MC9S12XS128MAA 教程(完整版)

合集下载

飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置

飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置

飞思卡尔MC9S12XS128单片机各模块使用方法及寄存器配置手把手教你写S12XS128程序--PWM模块介绍该教程以MC9S12XS128单片机为核心进行讲解,全面阐释该16位单片机资源。

本文为第一讲,开始介绍该MCU的PWM模块。

PWM 调制波有8个输出通道,每一个输出通道都可以独立的进行输出。

每一个输出通道都有一个精确的计数器(计算脉冲的个数),一个周期控制寄存器和两个可供选择的时钟源。

每一个P WM 输出通道都能调制出占空比从0—100% 变化的波形。

PWM 的主要特点有:1、它有8个独立的输出通道,并且通过编程可控制其输出波形的周期。

2、每一个输出通道都有一个精确的计数器。

3、每一个通道的P WM 输出使能都可以由编程来控制。

4、PWM 输出波形的翻转控制可以通过编程来实现。

5、周期和脉宽可以被双缓冲。

当通道关闭或PWM 计数器为0时,改变周期和脉宽才起作用。

6、8 字节或16 字节的通道协议。

7、有4个时钟源可供选择(A、SA、B、SB),他们提供了一个宽范围的时钟频率。

8、通过编程可以实现希望的时钟周期。

9、具有遇到紧急情况关闭程序的功能。

10、每一个通道都可以通过编程实现左对齐输出还是居中对齐输出。

1、PWM启动寄存器PWMEPWME 寄存器每一位如图1所示:复位默认值:0000 0000B图1 PWME 寄存器每一个PWM 的输出通道都有一个使能位P WMEx 。

它相当于一个开关,用来启动和关闭相应通道的PWM 波形输出。

当任意的P WMEx 位置1,则相关的P WM 输出通道就立刻可用。

用法:PWME7=1 --- 通道7 可对外输出波形PWME7=0 --- 通道7 不能对外输出波形注意:在通道使能后所输出的第一个波形可能是不规则的。

当输出通道工作在串联模式时(PWMCTL 寄存器中的CONxx置1),那么)使能相应的16位PWM 输出通道是由PWMEx 的高位控制的,例如:设置PWMCTL_CON01 = 1,通道0、1级联,形成一个16位PWM 通道,由通道 1 的使能位控制PWM 的输出。

MC9S12XS128中文资料

MC9S12XS128中文资料
PWM标度B寄存器。用于控制Clock SB的值,Clock SB = Clock A / (2 * PWMSCLB),当PWMSCLB=0x00时,相当于PWMSCLB=256。
PWMCNTx:
PWM通道计数寄存器。
每个通道都有一个独立的8位计数器,其计数速率由所选择的时钟源决定。计数器的值可以随时读取而不影响计数器运行,也不影响PWM波形输出。在左对齐模式时,计数器从0计数至周期寄存器的值减1;在中心对齐模式,计数器从0计数至周期寄存器的值,然后再倒计数至0。
CFORC:
定时器比较强制寄存器。复位值为0x00。
FOCx=1将强制该位对应通道产生输出比较成功动作,但CxF中断标志位不置位。任何通道的强制比较成功动作若与普通比较成功动作同时发生,则强制比较成功动作优先发生,且CxF标志位不会置位。
被置位后瞬间将自动清除该位,所以任何时候对该寄存器的读动作都将返回0x00。
OC7M:
输出比较通道7屏蔽寄存器。复位值为0x00。
Setting the OC7Mx (x ranges from 0 to 6) will set the corresponding port to be an output port when the corresponding TIOSx (x ranges from 0 to 6) bit is set to be an output compare and the corresponding OCPDx (x ranges from 0 to 6) bit is set to zero to enable the timer port.A successful channel 7 output compare overrides any channel 6:0 compares. For each OC7M bit that is set, the output compare action reflects the corresponding OC7D bit.

第9章 MC9S12XS128定时器模块及其应用实例

第9章 MC9S12XS128定时器模块及其应用实例
【作为定时基准】产生内部定时,例如用于定时采样等。 MC9S12XS128定时器模块称为TIM(Timer Module)。
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
本节内容
9.2 TIM模块结构和工作原理 9.2.1 TIM模块结构 9.2.2 TIM模块工作原理 9.2.3 TIM模块寄存器 9.2.4 TIM模块中断系统
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
9.3 TIM模块的自由运行计数器和定时器基本寄存器及设置
9.3.1 自由运行主定时器与时钟频率设置 定时器系统控制寄存器TSCR1中的TEN位是TIMCLK时钟的总开关。 当TEN=0时,自由运行主定时器的时钟被关断,定时器停止工作,但并不
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
9.1 TIM模块概述 定时器/计数器的特点:
(1)可以有多种工作方式——定时方式或计数方式等。 (2)计数器的模值可变——计数的最大值有一定的限制,取决于计数器
的位数。计数的最大值限制了定时的最大值。 (3)可以根据规定的定时或计数值,当定时时间到或到达计数终点时,
《MC9S12XS单片机原理及嵌入式系统开发》
第9章 MC9S12XS128定时器模块及其应用实例
9.1 TIM模块概述
9.2.2 TIM模块工作原理
【输入捕捉】
输入捕捉(Input Capture,IC):通过捕获自由运行计 数器的计数值来检测外部事件和记录选定的输入信号 跳变边沿的时间。
《MC9S12XS单片机原理及嵌入式系统开发》

