10 正多边形和圆(习题)

合集下载

2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习(含答案)

2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习(含答案)

2020年人教版九年级数学上册24.3《正多边形和圆》随堂练习基础题知识点1 认识正多边形1.下面图形中,是正多边形的是( )A.矩形 B.菱形C.正方形 D.等腰梯形2.如图,正六边形的每一个内角都相等,则其中一个内角α的度数是( )A.240° B.120° C.60° D.30°3.一个正多边形的一个外角等于30°,则这个正多边形的边数为.4.如图,AC是正五边形ABCDE的一条对角线,则∠ACB= .知识点2 与正多边形有关的计算5.如图,正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是( )A. 3 B.2 C.2 2 D.2 36.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是( )A.正三角形 B.正方形C.正五边形 D.正六边形7.若正方形的外接圆半径为2,则其内切圆半径为( )A. 2 B.2 2C.22D.18.边长为6 cm的等边三角形的外接圆半径是.9.如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C的坐标为( ).10.将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于 (结果保留根号).知识点3 画正多边形11.如图,甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断( )A.甲、乙均正确 B.甲、乙均错误C.甲正确,乙错误 D.甲错误,乙正确12.图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为( )A.4R=5r B.3R=4rC.2R=3r D.R=2r14.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是( )A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )A.2a2 B.3a2 C.4a2 D.5a217.如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为.18.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= .19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.综合题20.如图1,2,3,…,m,M,N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,…正n边形ABCDEF…的边AB,BC上的点,且BM=CN,连接OM,ON.(1)求图1中∠MON的度数;(2)图2中∠MON的度数是,图3中∠MON的度数是;(3)试探究∠MON的度数与正n边形边数n的关系(直接写出答案).参考答案01 基础题知识点1 认识正多边形1.下面图形中,是正多边形的是(C)A .矩形B .菱形C .正方形D .等腰梯形2.(柳州中考)如图,正六边形的每一个内角都相等,则其中一个内角α的度数是(B)A .240°B .120°C .60°D .30°3.(连云港中考)一个正多边形的一个外角等于30°,则这个正多边形的边数为12.4.(资阳中考)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB=36°.知识点2 与正多边形有关的计算5.(沈阳中考)如图,正六边形ABCDEF 内接于⊙O ,正六边形的周长是12,则⊙O 的半径是(B)A. 3B .2C .2 2D .2 3 6.(株洲中考)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是(A) A .正三角形 B .正方形 C .正五边形 D .正六边形7.(滨州中考)若正方形的外接圆半径为2,则其内切圆半径为(A)A. 2 B .2 2C.22D .1 8.边长为6 cm 的等边三角形的外接圆半径是23.9.(宁夏中考)如图,将正六边形ABCDEF 放在直角坐标系中,中心与坐标原点重合.若A点的坐标为(-1,0),则点C 的坐标为(12,-32).10.(教材P109习题T6变式)将一个边长为1的正八边形补成如图所示的正方形,这个正方形的边长等于1+2(结果保留根号).知识点3 画正多边形甲:①作OD的中垂线,交⊙O于B,C两点;②连接AB,AC,△ABC即为所求的三角形.乙:①以D为圆心,OD长为半径作圆弧,交⊙O于B,C两点;②连接AB,BC,CA,△ABC即为所求的三角形.对于甲、乙两人的作法,可判断(A)A.甲、乙均正确B.甲、乙均错误C.甲正确,乙错误D.甲错误,乙正确12.(镇江中考改编)图1是我们常见的地砖上的图案,其中包含了一种特殊的平面图形——正八边形.如图2,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹).解:如图.02中档题13.正三角形内切圆半径r与外接圆半径R之间的关系为(D)A.4R=5r B.3R=4rC.2R=3r D.R=2r14.(滨州中考)如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是(C)A.(2,-3) B.(2,3)C.(3,2) D.(3,-2)15.(达州中考)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是(A)A.22B.32C. 2D. 316.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为(A)A.2a2 B.3a2 C.4a2 D.5a217.(山西中考命题专家原创)如图,圆O与正八边形OABCDEFG的边OA,OG分别交于点M,N,则弧MN所对的圆心角∠MPN的大小为67.5°.18.(连云港中考)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10=75°.19.如图,⊙O是正方形ABCD与正六边形AEFCGH的外接圆.(1)正方形ABCD与正六边形AEFCGH的边长之比为2∶1;(2)连接BE,BE是否为⊙O的内接正n边形的一边?如果是,求出n的值;如果不是,请说明理由.解:BE是⊙O的内接正十二边形的一边,理由:连接OA ,OB ,OE ,在正方形ABCD 中,∠AOB=90°,在正六边形AEFCGH 中,∠AOE=60°,∴∠BOE=30°.∵n=360°30°=12, ∴BE 是正十二边形的边.03 综合题20.如图1,2,3,…,m ,M ,N 分别是⊙O 的内接正三角形ABC ,正方形ABCD ,正五边形ABCDE ,…正n 边形ABCDEF …的边AB ,BC 上的点,且BM=CN ,连接OM ,ON.(1)求图1中∠MON 的度数;(2)图2中∠MON 的度数是90°,图3中∠MON 的度数是72°;(3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).解:(1)连接OA ,OB.∵正三角形ABC 内接于⊙O ,∴OA=OB ,∠OAM=∠OBA=30°,∠AOB=120°.∵BM=CN ,AB=BC ,∴AM=BN.∴△AOM ≌△BON(SAS).∴∠AOM=∠BON.∴∠AOM +∠BOM=∠BON +∠BOM ,即∠AOB=∠MON.∴∠MON=120°.(3)∠MON=360°n.。

2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆(含解析)

