人教版八年级上册数学多边形练习及答案

合集下载

人教版数学八年级上册课课练:11.3.1多边形(Word版含答案)

人教版数学八年级上册课课练:11.3.1多边形(Word版含答案)

[多边形]一、选择题1.下列图中不是凸多边形的是()2.从十一边形的一个顶点出发可以引出的对角线的条数为()A.5B.6C.8D.113.若从一个多边形的一个顶点出发,最多可以作2条对角线,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4.一个正六边形共有n条对角线,则n的值为()A.6B.7C.8D.95.若一个多边形的一个顶点处的所有对角线把多边形分成4个三角形,则这个多边形的边数为()A.3B.4C.5D.66.若多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8B.9C.10D.117.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形二、填空题8.如图图,王明想从一块边长为60 cm的等边三角形纸片上剪下一个最大的正六边形,写上“祝福祖国”的字样,则此正六边形的边长是cm.9.如图图,若A表示四边形,B表示正多边形,则阴影部分表示.三、解答题10.如图图,△ABC是正三角形,剪去三个边长均不相等的小正三角形(即△ADN,△BEF,△CGM)后,得到一个六边形DEFGMN.(1)六边形DEFGMN的每个内角是多少度?为什么?(2)六边形DEFGMN是正六边形吗?为什么?[数学建模]今年暑假,实验中学安排全校师生假期进行社会实践活动,将每班分成三个组,每组派一名教师作为指导老师.为了加强同学间的协作,学校要求各班每两人之间(包括指导教师)每周至少通一次电话,现知该校八年级(5)班共有50名学生,那么该班师生之间每周至少要通几次电话?为了解决这一问题,小明把该班师生人数n与每周至少通电话次数S之间的关系用下列模型表示,如图图.根据小明设计的模型,可知该班师生之间每周至少要通电话的次数为.答案1.A2.C从十一边形的一个顶点出发,可以向与这个顶点不相邻的8个顶点引对角线,即能引出8条对角线.3.B设这个多边形的边数是n.由题意,得n-3=2,解得n=5.=9.4.D六边形的对角线的条数为6×(6-3)25.D设这个多边形的边数为n,则n-2=4,解得n=6.6.C设多边形有n条边,则n-2=11,解得n=13.故这个多边形是十三边形.故经过这一点的对角线的条数是13-3=10.7.A剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,则边数不变;经过两条邻边,边数增加一条.所以一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.8.209.正方形10.解:(1)六边形DEFGMN的每个内角都是120°.理由:∵△ADN,△BEF,△CGM都是正三角形,∴它们的每个内角都是60°,即六边形DEFGMN的每个外角都是60°.∴六边形DEFGMN的每个内角都是120°.(2)六边形DEFGMN不是正六边形.理由:∵三个小正三角形(即△ADN,△BEF,△CGM)的边长均不相等,∴DN,EF,GM均不相等.∴六边形DEFGMN不是正六边形.[素养提升]1378将八年级(5)班师生共53人看作五十三边形的53个顶点,由多边形对角线条数=1325(条),公式可得对角线为53×(53-3)21325+53=1378(次).因此该班师生之间每周至少要通1378次电话.[点评] 本题的数学模型实质上是n个人之间彼此握一次手,求握手总次数的问题,其次数为n+12(n-3)·n=12n (n-1).。

人教版数学八年级上册第一单元《多边形》同步练习2(含参考答案与解析)

人教版数学八年级上册第一单元《多边形》同步练习2(含参考答案与解析)

人教版数学八年级上册第一单元《多边形》同步练习(含参考答案)一.选择题(共5小题)1.已知一个多边形的外角都等于40°,那么这个多边形的边数为()A.6 B.7 C.8 D.92.下列哪个度数不可能是一个多边形的内角和()A.360°B.600°C.900°D.1800°3.多边形的边数由3增加到2021时,其外角和的度数()A.不能确定B.减少C.增加D.不变4.已知正多边形的一个内角是140°,则这个正多边形的边数是()A.九边形B.八边形C.七边形D.六边形5.一个多边形的外角和比内角和的多60°,则这个多边形的边数是()A.五B.六C.七D.八二.填空题(共5小题)6.第五套人民币中的5角硬币色泽为镍白色,正,反面的内周边缘均为正十一边形.则其内角和为°.7.若一个四边形的四个内角的度数比为1:3:4:2,则这四个内角的度数分别为.8.一个多边形的内角和与外角和的度数总和为1260°,多边形的边数是.9.已知一个多边形的每个外角都等于相邻内角的,则该多边形的边数为.10.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为.三.解答题(共2小题)11.12.已知一个多边形的边数为n.(1)若n=5,求这个多边形的内角和.(2)若这个多边形的内角和的比一个四边形的内角和多90°,求n的值.参考答案与解析1.【分析】根据多边形的外角和等于360°可计算求解.【解答】解:由题意得360°÷40°=9,∴四边形的边数为9.故选:D.2.【分析】根据n边形的内角和为(n﹣2)×180°,求出对应的n,即可得出选项.【解答】解:因为n边形的内角和为(n﹣2)×180°,A、(n﹣2)×180°=360°,n=4,是四边形的内角和,故本选项不符合题意;B、(n﹣2)×180°=600°,n=,边数不能为分数,故本选项符合题意;C、(n﹣2)×180°=900°,n=7,是七边形的内角和,故本选项不符合题意;D、(n﹣2)×180°=1800°,n=12,是12边形的内角和,故本选项不符合题意;故选:B.3.【分析】根据多边形的外角和定理即可求解判断.【解答】解:∵任何多边形的外角和都是360°,∴多边形的边数由3增加到2021时,其外角和的度数不变,故选:D.4.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,360°÷40°=9.即这个正多边形是九边形.故选:A.5.【分析】设这个多边形的边数为n,由n边形的内角和是(n﹣2)•180°,多边形的外角和是360°列出方程,解方程求出n的值即可.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°+60°=360°,解得n=5,故选:A.二.填空题(共5小题)6.【分析】把多边形的边数代入n边形的内角和是(n﹣2)•180°,就得到多边形的内角和.【解答】解:十一边形的内角和等于:(11﹣2)•180°=1620°.故答案为:1620.7.【分析】设四边形4个内角的度数分别是x,3x,4x,2x,根据四边形的内角和定理列方程求解.【解答】解:设四边形4个内角的度数分别是x,3x,4x,2x.∴x+3x+4x+2x=360°,解得x=36°.∴这个四边形四个内角的度数分别为36°,108°,144°,72°.故答案为:36°,108°,144°,72°.8.【分析】设多边形的边数为n,根据多边形内角和公式及外角和定理可列出方程,解方程即可.【解答】解:设多边形的边数是n,由题意得,(n﹣2)×180°+360°=1260°,解得:n=7.故答案为:7.9.【分析】设每个内角为x,根据题意列出关于x的方程,求出方程的解得到x的值,从而得到外角度数,即可确定出边数.【解答】解:设每个内角为x,根据题意得:x+x=180°,解得:x=120°,所以每个外角度数为60°,则这个多边形的边数为360°÷60°=6.故答案为:6.10.【分析】利用三角形外角的性质及三角形的内角和定理即可计算.【解答】解:如图,∠AKH=∠A+∠B=∠HGK+∠KHG,∠CGK=∠C+∠D=∠GKH+∠KHG,∠FHB=∠E+∠F=∠HKG+∠KGH,∴∠A+∠B+∠C+∠D+∠E+∠F=2(∠HGK+∠KHG+∠GKH)=2×180°=360°.故答案为:360°.三.解答题(共2小题)11.12.【分析】(1)把n=5,代入多边形内角和公式解答即可;(2)根据多边形内角和公式解答即可.【解答】解:(1)当n=5时,(5﹣2)×180°=540°.∴这个多边形的内角和为540°.(2)由题意,得,解得n=12.∴n的值为12.。