飞思卡尔MC9S12XS128功能模块驱动

飞思卡尔MC9S12XS128功能模块驱动

用了一年多飞思卡尔MC9S12XS128这款处理器,现在总结下各个功能模块的驱动.//锁相环时钟的初始化总线频率为40MHz(总线时钟为锁相环时钟的一半)//晶振为11.0592MHzvoid PLL_init(void) //PLLCLK=2*OSCCLK*(SYNR+1)/(REFDV+1) { //锁相环时钟= 2*11.0592*(39+1)/(10+1)=80MHz 总线时钟为40MHzREFDV=0x0A;SYNR=0x67; //0110_0111 低6位的值为19,高两位的值为推荐值while(CRGFLG_LOCK != 1);CLKSEL_PLLSEL = 1; //选定锁相环时钟//FCLKDIV=0x0F; //Flash Clock Divide Factor 16M/16=1M}//周期中断定时器的初始化-// //周期中断通道1用于脉冲累加器的定时采样,定时周期为: 10ms= (199+1)*(1999+1)/(40M) (没有使用)//周期中断通道0用于控制激光管的轮流发射,定时周期为: 2000us= (399+1)*(199+1)/(40M)//2011/4/4 15:24 定时时间改为1msvoid PIT_init(void){PITCFLMT_PITE = 0; // 禁止使用PIT模块 PITCFLMT :PIT 控制强制加载微计数器寄存器。

PITCE_PCE0 = 1; // 使能定时器通道0//PITCE_PCE1 = 1; //使能定时器通道1PITMUX = 0; //通道0,和通道1均选择8位微计数器0//修改时间只需要改下面四行PITMTLD0 = 199; //向8位微计数器中加载的值PITLD0 = 199; //向16位计数器中加载的值//PITMTLD1 = 39; //向8位微计数器中加载的值 8位,最大值不要超过255//PITLD1 = 1999; //向16位计数器中加载的值PITINTE |= 0x01; //使能定时器通道0的中断PITCFLMT_PITE = 1;//使能PIT模块}//脉冲累加器的初始化, PT7口外接光电编码器//最新修改: 2011/3/25 16:53void PT7_PulAcc_Init(void){DDRT &= 0x77;//设置PT7,PT3口为输入(硬件上PT7,PT3通过跳线联到了一块)PERT |= 0x80; //使能通道7的上拉电阻PPST &= 0x7f; //电阻设为上拉电阻TCTL4 &= 0x3f; //禁止PT3的输入捕捉功能PACTL = 0x50; //启动脉冲累加计数器,上升沿触发,禁止触发中断和溢出中断,主定时器禁止}//通道1用于控制舵机1 PWM 高电平有效,//通道3用于控制电机1 PWM 低电平有效,这与前两代车高电平有效有区别!!!!!//通道7用于给上排激光管提供PWM信号 PWM高电平有效!!!!!//通道6用于给下排激光管提供PWM信号 PWM高电平有效!!!!!// 2011-03-17 7:56 增加了A端口的使用新增通道6//2011-6-9 23:03 //增加了通道4,5的联合使用,用于控制下排方向舵机 void PWM_init(void){PWME = 0x00;//PWM禁止PWMPRCLK = 0x03; // ClockA=40M/8=5M, Clock B = 40M/1=40M PWMSCLB = 10; // Clock SB= 40/2*10= 2MHz(供电机)PWMSCLA = 5; // SA = Clock A/2*5 = 5M/10 = 500K = SA 用于控制舵机PWMPOL = 0xe2; //1110_0010通道7,通道6与通道1、通道5先输出高电平然后输出低电平,POLx=1先输出高电平后输出低电平; PPOLx=0先输出低电平)PWMCAE = 0x00; // 左对齐输出(CAEx=0为左对齐,反之为中心对齐)//PWMCLK = 0010_1010 (0 1 4 5位控制SA_1;或A_0; 2 3 6 7位控制SB_1 或B_0)//为PWM通道1选择时钟 SA(500KHz),//为PWM通道5选择时钟 SA(500KHz),//为通道3选择时钟 SB(10MHz)//为通道7选择时钟B(40MHz)//为通道6选择时钟B(40MHz)PWMCLK = 0x2A; //0010_1010PWMCTL = 0x70; //0111_0000 CON45=1,把通道4,5联合使用。

飞思卡尔MC9S12XS128单片机重点模块讲解

飞思卡尔MC9S12XS128单片机重点模块讲解


这一点和 51 单片机的 I/O 口有区别,在典型的 51 单片中 P0 口内部没有上拉电阻,但作为 I/O 口使用时需要外接排阻。其他 P1-P3 口则可以直接作为双向口使用,51 单片在上电复位 后端口被默认的置 1.在 51 单片中端口的某一位置 0 时端口作为输出口使用,置 1 时作为输 入口使用。例如如果我们想把 P1 作为输出口使用时我们可以在程序开始时写 P1=0x00; 如果 我们想把 P1 口作为输入口使用时我们可以写 P1=0xff; 这一点正好和飞思卡尔的 128 单片机 相反,另外 128 单片有专门的数据方向寄存器 DDRA 或者 DDRB 等来管理各个端口的输入 输出选择,51 单片没有。如果我们想把端口 A 作为输入口使用,我们只需写 DDRA=0x00; 即所有位都置 0,如果我们想把端口 A 作为输出口使用,我们只需要写 DDRA=0xff; 即所有 位都置 1 ,而如 果我们想要 把端口 A 的高四 位做输入口 ,低 4 位做输 出口时我们 就 写 DDRA=0x0f; 当我们需要将该端口的某一位做输出或者输入口使用时只需要将该端口对应的 方向位置 1 或者置 0 即可。例如我们想把 A3 口作输入口, A4 口作输出口使用时我们只需 要写: DDRA_DDRA3=0; DDRA_DDRA4=1; 即可。 � � 对于数据方向寄存器的使用只要记住:置 1——输出 置 0——输入 PORTA 数据寄存器也是由 8 位组成,任何时候都可以对它进行读写操作。
#define uchar unsigned char //数据类型宏替换 #define uint unsigned int /*------------------------延时函数--------------------------------------*/ void delay(uint a) { uint i,j; for(i=0;i<a;i++) for(j=0;j<a;j++) ; } /*--------------------------指示灯闪烁函数-------------------------------*/ void light() { while(INPUT) { PORTB=0x3f; delay(500); PORTB=0x00; delay(500); } } //6 只灯全点亮 //延时一段时间 //6 只灯全熄灭 //延时一段时间 //判断输入电平的高低