2023年中考数学一轮专题练习 ——正多边形和圆一、单选题(本大题共8小题)1. (上海市2022年)有一个正n 边形旋转90后与自身重合,则n 为( ) A .6B .9C .12D .15 2. (湖南省邵阳市2022年)如图,⊙O 是等边△ABC 的外接圆,若AB =3,则⊙O 的半径是( )A.32 B .C D .523. (四川省雅安市2022年)如图,已知⊙O 的周长等于6π,则该圆内接正六边形ABCDEF 的边心距OG 为( )A .3B .32CD .34. (四川省南充市2022年)如图,在正五边形ABCDE 中,以AB 为边向内作正ABF ,则下列结论错误的是( )A .AE AF =B .EAF CBF ∠=∠C .F EAF ∠=∠D .CE ∠=∠ 5. (四川省内江市2022年)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和BC 的长分别为( )A .4,3πB .πC .43πD .32π6. (四川省成都市2022年)如图,正六边形ABCDEF 内接于⊙O ,若⊙O 的周长等于6π,则正六边形的边长为( )AB .C .3D .7. (广西玉林市2022年)如图的电子装置中,红黑两枚跳棋开始放置在边长为2的正六边形ABCDEF 的顶点A 处.两枚跳棋跳动规则是:红跳棋按顺时针方向1秒钟跳1个顶点,黑跳棋按逆时针方向3秒钟跳1个顶点,两枚跳棋同时跳动,经过2022秒钟后,两枚跳棋之间的距离是( )A .4B .C .2D .08. (河南省2022年)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF 的中心与原点O 重合,AB x ∥轴,交y 轴于点P .将△OAP 绕点O 顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A 的坐标为( )A .)1-B .(1,-C .()1-D .( 二、填空题(本大题共5小题)9. (辽宁省营口市2022年)如图,在正六边形ABCDEF 中,连接,AC CF ,则ACF ∠= 度.10. (江苏省宿迁市2022年)如图,在正六边形ABCDEF 中,AB =6,点M 在边AF 上,且AM =2.若经过点M 的直线l 将正六边形面积平分,则直线l 被正六边形所截的线段长是 .11. (吉林省长春市2022年)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC 和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若27AB =厘米,则这个正六边形的周长为 厘米.12. (吉林省2022年)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为 度.(写出一个即可)13. (黑龙江省绥化市2022年)如图,正六边形ABCDEF 和正五边形AHIJK 内接于O ,且有公共顶点A ,则BOH ∠的度数为 度.三、解答题(本大题共1小题)14. (浙江省金华市2022年)如图1,正五边形ABCDE 内接于⊙O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;②以F 为圆心,FO 为半径作圆弧,与⊙O 交于点M ,N ;③连接,,AM MN NA .(1)求ABC ∠的度数.(2)AMN 是正三角形吗?请说明理由.(3)从点A 开始,以DN 长为半径,在⊙O 上依次截取点,再依次连接这些分点,得到正n 边形,求n 的值.参考答案1. 【答案】C【分析】根据选项求出每个选项对应的正多边形的中心角度数,与90一致或有倍数关系的则符合题意.【详解】如图所示,计算出每个正多边形的中心角,90是30的3倍,则可以旋转得到.A.B.C.D.观察四个正多边形的中心角,可以发现正12边形旋转90°后能与自身重合故选C.2. 【答案】C【分析】作直径AD,连接CD,如图,利用等边三角形的性质得到∠B=60°,关键圆周角定理得到∠ACD=90°,∠D=∠B=60°,然后利用含30度的直角三角形三边的关系求解.【详解】解:作直径AD,连接CD,如图,∵△ABC 为等边三角形,∴∠B =60°,∵AD 为直径,∴∠ACD =90°,∵∠D =∠B =60°,则∠DAC =30°,∴CD =12AD , ∵AD 2=CD 2+AC 2,即AD 2=(12AD )2+32,∴AD∴OA =OB =12AD 故选:C .3. 【答案】C【分析】 利用圆的周长先求出圆的半径,正六边形的边长等于圆的半径,正六边形一条边与圆心构成等边三角形,根据边心距即为等边三角形的高用勾股定理求出OG .【详解】∵圆O 的周长为6π,设圆的半径为R ,∴26R ππ=∴R =3连接OC 和OD ,则OC=OD=3∵六边形ABCDEF 是正六边形,∴∠COD =360606︒=︒, ∴△OCD 是等边三角形,OG 垂直平分CD , ∴OC =OD =CD ,1322CG CD ==∴OG =故选 C4. 【答案】C【分析】利用正多边形各边长度相等,各角度数相等,即可逐项判断.【详解】解:∵多边形ABCDE 是正五边形,∴该多边形内角和为:5218540(0)-⨯︒=︒,AB AE =, ∴5401085C E EAB ABC ︒∠=∠=∠=∠==︒,故D 选项正确; ∵ABF 是正三角形,∴60FAB FBA F ∠=∠=∠=︒,AB AF FB ==,∴1086048EAF EAB FAB ∠=∠-∠=︒-︒=︒,1086048CBF ABC FBA ∠=∠-∠=︒-︒=︒, ∴EAF CBF ∠=∠,故B 选项正确;∵AB AE =,AB AF FB ==,∴AE AF =,故A 选项正确;∵60F ∠=︒,48EAF ∠=︒,∴F EAF ∠≠∠,故C 选项错误,故选:C .5. 【答案】D【分析】连接OC 、OB ,证出BOC ∆是等边三角形,根据勾股定理求出OM ,再由弧长公式求出弧BC 的长即可.【详解】解:连接OC 、OB ,六边形ABCDEF 为正六边形,360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆为等边三角形,6BC OB ∴==,OM BC ⊥,132BM BC ∴==,OM ∴==BC 的长为6062180ππ⨯==. 故选:D .6. 【答案】C【分析】连接OB ,OC ,由⊙O 的周长等于6π,可得⊙O 的半径,又由圆的内接多边形的性质,即可求得答案.【详解】解:连接OB ,OC ,∵⊙O 的周长等于6π,∴⊙O 的半径为:3,∵∠BOC 61=⨯360°=60°, ∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB =3,∴它的内接正六边形ABCDEF 的边长为3,故选:C .7. 【答案】B【分析】由题意可分别求出经过2022秒后,红黑两枚跳棋的位置,然后根据正多边形的性质及含30度直角三角形的性质可进行求解.解:∵2022÷3=674,2022÷1=2022,∴67461122,20226337÷=⋅⋅⋅⋅⋅÷=,∴经过2022秒后,红跳棋落在点A 处,黑跳棋落在点E 处,连接AE ,过点F 作FG ⊥AE 于点G ,如图所示:在正六边形ABCDEF 中,2,120AF EF AFE ==∠=︒, ∴1,302AG AE FAE FEA =∠=∠=︒, ∴112FG AF ==,∴AG =∴AE =故选B .8. 【答案】B【分析】首先确定点A 的坐标,再根据4次一个循环,推出经过第2022次旋转后,点A 的坐标即可.【详解】解:正六边形ABCDEF 边长为2,中心与原点O 重合,AB x ∥轴,∴AP =1, AO =2,∠OPA =90°,∴OP =∴A(1第1次旋转结束时,点A -1);第2次旋转结束时,点A 的坐标为(-1,第3次旋转结束时,点A 的坐标为(1);第4次旋转结束时,点A 的坐标为(1,∵将△OAP 绕点O 顺时针旋转,每次旋转90°,∴4次一个循环,∵2022÷4=505……2,∴经过第2022次旋转后,点A 的坐标为(-1,9. 【答案】30【分析】连接BE ,交CF 与点O ,连接OA ,先求出360606AOF ︒∠==︒,再根据等腰三角形等边对等角的性质,三角形外角的性质求解即可.【详解】连接BE ,交CF 与点O ,连接OA ,在正六边形ABCDEF 中,360606AOF ︒∴∠==︒, OA OC =OAC OCA ∴∠=∠2AOF OAC ACF ACF ∠=∠+∠=∠30ACF =∴∠︒,故答案为:30.10. 【答案】【分析】如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P ,由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH = 可得直线MH 平分正六边形的面积,O 为正六边形的中心,再利用直角三角形的性质可得答案.【详解】解:如图,连接AD ,CF ,交于点O ,作直线MO 交CD 于H ,过O 作OP ⊥AF 于P , 由正六边形是轴对称图形可得:,ABCODEFO S S 四边形四边形 由正六边形是中心对称图形可得:,,AOM DOH MOF CHO S S S S ,OM OH =∴直线MH 平分正六边形的面积,O 为正六边形的中心,由正六边形的性质可得:AOF 为等边三角形,60,AFO 而6,AB =6,3,ABAF OF OA AP FP 226333,OP2,AM 则1,MP22OM13327,MH OM247.故答案为:11. 【答案】54【分析】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,再证明△FMN、△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形即可求解.【详解】设AB交EF、FD与点M、N,AC交EF、ED于点G、H,BC交FD、ED于点O、P,如图,∵六边形MNGHPO是正六边形,∴∠GNM=∠NMO=120°,∴∠FNM=∠FNM=60°,∴△FMN是等边三角形,同理可证明△ANG、△BMO、△DOP、△CPH、△EGH是等边三角形,∴MO=BM,NG=AN,OP=PD,GH=HE,∴NG+MN+MO=AN+MN+BM=AB,GH+PH+OP=HE+PH+PD=DE,∵等边△ABC≌等边△DEF,∴AB=DE,∵AB=27cm,∴DE=27cm,∴正六边形MNGHPO的周长为:NG+MN+MO+GH+PH+OP=AB+DE=54cm,故答案为:54.12. 【答案】60或120或180或240或300(写出一个即可)【分析】如图(见解析),求出图中正六边形的中心角,再根据旋转的定义即可得.【详解】 解:这个图案对应着如图所示的一个正六边形,它的中心角3601606︒∠==︒, 0360α︒<<︒,∴角α可以为60︒或120︒或180︒或240︒或300︒,故答案为:60或120或180或240或300(写出一个即可).13. 【答案】12【分析】连接AO ,求出正六边形和正五边形的中心角即可作答.【详解】连接AO ,如图,∵多边形ABCDEF 是正六边形,∴∠AOB =360°÷6=60°,∵多边形AHIJK 是正五边形,∴∠AOH =360°÷5=72°,∴∠BOH =∠AOH -∠AOB =72°-60°=12°,故答案为:12.14. 【答案】(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:∵正五边形ABCDE .∴BC CD DE AE AB ====, ∴360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ∵3AEC AE =,∴AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ∴1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,∵ON OF =,∴ON OF FN ==,∴OFN △是正三角形,∴60OFN ∠=︒,∴60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,∴60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,∴AMN 是正三角形;(3)∵AMN 是正三角形,∴2120A N A N M O =∠=︒∠.∵2AD AE =,∴272144AOD ∠=⨯︒=︒,∵DN AD AN =-,∴14412024NOD ∠=︒-︒=︒, ∴3601524n ==.。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

正多边形与圆 知识点+例题+练习(非常好 分类全面)

正多边形与圆 知识点+例题+练习(非常好 分类全面)