人教版八年级数学上册《多边形》同步训练习题

人教版八年级数学上册《多边形》同步训练习题

人教版八年级数学上册《多边形》同步训练习题11.3.1《多边形》同步训练习题一.选择题〖共7小题〗1.〖2015秋•克什克腾旗校级月考〗下列图中不是凸多边形的是〖〗A.B.C.D.2.〖2015秋•克什克腾旗校级月考〗下列图形中,是正多边形的是〖〗A.直角三角形 B.等腰三角形 C.长方形D.正方形3.n边形的内角的和等于〖〗A.〖n﹣1〗×180°B.〖n﹣2〗×180°C.〖n﹣3〗×180°D.〖n﹣4〗×180°4.〖2015秋•三亚校级月考〗一个四边形截去一个内角后变为〖〗A.三角形B.四边形C.五边形D.以上均有可能5.〖2014秋•朝阳区期末〗在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到〖〗A.4个三角形B.5个三角形C.6个三角形D.7个三角形6.〖2012秋•渝中区校级期末〗从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成〖〗个三角形.A.6 B.5 C.8 D.77.从多边形一条边上的一点〖不是顶点〗出发,连接各个顶点得到2003个三角形,则这个多边形的边数为〖〗A.2001 B.2005 C.2004 D.2006二.填空题〖共7小题〗8.〖2014春•邵阳期末〗能伸缩的校门,它利用了四边形的一个性质是.9.〖2013秋•景泰县校级月考〗在平面内,,的多边形叫正多边形.10.多边形相邻两边组成的角叫做它的;多边形的边与它的邻边的延长线组成的角叫做多边形的;连接多边形不相邻的两个顶点的线段叫做多边形的.11.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是.12.若一个六边形的各条边都相等,当边长为3cm时,它的周长为cm.13.如图所示,将多边形分割成三角形﹨图〖1〗中可分割出2个三角形;图〖2〗中可分割出3个三角形;图〖3〗中可分割出4个三角形;由此你能猜测出,n边形可以分割出个三角形.14.〖2011•肇庆〗如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三.解答题〖共4小题〗15.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.16.〖2012春•西城区校级期中〗把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:〖1〗原来的多边形是几边形?〖2〗把原来的多边形分割成了多少个多边形?17.已知线段AC=8,BD=6.〖1〗已知线段AC垂直于线段BD.设图1,图2和图3中的四边形ABCD的面积分别为S1﹨S2和S3,则S1= ,S2= ,S3= ;〖2〗如图4,对于线段AC与线段BD垂直相交〖垂足O不与点A,C,B,D重合〗的任意情形,请你就四边形ABCD面积的大小提出猜想,并证明你的猜想;〖3〗当线段BD与AC〖或CA〗的延长线垂直相交时,猜想顺次连接点A,B,C,D,A所围成的封闭图形的面积是多少?18.已知正n边形的周长为60,边长为a〖1〗当n=3时,请直接写出a的值;〖2〗把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.人教版八年级数学上册11.3.1《多边形》同步训练习题参考答案一.选择题〖共7小题〗1.〖2015秋•克什克腾旗校级月考〗下列图中不是凸多边形的是〖〗A.B.C.D.选A2.〖2015秋•克什克腾旗校级月考〗下列图形中,是正多边形的是〖〗A.直角三角形 B.等腰三角形 C.长方形D.正方形【考点】多边形.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正方形四个角相等,四条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.3.n边形的内角的和等于〖〗A.〖n﹣1〗×180°B.〖n﹣2〗×180°C.〖n﹣3〗×180°D.〖n﹣4〗×180°【考点】多边形;多边形内角与外角.【分析】从四边形的一个顶点出发可以画1条对角线,把四边形分成两个三角形,所以四边形内角和为:〖4﹣2〗×180°,从五边形的一个顶点出发可以画2条对角线,把五边形分成三个三角形,所以四边形内角和为:〖5﹣2〗×180°,从n边形的一个顶点出发可以画〖n﹣3〗条对角线,把四边形分成〖n﹣2〗个三角形,所以n边形内角和为:〖n﹣2〗×180°.【解答】解:因为三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,∴n边形的内角的和公式:〖n﹣2〗×180°,故选:B.【点评】此题主要考查了多边形内角和公式.正确的记忆多边形内角和公式是解决问题的关键.4.〖2015秋•三亚校级月考〗一个四边形截去一个内角后变为〖〗A.三角形B.四边形C.五边形D.以上均有可能【考点】多边形.【分析】一个四边形截去一个角是指可以截去两条边,而新增一条边,得到三角形;也可以截去一条边,而新增一条边,得到四边形;也可以直接新增一条边,变为五边形.可动手画一画,具体操作一下.【解答】解:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.故选:D.【点评】本题考查了多边形,解决此类问题的关键是动手画一画准确性高,注意不要漏掉情况.5.〖2014秋•朝阳区期末〗在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到〖〗A.4个三角形B.5个三角形C.6个三角形D.7个三角形【考点】多边形.【分析】根据六边形有六个顶点,连接六个顶点,可得六个三角形.【解答】解:在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到六个三角形,故选:C.【点评】本题考查了多边形,利用了图形的分割:六个顶点可分割成六个三角形.6.〖2012秋•渝中区校级期末〗从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成〖〗个三角形.A.6 B.5 C.8 D.7【考点】多边形.【专题】规律型.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成〖n﹣2〗个三角形.【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成〖n﹣2〗个三角形.7.〖2010秋•毕节市校级期中〗从多边形一条边上的一点〖不是顶点〗出发,连接各个顶点得到2003个三角形,则这个多边形的边数为〖〗A.2001 B.2005 C.2004 D.2006【考点】多边形.【分析】可根据多边形的一点〖不是顶点〗出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.【解答】解:多边形一条边上的一点〖不是顶点〗出发,连接各个顶点得到2003个三角形,则这个多边形的边数为2003+1=2004.故选C.【点评】多边形一条边上的一点〖不是顶点〗出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.二.填空题〖共7小题〗8.〖2014春•邵阳期末〗能伸缩的校门,它利用了四边形的一个性质是四边形的不稳定性.【考点】多边形.【分析】由四边形的特性可知,四边形具有不稳定性,所以容易变形,伸缩门的运用了四边形易变形的特性.【解答】解:伸缩门做成四边形的形状,是利用四边形的易变形的特性.故答案为:四边形的不稳定性.【点评】此题主要考查了四边形的特性是容易变形.9.〖2013秋•景泰县校级月考〗在平面内,各边都相等,各内角也相等的多边形叫正多边形.【考点】多边形.【分析】利用正多边形的定义直接填空得出即可.【解答】解:如果多边形的各边都相等,各内角也相等,那么就称它为正多边形.故答案为:各边都相等,各内角也相等.【点评】此题主要考查了掌握正多边形概念.如果多边形的各边都相等,各内角也相等,那么就称它为正多边形.10.多边形相邻两边组成的角叫做它的内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角;连接多边形不相邻的两个顶点的线段叫做多边形的对角线.【考点】多边形.【分析】根据多边形的定义以及外角的定义和对角线的定义分别分析得出即可.【解答】解:多边形相邻两边组成的角叫做它的内角;多边形的边与它的邻边的延长线组成的角叫做多边形的外角;连接多边形不相邻的两个顶点的线段叫做多边形的对角线.故答案为:内角,外角,对角线.【点评】此题主要考查了多边形有关定义,熟练掌握相关概念是解题关键.11.〖2011春•郯城县期中〗若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是5,6,7 .【考点】多边形.【分析】实际画图,动手操作一下,可知六边形可以是五边形﹨六边形﹨七边形截去一个角后得到.【解答】解:如图可知,原来多边形的边数可能是5,6,7.【点评】此类问题要从多方面考虑,注意不能漏掉其中的任何一种情况.12.若一个六边形的各条边都相等,当边长为3cm时,它的周长为18cm.【考点】多边形.【专题】计算题.【分析】由于六边形的各条边都相等,则六边形的周长=各条边的长×6.【解答】解:六边形的周长为:3×6=18cm.故这个六边形的周长为18cm.故答案为:18.【点评】本题考查了多边形的周长计算,是基础题型,比较简单.13.〖2008秋•高碑店市期中〗如图所示,将多边形分割成三角形﹨图〖1〗中可分割出2个三角形;图〖2〗中可分割出3个三角形;图〖3〗中可分割出4个三角形;由此你能猜测出,n边形可以分割出〖n﹣1〗个三角形.【考点】多边形.【分析】〖1〗三角形分割成了两个三角形;〖2〗四边形分割成了三个三角形;〖3〗以此类推,n边形分割成了〖n﹣1〗个三角形.【解答】解:n边形可以分割出〖n﹣1〗个三角形.【点评】此题注意观察:是连接n边形的其中一边上的点.根据具体数值进行分析找规律.n边形分割成了〖n﹣1〗个三角形.14.〖2011•肇庆〗如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是n2+2n .【考点】多边形.【专题】压轴题;规律型.【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是〖n+1〗〖n+2〗﹣〖n+2〗=n2+2n.【解答】解:第n个图形需要黑色棋子的个数是n2+2n.故答案为:n2+2n.【点评】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.三.解答题〖共4小题〗15.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.【考点】多边形.【专题】作图题.【分析】若让它们的斜边重合,则可以拼出矩形或一组对角是直角的四边形;若让它们的直角边重合,则可以拼出两种不同的平行四边形.【解答】解:四个.如图所示:【点评】能够让它们的边分别重合进行不同的拼图.考查了学生的实践能力.16.〖2012春•西城区校级期中〗把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:〖1〗原来的多边形是几边形?〖2〗把原来的多边形分割成了多少个多边形?【考点】多边形;规律型:图形的变化类.【分析】把多边形沿直线剪开,每增加一个多边形,边数的增加会出现以下三种情况:①当直线经过两个顶点时,增加两条边;②当直线经过一个顶点时,增加三条边;③当直线不经过顶点时,增加四条边.于是,当将原多边形分割成4个小多边形,最多可以增加4×3=12条边,当将原多边形分割成8个小多边形,最少可以增加2×7=14条边.所以分割后的多边形的个数是5,6,7中的一个.设原多边形的边数是n,分割成边数为a1,a2,…,a m的m个多边形,则m 个多边形的总边数为a1+a2+…+a m由题意,可得方程a1+a2+…+a m=n+13,180〖a1﹣2〗+180〖a2﹣2〗+…+180〖a m﹣2〗=1.3×180〖n﹣2〗,再整理可得3n+20m=156,再讨论出二元一次方程的整数解即可.【解答】解:设原多边形的边数是n,分割成边数为a1,a2,…,a m的m 个多边形,则m个多边形的总边数为a1+a2+…+a m,由题意有a1+a2+…+a m=n+13,180〖a1﹣2〗+180〖a2﹣2〗+…+180〖a m﹣2〗=1.3×180〖n﹣2〗,则3n+20m=156,解得:m=6,n=12.故原来的多边形是12边形,把原来的多边形分割成了6个小多边形.【点评】此题主要考查了多边形,关键是掌握多边形内角和公式180°〖n﹣2〗.17.已知线段AC=8,BD=6.〖1〗已知线段AC垂直于线段BD.设图1,图2和图3中的四边形ABCD的面积分别为S1﹨S2和S3,则S1= 24 ,S2= 24 ,S3= 24 ;〖2〗如图4,对于线段AC与线段BD垂直相交〖垂足O不与点A,C,B,D重合〗的任意情形,请你就四边形ABCD面积的大小提出猜想,并证明你的猜想;〖3〗当线段BD与AC〖或CA〗的延长线垂直相交时,猜想顺次连接点A,B,C,D,A所围成的封闭图形的面积是多少?【考点】多边形;三角形的面积.【专题】探究型.【分析】〖1〗根据三角形的面积公式进行计算;〖2〗根据〖1〗中的计算结果,发现三个图形的面积都是24.根据三角形的面积公式进行证明;〖3〗仍然把四边形的面积分割成两个三角形,按三角形的面积公式进行证明.【解答】解:〖1〗S1=24,S2=24,S3=24;〖2〗对于线段AC与线段BD垂直相交〖垂足O不与点A,C,B,D重合〗的任意情形,四边形ABCD的面积为定值24.证明如下:∵AC⊥BD,∴S△BAC=AC•OB,S△DAC=AC•OD,∴S四边形ABCD=AC•OB+AC•OD=AC•〖OB+OD〗=AC•BD=24.〖3〗顺次连接点A,B,C,D,A所围成的封闭图形的面积仍为24.证明:∵AC⊥BD,∴S△ABD=AO•BD,S△BCD=CO•BD,∴S四边形ABCD=S△ABD+S△BCD=AO•BD+CO•BD=BD〖AO+CO〗=BD•AC=24.【点评】此题注意发现:对角线互相垂直的四边形的面积总等于对角线乘积的一半.18.已知正n边形的周长为60,边长为a〖1〗当n=3时,请直接写出a的值;〖2〗把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n+7,周长为67,边长为b.有人分别取n等于3,20,120,再求出相应的a与b,然后断言:“无论n取任何大于2的正整数,a与b一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n的值.【点评】读懂题意,找到相应量的等量关系是解决问题的关键.。

八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版

八年级数学上册《第十一章 多边形及其内角和》练习题及答案-人教版

八年级数学上册《第十一章多边形及其内角和》练习题及答案-人教版一、选择题1.以下列图形:正三角形、正方形、正五边形、正六边形为“基本图案”可以进行密铺的有( )A.1种B.2种C.3种D.4种2.下列说法中,正确的是( )A.直线有两个端点B.射线有两个端点C.有六边相等的多边形叫做正六边形D.有公共端点的两条射线组成的图形叫做角3.从 7 边形的一个顶点作对角线,把这个 7 边形分成三角形的个数是( )A.7 个B.6 个C.5 个D.4 个4.若一个正多边形的一个外角是36°,则这个正多边形的边数是( )A.10B.9C.8D.65.一个多边形的内角和比它的外角和的3倍少1800,这个多边形的边数是 ( )A.5条B.6条C.7条D.8条6.若正多边形的内角和是540°,则该正多边形的一个外角为( )A.45°B.60°C.72°D.90°7.一个正多边形的外角与它相邻的内角之比为1:4,那么这个多边形的边数为( )A.8B.9C.10D.128.如果一个多边形的每个内角都相等,且内角和为1800°,那么这个多边形的一个外角是( )A.30°B.36°C.60°D.72°9.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是( )A.a>bB.a=bC.a<bD.b=a+180°10.把一个多边形纸片沿一条直线截下一个三角形后,变成一个十八边形,则原多边形纸片的边数不可能是( )A.16B.17C.18D.19二、填空题11.形状、大小完全相同的三角形________(填“能”或“不能”)铺满地面;形状、大小完全相同的四边形________(填“能”或“不能”)铺满地面.12.从多边形的一个顶点出发,连接这个点和其他顶点,把多边形分割成16个三角形,则这个多边形的边数是________.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.如果一个多边形的各个外角都是40°,那么这个多边形的内角和是.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=.16.如图,五边形ABCDE是正五边形,若l1平行l2,则∠1-∠2=_______.三、解答题17.求下列图形中x的值:18.我们知道把正三角形、正方形、正六边形合在一起可以铺满平面,若把正十边形、正八边形、正九边形合在一起,能不能铺满地面?为什么?19.一个多边形的内角和是外角和的2倍,则这个多边形是几边形?20.如图,以五边形的每个顶点为圆心,以1为半径画圆,求圆与五边形重合的面积.21.如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数.22.探索问题:(1)如图①,你知道∠BOC=∠B+∠C+∠A的奥秘吗?请你用学过的知识予以证明;(2)如图②﹣1,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣2,则∠A+∠B+∠C+∠D+∠E=°;如图②﹣3,则∠A+∠B+∠C+∠D+∠E=°;(3)如图③,下图是一个六角星,其中∠BOD=70°,则∠A+∠B+∠C+∠D+∠E+∠F=°.参考答案1.C2.D3.C4.A5.C6.C.7.C.8.A.9.B10.A.11.答案为:能,能.12.答案为:18;13.答案为:十三.14.答案为:1260°.15.答案为:36°.16.答案为:72°.17.解:(1)90+70+150+x=360.解得x=50.(2)90+73+82+(180﹣x)=360.解得x=65.(3)x+(x+30)+60+x+(x﹣10)=(5﹣2)×180.解得x=115.18.解:因为正十边形、正八边形、正九边形的一个内角分别为144°,135°,140°它们的和144°+135°+140°>360°所以正十边形、正八边形、正九边形合在一起不能铺满地面19.解:设这个多边形的边数为n∴(n﹣2)•180°=2×360°解得:n=6.故这个多边形是六边形.20.解:(5﹣2)×180°=540°540°÷360°π×12=32π.21.解:连接AF.∵在△AOF和△COD中,∠AOF=∠COD,∴∠C+∠D=∠OAF+∠AFD,∴∠A+∠B+∠C+∠D+∠E+∠F=∠OAF+∠OFA+∠CFE+∠OAB+∠E+∠F=∠BAF+∠AFE+∠E+∠B=360°.22.解:(1)如图①,∠BOC=∠B+∠C+∠A.(2)如图②,∠A+∠B+∠C+∠D+∠E=180°.如图③根据外角的性质,可得∠1=∠A+∠B,∠2=∠C+∠D∵∠1+∠2+∠E=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.如图④,延长EA交CD于点F,EA和BC交于点G根据外角的性质,可得∠GFC=∠D+∠E,∠FGC=∠A+∠B ∵∠GFC+∠FGC+∠C=180°∴x=∠A+∠B+∠C+∠D+∠E=180°.(3)如图⑤,∵∠BOD=70°∴∠A+∠C+∠E=70°∴∠B+∠D+∠F=70°∴∠A+∠B+∠C+∠D+∠E+∠F=70°+70°=140°.。