MC9S12XS128MAL V2.6系统板说明书.pdf

MC9S12XS128MAL V2.6系统板说明书.pdf

MC9S12XS128MAL V2.6系统板说明书一、产品介绍MC9S12XS128MAL V2.6系统板专为智能车竞赛设计,采用全引脚芯片MC9S12XS128MAL,资源丰富。

二、功能及特点1、最高可以超频到96MHz bus clock(不建议);2、BDM 接口;3、复位键;4、PB口上接8 个发光二极管D0-D7(绿);5、电源指示发光二极管(红);6、带有RS232串行接口7、参考可以选择5V 或者3.0V,默认为3.0V,也可以去掉VRH 电阻外接参考电压;8、两个电源接口;9、插针为100mil的整数倍,标准点阵板可以直接插上去;10、板子尺寸:40*45mm。

11、采用双排直插式,布线更方便;12、重新优化EMI/EMC,增强抗干扰能力,Runing 极稳定;13、PCB采用加厚镀金工艺和焊盘阻焊技术,抗氧化能力强;三、接口及使用1、下载接口下载接口如图所示,一定注意:不要将BDM地下载接头插反,不然会烧坏单片机。

2、串行接口单片机开发板将单片机串口1进行了RS232电平转换,可与计算机串口直接相连。

单片机串口2为TTL电平,由IO引脚引出。

RS232串口由白色三针插座引出,T为发,R为收,GND为地,如图所示。

3、AD参考如下图所示,51欧姆电阻为参考电压选择电阻,焊接在5V端,选择板子地供电电压5V作为AD参考电压,焊接在3.3V(实际为3V)端,选择3V电压作为AD参考电压,也可将电阻去掉,从外接引脚上输入自己期望地AD参考电压。

考虑到摄像头的输出电压只有1V左右,实际单片机开发板默认选择3V参考电压。

4、引脚接口单片机开发板的引脚如图所示,所有引脚均已引出,具体引脚定义可参考MC9S12XS256.pdf。

-智能车制作-GND GND AD15AD14 AD13 AD12AD11AD10AD9AD8A7A5A3A1E0E2H0H2E4E6H4H6NC B7 B5 Vcc VRH AD7 AD6 AD5 AD4 AD3 AD2 AD1AD0A6A4A2A0E1E3H1H3E5E7H5H7NC RES B6VRL M6 TXI S3 S5 S7 J6 M4 M2 M0 P7P5P3 P1K3K1T0T2T4T6K5J1B0B2 B4 GND M7 RXO S2 S4 S6 J7 M5 M3 M1 K7P6P4 P2P0K2K0T1T3T5T7K4J0B1 B3单片机开发板引脚定义,具体含义参考MC9S12XS256.pdf。

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释

飞思卡尔MC9S12XS128各模块初始化程序--超详细注释//**************************************************************************// 武狂狼2014.5.1 整理// 新手入门的助手////***************************************************************************注释不详细/*********************************************************/函数名称:void ATD0_init(void)函数功能:ATD初始化入口参数:出口参数:/***********************************************************/void ATD0_init(void){ATD0DIEN=0x00; //使用模拟输入功能|=1;数字输入功能// ATD0CTL0=0x07; //Bit[3:0]WRAP[3:0] 反转通道选择位ATD0CTL1=0x40; // 12位精度,采样前不放电 Bit[7]ETRIGSEL(外部触发源选择位。

=0选择A/D通道AN[15:0] |=1选择 ERTIG3~0)和Bit[3:0]ETRIGCH[3:0]选择外部触发通道// Bit[6:5]SRES[1:0]A/D分辨率选择位。

Bit[4]SMP_DIS =0采样前不放电|=1采样前内部电容放电,这会增加2个A/D时钟周期的采样时间,有助于采样前进行开路检测ATD0CTL2=0x40; // 快速清零,禁止中断,禁止外部触发ATD0CTL3=0x90; // 右对齐,转换序列长度为2,非FIFOATD0CTL4=0x03; // 采样时间4个周期,PRS=31,F(ATDCLK)=F(BUS)/(2(PRS+1))// ATD0CTL5=0x30; //启动AD转换序列//:对每项数据采集时,用到哪个通道采样可在相应子函数内设置某一通道(见Sample_AD.c)while(!ATD0STAT2L_CCF0);/*********************************************************/函数名称:void PIT_init(void)函数功能:初始化PIT 设置精确定时时间(1s)入口参数:无出口参数:无说明:无/***********************************************************/void PIT_init(void){PITCFLMT=0x00; //禁止PIT模块Bit[7] PITE:PIT模块使能位,0禁用|1使能// Bit[6] PITSWAI:等待模式下PIT停止位,0等待模式下,PIT模块正常运行| 1等待模式下,PIT模块停止产生时钟信号,冻结PIT模块// Bit[5] PITFRZ: 冻结模式下PIT计数器冻结位。

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤w

飞思卡尔16位单片机MC9S12XS128加密(程序下载不进去,正负极未短路,通电芯片不发烫)后解锁的方法及步骤/*****************************************************************************/ *本人用此法成功解救了4块板子【窃喜!】,此说明是本人边操作边截图拼成的,有些是在别的说明上直接截图【有些图本人不会截取,就利用现成的了,不过那也是本人用豆和财富值换来的】,表达不清之处还望见谅,大家将就着看吧!如能有些许帮助,我心甚慰!!!————武狂狼2014.4.23 /*****************************************************************************/编译软件:CW5.1版本,下载器:飞翔BDMV4.6 【1】,连接好单片机,准备下载程序,单击下载按钮出现以下界面或(图1.1)图 1.1——4中所有弹出窗口均单击“取消”或红色“关闭”按钮依次进入下一界面(图1.2)(图1.3)(图1.4)******************************************************************************* *******************************************************************************【2】单击出现如下图所示下拉列表,然后单击(图2.1)出现下图(图2.2)对话框,按下面说明操作(图2.2)弹出图2.3,单击按钮,依次出现如图2.4--5窗口,均单击(图2.3)(图2.4)******************************************************************************* *******************************************************************************【3】单击出现下拉列表,然后单击下拉列表中单击按钮出现如下界面,单击选择相对应的单片机型号(我选的红色方框里的HCS12X….),单击OK. PS:【此步骤是本人自己试出来的,若不进行此操作,图3.3中下拉列表中无要找选项】(图3.1)(图3.3)(图3.4)(图3.5)红色方框2中默认即为所要选的文件,此步只需单击确认按钮即可,如有不同读者酌情处置。

