.【分析】由点 (﹣ , ), ( , ), ( , )在同一个函数图象上,可得 与 关于 轴对称,当 > 时, 随 的增大而增大,继而求得答案.【解答】解: 点 (﹣ , ), ( , ),与 关于 轴对称,故 , 错误;( , ), ( , ),当 > 时, 随 的增大而增大,故 正确, 错误.故选 .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键..下列选项中,能使关于 的一元二次方程 ﹣ 一定有实数根的是() . > . . > .【考点】根的判别式.【分析】根据方程有实数根可得 ,且 ,对每个选项逐一判断即可.【解答】解: 一元二次方程有实数根,(﹣ ) ﹣ ﹣ ,且 ,,且 ;、若 > ,当 、 时, > ,此选项错误;、 不符合一元二次方程的定义,此选项错误;、若 > ,当 、 时, > ,此选项错误;、若 ,则 ,此选项正确;故选: .【点评】本题主要考查根的判别式,一元二次方程根的情况与判别式 的关系:( ) > 方程有两个不相等的实数根;( ) 方程有两个相等的实数根;( ) < 方程没有实数根.二、填空题(共 小题,每小题 分,满分 分).分解因式: ﹣ ( )( ﹣ ).【考点】因式分解 运用公式法.【专题】因式分解.【分析】直接利用平方差公式进行因式分解即可.【解答】解: ﹣ ( )( ﹣ ).故答案为:( )( ﹣ ).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反..若二次根式在实数范围内有意义,则 的取值范围是 ﹣ .【考点】二次根式有意义的条件.【专题】常规题型.【分析】根据二次根式的性质可求出 的取值范围.【解答】解:若二次根式在实数范围内有意义,则: ,解得 ﹣ .故答案为: ﹣ .【点评】主要考查了二次根式的意义和性质:概念:式子( )叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义..已知四个点的坐标分别是(﹣ , ),( , ),(,),(﹣ ,﹣),从中随机选取一个点,在反比例函数 图象上的概率是.【考点】概率公式;反比例函数图象上点的坐标特征.【分析】先判断四个点的坐标是否在反比例函数 图象上,再让在反比例函数 图象上点的个数除以点的总数即为在反比例函数 图象上的概率,依此即可求解.【解答】解: ﹣ ﹣ ,,,(﹣ ) (﹣) ,个点的坐标在反比例函数 图象上,在反比例函数 图象上的概率是 .故答案为:.【点评】考查了概率公式,用到的知识点为:概率 所求情况数与总情况数之比..如图所示的两段弧中,位于上方的弧半径为上,下方的弧半径为下,则上下.(填< < )【考点】弧长的计算.【分析】利用垂径定理,分别作出两段弧所在圆的圆心,然后比较两个圆的半径即可.【解答】解:如图,上下.故答案为 .【点评】本题考查了弧长公式:圆周长公式: ( )弧长公式: (弧长为 ,圆心角度数为 ,圆的半径为 );正确区分弧、弧的度数、弧长三个概念,度数相等的弧,弧长不一定相等,弧长相等的弧不一定是等弧,只有在同圆或等圆中,才有等弧的概念,才是三者的统一..若 , ,则 的值是 .【考点】代数式求值.【分析】可将该多项式分解为 ( ),又因为 ( ) ﹣ ,然后将 与 的值代入即可.【解答】解:( )( ) ﹣( ﹣ ).故答案为: .【点评】本题考查了因式分解和代数式变形.解决本类问题的一般方法:若已知 与 的值,则 ( ) ﹣ ,再将 与 的值代入即可..如图, 个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角( )为 , , , 都在格点上,则 的值是.【考点】菱形的性质;解直角三角形.【专题】网格型.【分析】如图,连接 、 ,先证明 ,根据 ,求出 、 即可解决问题.【解答】解:如图,连接 , ,设菱形的边长为 ,由题意得 , , ,,.故答案为.【点评】本题考查菱形的性质,三角函数、特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题(共 小题,满分 分).计算: ﹣ ﹣ (﹣ ) .【考点】有理数的混合运算;立方根;零指数幂.【分析】直接利用绝对值的性质以及立方根的定义和零指数幂的性质化简求出答案.【解答】解: ﹣ ﹣ (﹣ )﹣.【点评】此题主要考查了有理数的混合运算,正确化简各数是解题关键..化简: ﹣ ﹣.【考点】分式的加减法.【分析】先约分,再去括号,最后合并同类项即可.