新人教版数学八年级上册11.3.1多边形同步练习

新人教版数学八年级上册11.3.1多边形同步练习

初中数学试卷新人教版数学八年级上册11.3.1多边形同步练习一、选择题(共15题)1.下列结论正确的是()A.在平面内,有四条线段组成的图形叫做四边形B.由不在同一直线上的四条线段组成的图形叫做四边形C.在平面内,由不在同一直线上的四条线段组成的图形叫做四边形D.在平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形答案:D知识点:四边形解析:解答:四边形的概念与三角形的概念类似,三角形的概念:在平面内,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形;所以,D项的结论更准确.分析:此题考查多边形的定义:在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形;四边形也是多边形的一种.2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形答案:D知识点:正多边形和圆解析:解答:正方形的四条边相同,四个内角也相等,则正方形是正多边形.分析:此题考查正多边形的定义.3.一个四边形截去一个角后内角个数是()A.3B.4C.5D.3、4、5答案:B知识点:多边形的内角与外角解析:解答:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.分析:截去一个角,有多种截法,要注意分类讨论.4.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形答案:A知识点:多边形的对角线解析:解答:设这个多边形是n边形.依题意,得n-3=10,∴n=13.故这个多边形是十三边形.分析:根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n-3)条对角线,由此可得到答案.5.下列说法不正确的是()A.各边都相等的多边形是正多边形B.正多形的各边都相等C.正三角形就是等边三角形D.各内角相等的多边形不一定是正多边形答案:A知识点:正多边形和圆解析:解答:正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形;各边都相等的多边形不一定是正多边形.分析:此题考查正多边形的定义,熟练掌握定义是解题的关键.6.下列属于正多边形的特征的有()(1)各边相等(2)各个内角相等(3)各个外角相等(4)各条对角线都相等(5)从一个顶点引出的对角线将正n边形分成面积相等的(n-2)个三角形A.2个B.3个C.4个D.5个答案:B知识点:正多边形和圆;多边形的对角线解析:分析:本题考查了多边形的对角线,n边形过一个顶点有(n-3)条对角线,它们把n边形分割成了(n-2)个三角形.10.从n边形的一个顶点出发作对角线,可以把这个n边形分成9个三角形,则n等于()A.9 B.10 C.11 D.12答案:C知识点:多边形的对角线解析:解答:n=9+2=11.分析:要熟练掌握正多边形的边数(n)、一个顶点可以作的对角线条数(n-3)和它们能分成的不重叠的三角形数(n-2)有关系.11.要使一个六边形的木架稳定,至少要钉()根木条A.3B.4C.6D.9答案:A知识点:多边形的对角线;三角形的稳定性解析:解答:根据三角形的稳定性,可将六边形木架分成几个三角形,则需要6-3=3根木条.分析:此题考查多边形的对角线及三角形的稳定性.12.一个正十边形的某一边长为8cm,其中一个内角的度数为144º,则这个正十边形的周长和内角和分别为()A.64cm,1440ºB.80cm,1620ºC.80cm,1440ºD.88cm,1620º答案:D知识点:正多边形和圆;多边形的内角与外角解析:解答:根据正多边形的性质可知每条边相等,每个内角都相等,则周长为10×8=80(cm),内角和为144º×10=1440º.分析:此题考查正多边形的性质.13.如图所示,四边形ABCD是凸四边形,AB=2,BC=4,CD=7,则线段AD的取值范围为()A.0<AD<7B.2<AD<7C.0<AD<13D.1<AD<13答案:D知识点:三角形三边关系解析:解答:连接AC.∵AB=2,BC=4,在△ABC中,根据三角形的三边关系,4-2<AC<2+4,即2<AC<6.∴-6<-AC<-2,1<CD-AC<5,9<CD+AC<13,在△ACD中,根据三角形的三边关系,得CD-AC<AD<CD+AC,∴1<AD<13.分析:本题综合考查了三角形的三边关系.连接AC,求出AC的取值范围是解题关键.14.下列图中不是凸多边形的是()答案:A知识点:多边形解析:解答:多边形可分为凸多边形和凹多边形,辨别凸多边形可用两种方法:①画多边形任何一边所在的直线整个多边形都在此直线的同一侧.②每个内角的度数均小于180°,通常所说的多边形指凸多边形.分析:此题考查多边形,关键是掌握凸多边形和凹多边形的区别.15.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的ABCD边数不可能是()A.16 B.17 C.18 D.19答案:A知识点:多边形解析:解答:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.分析:此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.二、填空题(共5题)16.一个四边形它有条边,有个内角,有个外角,从一个顶点出发可以引条对角线,一共可以画条对角线.答案:4 4 4 1 2知识点:四边形;多边形的对角线解析:解答:根据四边形的特点填空即可.分析:根据四边形的特点.17.过m边形的一个顶点有7条对角线,n边形没有对角线,则n-m= .答案:-7知识点:多边形的对角线解析:解答:三角形没有对角线,则n=3;过m边形的一个顶点有7条对角线,则m=7+3=10,则n-m=3-10=-7.分析:此题考查多边形的一个顶点上的对角线数与边数之间的关系;即n边形的一个顶点可作(n-3)条对角线.18.正三角形、正方形、正六边形都是大家熟悉的特殊多边形,它们有很多共同特征,请写出其中的两点:答案:(1)每条边都相等(2)每个内角都相等知识点:正多边形和圆解析:解答:正三角形、正方形、正六边形都属于正多边形,正多边形的特征是每条边都相等,每个内角都相等.分析:本题主要考查正多边形的性质.19.如图,在正六边形ABCDEF内放入2008个点,若这2008个点连同正六边形的六个顶点无三点共线,则该正六边形被这些点分成互不重合的三角形共个.答案:4020知识点:正多边形和圆解析:解答:∵正六边形ABCDEF内放入2008个点,这2008个点连同正六边形的六个顶点无三点共线,∴共有2008+6=2014个点.∵在正六边形内放入1个点时,该正六边形被这个点分成互不重合的三角形共6个;即当n=1时,有6个;然后出现第2个点时,这个点必然存在于开始的6个中的某一个三角形内,然后此点将那个三角形又分成3个三角形,三角形数量便增加2个;又出现第3个点时,同理,必然出现在某个已存在的三角形内,然后又将此三角形1分为3,增加2个…,∴内部的点每增加1个,三角形个数便增加2个.于是我们得到规律:存在n个点时,三角形数有:6+2(n-1)=2n+4(n≥1).由题干知,2008个点的总数为2×2008+4=4020(个).分析:先求出点的个数,进一步求出互不重合的三角形的个数.20.如图所示,①中多边形(边数为12)是由正三角形“扩展”而来的,②中多边形是由正方形“扩展”而来的,…,依此类推,则由正n边形“扩展”而来的多边形的边数为 .答案:n(n+1)知识点:正多边形和圆;探索图形的规律解析:解答:∵①正三边形“扩展”而来的多边形的边数是12=3×4,②正四边形“扩展”而来的多边形的边数是20=4×5,③正五边形“扩展”而来的多边形的边数为30=5×6,④正六边形“扩展”而来的多边形的边数为42=6×7,∴正n边形“扩展”而来的多边形的边数为n(n+1).分析:首先要正确数出这几个图形的边数,从中找到规律,进一步推广.正n边形“扩展”而来的多边形的边数为n(n+1).三、解答题(共5题)21.(1)如图(1),O为四边形ABCD内一点,连接OA、OB、OC、OC可以得几个三角形?它与边数有何关系?(2)如图(2),O在五边形ABCDE的AB上,连接OC、OD、OE,可以得到几个三角形?它与边数有何关系?(3)如图(3),过A作六边形ABCDEF的对角线,可以得到几个三角形?它与边数有何关系?答案:(1)连接OA、OB、OC、OD可以得4个三角形,它与边数相等,(2)连接OC、OD、OE可以得4个三角形,它的个数比边数小1,(3)过点A作六边形ABCDEF的对角线,可以得到4个三角形,它的个数比边数小2.知识点:多边形的对角线;探索图形的规律解析:解答:观察图形,可得到每个图形分得的三角形数,与多边形的边数作比较即可.分析:此题考查了多边形的对角线,关键是观察图形,找出三角形的个数与多边形的边数之间的关系.22.把一个多边形沿着几条直线剪开,分割成若干个多边形.分割后的多边形的边数总和比原多边形的边数多13条,内角和是原多边形内角和的1.3倍.求:(多边形的内角和公式:(n-2)·180º)(1)原来的多边形是几边形?(2)把原来的多边形分割成了多少个多边形?答案:(2)12边形(2)分割成了6个小多边形论n 取任何大于2的正整数,a 与b 一定不相等.”你认为这种说法对吗?若不对,请求出不符合这一说法的n 的值.答案:(1)20 (2)知识点:正多边形和圆解析:解答:(1)a=20;(2)此说法不正确.理由如下:尽管当n=3、20、120时,a >b 或a <b ,但可令a=b ,得6077n n =+, ∴60n+420=67n ,解得n=60,经检验n=60是方程的根.∴当n=60时,a=b ,即不符合这一说法的n 的值为60.分析:(1)根据正多边形的每条边相等,可知边长=周长÷边数;(2)分别表示出a 和b 的代数式,让其相等,看是否有相应的值.25.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.答案:(1)70% (2)1170美元知识点:多边形的对角线;平行线的判定;三角形的面积解析:解答:证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131A A B S V =114A B A S V ,又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123A A A S V =145A A A S V ,-------------------------------------------------------------------奋斗没有终点任何时候都是一个起点-----------------------------------------------------信达 同理123A A A S V =345A A A S V ,∴145A A A S V =345A A A S V ,∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等,∴A 1A 3∥A 4A 5,同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A 1∥A 2A 4.分析:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行;可以再作五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.。

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

人教版初中八年级上册数学《多边形及其内角和》同步练习含答案解析

《11.3 多边形及其内角和》一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.《11.3 多边形及其内角和》参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D 选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角 B.都是锐角C.是一个锐角、一个钝角 D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形 B.十二边形 C.十一边形 D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90° B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【考点】多边形内角与外角.【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a ﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.作者留言:非常感谢!您浏览到此文档。

人教版八年级数学上册多边形及其内角和同步练习题精选(附答案)

人教版八年级数学上册多边形及其内角和同步练习题精选(附答案)

人教版八年级数学上册多边形及其内角和同步练习题精选一、选择题。

1.下列图形中具有稳定性的有()A.正方形B.长方形C.梯形D.直角三角形2.四边形没有稳定性,当四边形形状改变时,发生变化的是()A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和3.九边形的对角线有()A.25条B.31条C.27条D.30条4.下列图中不是凸多边形的是()ABCD5.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形6.如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A. 34cm B.32cmC.30cm D.28cm7.六边形内角和为()A.360°B.540°C.720°D.1080°8.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是()A.180°B.540°C.1900°D.1080°9.下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形10.当一个多边形的边数增加时,其外角和()A.增加B.减少C.不变D.不能确定11.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是()A.6 B.9 C.14 D.2012.已知正n边形的一个内角为135°,则边数n的值是()A.6 B.7 C.8 D.1013.如图,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240°D.300°第13题第16题14.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或715.一个多边形截去一个角(不过顶点)后,形成的多边形的内角和是2520°,那么原多边形的边数是()A.13B.14C.15D.13或1516.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°17.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.618.如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是()A.n B.2n-2C.2n D.2n+2二、填空题。

八年级数学人教版上册同步练习多边形(解析版)

八年级数学人教版上册同步练习多边形(解析版)