飞思卡尔16位单片机9S12XS128使用(一些初始化)

飞思卡尔16位单片机9S12XS128使用(一些初始化)

飞思卡尔16位单片机9S12XS128使用(一些初始化)飞思卡尔16位单片机9S12XS128使用最近做一个关于飞思卡尔16位单片机9S12XS128MAA的项目,以前未做过单片机,故做此项目颇有些感触。

现记录下这个艰辛历程。

以前一直是做软件方面的工作,很少接触硬件,感觉搞硬件的人很高深,现在接触了点硬件发现,与其说使用java,C#等语言写程序是搭积木,不如说搞硬件芯片搭接的更像是在搭积木(因为芯片是实实在在拿在手里的东西,而代码不是滴。

还有搞芯片内部电路的不在此列,这个我暂时还不熟悉)。

目前我们在做的这个模块,就是使用现有的很多芯片,然后根据其引脚定义,搭接出我们需要的功能PCB 板,然后为其写程序。

废话不多说,进入正题。

单片机简介:9S12XS128MAA单片机是16位的单片机80个引脚,CPU是CPU12X,内部RAM8KB,EEPROM:2KB,FLASH:128KB,外部晶振16M,通过内部PLL 可得40M总线时钟。

9S12XS128MAA单片机拥有:CAN:1个,SCI:2个,SPI:1个,TIM:8个,PIT:4个,A/D:8个,PWM:8个下面介绍下我们项目用到的几个模块给出初始化代码1、时钟模块初始化单片机利用外部16M晶振,通过锁相环电路产生40M的总线时钟(9S12XS128系列标准为40M),初始化代码如下:view plaincopy to clipboardprint?1/******************系统时钟初始化****************/2void Init_System_Clock()3{4 asm { // 这里采用汇编代码来产生40M的总线5 LDAB #36 STAB REFDV78 LDAB #49 STAB SYNR10 BRCLR CRGFLG,#$08,*//本句话含义为等待频率稳定然后执行下一条汇编语句,选择此频率作为总线频率11 BSET CLKSEL,#$8012 }13}上面的代码是汇编写的,这个因为汇编代码量比较少,所以用它写了,具体含义注释已经给出,主函数中调用此函数即可完成时钟初始化,总线时钟为40M.2、SCI模块初始化单片机电路做好了当然少不了和PC之间的通信,通信通过单片机串口SCI链接到PC端的COM口上去。

飞思卡尔MC9S12XS128(定时器)ECT寄存器详解

飞思卡尔MC9S12XS128(定时器)ECT寄存器详解

1、定时器IC/OC功能选择寄存器TIOSIOS[7..0]IC/OC功能选择通道0 相应通道选择为输入捕捉(IC)1 相应通道选择为输出比较(OC)2、定时器比较强制寄存器 CFORCFOC[7..0]设置该寄存器某个FOCn位为1将导致在相应通道上立即产生一个输出比较动作,在初始化输出通道时候非常有用。

【说明】这个状态和正常状态下输出比较发生后,标志位未被置位后的情况相同。

3、输出比较7屏蔽寄存器 OC7MOC7M[7..0]OC7(即通道7的输出比较)具有特殊地位,它匹配时可以直接改变PT7个输出引脚的状态,并覆盖各个引脚原来的匹配动作结果,寄存器OC7M决定哪些通道将处于OC7的管理之下。

OC7M中的各位与PORTT口寄存器的各位一一对应。

当通过TIOS将某个通道设定为输出比较时,将OC7M中的相应位置1,对应的引脚就是输出状态,与DDR中的对应位的状态无关,但OC7Mn并不改变DDR相应位的状态。

【说明】OC7M具有更高的优先级,它优于通过TCTL1和TCTL2寄存器中的OMn和OLn设定的引脚动作,若OC7M中某个位置1,就会阻止相应引脚上由OM和OL设定的动作。

4、输出比较7数据寄存器 OC7DOC7D[7..0]OC7M对于其他OC输出引脚的管理限于将某个二进制值送到对应引脚,这个值保存在寄存器OC7D中的对应位中。

当OC7匹配成功后,若某个OC7Mn=1,则内部逻辑将OC7Dn送到对应引脚。

OC7D中的各位与PORTT口寄存器的各位一一对应。

当通道7比较成功时,如果OC7M中的某个位为1,OC7D中的对应位将被输出到PORTT的对应引脚。

【总结】通道7的输出比较(OC7)具有特殊的位置,在OC7Mn和OC7Dn两个寄存器设置以后,OC7成功输出后将会引起一系列的动作。

比如:OC7M0=1,则通道0处在OC7的管理下,在OC7成功后,系统会将OC7D0的逻辑数据(仅限0或者1)反应在PT0端口上。

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

飞思卡尔MC9S12XS128单片机中断优先级设置简易教程

本教程试图用最少的时间教你飞思卡尔XS128单片机的中断优先级设置方法和中断嵌套的使用,如果是新手请先学习中断的基本使用方法。

先来看看XS128 DataSheet 中介绍的相关知识,只翻译有用的:七个中断优先级每一个中断源都有一个可以设置的级别高优先级中断的可以嵌套低优先级中断复位后可屏蔽中断默认优先级为1同一优先级的中断同时触发时,高地址(中断号较小)的中断先响应注意:高地址中断只能优先响应,但不能嵌套同一优先级低地址的中断下面直接进入正题,看看怎么设置中断优先级:XS128中包括预留的中断一共有128个中断位,如果为每个中断都分配一个优先级寄存器的话会非常浪费资源,因此飞思卡尔公司想出了这样一种办法:把128个中断分为16个组,每组8个中断。