【解答】解:原式 ﹣ ﹣( )﹣ ﹣ ﹣﹣ .【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键..一个平分角的仪器如图所示,其中 , .求证: .【考点】全等三角形的性质.【分析】在 和 中,由三组对边分别相等可通过全等三角形的判定定理( )证得 ,再由全等三角形的性质即可得出结论.【解答】证明:在 和 中,有,( ),.【点评】本题考查了全等三角形的判定及性质,解题的关键是证出 .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等是关键..列方程(组)解应用题:某班去看演出,甲种票每张 元,乙种票每张 元.如果 名学生购票恰好用去 元,甲乙两种票各买了多少张?【考点】二元一次方程组的应用.【分析】设甲种票买了 张,乙种票买了 张.然后根据购票总张数为 张,总费用为 元列方程求解即可.【解答】解:设甲种票买了 张,乙种票买了 张.根据题意得:.解得:.答:甲种票买了 张,乙种票买了 张.【点评】本题主要考查的是二元一次方程组的应用,根据题意列出方程组是解题的关键..福州市 ﹣ 年常住人口数统计如图所示.根据图中提供的信息,回答下列问题:( )福州市常住人口数, 年比 年增加了 万人;( )与上一年相比,福州市常住人口数增加最多的年份是 ;( )预测 年福州市常住人口数大约为多少万人?请用所学的统计知识说明理由.【考点】折线统计图.【分析】( )将 年人数减去 年人数即可;( )计算出每年与上一年相比,增加的百分率即可得知;( )可从每年人口增加的数量加以预测.【解答】解:( )福州市常住人口数, 年比 年增加了 ﹣ (万人);( )由图可知 年增加: ,年增加: ,年增加: ,年增加: ,故与上一年相比,福州市常住人口数增加最多的年份是 年;( )预测 年福州市常住人口数大约为 万人,理由:从统计图可知,福州市常住人口每年增加的数量的众数是 万人,由此可以预测 年福州市常住人口数大约为 万人.故答案为:( ) ;( ) .【点评】本题主要考查条形统计图,从条形图中读出每年人口的数量及增加的幅度是解题的关键..如图,正方形 内接于 , 为中点,连接 , .( )求证: ;( )当 的半径为 时,求的长.【考点】圆内接四边形的性质;正方形的性质.【分析】( )根据圆心距、弦、弧之间的关系定理解答即可;( )根据弧长公式计算.【解答】( )证明: 四边形 是正方形,,,为中点,,,即 ,;( )解: 的半径为 ,的周长为 ,的长 .【点评】本题考查的是正方形的性质、弧长的计算、圆心距、弦、弧之间的关系,掌握弧长的计算公式、圆心距、弦、弧之间的关系定理是解题的关键..如图,在 中, , ,在 边上截取 ,连接 .( )通过计算,判断 与 的大小关系;( )求 的度数.【考点】相似三角形的判定.【分析】( )先求得 、 的长,然后再计算出 与 的值,从而可得到 与 的关系;( )由( )可得到 ,然后依据对应边成比例且夹角相等的两三角形相似证明 ,依据相似三角形的性质可知 , ,然后结合等腰三角形的性质和三角形的内角和定理可求得 的度数.【解答】解:( ) , ,, ﹣ ., ..( ) , ,,即.又 ,., .., .设 ,则 , , .,.解得: ..【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得 是解题的关键..如图,矩形 中, , , 是边 上一点,将 沿直线 对折,得到 .( )当 平分 时,求 的长;( )连接 ,当 时,求 的面积;( )当射线 交线段 于点 时,求 的最大值.【考点】矩形的性质;角平分线的性质.【分析】( )由折叠性质得 ,证出 ,由三角函数得出即可;( )延长 交 延长线于点 ,由矩形的性质得出 ,由折叠性质得出 , , ,得出 ,证出 ,设 ,则 ,证出 ,在 中,由勾股定理得出方程,解方程求出 , ,即可求出 的面积;( )过点 作 于点 ,证明 ,得出对应边成比例 ,得出当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,由折叠性质得: ,由 证明 ,得出 ,由勾股定理求出 ,得出 ,即可得出结果.