11.3.1多边形一、单选题1.为了丰富同学们的课余生活,东辰学校初二年级计划举行一次篮球比赛,从3个分部中选出15支队伍参加比赛,比赛采用单循环制(即每个队与其他各队比赛一场),则这次联赛共有()场比赛.A.30 B.45 C.105 D.210【答案】C【分析】根据多边形对角线的计算方式可得出,m支球队举行比赛,若每个球队与其他队比赛(m-1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛12m(m-1).【详解】15支球队举行单循环比赛,比赛的总场数为:12×15×(15-1)=105.故选:C.【点评】本题考查多边形的对角线的知识,解题的关键是读懂题意,明确单循环赛制的含义,利用多边形的对角线条数的知识进行解答.2.多边形每一个内角都等于135°,则从该多边形一个顶点出发,可引出对角线的条数为()A.3条B.4条C.5条D.8条【答案】C【分析】根据正多边形内角与外角的性质,求出此多边形边数,从而求出这个多边形从一个顶点出发引出的对角线的条数.【详解】∵一个多边形的每一个内角都等于135°,∴此多边形的每一个外角是180°-135°=45°,∵任意多边形的外角和是:360°,∴此多边形边数是:360°÷45°=8,∴这个多边形从一个顶点出发引出的对角线的条数是:n-3=8-3=5.故选:C.【点评】此题主要考查了正多边形内角与外角的性质,以及多边形对角线求法,题目综合性较强,同学们应熟练掌握相关公式.3.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形【答案】B【分析】经过n边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数.【详解】设多边形有n条边,则n−2=2011,解得:n=2013.所以这个多边形的边数是2013.故选B.【点评】本题考查了多边形的知识点,解题的关键是熟练的掌握多边形对角线的性质与运用.4.下列图形中,是正多边形的是( )A.三条边都相等的三角形B.四个角都是直角的四边C.四边都相等的四边形D.六条边都相等的六边形【答案】A【分析】根据正多边形的定义即可解答.【详解】选项A,三条边都相等的三角形是等边三角形,它的三个角相等,三条边都相等,是正多边形;选项B、C、D不符合正多边形的定义,都不是正多边形.故选A.【点评】本题主要考查了正多边形的定义,熟练运用正多边形的定义是解决问题的关键.5.过n边形的其中一个顶点有10条对角线,则n的值为( )A.11 B.12 C.13 D.14【答案】C【分析】n边形中过一个顶点的所有对角线有n-3条,根据这一点即可解答.【详解】这个多边形的边数是10+3=13,故选C.【点评】此题考查多边形的对角线,解题关键在于掌握运算公式.6.下列说法不正确的是()A.各边相等的多边形是正多边形B.等边三角形是正多边形C.正多边形的各个内角都相等D.正多边形的各条边都相等【答案】A【分析】根据正多边形的定义:各个边相等,各个角相等的多边形是正多边形,除正三边形以外,各边相等,各角相等,两个条件必须同时成立.【详解】A. 各个边相等,各个角相等的多边形是正多边形,故选项A错误;B. 等边三角形三条边相等,三个角相等,是正多边形,故选项B正确;C. 正多边形的各个内角都相等,故选项C正确;D. 正多边形的各条边都相等,故选项D正确.故选A.【点评】本题考查了正多边形的定义,注意各边相等,各角相等,两个条件必须同时成立.7.如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2016个三角形,那么这个多边形是()边形.A.2020 B.2019 C.2018 D.2017【答案】C【解析】【分析】经过n边形的一个顶点的所有对角线把多边形分成(n-2)个三角形,根据此关系式求边数.【详解】设多边形有n条边,则n−2=2016,解得:n=2018,故选C.【点评】此题考查多边形的对角线,解题关键在于掌握计算公式.8.要使一个六边形的木架稳定,至少要钉()根木条A.3 B.4 C.6 D.9【答案】A【解析】如图,最少钉三根木条可以把六边形分成四个三角形,使木架稳定。

八年级上册数学人教版多边形 课时练5 试题试卷 含答案解析

八年级上册数学人教版多边形 课时练5 试题试卷 含答案解析

11.3.1多边形一、选择题1.下列说法中正确的是()A .两点之间,直线最短B .由两条射线组成的图形叫做角C .若过多边形的一个顶点可以画5条对角线,则这个多边形是八边形D .对于线段与BC ,若AC BC =,则点C 是线段AB 的中点2.下列长度的三条线段与长度为5的线段能组成四边形的是()A .1,1,1B .1,1,8C .1,2,2D .2,2,23.下列说法正确的是()A .经过两点可以作无数条直线B .各边相等,各角也相等的多边形是正多边形C .长方体的截面形状一定是长方形D .棱柱的每条棱长都相等4.下列说法正确的是()A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条5.某个人从多边形一个顶点出发引对角线可以把这个多边形分成八个三角形,这个多边形是()边形A .六B .八C .十D .十一6.八边形从一个顶点引出的对角线的条数为()A .4条B .5条C .6条D .7条7.在凸多边形中,四边形有两条对角线,五边形有5条对角线.观察探索凸十边形有()条对角线.A .29B .32C .35D .388.若一个多边形有27条对角线,则这个多边形的边数()A .8B .9C .10D .119.如图,在边长为1的小正方形网格中,小正方形的顶点叫格点,以格点为顶点的多边形叫格点多边形图中①,②,③,④四个格点多边形的面积分别记为1234,,,,S S S S 下列说法正确的是()A .12S S =B .23S S =C .124S S S +=D .134S S S +=10.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A .三角形B .四边形C .五边形D .六边形二、填空题11.正多边形的一个外角是40°,则这个正多边形从一个顶点出发有__条对角线.12.八边形中过其中一个顶点有__条对角线.13.一个n 边形共有n 条对角线,将这个n 边形截去一个角后它的边数为__.14.如图所示的网格是正方形网格,点A ,B ,C ,D ,E ,F 是网格线的交点,则ABC 的面积与DEF 的面积比为__________.15.从一个多边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形被分割成2018个三角形,则这个多边形的边数为______.三、解答题16.一个边数为2n 的多边形中所有对角线的条数是边数为n 的多边形中所有对角线条数的6倍,求这两个多边形的边数.17.(1)过多边形的一个顶点的所有对角线的条数与这些对角线分多边形所得的三角形个数的和为21,求这个多边形的边数;(2)过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.18.如图,我们知道要使四边形木架不变形,至少要钉一根木条.那么要使五边形木架不变形,至少要钉几根木条?使七边形木架不变形,至少要钉几根木条?使n 边形木架不变形.又至少要钉多少根木条19.如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连接A 1B 1,我们称A 1B 1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.20.如图,方格纸中每个小正方形的边长都为1.在方格纸内将格点ABC 先向左平移2格,再向下平移1格得到的A B C ¢¢¢V .(1)在给定方格纸中画出平移前的ABC ;(2)ABC 的面积是______;(3)试在图中画出格点P ,使得PAC △的面积是ABC 的面积的813.(只要画出一个点P )21.某中学七年级数学课外兴趣小组在探究:“n 边形(n >3)共有多少条对角线”这一问题时,设计了如下表格:(1)请在表格中的横线上填上相应的结果:多边形的边数456…n从多边形一个顶点出发12_____…_______可引起的对角线条数多边形对角线的总条数2_________________(2)应用得到的结果解决以下问题:①求十二边形有多少条对角线?②过多边形的一个顶点的所有对角线条数与这些对角线分多边形所得的三角形个数的和可能为2016吗?若能,请求出这个多边形的边数;若不能,请说明理由.22.用平面截正方体,其截面可能是某些多边形,如果截去的几何体是三棱锥,剩下的几何体还有多少个顶点?试在图8中画出形状不相同的几种.(至少画三种)23.如图,每个小方格都是边长为1个单位的小正方形,A,B,C三点都是格点(每个小方格的顶点叫格点).(1)找出格点D,画AB的平行线CD;找出格点E,画AB的垂线AE;(2)计算格点△ABC的面积.【参考答案】1.C2.D3.B4.D5.C6.B7.C8.B9.B10.D11.612.513.6、5、414.1∶415.202016.这两个多边形的边数分别为12和6.17.(1)13;(2)不能.18.要使五边形木架不变形,至少要钉2根木条;使七边形木架不变形,至少要钉4根木条;使n边形木架不变形,至少要钉(n-3)根木条.19.略20.(1)略;(2)132;(3)略21.(1)3、n-3、5、9、(3)2n n-;(2)①54条;②不能9222.剩下的几何体可能有7个、8个、9个、10个顶点23.(1)作图略(2)。