§ 2.6 正多边形与圆一、概念知识点1 正多边形及其有关概念★正多边形:________相等、________也相等的多边形叫做正多边形.注:边数3n 的多边形必须同时满足“各边相等”和“各角相等”这两个条件,才能判定它是正多边形.例1 下列说法正确的是()A.正三角形不是正多边形B.平行四边形是正多边形C.正方形是正多边形D.各角相等的多边形是正多边形知识点2 正多边形的对称性(重点)1.正多边形都是________图形.一个正n边形共有_______条对称轴,每一条对称轴都经过正n边形的_________.2.一个正多边形,如果有偶数条边,那么它是________________图形,也是_________________图形;如果有奇数条边,那么是_______________图形.注:(1)如果一个正多边形是中心对称图形,那么它的中心就是对称中心;(2)正n边形的内角和等于________________,每一个内角都等于___________________,每一个外角都等于_________________.知识点3 正多边形的判定例2 如图,在正∆ABC中,E,F,G,H,L,K分别是各边的三等分点,试说明六边形EFGHLK是正六边形.二、经典题型题型1 根据正多边形的性质求角例1 如图,正方形ABCD是O的内接正方形,点P是弧CD上不同于点C的任意一点,则∠BPC等于___________.题型2 利用正多边形的性质求图形的面积例 2 如图,正六边形内接于O,O的半径为10,则图中阴影面积_________.典例精讲:1. 下列边长为a 的正多边形与边长为a 的正方形组合起来,不能镶嵌成平面( ) 、(1)正三角形 (2)正五边形 (3)正六边形 (4)正八边形A .(1)(2)B .(2)(4)C .(1)(3)D .(1)(4)2. 若同一个圆的内角正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:2:3B .3:2:1C .1:2:3D . 3:2:13. 已知正六边形ABCDEF 内接于⊙O ,图中阴影部分的面积为312,则⊙O的半径为______________________.(第4题) (第5题)4.如图,正方形ABCD 内接于⊙O ,点E 在AD 上,则∠BEC= .5.将一块正六边形硬纸片(图1),做成一个底面仍为正六边形且高相等的无盖纸盒(侧面均垂直于底面,见图2),需在每一个顶点处剪去一个四边形,例如图中的四边形AGA /H ,那么∠GA /H 的大小是 度.OB CDA EF E D C A O6.从一个半径为10㎝的圆形纸片上裁出一个最大的正方形,则此正方形的边长为 .7.如图,若正方形A 1B 1C 1D 1内接于正方形ABCD 的内接圆,则AB B A 11的值为( )A .21 B .22 C .41D .42。

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案

人教版九年级数学上册《24.3 正多边形和圆》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点 正多边形与圆1.定义:正多边形的 圆的圆心叫做这个正多边形的中心 圆的半径叫做正多边形的半径 正多边形每一边所对的 角叫做正多边形的中心角 到正多边形的一边的距离 叫做正多边形的边心距。

2.公式:正多边形的有关概念:边长(a ) 中心(O ) 中心角(∠AOB ) 半径(R )) 边心距(r ) 如图所示①.边心距222a r R ⎛⎫=- ⎪⎝⎭中心角360n ︒=关键点:三角形的内切圆与外接圆 关系定义圆心 实质半径图示外接圆经过三角形各顶点的圆外心三角形各边垂直平分线的交点交点到三角形三个顶点的距离相等内切圆与三角形各边都相切的圆内心三角形各内角平分线的交点交点到三角形各边的距离相等名校提高练习:一选择题:本题共10小题每小题3分共30分。

在每小题给出的选项中只有一项是符合题目要求的。

1.(2024·四川省泸州市·月考试卷)已知圆内接正三角形的面积为√ 3则该圆的内接正六边形的边心距是( )A. 2B. 1C. √ 3D. √ 322.同一个圆的内接正三角形正方形正六边形的边心距分别为r3r4r6则r3:r4:r6等于( )A. 1:√2:√3B. √3:√2:1C. 1:2:3D. 3:2:13.如图若干个全等的正五边形排成环状图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 10B. 9C. 8D. 74.(2024·贵州省黔东南苗族侗族自治州·月考试卷)正六边形ABCDEF内接于⊙O正六边形的周长是12则⊙O的半径是( )A. √ 3B. 2C. 2√ 2D. 2√ 35.(2024·山东省·单元测试)《几何原本》中记载了用尺规作某种六边形的方法其步骤是:①在⊙O上任取一点A连接AO并延长交⊙O于点B②以点B为圆心BO为半径作圆弧分别交⊙O于C D两点③连接CO DO并延长分别交⊙O于点E F④顺次连接BC CF FA AE ED DB得到六边形AFCBDE.再连接AD EF AD EF交于点G.则下列结论不正确的是( )A. GF=GDB. ∠FGA=60°C. EFAE=√ 2 D. AF⊥AD6.(2024·江苏省·同步练习)以半径为2的圆的内接正三角形正方形正六边形的边心距为三边作三角形则该三角形的面积是( )A. √ 22B. √ 32C. √ 2D. √ 37.(2024·江苏省·同步练习)如图正十二边形A1A2…A12连接A3A7A7A10则∠A3A7A10的度数为( )A. 60°B. 65°C. 70°D. 75°8.(2024·江苏省·同步练习)如图若干个全等的正五边形排成环状.图中所示的是前3个正五边形要完成这一圆环还需正五边形的个数为( )A. 6B. 7C. 8D. 99.(2024·北京市市辖区·期末考试)如图正方形ABCD的边长为6且顶点A B C D都在⊙O上则⊙O 的半径为().A. 3B. 6C. 3√ 2D. 6√ 210.(2024·广东省广州市·月考试卷)如图已知⊙O的周长等于4πcm则圆内接正六边形的边长为()cm.A. √ 3B. 2C. 2√ 3D. 4二填空题:本题共6小题每小题3分共18分。