【解答】解:( )由折叠性质得: ,,平分 , ,,四边形 是矩形,,,;( )延长 交 延长线于点 ,如图 所示:四边形 是矩形,,,由折叠性质得: ,, , ,,,设 ,则 ,,,在 中,由勾股定理得: , ( ) ,解得: ,, ,, ,;( )过点 作 于点 ,如图 所示: 四边形 是矩形,,,,,,, ,当点 、 重合(即 )时, 最大, 最小, 最小, 最大,此时点 、 重合, 、 、 三点共线,如图 所示:由折叠性质得: ,,,在 和 中,,( ),,由勾股定理得: ,,的最大值 ﹣ ﹣.【点评】本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质,证明三角形相似和三角形全等是解决问题的关键..已知,抛物线 ( )经过原点,顶点为 ( , )( ).( )当 , 时,求抛物线的解析式;( )若抛物线 ( )也经过 点,求 与 之间的关系式;( )当点 在抛物线 ﹣ 上,且﹣ < 时,求 的取值范围.【考点】二次函数综合题.【分析】( )用顶点式解决这个问题,设抛物线为 ( ﹣ ) ,原点代入即可.( )设抛物线为 ,则 ﹣, ﹣ 代入抛物线解析式,求出 (用 、 表示),又抛物线 也经过 ( , ),求出 ,列出方程即可解决.( )根据条件列出关于 的不等式即可解决问题.【解答】解:( ) 顶点为 ( , ),设抛物线为 ( ﹣ ) ,抛物线经过原点,( ﹣ ) ,﹣ ,抛物线解析式为 ﹣ .( ) 抛物线经过原点,设抛物线为 ,﹣,﹣ ,﹣ ,顶点 ( , ),﹣ ,抛物线 也经过 ( , ),,﹣ ,﹣ ,( ) 点 在抛物线 ﹣ 上,﹣ ,又 ﹣ ,,﹣ < ,﹣ < ,当 > 时,即 >﹣ 时,,解得 > ,当 < 时,即 <﹣ 时,解得 ﹣,综上所述, 的取值范围 > 或 ﹣.【点评】本题考查二次函数综合题、不等式等知识,解题的关键是学会用参数解决问题,题目比较难参数比较多,第三个问题解不等式要注意讨论,属于中考压轴题.。

2016年福州市初中毕业班质量检测数学答案和评分标准

2016年福州市初中毕业班质量检测数学答案和评分标准

D
N
E
C
3
27.(13 分)
解:(1)∵抛物线 y a ( x 2)2 1 过点 C(4,3) ∴ 3 a (4 2) 2 1 ,解得 a 1
2
……1 分
∴抛物线的解析式是 y ( x 2) 1 ……2 分 顶点 M 的坐标为(2, 1 ) ……3 分 y (2)如图 1,连接 OM ……4 分 则 OC 2 32 42 25 , OM 2 22 12 5 CM 2 22 42 20 ∴ CM 2 OM 2 OC 2 ……5 分 ∴∠OMC=90° ……6 分 O ∵ OM 5 ,CM 2 5
∴从中随机抽取一个点,在直线 y x 6 下方的概率为 1 ……12 分 2
25.(12 分) 解:(1)∵ AB AC , A 30o o ∴ ABC ACB 180 A 75o ……2 分 2 ∵ BC BD ∴ BDC BCD 75o ……4 分 ∴ DBC 30o ∴ ABD ABC DBC 45o ……6 分 (2)过点 D 作 DF AB ,垂足为 F ……7 分
……7 分
21.(8 分) 证明:∵BE⊥CE,AD⊥CE ∴∠ADC∠CEB 90o ……1 分 ∴∠1∠2 90o ……3 分 B 又∵∠ACB 90o ∴∠1∠3 90o ……5 分 ∴∠2∠3 ……6 分 D 在△ACD 和△CBE 中 3 1 ADC CEB C 2 3 AC CB ∴△ACD≌△CBE( AAS )……8 分 22.(8 分)
E
2
A
解:设到花果岭的人数有 x 人,到云水洞的人数有 y 人.由题意,得……1 分 x y 200 ……5 分 x 2 y 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年福州市九年级数学4月质检试题(含答案)
2016年福州市初中毕业班质量检测数学试卷(考试时间:120分钟,满分:150分)注意事项: 1.全卷三大题,27小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分.一、选择题(共12小题,每题3分,满分36分;每小题只有一个正确选项,请在答题卡的相应位置填涂) 1.下列算式中,与-1+2相等的是 A.2-1 B.-1-2 C.-(2-1) D.-(1+2) 2.已知圆周率=3.1415926…,将精确到干分位的结果是 A. 3.1 B.3.14 C.3.141 D.3.142 3.下列图形中,么l与么2是同位角的是 A B 4.下列运算结果是a6的式子是 A. a2.a3 B.(-a)6 C.(a3)3 D.a12-a6 5.