八年级数学上册多边形及其内角和测试题答案人教版

八年级数学上册多边形及其内角和测试题答案人教版

八年级数学上册多边形及其内角和测试题答案人教版一、选择题共8小题,每小题3分,满分24分1.若一个多边形的边数增加1,它的内角和A.不变B.增加1C.增加180°D.增加360°2.当多边形的边数增加时,其外角和A.增加B.减少C.不变D.不能确定3.某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是A.180°B.540°C.1900°D.1080°4.如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是A.6B.9C.14D.205.如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是A.nB.2n﹣2C.2nD.2n+26.一个多边形截去一个角截线不过顶点之后,所形成的多边形的内角和是2520°,那么原多边形的边数是A.19B.17C.15D.137.已知一个多边形的内角和是外角和的4倍,则这个多边形是A.八边形B.九边形C.十边形D.十二边形8.一个多边形中,除一个内角外,其余各内角和是120°,则这个角的度数是A.60°B.80°C.100°D.120°二、填空题9.n边形的内角和= 度,外角和= 度.10.从n边形n>3的一个顶点出发,可以画条对角线,这些对角线把n边形分成三角形,分得三角形内角的总和与多边形的内角和.11.已知一个多边形的内角和与它的外角和正好相等,则这个多边形是边形.12.一个多边形的内角和等于它的外角和的5倍,那么此多边形的边数为.13.若n边形的每个内角都是150°,则n= .14.一个多边形的每一个外角都为36°,则这个多边形是边形.15.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是度,其内角和等于度.16.一个多边形的内角和是1800°,这个多边形是边形.17.n边形的内角和等于度.任意多边形的外角和等于度.18.若一个多边形的外角和是它的内角和的,则此多边形的边数是.19.如果十边形的每个内角都相等,那么它的每个内角都等于度,每个外角都等于度.20.若一个多边形的内角和为1080°,则这个多边形边形.21.外角和等于内角和的多边形一定是四边形. .判断对错22.如果一个多边形的内角和等于1800°,则这个多边形是边形;如果一个n边形每一个内角都是135°,则n= ;如果一个n边形每一个外角都是36°,则n= .三、解答题23.分别画出下列各多边形的对角线,并观察图形完成下列问题:1试写出用n边形的边数n表示对角线总条数S的式子:.2从十五边形的一个顶点可以引出条对角线,十五边形共有条对角线:3如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.24.若两个多边形的边数之比是1:2,内角和度数之和为1440°,求这两个多边形的边数.25.某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求 + 的值.一、选择题共8小题,每小题3分,满分24分1.2021秋•腾冲县校级期中若一个多边形的边数增加1,它的内角和A.不变B.增加1C.增加180°D.增加360°【考点】多边形内角与外角.【分析】设原来的多边形是n,则新的多边形的边数是n+1.根据多边形的内角和定理即可求得.【解答】解:n边形的内角和是n﹣2•180°,边数增加1,则新的多边形的内角和是n+1﹣2•180°.则n+1﹣2•180°﹣n﹣2•180°=180°.故选C.【点评】本题考查多边形的内角和计算公式,解答时要会根据公式进行正确运算、变形和数据处理.2.2021春•城西区校级期中当多边形的边数增加时,其外角和A.增加B.减少C.不变D.不能确定【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可判断.【解答】解:任何多边形的外角和是360°,因而当多边形的边数增加时,其外角和不变.故选C.【点评】任何多边形的外角和是360°,不随边数的变化而变化.3.2021秋•宣威市校级期中某学生在计算四个多边形的内角和时,得到下列四个答案,其中错误的是A.180°B.540°C.1900°D.1080°【考点】多边形内角与外角.【分析】利用多边形的内角和公式可知,多边形的内角和一定是180的整数倍,由此即可找出答案.【解答】解:∵nn≥3边形的内角和是n﹣2180°,所以多边形的内角和一定是180的整数倍.∴在这四个选项中不是180的倍数的是1900°.故选C.【点评】本题考查了多边形的内角与外角,熟记多边形的内角和公式是解题的关键.4.2021秋•硚口区校级月考如果一个多边形的内角和是720°,那么这个多边形的对角线的条数是A.6B.9C.14D.20【考点】多边形内角与外角;多边形的对角线.【专题】计算题.【分析】首先根据多边形的内角和计算公式:n﹣2×180°,求出多边形的边数;再进一步代入多边形的对角线计算方法:求得结果.【解答】解:多边形的边数n=720°÷180°+2=6;对角线的条数:6×6﹣3÷2=9.故选B.【点评】此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.5.2021秋•长葛市校级月考如果一个多边形的内角和是它的外角和的n倍,则这个多边形的边数是A.nB.2n﹣2C.2nD.2n+2【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角的度数,然后利用多边形的内角和定理即可求解.【解答】解:设多边形的边数为m,根据题意列方程得,m﹣2•180°=n×360°,m﹣2=2n,m=2n+2.故选D.【点评】本题主要考查了多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.6.2021秋•凉山州期末一个多边形截去一个角截线不过顶点之后,所形成的多边形的内角和是2520°,那么原多边形的边数是A.19B.17C.15D.13【考点】多边形内角与外角.【分析】一个多边形截去一个角截线不过顶点之后,则多边形的角增加了一个,求出内角和是2520°的多边形的边数,即可求得原多边形的边数.【解答】解:设内角和是2520°的多边形的边数是n.根据题意得:n﹣2•180=2520,解得:n=16.则原来的多边形的边数是16﹣1=15.故选C.【点评】本题主要考查了多边形的内角和公式,理解新多边形的边数比原多边形的边数增加1是解题的关键.7.2021春•金东区期末已知一个多边形的内角和是外角和的4倍,则这个多边形是A.八边形B.九边形C.十边形D.十二边形【考点】多边形内角与外角.【分析】先设这个多边形的边数为n,得出该多边形的内角和为n﹣2×180°,根据多边形的内角和是外角和的4倍,列方程求解.【解答】解:设这个多边形的边数为n,则该多边形的内角和为n﹣2×180°,依题意得n﹣2×180°=360°×4,解得n=10,∴这个多边形的边数是10.故选:C.【点评】本题主要考查了多边形内角和定理与外角和定理,多边形内角和=n﹣2•180 n≥3且n为整数,而多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和始终为360°.8.一个多边形中,除一个内角外,其余各内角和是120°,则这个角的度数是A.60°B.80°C.100°D.120°【考点】多边形内角与外角.【分析】根据多边形的内角和公式n﹣2•180°可知多边形的内角和是180°的倍数,然后用960°÷180°所得商的整数部分加1就是多边形的边数.【解答】解:∵一个内角外,其余各内角和是120°,∴这个角的度数是60°.故选A.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.同时要注意每一个内角都应当大于0°而小于180度.二、填空题9.n边形的内角和= n﹣2×180度,外角和= 360 度.【考点】多边形内角与外角.【分析】根据多边形的内角和定理和外角和特征即可求出答案.【解答】解:任意n边形的内角和是n﹣2×180度,外角和是360度.故答案为:n﹣2×180,360.【点评】本题考查了多边形的外角和定理和内角和定理,这是一个需要熟记的内容.10.从n边形n>3的一个顶点出发,可以画n﹣3 条对角线,这些对角线把n边形分成n﹣2 三角形,分得三角形内角的总和与多边形的内角和相等.【考点】多边形内角与外角;三角形内角和定理;多边形的对角线.【分析】多边形上任何不相邻的两个顶点之间的连线就是对角线,n边形有n个顶点,和它不相邻的顶点有n﹣3个,因而从n边形n>3的一个顶点出发的对角线有n﹣3条,把n边形分成n﹣2个三角形,根据三角形内角和定理即可求得n边形的内角和与分得三角形内角的总和相等,都等于n﹣2•180°.【解答】解:从n边形n>3的一个顶点出发的对角线有n﹣3条,可以把n边形划分为n﹣2个三角形,由此,可得n边形的内角和与分得三角形内角的总和相等,故答案为:n﹣3,n﹣2,相等.【点评】本题考查多边形的对角线与三角形内角和定理,多边形的问题可以通过作对角线转化为三角形的问题解决,是转化思想在多边形中的应用.11.2021•宝安区校级模拟已知一个多边形的内角和与它的外角和正好相等,则这个多边形是四边形.【考点】多边形内角与外角.【专题】计算题.【分析】根据多边形的外角和为360°,由一个多边形的内角和与它的外角和正好相等,得到内角和,再根据多边形的内角和定理即可得到多边形的边数.【解答】解:∵多边形的外角和为360°,而一个多边形的内角和与它的外角和正好相等,设这个多边形为n边形,∴n﹣2•180°=360°,∴n=4,故答案为:四.【点评】本题考查了边形的内角和定理:边形的内角和=n﹣2•180°;多边形的外角和为360°.12.2021春•邵阳期末一个多边形的内角和等于它的外角和的5倍,那么此多边形的边数为12 .【考点】多边形内角与外角.【分析】一个多边形的内角和等于它的外角和的5倍,任何多边形的外角和是360度,因而这个正多边形的内角和为5×360度.n边形的内角和是n﹣2•180°,代入就得到一个关于n的方程,就可以解得边数n.【解答】解:根据题意,得n﹣2•180=5×360,解得:n=12.所以此多边形的边数为12.【点评】已知多边形的内角和求边数,可以转化为解方程的问题解决.13.2021春•苏仙区期末若n边形的每个内角都是150°,则n= 12 .【考点】多边形内角与外角.【分析】由题可得,该多边形的内角和为n﹣2×180°,根据n边形的每个内角都是150°,可得该正多边形的内角和为n×150°,再列方程求解.【解答】解:依题意得,n﹣2×180°=n×150°,解得n=12故答案为:12【点评】本题主要考查了多边形内角和定理,多边形内角和=n﹣2•180 n≥3且n为整数.14.2021春•工业园区期末一个多边形的每一个外角都为36°,则这个多边形是十边形.【考点】多边形内角与外角.【分析】根据多边形的外角和即可求出答案.【解答】解:这个多边形是360÷36=10边形.故答案为:十.【点评】根据外角和的大小与多边形的边数无关,由外角和求多边形的边数,是常见的题目,需要熟练掌握.15.如果一个多边形的每个内角都相等,且内角的度数是与它相邻的外角度数的2倍,那么这个边形的每个内角是120 度,其内角和等于720 度.【考点】多边形内角与外角.【分析】设多边形的外角为n度,则根据内角的度数是与它相邻的外角度数的2倍,可求出n的值,进而求出多边形的内角度数,根据多边形外角和为360度,可求出多边形的边数,然后求出其内角和即可.【解答】解:设多边形的外角为n度,则根据内角的度数是与它相邻的外角度数的2倍,可得:n+2n=180°,解得:n=60°,∴2n=120°,根据多边形外角和为360度,可求出多边形的边数为:360÷60=6,∵多边形的每个内角都相等,∴多边形内角和为:120×6=720°.故答案为:120,720.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形内角和定理与多边形外角和为360度.16.2021秋•广西期末一个多边形的内角和是1800°,这个多边形是12 边形.【考点】多边形内角与外角.【分析】首先设这个多边形是n边形,然后根据题意得:n﹣2×180=1800,解此方程即可求得答案.【解答】解:设这个多边形是n边形,根据题意得:n﹣2×180=1800,解得:n=12.∴这个多边形是12边形.故答案为:12.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:n﹣2×180°.17.n边形的内角和等于n﹣2•180度.任意多边形的外角和等于360 度.【考点】多边形内角与外角.【分析】根据多边形内角和定理:n﹣2•180 n≥3且n为整数,且多边形的外角和等于360度,进行求解即可.【解答】解:根据多边形内角和定理可得n边形的内角和为:n﹣2•180,任意多边形的外角和等于360度.故答案为:n﹣2•180,360.【点评】本题考查了多边形内角和外角,解答本题的关键在于熟练掌握多边形内角和定理和多边形的外角和等于360度.18.2021秋•长葛市校级月考若一个多边形的外角和是它的内角和的,则此多边形的边数是10 .【考点】多边形内角与外角.【分析】多边形的外角和是360度,外角和是它的内角和的,则内角和是1440度.n边形的内角和是n﹣2•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得n﹣2•180=1440,解得:n=10.则此多边形的边数是10.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.19.如果十边形的每个内角都相等,那么它的每个内角都等于144 度,每个外角都等于36 度.【考点】多边形内角与外角.【分析】利用十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出每个内角的度数.【解答】解:∵十边形的每个内角都相等,∴十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°.故答案为:144,36.【点评】本题主要考查了多边形的外角性质及内角与外角的关系.多边形的外角性质:多边形的外角和是360度.边形的内角与它的外角互为邻补角.20.2021春•诸城市期末若一个多边形的内角和为1080°,则这个多边形8 边形.【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°n﹣2,即可得方程180n﹣2=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180n﹣2=1080,解得:n=8,故答案为:8.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.21.外角和等于内角和的多边形一定是四边形. 对.判断对错【考点】多边形内角与外角.【分析】任意多边形的外角和为360°,然后依据多边形的内角和公式求得多边形的边数,从而可作出判断.【解答】解:设多边形的边数为n.根据题意得:n﹣2×180°=360°.解得:n=4.所以该多边形为四边形.故答案为:对.【点评】本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.22.如果一个多边形的内角和等于1800°,则这个多边形是十二边形;如果一个n 边形每一个内角都是135°,则n= 8 ;如果一个n边形每一个外角都是36°,则n= 10 .【考点】多边形内角与外角.【分析】n边形的内角和可以表示成n﹣2•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则n﹣2•180°=1800°,解得:n=12,则这个正多边形是12.如果一个n边形每一个内角都是135°,∴每一个外角=45°,则n= =8,如果一个n边形每一个外角都是36°,则n= =10,故答案为:十二,8,10.【点评】此题考查了多边形的内角和定理.注意多边形的内角和为:n﹣2×180°.三、解答题23.分别画出下列各多边形的对角线,并观察图形完成下列问题:1试写出用n边形的边数n表示对角线总条数S的式子:S= nn﹣3 .2从十五边形的一个顶点可以引出12 条对角线,十五边形共有90 条对角线:3如果一个多边形对角线的条数与它的边数相等,求这个多边形的边数.【考点】多边形的对角线.【分析】1根据多边形对角线的条数的公式即可求解;2根据多边形对角线的条数的公式代值计算即可求解;3根据等量关系:一个多边形对角线的条数与它的边数相等,列出方程计算即可求解.【解答】解:1用n边形的边数n表示对角线总条数S的式子:S= nn﹣3;2十五边形从一个顶点可引出对角线:15﹣3=12条,共有对角线:×15×15﹣3=90条;3设多边形有n条边,则 nn﹣3=n,解得n=5或n=0应舍去.故这个多边形的边数是5.故答案为:S= nn﹣3;12,90.【点评】本题主要考查了多边形对角线的条数的公式总结,熟记公式对今后的解题大有帮助.24.2021秋•岳池县月考若两个多边形的边数之比是1:2,内角和度数之和为1440°,求这两个多边形的边数.【考点】多边形内角与外角.【分析】本题根据等量关系“两个多边形的内角之和为1440°”列方程求解,解答时要会根据公式进行正确运算、变形和数据处理.【解答】解:设多边形较少的边数为n,则n﹣2•180°+2n﹣2•180°=1440°,解得n=4.2n=8.故这两个多边形的边数分别为4,8.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,考查多边形的内角和、方程的思想.关键是记住内角和的公式.25.某学校艺术馆的地板由三种正多边形的小木板铺成,设这三种多边形的边数分别为x、y、z,求 + 的值.【考点】平面镶嵌密铺.【分析】根据边数求出各个多边形的每个内角的度数,结合镶嵌的条件列出方程,进而即可求出答案.【解答】解:由题意知,这3种多边形的3个内角之和为360度,已知正多边形的边数为x、y、z,那么这三个多边形的内角和可表示为: + + =360,两边都除以180得:1﹣ +1﹣ +1﹣ =2,两边都除以2得: + = .【点评】本题考查了平面镶嵌密铺.解决本题的关键是知道这3种多边形的3个内角之和为360度,据此进行整理分析得解.感谢您的阅读,祝您生活愉快。

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习(含答案)