九年级数学上册《正多边形和圆》练习题及答案解析

九年级数学上册《正多边形和圆》练习题及答案解析

九年级数学上册《正多边形和圆》练习题及答案解析学校:___________姓名:___________班级:________________一、填空题1.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为_______,面积为_______.2.正十二边形的中心角是_____度.二、解答题3.(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(2)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(3)如图①,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D的位置时,你能求出①A'、①D、①1与①2之间的数量关系吗?并说明理由.4.阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2,正五边形ABCDE 内接于①O ,AB =2,求对角线BD 的长.5.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.6.如图所示,正五边形的对角线AC 和BE 相交于点M .(1)求证:AC ①ED ;(2)求证:ME =AE .7.如图1,正五边形ABCDE 内接于①O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;①以F 为圆心,FO 为半径作圆弧,与①O 交于点M ,N ;①连接,,AM MN NA .(1)求ABC∠的度数.(2)AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在①O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.8.如图,ABC是等边三角形,点D、E、G分别在边AB、AC、BC上,且AD CE BG==,BE、CD、AG分别相交于点F、P、Q.求证:①PQF是等边三角形.9.如图,在圆内接正三角形ABC中,若①DOE保持120°角度不变,求证:当①DOE绕着O点旋转时,由两条半径和①ABC的两条边围成的图形,图中阴影部分的面积始终是①ABC的面积的13.10.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.三、单选题11.如图,已知①O 的半径为1,AB 是直径,分别以点A 、B 为圆心,以AB 的长为半径画弧.两弧相交于C 、D 两点,则图中阴影部分的面积是( )A .52π-B .56πC .53πD .83π-12.对于等边三角形的性质,下列说法不正确的是( )A .等边三角形的三条边都相等,三个内角也都相等;B .等边三角形的边都等于60,角都等于60°;C .等边三角形中线、高、角平分线都相等,而且都交于一点;D .等边三角形具有等腰三角形的所有性质;132,则这个多边形的内角和为( )A .720︒B .360︒C .240︒D .180︒14.如图,四边形ABCD 为⊙O 的内接正四边形,△AEF 为⊙O 的内接正三角形,若DF 恰好是同圆的一个内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.1215.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分①CHEC.整个图形不是中心对称图形D.CEH△是等边三角形参考答案及解析:1.1)a22)a【分析】设正八边形的边长为x,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可;利用正八边形的面积等于正方形的面积减去剪掉的四个等腰直角三角形的面积列式计算即可得解.【详解】解:正方形ABCD外接圆的直径就是它的对角线,∴正方形边长为a,如图所示,设正八边形的边长为x,在Rt AEL 中,LE x =,AE AL x ==,2x x a ∴+=,解得:1)x a =,即正八边形的边长为1)a .2222241)]2)AEL S S S a x a a a =-=-=-=正方形正八边形.故答案是:1)a ,22)a .【点睛】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,解题的关键是读懂题目信息,根据正方形的边长列出方程.2.30 【分析】根据正多边形的中心角公式:360n计算即可 【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式3.(1)2①A =①1+①2;见解析;(2)2①A =①1﹣①2;见解析;(3)2(①A +①D )=①1+①2+360°,见解析【分析】(1)根据翻折的性质表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出①3、①4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,①3=EDA '∠=12(180-①1),①4=DEA '∠=12(180-①2),①①A +①3+①4=180°,①①A +12(180-①1)+12(180-①2)=180°,整理得,2①A =①1+①2;(2)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180+①2),①①A+①3+①4=180°,①①A+12(180-①1)+12(180+①2)=180°,整理得,2①A=①1-①2;(3)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180-①2),①①A+①D+①3+①4=360°,①①A+①D+12(180-①1)+12(180-①2)=360°,整理得,2(①A+①D)=①1+①2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.4.(1)AC BD AB CD AD BC ⋅=⋅+⋅;(2)1【分析】(1)由托勒密定理可直接求解;(2)连接,AD AC ,根据圆周角与弦的关系可得AD AC BD ==,设BD x =,在四边形ABCD 中,根据托勒密定理有,AC BD AB CD AD BC ⋅=⋅+⋅,建立方程即可求得BD 的长【详解】(1)由托勒密定理可得:AC BD AB CD AD BC ⋅=⋅+⋅故答案为:AC BD AB CD AD BC ⋅=⋅+⋅(2)如图,连接,AD AC ,五边形ABCDE 是正五边形,则E ABC BCD ∠=∠=∠,2AB BC CD ===AD AC BD ∴==设BD x =,AC BD AB CD AD BC ⋅=⋅+⋅即2222x x =⨯+解得1211x x ==1BD ∴=+【点睛】本题考查了托勒密定理,圆周角与弦的关系,解一元二次方程,理解题意添加辅助线是解题的关键.5.(1)点A在该反比例函数的图象上,理由见解析(2)3+【分析】(1)过点P作x轴垂线PG,连接BP,可得BP=4,G是CD的中点,所以P(4,;(2)易求D(6,0),E(8,,待定系数法求出DE的解析式为y﹣次函数即可求点Q.(1)解:点A在该反比例函数的图象上,理由如下:过点P作x轴垂线PG,连接BP,①P是正六边形ABCDEF的对称中心,CD=4,①BP=4,G是CD的中点,①sin604PG BO BC==⋅︒==①P(4,,①P在反比例函数y=kx(k>0,x>0)的图象上,①k=①反比例函数解析式为y由正六边形的性质可知,A(2,,①点A在反比例函数图象上;(2)解:由(1)得D (6,0),E (8,,设DE 的解析式为y =mx +b ,①608m b m b +=⎧⎪⎨+=⎪⎩①m b ⎧=⎪⎨=-⎪⎩①y﹣由方程y y ⎧=⎪⎨⎪=-⎩,解得x=3,①Q点横坐标为3+..【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标结合是解题的关键.6.(1)见解析;(2)见解析【分析】(1)作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒,由①EAC 的度数等于EDC 的度数的一半,得到①EAC =1144722⨯︒=︒,同理,①AED =12×72°×3=108°,则 ①EAC +①AED =180°,即可证明ED∥AC ;(2)由①AEB 的度数等于AB 的度数的一半,得到①AEB =36°,则①EMA =180°-①AEB -①EAC =72°,可推出①EAM =①EMA =72°,即可证明 EA =EM .【详解】解:①正多边形必有外接圆,①作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒, ① ①EAC 的度数等于EDC 的度数的一半,① ①EAC =1144722⨯︒=︒, 同理,①AED =12×72°×3=108°,① ①EAC +①AED =180°,① ED∥AC ;(2)①①AEB 的度数等于AB 的度数的一半,①①AEB =36°,①①EMA =180°-①AEB -①EAC =72°,① ①EAM =①EMA =72°,① EA =EM .【点睛】本题主要考查了正多边形与圆,平行线的判定,等腰三角形的判定,解题的关键在于能够熟练掌握圆的相关知识.7.(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:①正五边形ABCDE .①BC CD DE AE AB ====, ①360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ①3AEC AE =,①AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ①1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,①ON OF =,①ON OF FN ==,①OFN △是正三角形,①60OFN ∠=︒,①60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,①60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,①AMN 是正三角形;(3)①AMN 是正三角形,①2120A N A N M O =∠=︒∠.①2AD AE =,①272144AOD ∠=⨯︒=︒,①DN AD AN =-,①14412024NOD∠=︒-︒=︒,①3601524n==.【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.8.见解析【分析】先根据“SAS”证明△ACD①△CBE,得到①ACD=①CBE,结合三角形外角的性质可证①BFD=①60°,进而可证△PQF是等边三角形.【详解】证明:①△ABC是等边三角形,①①A=①BCE=60°,AC=CB,又①AD=CE,①△ACD①△CBE(SAS);①①ACD=①CBE,①①ACB=①ACD+①BCF=60°,①①BFD=①CBE+①BCF=①ACD+①BCF =60°,同理可得,①APE=60°,①△PQF是等边三角形.【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,以及三角形外角的性质,综合运用各知识点是解答本题的关键.9.见解析【分析】连接OA、OB、OC,由正多边形和圆的性质可得:①OAB①①OBC①①OCA.则①1=①2,再证明①OAG①①OCF,即可求解.【详解】如图:连接OA、OB、OC,由正多边形和圆的性质可得①OAB①①OBC①①OCA.①①1=①2.设OD 交BC 于F ,OE 交AC 于G ,则①AOC =①3+①4=120°,①DOE =①5+①4=120°,① ①3=①5.∴在①OAG 和①OCF 中2135OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,① ①OAG ①①OCF .① ΔAOC ΔABC 13OFCG S S S ==四边形. 【点睛】本题考查了正多形和圆的性质,全等三角形的判定和性质,将阴影部分的面积转化为固定的三角形面积是解题关键.10.(1)2(3)-【分析】(1)根据题意可得GE DC ∥,根据平行线分线段成比例即可求解;(2)根据(1)的结论,可得AG AD AE AC ==根据旋转的性质可得DAG CAE ∠=∠,进而证明GAD EAC ∽,根据相似三角形的性质即可求解;(3)分两种情况画出图形,证明①ADG ①①ACE ,根据相似三角形的判定和性质以及勾股定理即可得出答案.(1) 解:正方形AFEG 与正方形ABCD 有公共点A ,点G 在AD 上,F 在AB 上,GE DC ∴∥AG AE DG EC ∴= EC AE DG AG∴= 四边形AFEG 是正方形 ∴AE =∴2DG AGE === (2)解:如图,连接AE ,正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,DAG CAE ∴∠=∠AG AD AE AC ==GAD EAC ∴∽∴AC CE DG AD= (3) 解:①如图,AB =AG AD =,AD AB ∴==8AG ==,16AC ==, ,,G E C 三点共线,Rt AGC △中,GC ==8CE GC GE ∴=-=,由(2)可知GAD EAC ∽,∴CE AC DG DA==()816DA CE DG AC ⋅∴==4==. ①如图:由(2)知△ADG ①①ACE ,①DG AD CE AC ==,①DG , ①四边形ABCD 是正方形,①AD =BC ,AC 16,①AG ,①AG =8, ①四边形AFEG 是正方形,①①AGE =90°,GE =AG =8,①C ,G ,E 三点共线.①①AGC =90°①CG①CE =CG +EG,①DG =综上,当C ,G ,E 三点共线时,DG 的长度为-【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.11.A【分析】连接AC 、BC ,如图,先判断△ACB 为等边三角形,则①BAC =60°,由于S 弓形BC =S 扇形BAC ﹣S △ABC ,所以图中阴影部分的面积=4S 弓形BC +2S △ABC ﹣S ⊙O ,然后利用扇形的面积公式、等边三角形的面积公式和圆的面积公式计算.【详解】解:连接BC ,如图,由作法可知AC =BC =AB =2,①①ACB 为等边三角形,①①BAC =60°,①S 弓形BC =S 扇形BAC ﹣S △ABC ,①S 阴=4S 弓形BC +2S △ABC ﹣S ⊙O=4(S 扇形BAC ﹣S △ABC )+2S △ABC ﹣S ⊙O=4S 扇形BAC ﹣2S △ABC ﹣S ⊙O=42602360π⨯⨯-222﹣π×12 53=π﹣ 故选:A .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了扇形的面积公式.12.B【分析】根据等边三角形的性质逐项分析判断即可求解.【详解】解:A . 等边三角形的三条边都相等,三个内角也都相等,故该选项正确,不符合题意;B . 等边三角形的三个角都等于60°,三条边都相等,不一定等于60,故该选项不正确,符合题意;C . 等边三角形中线、高、角平分线都相等,而且都交于一点,故该选项正确,不符合题意;D . 等边三角形具有等腰三角形的所有性质,故该选项正确,不符合题意;故选B .【点睛】本题考查了等边三角形的性质,掌握等边三角形的性质是解题的关键.13.A【分析】设AB 是正多边形的一边,OC①AB ,在直角①AOC 中,利用三角函数求得①AOC 的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,求出边数,根据内角和公式即可求出多边形的内角和.【详解】如图:①2,①2,设AB 是正多边形的一边,OC①AB , 2OC OA OB k ===,,在直角①AOC 中,OC cos AOC AO ∠== ①①AOC=30°,①①AOB=60°, 则正多边形边数是:360660︒︒=, ①多边形的内角和为:()62180720-⨯︒=︒,故选:A .【点睛】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.14.D【分析】连接,,AC OD OF ,先根据圆内接正多边形的性质可得点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,从而可得1145,3022CAD BAD CAF EAF ∠=∠=︒∠=∠=︒,再根据角的和差可得15DAF ∠=︒,然后根据圆周角定理可得230DOF DAF ∠=∠=︒,最后根据正多边形的性质即可得.【详解】解:如图,连接,,AC OD OF ,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,∴点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,90,60BAD EAF ∠=︒∠=︒,1145,3022CAD BAD CAF EAF ∴∠=∠=︒∠=∠=︒, 15DAF CAD CAF ∴∠=∠-∠=︒,230DOF DAF ∴∠=∠=︒, DF 恰好是圆O 的一个内接正n 边形的一边,3603601230n DOF ︒︒∴===∠︒, 故选:D .【点睛】本题考查了圆内接正多边形、圆周角定理等知识点,熟练掌握圆内接正多边形的性质是解题关键.15.D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A .① 根据正八边形的性质, 四边形ABCH 与四边形EFGH 能够完全重合,即四边形ABCH 与四边形EFGH 全等①四边形ABCH 与四边形EFGH 的周长相等,故选项正确,不符合题意;B .连接DH ,如图1,① 正八边形是轴对称图形,直线HD 是对称轴,① HD 平分①CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.①八边形ABCDEFGH是正八边形,① B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,①DOE=360=45 8︒︒①OE=OH①①OEH=①OHE=12①DOE=22.5°①①CHE=2①OHE=45°①①HCE=①HEC=12(180°-①CHE)=67.5°①CEH△不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.。