每次设置中断时,先把需要的组别告诉某个寄存器,再设置8个中断优先寄存器的某一个,这样只需9个寄存器即可完成中断的设置。

分组的规则是这样的:中断地址位7到位4相同的中断为一组,比如MC9SX128.h中这些中断的位7到位3都为D,他们就被分成了一组。

0~F正好16个组。

INT_CFADDR就是上面说到的用来设置组别的寄存器:我们需要设置某个组别的中断时,只要写入最后8位地址就行了,比如设置SCI0的中断优先级,就写入0xD0。

设置好组别之后,我们就要该组中相应的中断进行设置,设置中断的寄存器为这其实是一组寄存器,一共有8个,每个都代表中断组中的一个中断。

对应规则是这样的:中断地址的低四位除以2比如还是SCI0,低四位是6,除以二就是3,那么我们就需要设置INT_CFDATA3 往INT_CFDATAx中写入0~7就能设置相应的中断优先级了拿我本次比赛的程序来举个例子:我们的程序中需要3个中断:PIT0,PORTH,SCI0。

PIT0定时检测传感器数值,PORTH连接干簧管进行起跑线检测,SCI0接收上位机指令实现急停等功能。

因此中断优先级要SCI0>PORTH>PIT0。

MC9S12XS128例程

MC9S12XS128例程

MC9S12XS128例程SCI程序串行通信时MCU与外部设备之间进行通信的一种简单而有效的硬件方法。

无论用查询方式还是中断方式进行串行通信编程,在程序初始化时均必须对SCI进行初始化。

初始化主要包括波特率设置、通信格式的设置、发送接收数据方式的设置等。

对SCI进行初始化,需要设置如下几部分:(1)定义波特率一般选内部总线时钟为串行通信的时钟源。

通过设置SCI波特率寄存器SCI0BD的波特率选择位SBR[12:0],来选择合适的分频系数。

(2)写控制字到SCI控制寄存器1(SCI0CR1)设置是否允许SCI、数据长度、输出格式、选择唤醒方法、是否校验等。

(3)写控制字到SCI控制寄存器2(SCI0CR2)设置是否允许发送与接收、是中断接收还是查询接收等。

串行通信程序如下:/** write in “Init.h” **/#include /* common defines and macros */#include "derivative.h" /* derivative-specific definitions */ //void InitBusClk(void); //可以不使用锁相环void InitSci(void);/** write in “Init.c” **///初始化程序#include "Init.h"/*//------------初始化Bus Clock------------//void InitBusClk(void) {DisableInterrupts;CLKSEL=0X00; //PLLSEL 1 : Bus Clock=PLLCLK/2// 0 : Bus Clock=OSCCLK/2PLLCTL_PLLON=1; //开启PLLSYNR=0; //OSCCLK=16MHzREFDV=0X0F;//PLLCLK=2*OSCCLK*[(1+SYNR)/(1+REFDV]=32/16=2MHz while(!(CRGFLG_LOCK==1)); //直到LOCK=1,when PLL is ready,退出循环CLKSEL_PLLSEL=1; //PLLSEL 1 : Bus Clock=PLLCLK/2=2MHz/2=1MHz// 0 : Bus Clock=OSCCLK/2=16M/2=8MHz}*///---------------初始化SCI---------------//void InitSci(void){SCI0BD=4545; //设波特率为110//SCI baud rate = SCI module clock/(16*SCIBD)=Bus Clock/(16*SCIBD)// = 8MHz/(16*4545)=500kHz/4545=110bps//SCIBD : SBR12-SBR0,Value from 1 to 8191SCI0CR1=0;SCI0CR2=0X2C; // 0010 1100 RIE=1,TE=1,RE=1// RIE=1 RDRF and OR interrupt requests enabled// TE=1 Transmitter enabled// RE=1 Receiver enabled}/** write in “SCI.h” **///函数声明unsigned char SciRead();void SciWrite(byte);/** write in “SCI.c” **///串行通信程序#include "Init.h"#include "SCI.h"//---------------读SCI数据---------------//unsigned char SciRead(){if(SCI0SR1_RDRF==1){//数据从移位寄存器传送到SCI数据寄存器SCIDRL//SCI0SR1_RDRF==1表明数据寄存器SCI0DRL为满,可以接收新的数据SCI0SR1_RDRF=1; //读取SCI数据寄存器会将RDRF清除,重新置位return SCI0DRL; //返回数据寄存器的数值}}//---------------写SCI数据---------------//void SciWrite(byte sci_value){while(!(SCI0SR1&0X80));//SCI0SR1_TDRE==1表明数据寄存器SCI0DRL为空,可以发送新的数据SCI0DRH=0;SCI0DRL=sci_value; //发送新的数据至数据寄存器SCI0DR}//---------------中断程序-----------------//#pragma CODE_SEG NON_BANKEDinterrupt 20 void Sci_Intrrupt(void){ //SCI的中断向量号为20 byte text;DisableInterrupts; //关中断text=SciRead(); //接收数据寄存器SCI0DRL中的数据asm nop;asm nop;SciWrite(text); //发送数据至数据寄存器SCI0DRLDDRA=0XFF; //设A口为输出,用来显示是否执行中断,可以不用PORTA_PA6=!PORTA_PA6;EnableInterrupts; //开中断}#pragma CODE_SEG DEFAULT/** write in “main.c”” **/#include "Init.h"#include "SCI.h"void main(void) {/* put your own code here */_DISABLE_COP(); //关看门狗DisableInterrupts; //关中断//InitBusClk();InitSci();EnableInterrupts; //开中断for(;;) {// _FEED_COP(); /* feeds the dog */} /* loop forever *//* please make sure that you never leave main */}A/D转换应用实例要让ATD 开始转换工作,必须经过以下三个步骤:1.将ADPU 置1,使ATD 启动;2.按照要求对转换位数、扫描方式、采样时间、时钟频率及标志检查等方式进行设置;3.发出启动命令;如果上电默认状态即能满足工作要求,那么只要将ADPU 置1,然后通过控制寄存器发出转换命令,即可实现转换。