人教版2023-2024学年八年级上册数学《多边形及其内角》同步练习一、单选题1.一个多边形的每个外角都等于与它相邻的内角,这个多边形是( )边形A .四B .五C .六D .八2.若一个多边形的每个内角都是,那么它的边数是( )140︒A .5B .7C .9D .113.中国古代建筑具有悠久的历史传统和光辉的成就,其建筑艺术也是美术鉴赏的重要对象.如图是中国古代建筑中的一个正八边形的窗户,则它的内角和为( )A .B .C .D .1080︒900︒720︒540︒4.如图,一束平行太阳光照射到正五边形上,若∠1=46°,则∠2的度数为( )A .46°B .108°C .26°D .134°5.如图1是一个2×5长方形方格,用图2所示的1×2的黑色长方形(允许只用一种)去填满,共有( )种不同的方法.A .7B .8C .9D .106.如图,四边形中,与相邻的两外角平分线交ABCD 90,ADC ABC ∠=∠=︒ADC ABC ∠∠、于点若则的度数为( ),E 60,A ∠=︒E ∠A .B .C .D .60 50 40 307.如图,要使一个七边形木架不变形,至少要再钉上木条的根数是( )A .1根B .2根C .3根D .4根8.七边形中,、的延长线相交于点.若图中、、、的ABCDEFG AB ED O 1∠2∠3∠4∠外角的角度和为,则的度数为( )220︒BOD ∠A .B .C .D .30︒35︒40︒45︒9.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A .B .C .D .240︒220︒180︒330︒10.如图,直线,将一个含角的直角三角尺按图中方式放置,点E 在AB CD ∥60︒EGF 上,边、分别交于点H 、K ,若,则等于( ).AB GF EF CD 64BEF ∠=︒GHC ∠三、解答题21.若一个多边形的内角和等于它的外角和的24.已知一个正n边形的内角和是正三角形内角和的4倍.(1)求n;(2)用边长相等的正n 边形和正三角形两种地板镶嵌地面,则一个公共顶点处需要正n边形和正三角形的个数分别为x、y,求x和y的关系式.25.如图,小明从点A出发,前进10m后向右转30°,再前进10m后又向右转30°,……,如此反复下去,直到她第一次回到出发点A,他所走的路径构成了一个正多边形.(1)求小明一共走了多少米;(2)求这个正多边形的内角和.答案:1.A2.C3.A4.C5.B6.D7.D8.C9.A10.B11.512.③④13.50°或130°14. 15 60°15.18/十八16. 2 817./36度36︒18./度 144︒1443519. 144 10 144020./度180︒18021.这个多边形是十边形22.(1)15;(2)1523.(1)8(2)360︒24.(1)6n =(2)26x y +=25.(1)小明一共走了120米1800 (2)这个多边形的内角和是.。

八年级数学上册多边形训练题(含答案)

八年级数学上册多边形训练题(含答案)

八年级数学上册多边形训练题(含答案)一.选择题(共11小题)1.八边形的内角和为()A.180°B.360°C.1080°D.1440°2.已知一个正多边形的每个外角等于60°,则这个正多边形是()A.正五边形B.正六边形C.正七边形D.正八边形3.正n边形每个内角的大小都为108°,则n=()A.5 B.6C.7D.84.已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3 B.4C.5D.65.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.546.下列图形中,多边形有()A.1个B.2个C.3个D.4个7.七边形的对角线共有()A.10条B.15条C.21条D.14条8.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是()A.6 B.7C.8D.99.在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形10.过多边形某个顶点的所有对角线,将这个多边形分成7个三角形,这个多边形是()A.八边形B.九边形C.十边形D.十一边形11.如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44二.填空题(共8小题)12.十边形有个顶点,从一个顶点出发可画条对角线,它共有条对角线.13.若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是边形.14.一个四边形截去一个角后变成.15.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.16.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.17.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=.18.若正多边形的一个内角等于140°,则这个正多边形的边数是.(16题图)(17题图)(19题图)19.如图,小明从A点出发,沿直线前进12米后向左转36°,再沿直线前进12米,又向左转36°…照这样走下去,他第一次回到出发地A点时,一共走了米.三.解答题(共6小题)20.如果一个多边形的各边都相邻,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:(1)将下面的表格补充完整:正多边形边数 3 4 5 6 …n∠α的度数60°45°…(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.21.在一个正多边形中,一个内角是它相邻的一个外角的3倍.(1)求这个多边形的每一个外角的度数.(2)求这个多边形的边数.22.观察下面图形,解答下列问题:(1)观察规律,把下表填写完整:边数三四五六七…n对角线条数0 2 5 …(2)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.23.如图,(1)在图1中,猜想:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2=度.并试说明你猜想的理由.(2)如果把图1称为2环三角形,它的内角和为:∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;图2称为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1++∠A2+∠B2+∠C2+∠D2+∠E22-1-c-n-j-y请你猜一猜,2环n边形的内角和为度(只要求直接写出结论).24.(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于。

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)

数学人教版八年级上册多边形及其内角和同步练习(配套练习附答案)
∵AB∥DE,
∴∠BAG+∠AGD=90°,
则AG⊥DE.
点睛:此题考查了平行线的性质,以及外角性质,熟练掌握平行线的性质是解本题的关键.
18.如图,小东在足球场的中间位置,从A点出发,每走6m向左转60°,已知AB=BC=6m.
(1)小东是否能走回A点,若能回到A点,则需走几m,走过的路径是一个什么图形?为什么?(路径A到B到C到…)
详解:(1)由平移的性质得:△ABC≌△DEF,
∴AB=DE,AB∥DE,
∴四边形ABED为平行四边形,
∴AD∥BF,∠ADG=∠ABC,
∴∠ADG=∠DEF,
∴∠ABC=∠DEF=∠ADG,
∵∠AGE为△ADG的外角,
∴∠AGE=∠DAG+∠ADG=∠GAD+∠ABC;
(2)AG⊥DE,理由为:
由平移的性质得到∠EDF=∠BAC,
A. 200米B. 180米C. 160米D. 140米
【答案】B
【解析】
【分析】
多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.
【详解】∵多边形的外角和为360°,而每一个外角为20°,
∴多边形的边数为360°÷20°=18,
∴小华一共走了:18×10=180米.
故选B.
∴∠AEF+∠CFE=540°-∠A-∠B-∠C=540°-90°-90°-90°=270°.
故选B.
点睛:本题考查了四边形的性质及多边形的内角和定理.解决本题亦可通过外角关系.
6.如图所示,小华从A点出发,沿直线前进10米后左转 ,再沿直线前进10米,又向左转 , ,照这样走下去,他第一次回到出发地A点时,一共走的路程是( )

人教版八年级上册数学《多边形》单元测试卷(含答案)

人教版八年级上册数学《多边形》单元测试卷(含答案)

人教版八年级上册数学《多边形》单元测试卷(含答案)第一部分:选择题(每小题2分,共30分)请在括号内选择正确的答案,并将其序号填写在题前的括号内。

1. 一个多边形的内角和为:A. 180°B. 360°C. 90°D. 270°2. 平行四边形的对角线互相平分,对角线的交点是:A. 中线B. 垂直平分线C. 对角线中点D. 不确定3. 一个凸多边形的对角线个数是:A. n(n-3)/2B. n(n-1)/2C. n(n-2)/2D. 2n...第二部分:填空题(每小题3分,共30分)请在横线上填入适当的内容,使得等式成立。

1. 正方形的每个角是_90_度。

2. 具有相等边长的正多边形是_正_多边形。

3. 一个五边形的内角和等于_540_度。

...第三部分:解答题(每小题10分,共40分)根据题目要求,写下解答过程和答案。

1. 求一条边长为8cm的正五边形的内角和。

解答过程:由于正五边形的每个内角相等,先求出其中一个内角的大小。

一个内角的大小为180° * (5 - 2) / 5 = 108°正五边形的内角和等于5 * 108° = 540°答案:540°2. 证明平行四边形的对角线相等。

解答过程:根据平行四边形的性质,对角线互相平分。

设平行四边形的对角线为AC和BD,交点为O。

由于对角线平分,所以AO = OC,BO = OD。

根据三角形的SAS相似定理,可以得出△ABO ~ △CDO。

根据相似三角形的性质,可以得出AO/OC = BO/OD,即AO/BO = OC/OD。

因此,平行四边形的对角线相等。

答案:证明完毕。

...第四部分:应用题(每小题15分,共60分)根据题目要求,完成下列应用题。

1. 若平行四边形的一边长为6cm,另一边长为8cm,计算它的面积。

解答过程:设平行四边形的一边长为a,另一边长为b。

八年级数学上册多边形同步练习题(含答案解析)

八年级数学上册多边形同步练习题(含答案解析)

八年级数学上册多边形同步练习题(含答案解析)一.选择题(共7小题)1.下列图中不是凸多边形的是()选A2.下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形【考点】多边形.【分析】根据正多边形的定义;各个角都相等,各条边都相等的多边形叫做正多边形可得答案.【解答】解:正方形四个角相等,四条边都相等,故选:D.【点评】此题主要考查了正多边形,关键是掌握正多边形的定义.3.n边形的内角的和等于()A.(n﹣1)×180°B.(n﹣2)×180°C.(n﹣3)×180°D.(n﹣4)×180°【考点】多边形;多边形内角与外角.【分析】从四边形的一个顶点出发可以画出一个对角线,把四边形分成两个三角形,所以四边形内角和为:(4﹣2)×180°,从五边形的一个顶点出发可以画2条对角线,把五边形分成三个三角形,所以四边形内角和为:(5﹣2)×180°,从n边形的一个顶点出发可以画(n﹣3)条对角线,把四边形分成(n ﹣2)个三角形,所以n边形内角和为:(n﹣2)×180°.【解答】解:因为三角形的内角和是180°,四边形的内角和是360°,五边形的内角和是540°,∴n边形的内角的和公式:(n﹣2)×180°,故选:B.【点评】此题主要考查了多边形内角和公式.正确的记忆多边形内角和公式是解决问题的关键.4.一个四边形截去一个内角后变为()A.三角形B.四边形C.五边形D.以上均有可能【考点】多边形.【分析】一个四边形截去一个角是指可以截去两条边,而新增一条边,得到三角形;也可以截去一条边,而新增一条边,得到四边形;也可以直接新增一条边,变为五边形.可动手画一画,具体操作一下.【解答】解:如图可知,一个四边形截去一个角后变成三角形或四边形或五边形.故选:D.【点评】本题考查了多边形,解决此类问题的关键是动手画一画准确性高,注意不要漏掉情况.5.在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到()A.4个三角形B.5个三角形C.6个三角形D.7个三角形【考点】多边形.【分析】根据六边形有六个顶点,连接六个顶点,可得六个三角形.【解答】解:在六边形内任取一点,把这个点与六边形的各顶点分别连接可以得到六个三角形,故选:C.【点评】本题考查了多边形,利用了图形的分割:六个顶点可分割成六个三角形.6.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成()个三角形.A.6B.5C.8D.7【考点】多边形.【专题】规律型.【分析】从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个四边形分割成(n﹣2)个三角形.【解答】解:从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7﹣2=5个三角形.故选:B.【点评】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n﹣2)个三角形.7.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为()A.2001B.2005C.2004D.2006【考点】多边形.【分析】可根据多边形的一点(不是顶点)出发,连接各个顶点得到的三角形个数与多边形的边数的关系求解.【解答】解:多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为2003+1=2004.故选C.【点评】多边形一条边上的一点(不是顶点)出发,连接各个顶点得到的三角形个数=多边形的边数﹣1.二、填空题。

数学人教版八年级上册多边形及其内角和练习题(含答案)

数学人教版八年级上册多边形及其内角和练习题(含答案)

数学人教版八年级上册多边形及其内角和练习题(含答案)11.3 多边形及其内角和基础过关作业1.四边形 ABCD 中,如果∠A + ∠C + ∠D = 280°,则∠B 的度数是()A。