正多边形与圆(八大题型)( 原卷版)

正多边形与圆(八大题型)( 原卷版)
为( )
A.1B.2C. D.
解题技巧提炼
主要考查了正多边形和圆,正六边形的性质、正方形的性质,等边三角形的性质,勾股定理,正确掌握它们的性质是解决问题的关键.
【变式3-1】(2022•成都)如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为( )
A. B. C.3D.2
正多边形.
◆2等于 的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,得到圆的n个等分点;
(2)顺次连接各等分点.
【例题1】下列命题正确的是( )
A.各边相等的多边形是正多边形
B.正多边形一定是中心对称图形
C.各角相等的圆内接多边形是正多边形
D.正多边形外接圆的半径是正多边形的半径
半径
外接圆的半径叫做正多边形的半径.
边心距
内切圆的半径叫做正多边形的边心距.
中心角
正多边形每一条边对应所对的外接圆的圆心角都相等,叫做正多边形的中心角.
任何正多边形都有一个外接圆和一个内切圆.
◆2、正多边形的判定:
一个多边形必须同时满足各边相等,各角也相等才能判定其是正多边形,两个条件缺一不可,如菱形的各边相等,但各角不一定相等,矩形的各角相等,但各边不一定相等,因此它们不是正多边形.
解题技巧提炼
根据正多边形的相关概念进行判断即可,正n边形(n≥3,n为整数)都是轴对称图形,都有n条对称轴,且这些对称轴都交于一点,当n为偶数时,正n边形为中心对称图形.
【变式1-1】下列说法中,错误的是( )
A.正多边形的外接圆的圆心,就是它的中心
B.正多边形的外接圆的半径,就是它的半径
C.正多边形的内切圆的半径,就是它的边心距
(苏科版)九年级上册数学《第2章对称图形---圆》

正多边形和圆(3个考点6大类型)(题型专练)(原卷版)

正多边形和圆(3个考点6大类型)(题型专练)(原卷版)