方程(x - 2)2 +4 =0的解是 A. x1=x2=0 B.x1=2,x2=-2 C.x1=0,x2 =4 D.没有实数根 6.将∠AOB绕点O顺时针旋转15°,得到∠COD,若∠COD= 45°,则∠AOB的度数是A. 15° B.30° C.45° D.60° 7.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是 A.3 B.9 C.12 D.18 8.函数y= 的图象是 A B C D 9.如图,△ABC中,∠A =50°,O是BC的中点,以O为圆心,OB长为半径画弧,分别交AB,AC 于点D,E连接OD,OE,测量∠DOE的度数是 A.50° B.60° C.70° D.80° 10.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:
如果去掉一个最高分和一个最低分,那么表格中数据一定发生变化的是 A.平均数 B.中位数 C.众数 D.方差 11.无论m为何值,点
A(m,5 -2m)不可能在 A.第一象限 B.第二象限 C.第三象限 D.第四象限 12.如图,Rt△ABC中,∠C =90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是 A.3 B.4 C.2 D.二、填空题(共6小题,每题4分,满分24分) 13.分解因式:x2-1= :. 14.若二次根式有意义,则x的取值范围是___ _. 15. 2016年2月上旬福州地区空气质量指数(AQI)如下表所示,空气质量指数不大于100表示空气质量优良, 2016年2月上旬福州地区空气质量指数(AQI) 日期 1 2 3 4 5 6 7 8 9 10 ug/m3 26 34 43 41 34 48 78 1 15 59 45 如果小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是
优良的概率是____. 16.已知平行四边形ABCD中,点A,B,C的坐标分别是A(-1,1), B(1,-2),C(4,2),则点D的坐标是____. 17.如图,△ABC的三个顶点分别在边长为1的正方形网格的格点上,则tan( + ) tan +tan .(填“>”“=”“<”) 18.如图,点A在二次函数y=ax2(a>O)第一象限的图象上,AB⊥x轴,AC⊥y轴,垂足分别为B,C,连接BC.交函数图象于点D,则的值为.三、解答题(共9小题,满分90分) 19.(7分)计算:-22- +(-1)0. 20.(7分)化简: 21.(8分)如图,∠A CB= 900,AC =BC,AD上CE,BE⊥CE,垂足分别为D,E. 求证:△A CD≌△CBE.
22.(8分)顺风旅行社组织200人到花果岭和云水洞旅游,到花果岭的人数是到云水洞的人数的2倍少1人,到两地旅游的人数各是多少? 23. (10分)2016年3月,某中学以“每天阅读l小时”为主题,对学生最喜爱的书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2 提供的信息,解答下列问题:
图1 图2 (1)请把折线统计图(图1)补充完整; (2)如果这所中学共有学生900名,那么请你估算最喜爱科普类书籍的学生人数.24.(12分)已知点A(m,n)在y= 的图象上,且m(n-1)≥0. (1)求m的取值范围; (2)当m,n为正整数时,写出所有满足题意的A点坐标,并从中随机抽取一个点,求该点在直线y= -x+6下方的概率.
25.(12分)如图,△ABC中,∠A =30°,AB=AC,以B为圆心,BC 长为半径画弧,交AC于点D,交AB于点E (1)求∠ABD的度数; (2)当BC= 时,求线段AE,AD与围成阴影部分的面积.
26.(13分)如图,矩形ABCD中,AB=3,BC =2,点M在BC上,连接AM,作∠AMN = ∠AMB,点N在直线AD上,MN交CD于点E (1)求证:△AMN是等腰三角形; (2)求BM •AN的最大值; (3)当M为BC 中点时,求ME的长.
27. (13分)如图,抛物线y=a(x-2)2 -1过点C(4,3),交x轴于A,B两点(点A在点B的左侧). (1)求抛物线的解析式,并写出顶点M 的坐标; (2)连接OC, CM,求tan ∠OCM的值; (3)若点P在抛物线
的对称轴上,连接BP,CP,BM,当∠CPB= ∠PMB时,求点P的坐标.。

相关文档
最新文档