80° B。

90° C。

170° D。

20°2.一个多边形的内角和等于 1080°,这个多边形的边数是()A。

9 B。

8 C。

7 D。

63.内角和等于外角和 2 倍的多边形是()A。

五边形 B。

六边形 C。

七边形 D。

八边形4.六边形的内角和等于 XXX 度。

5.正十边形的每一个内角的度数等于 144°,每一个外角的度数等于 36°。

6.如图,你能数出多少个不同的四边形?7.四边形的四个内角不可能都是锐角,也不可能都是钝角,但可以都是直角。

因为四个直角相加等于 XXX 度。

8.求下列图形中 x 的值:综合创新作业9.(综合题)已知:如图,在四边形 ABCD 中,∠A =∠C = 90°,BE 平分∠ABC,DF 平分∠ADC。

BE 与 DF 交于点 E。

因为∠A = ∠C = 90°,所以 AC 是矩形的一条对角线,即 AC 的中点是矩形的重心。

由于 BE 平分∠ABC,所以∠EBD = ∠EBC,而∠EBC = ∠ABD,所以∠EBD = ∠ABD。

同理可证∠FDC = ∠ACD = ∠ADB。

因此,BE 与 DF 是平行的,且 DE = EF。

10.(应用题)有 10 个城市进行篮球比赛,每个城市均派3 个代表队参加比赛,规定同一城市间代表队不进行比赛,其他代表队都要比赛一场。

按此规定,所有代表队要打 135 场比赛。

11.(创新题)如图,以五边形的每个顶点为圆心,以 1 为半径画圆,求圆与五边形重合的面积。

12.(1)(2005 年,南通)已知一个多边形的内角和为540°,则这个多边形为三角形。

2)(2005 年,福建泉州)五边形的内角和等于 540 度。

2023-2024学年人教版数学八年级上册 11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册  11.3多边形及其内角和同步练习(含答案)

2023-2024学年人教版数学八年级上册11.3多边形及其内角和同步练习(含答案)2023-2024学年人教版数学八年级上册11.3 多边形及其内角和同步练习一、单选题1.五边形的内角和为()A.720° B.540° C.360° D.180°2.下列角度中,不能成为多边形内角和的是()A.600° B.720° C.900° D.1080°3.一个多边形的内角和是外角和的2倍,这个多边形是()A.四边形B.五边形C.六边形D.八边形4.若从一个正多边形的一个顶点出发,最多可以引5条对角线,则它的一个内角为()A.B.C.D.5.如果一个四边形的面积正好等于它的两条对角线乘积的一半,那么这个四边形一定是()A.菱形B.矩形C.正方形D.对角线互相垂直的四边形6.在一个凸n边形的纸板上切下一个三角形后,剩下一个内角和为1080°的多边形,则n的值为()A.7 B.8C.9 D.以上都有可能7.一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.14或15或16 B.15或16或17 C.15或16 D.16或178.下列说法中,正确的个数有()①若一个多边形的外角和等于360°,则这个多边形的边数为4;②三角形的高相交于三角形的内部;③三角形的一个外角大于任意一个内角;④一个多边形的边数每增加一条,这个多边形的内角和就增加;⑤对角线共有5条的多边形是五边形.A.1个B.2个C.3个D.4个二、填空题9.若一个正多边形的一个外角等于18°,则这个正多边形的边数是.10.一个多边形的内角和与外角和的比是4:1,则它的边数是.11.如图,点O是正五边形ABCDE的中心,连接BD、OD,则∠BDO =°.12.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=.13.如图所示,∠1+∠2+∠3+∠4+∠5+∠6=度.三、解答题14.一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.15.如图,是四边形的一个外角,且.那么与互补吗?为什么?16.如图,CD∠AF,∠CDE=∠BAF,AB∠BC,∠C=120°,∠E=80°,试求∠F的度数.17.如图,四边形ABCD中,BA丄DA,CD丄BC,BE、DF分别是∠ABC、∠ADC的平分线.(1)∠1与∠2有什么数量关系,为什么?(2)BE与DF有什么位置关系?请说明理由.18.如图,将六边形纸片ABCDEF沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=460°.(1)求六边形ABCDEF的内角和;(2)求∠BGD的度数.19.如图,五边形中,.(1)求的度数;(2)直接写出五边形的外角和.参考答案1.B 2.A 3.C 4.D 5.D 6.D 7.A 8.B 9.2010.1011.1812.24°13.360 °14.解:根据题意,得(n﹣2)180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.15.解:与互补,理由如下:∠ ,∠ABC+=180∠∠ABC+∠D=180 ,∠四边形内角和等于360 ,∠ + =360°-(∠ABC+∠D)=180°∠ 与互补.解:如图,连结AD在四边形ABCD中,∠BAD+∠ADC+∠B+∠C=360°.∠AB∠BC,∠∠B=90°.又∠∠C=120°,∠∠BAD+∠ADC=150°.∠CD∠AF,∠∠CDA=∠DAF.又∠∠CDE =∠BAF,∠∠EDA=∠BAD.在四边形ADEF∠DAF+∠EDA+∠F+∠E=360°,∠∠F+∠E=360°(∠ADC+∠BAD)=210°.又∠∠E=80°,∠∠F=130°17.(1)解:∠1+∠2=90°;理由如下:∠BE,DF分别是∠ABC,∠ADC的平分线,∠∠ABC=2∠1,∠ADC=2∠2,∠BA丄DA,CD丄BC,∠∠A=∠C=90°,∠∠ABC+∠ADC=180°,∠2(∠1+∠2)=180°,∠∠1+∠2=90°;(2)解:BE∠DF;理由如下:在∠FCD中,∠∠C=90°,∠∠DFC+∠2=90°,∠∠1+∠2=90°,∠∠1=∠DFC,∠BE∠DF.18.(1)解:六边形ABCDEF的内角和为:180°×(6-2)=720°;(2)解:∠∠1+∠2+∠3+∠4+∠5=460°,∠∠GBC+∠C+∠CDG=720°-460°=260°,∠∠G=360°-(∠GBC+∠C+∠CDG)=100°.19.(1)解:∠AE∠CD,∠∠D+∠E=180°,∠五边形ABCDE中,∠A=100°,∠B=120°,∠.(2)解:根据多边形的外角和定理:五边形的外角和是:°。

人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)

人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)

八年级数学上册《第十一章11.3多边形及其内角和》课后练习一、单选题1.一个n边形的内角和为360°,则n等于()A.3 B.4 C.5 D.62.正十边形的外角和为()A.180°B.360°C.720°D.1440°3.如图,足球图片正中的黑色正五边形的内角和是( ).A.180°B.360°C.540°D.720°4.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.65.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或96.一个多边形的每个内角都等于144°,那么这个多边形的内角和为()A.1980°B.1800°C.1620°D.1440°7.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.50°B.55°C.60°D.65°二、填空题∠=_______°.8.如图,六边形ABCDEF的内角都相等,//AD BC,则DAB9.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可∠=____度.以得到如图2所示的正五边形ABCDE.图中,BAC10.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=度.11.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是_____度.12.如图,正方形MNOK和正六边形ABCDEF的边长相等,边OK与边AB重合.将正方形在正六边形内绕点B顺时针旋转,使边KM与边BC重合,则KM旋转的度数是______ °.三、解答题13.(1)若多边形的内角和为2340°,求此多边形的边数.(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:2,求这个多边形的边数.14.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.∠+∠+∠+∠+∠+∠的度数.15.如图所示,求A B C D E F16.如图,五边形ABCDE的内角都相等,且∠1=∠2,∠3=∠4.求∠CAD的度数.∠的变化情况,解答下列问题:17.观察每个正多边形中α(1)将下面的表格补充完整:(2)根据规律,是否存在一个正n边形,使其中的∠α=21°?若存在,直接写出n的值;若不存在,请说明理由.18.(1)已知:如图1,P为△ADC内一点,DP、CP分别平分∠ADC和∠ACD,如果∠A=90°,那么∠P=______°;如果∠A=x°,则∠P=____________°;(答案直接填在题中横线上)(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分∠EDC和∠BCD,请直接写出∠P与∠A+∠B+∠E的数量关系:________________;(4)若P为n边形A1A2A3…A n内一点,PA1平分∠A n A1A2,PA2平分∠A1A2A3,请直接写出∠P与∠A3+A4+A5+…∠A n的数量关系:__________________________.(用含n 的代数式表示)答案:1.B 2.B 3.C 4.B 5.D 6.D 7.C.8.60°.9.36°. 10.360°.11.540 12.30. 13.解:(1)设边数为n,则解得:n=15,答:边数为15;(2)每个外角度数为180°×=24°,∴多边形边数为=15,答:边数为15.14.解:(1)甲对,乙不对.∵θ=360°,∴(n-2)×180°=360°,解得n=4.∵θ=630°,∴(n-2)×180°=630°,解得n=.∵n为整数,∴θ不能取630°.(2)由题意得,(n-2)×180+360=(n+x-2)×180,解得x=2.15.解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,又∵∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.16.解:∵五边形的内角和是540°,∴每个内角为540°÷5=108°,∴∠E=∠B=∠BAE=108°,又∵∠1=∠2,∠3=∠4,由三角形内角和定理可知,∠1=∠2=∠3=∠4=(180°-108°)÷2=36°,∴∠CAD=∠BAE-∠1-∠3=108°-36°-36°=36°.17.解:(1)正三角形中∠α=60°,正四角形中∠α=45°,正五角形中∠α=36°,正六角形中∠α=30°,(2)18021oo n,解得n 不是整数,所以不存在这样的n 值. 18.解:(1)∵DP 、CP 分别平分∠ADC 和∠ACD ,∴∠PDC=12∠ADC ,∠PCD=12∠ACD , ∴∠DPC=180°﹣∠PDC ﹣∠PCD=180°﹣12∠ADC ﹣12∠ACD =180°﹣12(∠ADC+∠ACD ) =180°﹣12(180°﹣∠A ) =90°+ 12∠A , ∴如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+2x )°; (2)∵DP 、CP 分别平分∠ADC 和∠BCD ,∴∠PDC=12∠ADC ,∠PCD=12∠BCD , ∴∠DPC=180°﹣∠PDC ﹣∠PCD=180°﹣12∠ADC ﹣12∠BCD =180°﹣12(∠ADC+∠BCD ) =180°﹣12(360°﹣∠A ﹣∠B ) =12(∠A+∠B ); (3)五边形ABCDEF 的内角和为:(5﹣2)•180°=540°,∵DP 、CP 分别平分∠EDC 和∠BCD ,∴∠PDC=12∠EDC ,∠PCD=12∠BCD , ∴∠P=180°﹣∠PDC ﹣∠PCD=180°﹣12∠EDC ﹣12∠BCD =180°﹣12(∠EDC+∠BCD ) =180°﹣12(540°﹣∠A ﹣∠B ﹣∠E ) =12(∠A+∠B+∠E )﹣90°, 即∠P=1(∠A+∠B+∠E )﹣90°;(4)同(1)可得,∠P=12(∠A 3+∠A 4+∠A 5+…∠A n )﹣(n ﹣4)×90°. 故答案为:(1)如果∠A=90°,那么∠P=135°;如果∠A=x°,则∠P=(90+2x )°(2)∠P=180°﹣∠PDC ﹣∠PCD=12(∠A+∠B )(3)∠P=12(∠A+∠B+∠E )﹣90°(4)∠P=12(∠A 3+∠A 4+∠A 5+…∠A n )﹣(n ﹣4)×90°人教版八年级数学上册《第十一章11.3多边形及内角和》课后练习(含答案)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABCDABCD第3题第7题11.3.1 多边形一、选择题1.下列图形中,是正多边形的是( )A.直角三角形B.等腰三角形C.长方形D.正方形 2.九边形的对角线有( )A.25条B.31条C.27条D.30条3. 如图,下面四边形的表示方法:①四边形ABCD ;②四边形ACBD ;③四边形ABDC ;④四边形ADCB .其中正确的有( ) A .1种B .2种C .3种D .4种4. 四边形没有稳定性,当四边形形状改变时,发生变化的是( ) A .四边形的边长B .四边形的周长C .四边形的某些角的大小D .四边形的内角和5.下列图中不是凸多边形的是( )6.(2006•柳州)把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为()A.34cm B.32cm C.30cm D.28cm8.下列图形中具有稳定性的有()A.正方形B.长方形C.梯形D.直角三角形二、填空题9.以线段a=7,b=8,c=9,d=11为边作四边形,可作_________个.10.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是_________边形.11.在平面内,由一些线段________________相接组成的_____________叫做多边形。