专题06正多边形和圆(3个考点6大类型)【题型1 正多边形与圆求角度】【题型2正多边形与圆求线段长度】【题型3正多边形与圆求半径】【题型4正多边形与圆求面积】【题型5正多边形与圆求周长】【题型6正多边形与直角坐标系综合】【题型1 正多边形与圆求角度】1.(2022秋•仙居县期末)如图,正五边形ABCDE中,点F是CD的中点,连接AC,AF,则∠CAF的度数为()A.15°B.18°C.22.5°D.30°2.(2023•湖里区校级模拟)如图,在正六边形ABCDEF中,∠ACF的度数为()A.30°B.35°C.20°D.25°3.(2023•泗水县三模)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.40°B.50°C.60°D.70°4.(2023•三明模拟)正八边形的中心角的度数是()A.30°B.45°C.60°D.90°5.(2022秋•余姚市期末)如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A.36°B.45°C.60°D.75°6.(2022秋•河西区校级期末)如图,四边形ABCD为⊙O的内接正方形,点P 为劣弧BC上的任意一点(不与B,C重合),则∠BPC的度数是()A.120°B.130°C.135°D.150°7.(2023•海淀区校级四模)如图,AB是⊙O内接正五边形的一条边,点P在优弧AB上,则∠APB的度数为°.8.(2023•修文县模拟)如图,正五边形ABCDE内接于⊙O,点P在AE上,则∠CPB的度数为.9.(2023•上杭县模拟)如图摆放着正五边形ABCDE和正△EFG,其中点A、B、F在同一直线上,EG∥BF,则∠DEG的度数是.10.(2023•鼓楼区校级三模)如图,将边长相等的正六边形ABCDEF和正五边形ABGHK的AB边重合叠放在一起,则∠GBC的度数是.【题型2正多边形与圆求线段长度】11.(2023春•罗定市校级期中)如图,正六边形ABCDEF内接于⊙O,若⊙O 的周长是12π,则正六边形的边长是()A.B.3C.6D.12.(2023•玉屏县模拟)如图,正六边形ABCDEF的顶点A,F分别在正方形BMGH的边BH,GH上.若正方形的边长为6,则正六边形的边长为()A.2B.4C.4.5D.5 13.(2022秋•易县期末)如图,⊙O是正方形ABCD的外接圆,若⊙O的半径为4,则正方形ABCD的边长为()A.4B.8C.D.14.(2022秋•柘城县期中)一个圆的半径为2,则该圆的内接正方形的边长为()A.B.2C.D.2 15.(2023•尤溪县校级模拟)已知正六边形的半径是2,则这个正六边形的边长是.16.(2023•南京三模)如图,在正六边形ABCDEF中,⊙O经过点E,且与AB,BC相切.若⊙O的半径为4,则正六边形的边长为.17.(2023•绥化模拟)如图,在正五边形ABCDE中,若边长AB=2,则AC的长为.18.(2023•南关区一模)如图,点O为正六边形ABCDEF对角线AC上一点,阴影部分的面积和为,则正六边形的边长是.【题型3正多边形与圆求半径】19.(2022•博白县校级一模)边长为2的正方形内接于⊙M,则⊙M的半径是()A.1B.2C.D.20.(2022秋•浙江月考)如图所示,正六边形ABCDEF内接于⊙O,若边心距,则⊙O的半径为()A.B.2C.1D.4 21.(2022秋•昌平区期末)如图,面积为18的正方形ABCD内接于⊙O,则⊙O 的半径为()A.B.C.3D.22.(2023春•宿豫区期末)一枚圆形古钱币的中间是一个边长为1cm的正方形孔,圆面积是正方形面积的9倍,则圆的半径为cm.23.(2023•湟中区校级开学)已知一个正六边形的边心距2cm,则该正六边形的半径为cm.24.(2022秋•城西区校级期末)已知正三角形ABC的边心距为cm,则正三角形的半径为cm.【题型4正多边形与圆求面积】25.(2023•南岗区校级模拟)已知正六边形的半径为.则此正六边形的面积为()A.B.C.3D.4 26.(2023•梧州二模)剪纸艺术是我国非物质文化遗产,如图是一幅包含了圆,正八边形等图形设计成的剪纸作品,已知圆的半径是2,此作品的阴影部分面积是()A.B.πC.2πD.4π27.(2023•阜城县校级模拟)如图,正六边形ABCDEF的边长为2,现将它沿AB方向平移1个单位,得到正六边形A′B′C′D′E′F′,则阴影部分A′BCDE′F′的面积是()A.3B.4C.D.2 28.(2023•迁安市二模)如图,以正六边形ABCDEF的对角线BD为边,向右作等边△BDG,若四边形BCDG(图中阴影部分)的面积为6,则五边形ABDEF 的面积为()A.15B.12C.8D.629.(2023•承德一模)如图,正六边形的两条对角线AE、BE把它分成Ⅰ、Ⅱ、Ⅲ三部分,则该三部分的面积比为()A.1:2:3B.2:2:4C.1:2:4D.2:3:5 30.(2022秋•裕华区校级期末)如图,点O是正六边形ABCDEF的中心,边心距OH=,则正六边形的面积为()A.6B.C.D.8 31.(2022•石家庄三模)如图,边长相等的正八边形和正方形部分重叠摆放在一起,已知正方形面积是2,那么非阴影部分面积是()A.6B.C.D.8 32.(2022秋•襄汾县月考)如图,⊙O为正方形ABCD的外接圆,若BC=2,则⊙O的面积为()A.2πB.3πC.4πD.8π33.(2023•榆阳区一模)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积.如图,已知⊙O的半径为2,则⊙O的内接正六边形ABCDEF的面积为6.【题型5正多边形与圆求周长】34.(2021秋•卫辉市期末)如图,⊙O的外切正六边形ABCDEF的边心距的长度为,那么正六边形ABCDEF的周长为()A.2B.6C.12D.6 35.(2022•定州市二模)如图,点P、M、N分别是边长为2的正六边形中不相邻三条边的中点,则△PMN的周长为()A.6B.6C.6D.9 36.(2023春•青羊区校级期末)一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是.37.(2023•雁塔区校级四模)如图,已知圆内接正六边形ABCDEF的边心距OG等于,则⊙O的周长等于.38.(2022秋•同心县期末)如图,正六边形ABCDEF内接于⊙O,连接OC、OD,若OC长为2cm,则正六形ABCDEF的周长为cm.39.(2022•新城区模拟)如图,AC、AD为正六边形ABCDEF的两条对角线,若该正六边形的边长为2,则△ACD的周长为.【题型6正多边形与直角坐标系综合】40.(2023•二七区校级开学)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重台,AB∥x轴,交y轴于点P.将△OAP绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点A的坐标为()A.(,﹣1)B.(﹣1,﹣)C.(﹣,1)D.(1,)41.(2023•浉河区校级三模)如图,在平面直角坐标系中,正六边形ABCDEF 的边AB在x轴上,点F在y轴上,将正六边形ABCDEF沿x轴正方向每次以一个单位长度无滑动滚动,若AB=1,在第2023次滚动后,点F的坐标为()A.B.()C.D.42.(2022秋•泗洪县期中)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n =2022时,顶点C2022的坐标是()A.B.C.(1,﹣2)D.43.(2021秋•凤山县期末)如图,将正六边形ABCDEF放在平面直角坐标系中,中心与坐标原点重合,若AB=2,则点D的坐标是()A.(1,0)B.(2,0)C.D.(3,0)44.(2023•缙云县二模)如图,正六边形ABCDEF放置在平面直角坐标系内,若点A的坐标为(1,0),则点D的坐标为.。

圆与正多边形试题

圆与正多边形试题

1.正多边形的一边所对的中心角与该正多边形一个内角的关系是( ). 2.边长为2的正方形的外接圆的面积等于________.3.正六边形的内切圆半径与外接圆半径的比等于______.正六边形的内切圆与外接圆面积之比是( ) 4.圆内接正三角形的边心距与半径的比是( ). 5.下列命题正确的是( )A .正三角形的内切圆的半径与外接圆半径之比为2:1;B .正六边形的边长等于其外接圆的半径;C .圆的外切正多边形的边长等于其边心距的2倍;D .各边相等的圆的外切四边形是正方形。

6.同一圆的内接正三角形、正方形、正五边形、正六边形中,周长最大的是( ) 7.⊙O 的内接正三角形与正六边形面积之比为( )8.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为( ) 9.同圆的内接正方形和外切正方形的周长之比为( )10.如图1、2、3、…、n ,M 、N 分别是⊙O 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE…的边AB 、BC 上的点,且BM =CN ,连结OM 、ON.⑴求图1中∠MON 的度数;⑵图2中∠MON 的度数是___________,图3中∠MON 的度数是___________; ⑶试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案).11.如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向行走。

按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是 ( )12.如图,在126 的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1⊙B 的半径为2,要使⊙A 与静止的⊙B 相切,那么⊙A 由图示位置需向右平移 个单位。

13.已知⊙O 1和⊙O 2的半径分别为2和3,如果它们既不相交又不相切,那么它们的圆心距d 的取值范围是 。

九年级数学正多边形和圆(基础)(含答案)

九年级数学正多边形和圆(基础)(含答案)

正多边形和圆(基础)一、单选题(共10道,每道10分)1.下列说法:①各边相等,各角相等的多边形是正多边形;②菱形是正多边形;③各角均为120°的六边形是正六边形;④正多边形既是轴对称图形又是中心对称图形;⑤正多边形的外角和是360°,其中正确的个数是( )A.1个B.2个C.3个D.4个答案:B解题思路:解题要点:各个角都相等,各条边都相等的多边形叫做正多边形.多边形的外角和为360°.解题过程:根据正多边形的定义,①正确菱形的各边相等,各角不一定相等,故②错误各角均为120°,各边不一定相等,故③错误边数是偶数的正多边形既是轴对称图形又是中心对称图形,而边数为奇数的正多边形是轴对称图形,不是中心对称图形,故④错误多边形的外角和为360°,故⑤正确综上,正确的是①⑤,共2个试题难度:三颗星知识点:略2.如图,已知正五边形ABCDE内接于⊙O,连接BD,则∠ABD的度数是( )A.60°B.70°C.72°D.144°答案:C解题思路:∵五边形ABCDE为正五边形∴∠ABC=∠C=∵CD=CB∴∠CBD=∴∠ABD=∠ABC-∠CBD=72°试题难度:三颗星知识点:略3.如果一个正多边形的中心角为30°,那么这个正多边形的边数是( )A.8B.10C.12D.36答案:C解题思路:解题要点:正多边形每一边所对的圆心角叫做正多边形的中心角解题过程:∵正多边形的中心角和为360°,正多边形的中心角是30°∴这个正多边形的边数=试题难度:三颗星知识点:略4.在半径为R的圆上依次截取等于R的弦,顺次连接各分点得到的多边形是( )A.正三角形B.正四边形C.正五边形D.正六边形答案:D解题思路:解题要点:正多边形每一边所对的圆心角叫做正多边形的中心角解题过程:∵由题意得,这个正n边形的中心角为60°∴∴这个多边形是正六边形试题难度:三颗星知识点:略5.如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=( )A.30°B.35°C.45°D.60°答案:A解题思路:如图,连接OA,OB∵多边形ABCDEF为正六边形∴∠AOB=又OA=OB∴∠OAB=∠AOB=60°∵直线PA与⊙O相切于点A∴∠OAP=90°∴∠PAB=∠OAP-∠OAB=90°-60°=30°试题难度:三颗星知识点:略6.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )A. B.C. D.答案:A解题思路:如图,连接AC∵正六边形螺帽的边长是2cm∴AB=BC=2,∠ABC=120°∴AC=试题难度:三颗星知识点:略7.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为( )A. B.3C.6D.答案:D解题思路:如图,连接OB,OC,可得△OBC为等边三角形,且边长为6∵OM为边心距∴OM⊥BC∴试题难度:三颗星知识点:略8.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是( )A.2B.1C. D.答案:B解题思路:如图,连接OC,过点O作ON⊥CE于点N,过点O作OM⊥BC于点M∵圆内接正三角形ACE的面积为∴S△ACE=∴CE=2∴OM=CN=∴圆的内接正六边形的边心距是1试题难度:三颗星知识点:略9.如图,已知⊙O的内接正六边形ABCDEF的边心距OM=2,则该圆的内接正三角形ACE的面积为( )A.2B.4C. D.答案:D解题思路:如图,连接OB,OC,过点O作ON⊥CE于点N∵多边形ABCDEF是正六边形∴∠COB=60°∵OB=OC∴△COB是等边三角形∴在Rt△CMO中,∠MOC=30°,OM=2∴OC=,ON=CM=∴在Rt△CNO中,CN=∴CE=2CN=4∴S△ACE=试题难度:三颗星知识点:略10.如图,正六边形ABCDEF的中心为坐标原点建立平面直角坐标系,顶点C,F在x轴上,顶点A的坐标为(1,),则顶点C的坐标为( )A. B.C.(-2,0)D.答案:C解题思路:如图,连接OA,设AB交y轴于点G由题意可知,OA=OF=OC∵A的坐标为∴AG=1,OG=∴∴OC=OA=2∴C的坐标为(-2,0)试题难度:三颗星知识点:略。