MC9S12XS128_中文手册

MC9S12XS128_中文手册

第一章端口整合模块端口A,B和K为通用I/O接口端口E整合了IRQ,XIRQ中断输入端口T整合了1个定时模块端口S整合了2个SCI模块和1个SPI模块端口M整合了1个MSCAN端口P整合了PWM模块,同时可用作外部中断源输入端口H和J为通用I/O接口,同时可用作外部中断源输入端口AD整合了1个16位通道ATD模块大部分I/O引脚可由相应的寄存器位来配置选择数据方向、驱动能力,使能上拉或下拉式装置。

当用作通用IO口时,所有的端口都有数据寄存器和数据方向寄存器。

对于端口T,S,M,P,H,和J有基于每个针脚的上拉和下拉控制寄存器。

对于端口AD有基于每个针脚的上拉寄存器。

对于端口A、B、E和K,有一个基于端口的上拉控制寄存器。

对于端口T,S,M,P,H,J,和AD,有基于每个针脚的降额输出驱动控制寄存器。

对于端口A,B,E,和K,有一个基于端口的降额输出驱动控制寄存器。

对于端口S、M,有漏极开路(线或)控制寄存器。

对于端口P、H和J,有基于每个针脚的中断标志寄存器。

纯通用IO端口共计有41个,分别是:PA[7:0]PB[7:0]PE[6:5]PE[3:2]PK[7,5:0]PM[7:6]PH[7:0](带中断输入)PJ[7:6](带中断输入)PJ[1:0](带中断输入)第二章脉冲宽度调制模块XS128具有8位8通道的PWM,相邻的两个通道可以级联组成16位的通道。

PWME::PWMEPWM通道使能寄存器。

PWMEx=1将立即使能该通道PWM波形输出。

若两个通道级联组成一个16位通道,则低位通道(通道数大的)的使能寄存器成为该级联通道的使能寄存器,高位通道(通道数小的)的使能寄存器和高位的波形输出是无效的。

PWMPOLPWMPOL::PWM极性寄存器。

PPOLx=1,则该通道的周期初始输出为高电平,达到占空比后变为低电平;相反,若PPOLx=0,则初始输出为低电平,达到占空比后变为高电平。

PWMCLK::PWMCLKPWM时钟源选择寄存器。

mc9s12xs128程序教程

mc9s12xs128程序教程

711 次
该寄存器是 0~7 通道 PWM 输出起始极性控制位,用来设置 PWM 输出的起始 电平。
用法:PWMPOL_PPOL0=1--- 通道 0 在周期开始时输出为高电平,当计数 器等于占空比寄存器的值时,输出为低电平。对外输出波形先是高电平然后再变 为低电平。
2、PWM 波形对齐寄存器 PWMCAE
该控制寄存器设定通道的级联和两种工作模式:等待模式和冻结模式。这 两种模式如图 10 和图 11 所示。
图 10 等待模式
图 11 冻结模式
只有当相应的通道关闭后,才能改变 这些控制字。 用法: PWMCTL_CON67=1 --- 通道6、7 级联成一个 16 位的 PWM 通道。此 时只有7 通道的控制字起作用,原通道 7 的使能位、PWM 输出极性选择位、时 钟选择控制位以及对齐方式选择位用来设置级联后的 PWM 输出特性 PWMCTL_CON67=0 --- 通道6,7 通道不级联 CON45、CON23、CON01 的用法同 CON67 相似。设置此控制字的意 义在于扩大了PWM 对外输出脉冲的频率范围。 PSWAI=1 --- MCU 一旦处于等待状态,就会停止时钟的输入。这样就不 会因时钟在空操作而费电;当它置为0,则MCU 就是处于等待状态,也允许 时钟的输入。 PFRZ=1 --- MCU 一旦处于冻结状态,就会停止计数器工作。 (责任编辑:dzsj8)
1、PWM 预分频寄存器 PWMPRCLK
PWMPRCLK 寄存器每一位如图 3 所示:
复位默认值:0000 0000B
813 次
图3 PWMPRCLK 寄存器
PWMPRCLK 寄存器包括 ClockA 预分频和 ClockB 预分频的控制位。ClockA、 ClockB 的值为总线时钟的 1/2n (0≤n≤7),具体设置参照图 4 和图 5

MC9S12XS128串口操作例程

MC9S12XS128串口操作例程

MC9S12XS128串口操作例程MC9S12XS128 串口操作例程Code Warrior 4.7Target : MC9S12XS128Crystal: 16.000Mhzbusclock: 8.000MHzpllclock:16.000MHz本程序主要包括以下功能:1.设置锁相环和总线频率;2.IO口使用;3.共四路ATD使用及显示方法。