12.多边形_________组成的角叫做多边形的内角。

13.多边形的边与它的的邻边的__________组成的角叫做多边形的外角。

14.连接多边形_________的两个顶点的线段叫做多边形的对角线。

15._________都相等,_________都相等的多边形叫做正多边形。

16.在四边形ABCD中,AC⊥BD,AC=6cm,BD=10cm,则四边形ABCD的面积等于_________.17.将一个正方形截去一个角,则其边数_________.18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是_________.三、解答题:19.(1)从四边形的一个顶点出发可以画_____条对角线,把四边形分成了个三角形;四边形共有____条对角线.•(2)从五边形的一个顶点出发可以画_____条对角线,把五边形分成了个三角形;五边形共有____条对角线.•(3)从六边形的一个顶点出发可以画_____条对角线,把六边形分成了个三角形;六边形共有____条对角线.•(4)猜想:①从100边形的一个顶点出发可以画_____条对角线,把100边形分成了个三角形;100边形共有___•条对角线.②从n边形的一个顶点出发可以画_____条对角线,把n分成了个三角形;n边形共有_____条对角线.20.如图,在四边形ABCD中,对角线AC与BD相交于P,请添加一个条件,使四边形ABCD的面积为:S四边形ABCD=AC•BD,并给予证明.解:添加的条件:_________21.如图所示,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D (16,0),确定这个四边形的面积.22.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.已知:在四边形ABCD中,O是对角线BD上任意一点.(如图①)求证:S△OBC•S△OAD=S△OAB•S△OCD;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.23.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画图说明.11.3.1 多边形一、选择题1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.D二、填空题9.无数 10.六 11.首尾顺次,图形 12.相邻两边 13.延长线 14.不相邻 15.各边,各角 16.30cm 2 17.3或4或5 18.(n+1)2-1或n 2+2n 三、解答题19.⑴1,2,2 ⑵2,3,5 ⑶3,4,9 ⑷①97,98,4750 ②n-3,n-2,23)( n n 20.解:添加的条件: AC ⊥BD 理由:解:条件:AC ⊥BD ,理由: ∵AC ⊥BD , ∴,, ∴S 四边形ABCD =S △ACD +S △ACB =+==.21.解:分别过B 、C 作x 轴的垂线BE 、CG ,垂足为E ,G . 所以S ABCD =S △ABE +S 梯形BEGC +S △CGD =×3×6+×(6+8)×11+×2×8=94.22.证明:(1)分别过点A 、C ,做AE ⊥DB ,交DB 的延长线于E ,CF ⊥BD 于F ,则有:S △AOB =BO •AE ,S △COD =DO •CF , S △AOD =DO •AE , S △BOC =BO •CF ,∴S △AOB •S △COD =BO •DO •AE •CF , S △AOD •S △BOC =BO •DO •CF •AE ,∴S △AOB •S △COD =S △AOD •S △BOC .;(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等. 或S △AOD •S △BOC =S △AOB •S △DOC ,已知:在△ABC 中,D 为AC 上一点,O 为BD 上一点, 求证:S △AOD •S △BOC =S △AOB •S △DOC .证明:分别过点A 、C ,作AE ⊥BD ,交BD 的延长线于E ,作CF ⊥BD 于F ,则有:S △A OD =DO •AE ,S △BOC =BO •CF , S △OAB =OB •AE ,S △DOC =OD •CF , ∴S △AOD •S △BOC =OB •OD •AE •CF , S △OAB •S △DOC =BO •OD •AE •CF , ∴S △AOD •S △BOC =S △OAB •S △DOC . 23. 解:四个.如图所示:11.3.2 多边形的内角和一、选择题:1.一个多边形的外角中,钝角的个数不可能是( )A.1个B.2个C.3个D.4个2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:44.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90°B.105°C.130°D.120°二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6三、填空题:10.多边形的内角中,最多有个直角.11.从n边形的一个顶点出发可以引条对角线,这些对角线将这个多边形分成个三角形.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为.14.每一个内角都是144°的多边形有条边.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?16.一个多边形的每一个外角都等于24°,求这个多边形的边数.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.参考答案与试题解析一、选择题:1.一个多边形的外角中,钝角的个数不可能是()A.1个B.2个C.3个D.4个【考点】多边形内角与外角.【专题】计算题.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选D.【点评】本题考查了多边形的外角和:n边形的外角和为360°.2.不能作为正多边形的内角的度数的是()A.120°B.(128)°C.144°D.145°【考点】多边形内角与外角.【分析】根据n边形的内角和(n﹣2)•180°分别建立方程,求出n,由于n≥3的整数即可得到D选项正确.【解答】解:A、(n﹣2)•180°=120•n,解得n=6,所以A选项错误;B、(n﹣2)•180°=(128)°•n,解得n=7,所以B选项错误;C、(n﹣2)•180°=144°•n,解得n=10,所以C选项错误;D、(n﹣2)•180°=145°•n,解得n=,不为整数,所以D选项正确.故选D.【点评】本题考查了多边形的内角和定理:n边形的内角和为(n﹣2)•180°.3.若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1 B.1:1 C.5:2 D.5:4【考点】多边形内角与外角.【分析】多边形的外角和是360°,且根据多边形的各内角都相等则各个外角一定也相等,根据选项中的比例关系求出外角的度数,根据多边形的外角和定理求出边数,如果是≥3的正整数即可.【解答】解:A、外角是:180×=60°,360÷60=6,故可能;B、外角是:180×=90°,360÷90=4,故可能;C、外角是:180×=度,360÷=7,故可能;D、外角是:180×=80°.360÷80=4.5,故不能构成.故选D.【点评】本题主要考查了多边形的外角和定理,理解外角与内角的关系是解题的关键.4.一个多边形的内角中,锐角的个数最多有()A.3个B.4个C.5个D.6个【考点】多边形内角与外角.【分析】利用多边形的外角和是360度即可求出答案.【解答】解:因为多边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,多边形的内角与相邻的外角互为邻补角,则外角中最多有三个钝角时,内角中就最多有3个锐角.故选A.【点评】本题考查了多边形的内角问题.由于内角和不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.5.四边形中,如果有一组对角都是直角,那么另一组对角一定()A.都是钝角B.都是锐角C.是一个锐角、一个钝角D.互补【考点】多边形内角与外角.【分析】由四边形的内角和等于360°,又由有一组对角都是直角,即可得另一组对角一定互补.【解答】解:如图:∵四边形ABCD的内角和等于360°,即∠A+∠B+∠C+∠D=360°,∵∠A=∠C=90°,∴∠B+∠D=180°.∴另一组对角一定互补.故选D.【点评】此题考查了四边形的内角和定理.此题难度不大,解题的关键是注意掌握四边形的内角和等于360°.6.若从一多边形的一个顶点出发,最多可引10条对角线,则它是()A.十三边形B.十二边形C.十一边形D.十边形【考点】多边形的对角线.【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.【解答】解:设这个多边形是n边形.依题意,得n﹣3=10,∴n=13.故这个多边形是13边形.故选:A.【点评】多边形有n条边,则经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.7.若一个多边形共有十四条对角线,则它是()A.六边形B.七边形C.八边形D.九边形【考点】多边形的对角线.【分析】根据多边形对角线公式,可得答案.【解答】解:设多边形为n边形,由题意,得=14,解得n=7,故选:B.【点评】本题考查了多边形的对角线,熟记公式并灵活运用是解题关键.8.一个凸多边形除一个内角外,其余各内角的和为2570°,则这个内角的度数等于()A.90°B.105°C.130°D.120°【考点】多边形内角与外角.【专题】计算题.【分析】可设这是一个n边形,这个内角的度数为x度,利用多边形的内角和=(n﹣2)•180°,根据多边形内角x的范围,列出关于n的不等式,求出不等式的解集中的正整数解确定出n的值,从而求出多边形的内角和,减去其余的角即可解决问题.【解答】解;设这是一个n边形,这个内角的度数为x度.因为(n﹣2)180°=2570°+x,所以x=(n﹣2)180°﹣2570°=180°n﹣2930°,∵0<x<180°,∴0<180°n﹣2930°<180°,解得:16.2<n<17.2,又n为正整数,∴n=17,所以多边形的内角和为(17﹣2)×180°=2700°,即这个内角的度数是2700°﹣2570°=130°.故本题选C.【点评】本题需利用多边形的内角和公式来解决问题.二、中考题与竞赛题9.若一个多边形的内角和等于1080°,则这个多边形的边数是()A.9 B.8 C.7 D.6【分析】多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.【解答】解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、填空题:10.多边形的内角中,最多有 4 个直角.【考点】多边形内角与外角.【分析】由多边形的外角和为360°可求得答案.【解答】解:当内角和90°时,它相邻的外角也为90°,∵任意多边形的外角和为360°,∴360°÷90°=4.故答案为:4.【点评】本题主要考查的是多边形的内角与外角,明确任意多边形的外角和为360°是解题的关键.11.从n边形的一个顶点出发可以引n﹣3 条对角线,这些对角线将这个多边形分成n﹣2 个三角形.【考点】多边形的对角线.【分析】根据n边形对角线的定义,可得n边形的对角线,根据对角线的条数,可得对角线分成三角形的个数.【解答】解从n边形的一个顶点出发可以引n﹣3条对角线,这些对角线将这个多边形分成n﹣2个三角形,故答案为:n﹣3,n﹣2.【点评】本题考查了多边形的对角线,由对角线的定义,可画出具体多边形对角线,得出n边形的对角线.12.如果一个多边形的每一个内角都相等,且每一个内角都大于135°,那么这个多边形的边数最少为9 .【分析】根据多边形的外角和定理,列出不等式即可求解.【解答】解:因为n边形的外角和是360度,每一个内角都大于135°即每个外角小于45度,就得到不等式:,解得n>8.因而这个多边形的边数最少为9.【点评】本题已知一个不等关系就可以利用不等式来解决.13.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比为9:2,则这个多边形的边数为11 .【考点】多边形内角与外角.【分析】先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的360°,从而可代入公式求解.【解答】解:设多边形的一个内角为9x度,则一个外角为2x度,依题意得9x+2x=180°解得x=()°360°÷[2×()°]=11.答:这个多边形的边数为11.【点评】本题考查多边形的内角与外角关系、方程的思想.关键是记住多边形的一个内角与外角互补、及外角和的特征.14.每一个内角都是144°的多边形有10 条边.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给多边形的每个内角均相等,故又可表示成120°n,列方程可求解.此题还可以由已知条件,求出这个多边形的外角,再利用多边形的外角和定理求解.【解答】解:解法一:设所求n边形边数为n,则144°n=(n﹣2)•180°,解得n=10;解法二:设所求n边形边数为n,∵n边形的每个内角都等于144°,∴n边形的每个外角都等于180°﹣144°=36°.又因为多边形的外角和为360°,即36°•n=360°,∴n=10.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.四、基础训练:15.如图所示,用火柴杆摆出一系列三角形图案,按这种方式摆下去,当摆到20层(N=20)时,需要多少根火柴?【考点】规律型:图形的变化类.【分析】关键是通过归纳与总结,得到其中的规律,按规律求解.【解答】解:n=1时,有1个三角形,需要火柴的根数为:3×1;n=2时,有5个三角形,需要火柴的根数为:3×(1+2);n=3时,需要火柴的根数为:3×(1+2+3);…;n=20时,需要火柴的根数为:3×(1+2+3+4+…+20)=630.【点评】此题考查的知识点是图形数字的变化类问题,本题的关键是弄清到底有几个小三角形.16.一个多边形的每一个外角都等于24°,求这个多边形的边数.【考点】多边形内角与外角.【分析】根据多边形外角和为360°及多边形的每一个外角都等于24°,求出多边形的边数即可.【解答】解:设这个多边形的边数为n,则根据多边形外角和为360°,可得出:24×n=360,解得:n=15.所以这个多边形的边数为15.【点评】本题考查了多边形内角与外角,解答本题的关键在于熟练掌握多边形外角和为360°.五、提高训练17.一个多边形的每一个内角都相等,一个内角与一个外角的度数之比为m:n,其中m,n是互质的正整数,求这个多边形的边数(用m,n表示)及n的值.【考点】多边形内角与外角.【分析】设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度得到m:n=180(a﹣2):360,从而用m、n表示出a的值.【解答】解:设多边形的边数为a,多边形内角和为(a﹣2)180度,外角和为360度,m:n=180(a﹣2):360a=,因为m,n 是互质的正整数,a为整数,所以n=2,故答案为:,2.【点评】本题考查了多边形的内角与外角,解答本题的关键在于熟练掌握多边形内角和与多边形外角和.六、探索发现18.从n边形的一个顶点出发,最多可以引多少条对角线?请你总结一下n边形共有多少条对角线.【考点】多边形的对角线.【分析】从n边形的一个顶点出发,最多可以引n﹣3条对角线,然后即可计算出结果.【解答】解:过n边形的一个顶点可引出n﹣3条对角线;n边形共有条对角线.【点评】本题主要考查的是多边形的对角线,掌握多边形的对角线公式是解题的关键.。

相关文档
最新文档