《正多边形和圆》模拟试题

《正多边形和圆》模拟试题

《正多边形和圆》模拟试题(答题时间:70分钟)(一)一.选择题(每题6分,共30分)1.圆的半径扩大一倍,则它的相应的圆内接正n边形的边长与半径之比为()A.扩大了一倍B. 扩大了两倍C. 扩大了四倍D. 没有变化2.正三角形的高,外接圆半径、边心距之比为()A.3:2:1B. 4:3:2C. 4:2:1D. 6:4:33.一个正方形有一个外接圆和一个内切圆,这两个圆的面积之比为()A.3:2B. 2:1C. 9:4D. 25:94.同圆的内接正三角形面积与内接正六边形面积之比是(): D. 1:3A.1:2B. 1:2C. 235.若大圆的周长是小圆的周长的3倍,那么大圆面积是小圆面积的()A.3倍B. 3π倍C. 6倍D. 9倍二.填空题(每题6分,共30分)1.正五边形共有_______条对称轴,正六边形共有_______条对称轴。

2.边长为n的正六边形中较长的对角线为_______,面积为_______。

3.圆内接正n边形的边长为a,则同圆外切正n边形的边长为_______。

4.一圆的内接正三角形的面积为82cm,则此圆的外切正三角形的面积为_______。

5.同一圆中的内接正六边形和外切正六边形的周长比为_______,面积比为_______。

三.解答题(每题10分,共40分)1.已知圆内接正方形的面积是8,求此圆的内接正六边形的面积。

2.若正六边形的面积为63,求此正六边形内切圆的内接正三角形的面积。

3.圆内接正五边形ABCDE的对角线长为l,求它的边长。

4.如图7—19,PA、PB切圆O于A、B,若∠=︒APB60,圆O的半径等于3,求阴影部分的面积。

A.36 B. 34 C. 33 D. 322.周长相等的正三角形、正四边形、正六边形的面积S S S 346、、之间的大小关系是( )A.S S S 346>>B. S S S 643>>C. S S S 634>>D.S S S 463>> 3.两圆半径分别为R 、r ,另有一大圆的面积等于这两圆面积之和的4倍,则这大圆的半径为( ) A.12()R r + B. 1222()R r + C. 1222R r + D. 222R r +4.若两圆半径分别为R 与r (R r ≠),圆心距为d ,且d R r Rd 2222+-=,则两圆位置关系为( )A.外离B. 外切或内切C. 相交D. 外切5.已知圆O 与圆O'内切于A 点,圆O 弦BC 过圆O'圆心O'交圆O'于D 、E ,若圆O 的直径为6,且有BD DE EC ::::=342,则圆O'的半径长为( ) A.1 B. 2 C. 3 D. 4二.填空题(每题6分,共30分)1.正十边形的半径等于10,则边长等于_______。

正多边形与圆同步培优题典(解析版)

正多边形与圆同步培优题典(解析版)