LED计数,根据灯亮可以读取系统循环了多少次************************************************************** ***************************/#include /* common defines and macros */#include /* derivative information */#include#include#include#pragma LINK_INFO DERIVATIVE "mc9s12xs128"#pragma CODE_SEG DEFAULT#define CR_as_CRLF TRUE // if true , you can use "\n" to act as CR/LF,// if false, you have to use "\n\r",but can get a higher speed static int do_padding;static int left_flag;static int len;static int num1;static int num2;static char pad_character;unsigned char uart_getkey(void){while(!(SCI0SR1&0x80)) ; //keep waiting when not emptyreturn SCI0DRL;}/*void uart_init(void) {SCI0CR2=0x0c;SCI0BDH=0x00;//16MHz,19200bps,SCI0BDL=0x1aSCI0BDL=0x34;//16MHz,9600bps,SCI0BDL=0x34}*/void uart_putchar(unsigned char ch){if (ch == '\n'){while(!(SCI0SR1&0x80)) ;SCI0DRL= 0x0d; //output'CR'return;}while(!(SCI0SR1&0x80)) ; //keep waiting when not empty SCI0DRL=ch;}void putstr(char ch[]){unsigned char ptr=0;while(ch[ptr]){uart_putchar((unsigned char)ch[ptr++]);}}static void padding( const int l_flag){int i;if (do_padding && l_flag && (len < num1))for (i=len; i<="" p="">uart_putchar( pad_character);}static void outs( char* lp){/* pad on left if needed */len = strlen( lp);padding( !left_flag);/* Move string to the buffer */while (*lp && num2--) uart_putchar( *lp++);/* Pad on right if needed */len = strlen( lp);padding( left_flag);}static void reoutnum(unsigned long num, unsigned int negative, const long base ){char* cp;char outbuf[32];const char digits[] = "0123456789ABCDEF";/* Build number (backwards) in outbuf */cp = outbuf;do {*cp++ = digits[(int)(num % base)];} while ((num /= base) > 0);if (negative) *cp++ = '-';*cp-- = 0;/* Move the converted number to the buffer and *//* add in the padding where needed. */len = strlen(outbuf);padding( !left_flag);while (cp >= outbuf)uart_putchar( *cp--);padding( left_flag);}static void outnum(long num, const long base ,unsigned char sign)//1, signed 0 unsigned{unsigned int negative;if ( (num < 0L) && sign ){negative=1;num = -num;}else negative=0;reoutnum(num,negative,base);}static int getnum( char** linep){int n;char* cp;n = 0;cp = *linep;while (isdigit(*cp))n = n*10 + ((*cp++) - '0');*linep = cp;return(n);}void printp( char* ctrl, ...){int long_flag;int dot_flag;char ch;va_list argp;va_start( argp, ctrl);for ( ; *ctrl; ctrl++) {/* move format string chars to buffer until a format control is found. */ if (*ctrl != '%') {uart_putchar(*ctrl);#if CR_as_CRLF==TRUEif(*ctrl=='\n') uart_putchar('\r');#endifcontinue;}/* initialize all the flags for this format. */dot_flag = long_flag = left_flag = do_padding = 0;pad_character = ' ';num2=32767;try_next:ch = *(++ctrl);if (isdigit(ch)){if (dot_flag)num2 = getnum(&ctrl);else {if (ch == '0')pad_character = '0';num1 = getnum(&ctrl);do_padding = 1;}ctrl--;goto try_next;}switch (tolower(ch)) {case '%':uart_putchar( '%');continue;case '-':left_flag = 1;break;case '.':dot_flag = 1;break;case 'l':long_flag = 1;break;case 'd':if (long_flag ==1 ){if(ch == 'D') {outnum( va_arg(argp, unsigned long), 10L , 0);continue;}else /* ch == 'd' */ {outnum( va_arg(argp, long), 10L,1);continue;}}else{if(ch == 'D') {outnum( va_arg(argp, unsigned int),10L,0);continue;}else /* ch == 'd' */{outnum( va_arg(argp, int), 10L,1); continue;}}case 'x': // X 无符号,x 有符号if (long_flag ==1 ){if(ch == 'X'){outnum( va_arg(argp, unsigned long), 16L,0); continue;}else /* ch == 'x' */{outnum( va_arg(argp, long), 16L,1); continue;}}else{if(ch == 'X'){outnum( va_arg(argp, unsigned int), 16L,0); continue;}else /* ch == 'x' */{outnum( va_arg(argp, int), 16L,1);continue;}} //如果按照16进制打印,将全部按照无符号数进行continue;case 's':outs( va_arg( argp, char*));continue;case 'c':uart_putchar( va_arg( argp, int));continue;default:continue;}goto try_next;}va_end( argp);}#pragma CODE_SEG __NEAR_SEG NON_BANKED void interrupt 20 SCI0_ISR(void){SCI0CR2_RIE=0;//此处为串口中断需要处理的事情uart_putchar(uart_getkey());PORTA_PA0=~PORTA_PA0;SCI0CR2_RIE = 1;}#pragma CODE_SEG DEFAULT//-----------------------------------------------------void setbusclock(void){CLKSEL=0X00; //disengage PLL to systemPLLCTL_PLLON=1; //turn on PLLSYNR=1;REFDV=1; //pllclock=2*osc*(1+SYNR)/(1+REFDV)=32MHz;_asm(nop); //BUS CLOCK=16M_asm(nop);while(!(CRGFLG_LOCK==1)); //when pll is steady ,then use it;CLKSEL_PLLSEL =1; //engage PLL to system;}//-----------------------------------------------------static void SCI_Init(void){SCI0CR1 =0x00;SCI0CR2 =0x2c; //enable Receive Full Interrupt,RX enable,Tx enable SCI0BD =0x68; //SCI0BDL=busclk/(16*SCI0BDL) //busclk 8MHz, 9600bps,SCI0BD=0x34//busclk 16MHz, 9600bps,SCI0BD=0x68//busclk 24MHz, 9600bps,SCI0BD=0x9C} //busclk 32MHz, 9600bps,SCI0BD=0xD0//busclk 40MHz, 9600bps,SCI0BD=0x106//-----------------------------------------------------void Dly_ms(int ms){int ii,jj;if (ms<1) ms=1;for(ii=0;ii<ms;ii++)< p="">for(jj=0;jj<2670;jj++); //busclk:16MHz--1ms}void main(void){unsigned char LedCnt=0;setbusclock();SCI_Init();DDRA=0xFF;PUCR_PUPBE=1;EnableInterrupts;for(;;){LedCnt=(LedCnt>0XFE?0:++LedCnt);Dly_ms(1000); //修改延时以修改数据发送频率//低电平灯亮用这句,注释掉下面那句PORTA_PA0=~PORTA_PA0;//高电平灯亮用这句,注释掉上面那句//PORTB=LedCnt;putstr("\nhttp:%/%//doc/4115489903.html,");printp("\n Minute elapsed: %03ds",LedCnt); }}</ms;ii++)<>。

MC9S12XS128智能车开发平台实验指导手册

MC9S12XS128智能车开发平台实验指导手册
2
飞翔科技
网店地址
3
飞翔科技
பைடு நூலகம்
网店地址
第 1 章 MC9S12XS128 智能车开収平台概述
MC9S12XS128 (以下简称XS128)智能车开収平台是由“飞翔科技”基于XS128单片机的 功能而开収的一款开収平台。该开収平台硬件资源丰富,布局清晰明了,利用该开収平台的 硬件资源可熟悉和掌握XS128单片机的功能和用法。 本部分将对XS128智能车开収平台的功能迚行简单介绍,以方便用户快速了解该开収平 台的功能。下图为XS128智能车开収平台实物图。
飞翔科技
网店地址
MC9S12XS128 智能车开収 平台实验挃导手册
1
飞翔科技
目录
网店地址
第 1 章 MC9S12XS128 智能车开収平台概述...............................................................................4 第 2 章 MC9S12XS128 智能车开収平台结极……………………………………………………….………………12 第 3 章 CodeWarrior 快速入门………………………………………………………….........................................21 3.1 安装 CodeWarrior 软件…………………………………………..……………….....................................21 3.2 安装 BDM 驱动…………………………………………………..……………….........................................21 3.3 创建新工程…………………………….………….….…………..……………….........................................21 3.4 调试新建工程……………….…….………….…………………..………………........................................25 第 4 章 基础实验………………………….………………..…………………..……………........................................29 实验一 复位及看门狗…….….………………..…………………..………………........................................29 实验二 蜂鸣器实验……………………………..…………………..………………........................................31 实验三 流水灯实验……….…..………………..…………………..………………........................................32 实验四 按键实验……………….. …………..…………………..………….………........................................33 实验五 ATD 实验…………..………………..….………………..………….………........................................37 实验六 锁相环实验…………………………..…………………..………….……….......................................40 实验七 SCI 串口实验………………………..…………………..………….………........................................41 实验八 PWM 实验………………………..…………………..………….……….............................................44 实验九 TIM 实验………………………..…………………..………….………...............................................46 实验十 实时中断实验…………………………………....………….………...............................................48 实验十一 SPI 实验…………………..…………………..………….………..................................................49 实验十二 数码管实验……………..…………………..………….………..................................................51 第 5 章 高级实验……………..…………………..……………..………….………..................................................52 实验一 模拟 IIC 实验..…………………..……………..………….………..................................................52 实验二 模拟 SPI 实验.…………………..……………..………….………..................................................55 实验三 数字电压表……………..……………..………….………............................................................57 实验四 数字秒表…………………..……………..………….………..........................................................58 实验五 蜂鸣器播放音乐………..……………..………….……….........................................................59 实验六 汉显液晶实验…………..……………..………….………..........................................................60 实验七 温度传感器实验………..……………..………….……….........................................................61 实验八 RS-485 总线实验……..……………..………….………..........................................................63 实验九 LIN 总线实验……..……………..………….……….................................................................64 实验十 CAN 总线实验……..…………....………….……….................................................................68 实验十一 SD 卡实验………....………………….….……….................................................................71 实验十二 综合演示实验…....………………….….……….................................................................72 第 6 章 智能车实验……………..…………………..……………..………….………..............................................73 实验一 舵机实验..…………………..……………..………….………........................................................73 实验二 电机实验.…………………..……………..………….……….........................................................75 实验三 ZX0802A 小液晶实验……………..……………..………….………............................................77 实验四 修改参数实验………..……………..………….…………..........................................................78 实验五 车速采集实验………..……………..………….……….............................................................79 实验六 遥控模块实验…………..……………..………….………..........................................................81 实验七 摄像头实验………..……………..………….……….................................................................83

mc9s12xs128内存映射和数据flash操作

mc9s12xs128内存映射和数据flash操作

解答
16位地址,寻址范围为0~65536,即64k MC9S12XS128的RAM为8K,P-FLASH为 128K,D-FLASH为8K。

*p=0x8000,访问的是P-FLASH

MC9S12XS128内存结构


MC9S12XS128使用global adress(全局地 址)对内存划分地址空间。全局地址共 23bit,寻址能力达到8M 使用全局地址划分的内存空间如下: 0x10_0000~0x10_1FFF:8K d-flash 0x7E_0000~0x7F_FFFF:128K p-flash 0x0F_E000~0x0F_FFFF:8K 非分页RAM 问题:CPU和BDM都是使用16bit local address(本地地址)我们在程序中定义的 指针变量默认都是near型,即16位地址, 如何解决?
D-flash状态寄存器
注意: 1. 开始新的FLASH命令之前必须等待上 一个命令结束,即需要查询CCIF标志。 2. 在启动flash命令之前,FSTAT寄存器中 的ACCERR和FPVIOL两个标志位必须 被清除,否则无法启动新的FLASH操 作。

完整的擦除操作
while(FSTAT_CCIF==0); if(FSTAT_ACCERR) //判断并清除标志位; FSTAT_ACCERR=1; if(FSTAT_FPVIOL) //判断并清除标志位; FSTAT_FPVIOL=1; FCCOBIX_CCOBIX=0x00; FCCOBHI=0x12; //高字节写入擦除命令 FCCOBLO=0x10; //低字节d-flash全局地址高8位,固定 为0x10 FCCOBIX_CCOBIX=0x01; FCCOB=ADDR16; //写入低16位的地址 FSTAT_CCIF=1; //启动执行命令 while(FSTAT_CCIF==0); //等待执行完成
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档