专题4.9正多边形与圆姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•海陵区校级期中)正方形的外接圆半径等于2,则这个正方形边长为()A.2√2B.2C.√2D.4【分析】明确正方形外接圆直径为正方形的对角线长,求出对角线长即可.【解析】正方形外接圆直径为正方形的对角线长.∵正方形的外接圆半径为2,∴正方形的对角线长为4,正方形的边长为4×√22=2√2.故选:A.2.(2020•富顺县校级一模)正六边形的边长为4,则它的面积为()A.48√3B.24√3C.60D.12√3【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【解析】∵此多边形为正六边形,∴∠AOB=360°6=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=2cm,∴OG=OA•cos30°=4×√32=2√3,∴S△OAB=12×AB×OG=12×4×2√3=4√3,∴S六边形=6S△OAB=6×4√3=24√3.故选:B.3.(2019秋•徐州期末)已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .4√33B .2√3C .3√34D .3√22【分析】根据题意画出图形,设出圆的半径,再由正多边形及直角三角形的性质求解即可.【解析】如图(二),∵圆内接正六边形边长为1,∴AB =1,可得△OAB 是等边三角形,圆的半径为1,∴如图(一),连接OB ,过O 作OD ⊥BC 于D ,则∠OBC =30°,BD =OB •cos30°=√32×1=√32,故BC =2BD =√3.OD =12OB =12,∴圆的内接正三角形的面积=12×√3×32=3√34,故选:C .4.(2020•浦东新区二模)如果一个正多边形的中心角等于72°,那么这个多边形的内角和为( )A .360°B .540°C .720°D .900°【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可求得边数,然后代入内角和公式求解即可.【解析】这个多边形的边数是360÷72=5,所以内角和为(5﹣2)×180°=540°故选:B .5.(2019秋•崇川区校级期中)若同一个圆的内接正三角形、正六边形的边长分别记作a3,a6,则a3:a6等于()A.1:√3B.1:3C.3:1D.√3:1【分析】从中心向边作垂线,构建直角三角形,通过解直角三角形可得.【解析】设圆的半径是r,则多边形的半径是r,如图1,则内接正三角形的边长a3=2r sin60°=√3r,如图2,正六边形的边长是a6=r,因而半径相等的圆的内接正三角形、正六边形的边长之比a3:a6=√3:1.故选:D.6.(2019秋•建湖县期中)如图,AB、AC分别为⊙O的内接正方形、内接正三边形的边,BC是圆内接正n 边形的一边,则n等于()A.8B.10C.12D.16【分析】根据正方形以及正三边形的性质得出∠AOB=360°4=90°,∠AOC=360°3=120°,进而得出∠BOC=30°,即可得出n的值.【解析】连接AO,BO,CO.∵AB、AC分别为⊙O的内接正方形、内接正三边形的一边,∴∠AOB=360°4=90°,∠AOC=360°3=120°,∴∠BOC=30°,∴n=360°30°=12,故选:C.7.(2019秋•铜山区期中)如图,点O是正五边形ABCDE的中心,则∠AOB的度数是()A.65°B.70°C.72°D.78°【分析】由正五边形的性质即可得出答案.【解析】∵点O是正五边形ABCDE的中心,∴∠AOB=360°÷5=72°.故选:C.8.(2019秋•宿豫区期末)如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.12【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,则∠AOC=30°,则边数n=360°÷中心角.【解析】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷6=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.9.(2020春•丰泽区校级期中)如图,若干相同正五边形排成环状.图中已经排好前3个五边形,还需()个五边形完成这一圆环.A.6B.7C.8D.9【分析】延长正五边形的相邻两边交于圆心,求得该圆心角的度数后,用360°除以该圆心角的度数即可得到正五边形的个数,减去3后即可得到本题答案.【解析】延长正五边形的相邻两边,交于圆心,∵正五边形的外角等于360°÷5=72°,∴延长正五边形的相邻两边围成的角的度数为:180°﹣72°﹣72°=36°,∴360°÷36°=10,∴排成圆环需要10个正五边形,故排成圆环还需7个五边形.故选:B.10.(2018秋•沭阳县期中)如图,P,Q分别是⊙O的内接正五边形的边AB,BC上的点,BP=CQ,则∠POQ=()A.75°B.54°C.72°D.60°【分析】连接OA、OB、OC,证明△OBP≌△OCQ,根据全等三角形的性质得到∠BOP=∠COQ,结合图形计算即可.【解析】连接OA、OB、OC,∵五边形ABCDE是⊙O的内接正五边形,∴∠AOB=∠BOC=72°,∵OA=OB,OB=OC,∴∠OBA=∠OCB=54°,在△OBP和△OCQ中,{OB=OC∠OBP=∠OCQ BP=CQ,∴△OBP≌△OCQ,(SAS),∴∠BOP=∠COQ,∵∠AOB=∠AOP+∠BOP,∠BOC=∠BOQ+∠QOC,∴∠BOP=∠QOC,∵∠POQ=∠BOP+∠BOQ,∠BOC=∠BOQ+∠QOC,∴∠POQ=∠BOC=72°.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•南岗区校级期中)已知正六边形的周长是30cm,则这个多边形的边长等于5cm.【分析】根据正六边形的周长,求出边长即可.【解析】正六边形的边长:30÷6=5cm,故答案为:5.12.(2019秋•东城区校级期中)如图,正六边形ABCDEF内接于⊙O且半径为3,则AB的长为3.【分析】连接OA、OB,由正六边形的性质得出∠AOB=60°,证出△AOB是等边三角形,得出AB=OA=OB=3即可.【解析】连接OA、OB,如图所示:∵正六边形ABCDEF内接于⊙O,∴∠AOB=360°6=60°,∵OA=OB=3,∴△AOB是等边三角形,∴AB=OA=OB=3,故答案为:3.13.(2019秋•惠民县期中)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为2,则△ADE的周长是6+2√3.【分析】首先确定三角形的三个角的度数,从而判断该三角形是特殊的直角三角形,然后根据半径求得斜边的长,从而求得另外两条直角边的长,进而求得周长.【解析】连接OE,∵多边形ABCDEF是正多边形,∴∠DOE=360°6=60°,∴∠DAE=12∠DOE=12×60°=30°,∠AED=90°,∵⊙O的半径为2,∴AD=2OD=4,∴DE=12AD=12×2=1,AE=√3DE=2√3,∴△ADE的周长为2+4+2√3=6+2√3,故答案为:6+2√3.14.(2019秋•滨海县期末)如图,边长为4的正六边形ABCDEF内接于⊙O,则⊙O的内接正三角形ACE 的边长为4√3.【分析】连接OB交AC于H.首先证明OB⊥AC,解直角三角形求出AH即可解决问题.【解析】连接OB交AC于H.在正六边形ABCDEF中,∵AB=BC,∠ABC=120°,∴AB̂=BĈ,∴OB⊥AC,∴∠ABH=∠CBH=60°,AH=CH,∴AH=AB•sin60°=2√3,∴AC=2AH=4√3,故答案为:4√3.15.(2020•章丘区模拟)如图,正五边形ABCDE内接于⊙O,F是CD弧的中点,则∠CBF的度数为18°.【分析】设圆心为O,连接OC,OD,BD,根据已知条件得到∠O=360°5=72°,根据圆周角定理即可得到结论.【解析】设圆心为O,连接OC,OD,BD,∵五边形ABCDE为正五边形,∴∠O=360°5=72°,∴∠CBD=12∠O=36°,∵F是CD̂的中点,∴∠CBF=∠DBF=12∠CBD=18°,故答案为:18°.16.(2019•江川区模拟)如图,正六边形ABCDEF的顶点B,C分别在正方形AMNP的边AM,MN上.若AB=4,则CN=6−2√3.【分析】在Rt△BCM中,根据条件AB=BC=4,∠CBM=60°,∠M=90°,解直角三角形即可解决问题;【解析】在Rt△BCM中,∵AB=BC=4,∠CBM=60°,∠M=90°,∴∠BCM=30°,∴BM=12BC=2,CM=√3BM=2√3,∴AM=4+2=6,∵四边形AMNP是正方形,∴MN=MA=6,∴CN=MN﹣CM=6﹣2√3,故答案为6﹣2√3.17.(2019秋•鼓楼区期中)如图,AB是⊙O的内接正方形一边,点C在弧AB上,且AC是⊙O的内接正六边形的一边,若将BC看作是⊙O的内接正n边形的一边,则n的值是12.【分析】根据中心角的度数=360°÷边数,列式计算分别求出∠AOB,∠BOC的度数,则∠AOC=30°,则边数n=360°÷中心角.【解析】连接OC,∵AB是⊙O内接正方形的一边,∴∠AOB=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOC=∠AOB﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故答案为:12;̂上运动,连接BE,18.(2019秋•镇江期末)如图,⊙O半径为√2,正方形ABCD内接于⊙O,点E在ADC 作AF⊥BE,垂足为F,连接CF.则CF长的最小值为√5−1.【分析】如图,取AB的中点K,以AB为直径作⊙K,想办法求出FK,CK,根据CF≥CK﹣FK即可解决问题.【解析】如图,取AB的中点K,以AB为直径作⊙K,∵AF⊥BE,∴∠AFB=90°,∵AK=BK,∴KF=AK=BK,∵正方形ABCD的外接圆的半径为√2,∴AB=BC=√2⋅√2=2,∴KF=AK=KB=1,∵∠CBK=90°,∴CK=√BK2+BC2=√22+12=√5,∵CF≥CK﹣KF,∴CF≥√5−1,∴CF的最小值为√5−1.故答案为√5−1.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2018秋•镇江期末)如图,正方形ABCD内接于⊙O,P为BĈ上一点,连接DE,AE.(1)∠CPD=45°;(2)若DC=4,CP=2√2,求DP的长.【分析】(1)连接BD ,根据正方形ABCD 内接于⊙O ,可得∠CPD =∠DBC =45°;(2)作CH ⊥DP 于H ,因为CP =2√2,∠CPD =45°,可得CH =PH =2,因为DC =4,所以DH =√CD 2−CH 2,即DP =PH +DH =2+2√3.【解析】(1)如图,连接BD ,∵正方形ABCD 内接于⊙O ,P 为BĈ上一点, ∴∠DBC =45°,∵∠CPD =∠DBC ,∴∠CPD =45°.故答案为:45;(2)如图,作CH ⊥DP 于H ,∵CP =2√2,∠CPD =45°,∴CH =PH =2,∵DC =4,∴DH =√CD 2−CH 2=√42−22=2√3,∴DP =PH +DH =2+2√3.20.(2019秋•镇江期中)如图,正方形ABCD 内接于⊙O ,M 为CD̂的中点,连接AM ,BM . (1)求证:AM̂=BM ̂; (2)求AM̂的度数.【分析】(1)根据正方形的性质得到AD =BC ,求得AD̂=BC ̂,由M 为CD ̂的中点,得到DM ̂=CM ̂,于是得到结论;(2)连接OM ,OA ,OB ,求得∠AOB =90°,求得∠AOM =∠BOM =12(360°﹣90°)=135°,即可得到结论.【解答】(1)证明:∵四边形ABCD 是正方形,∴AD =BC ,∴AD̂=BC ̂, ∵M 为CD̂的中点, ∴DM̂=CM ̂, ∴AD̂+DM ̂=BC ̂+CM ̂, ∴AM̂=BM ̂; (2)解:连接OM ,OA ,OB ,∵正方形ABCD 内接于⊙O ,∴∠AOB =90°,∴∠AOM =∠BOM =12(360°﹣90°)=135°,∴AM ̂的度数时135°.21.(2019秋•东台市期中)如图,⊙O 的周长等于 8πcm ,正六边形ABCDEF 内接于⊙O .(1)求圆心O 到AF 的距离;(2)求正六边形ABCDEF 的面积.【分析】(1)连接OC 、OD ,作OH ⊥CD 于H ,根据圆的周长公式求出半径,根据余弦的定义计算即可;(2)根据正六边形的性质、三角形的面积公式计算.【解析】(1)连接OC、OD,作OH⊥CD于H,∵⊙O的周长等于8πcm,∴半径OC=4cm,∵六边形ABCDE是正六边形,∴∠COD=60°,∴∠COH=30°,∴圆心O到CD的距离=4×cos30°=2√3,∴圆心O到AF的距离为2√3cm;(2)正六边形ABCDEF的面积=12×4×2√3×6=24√3cm2.22.(2020•江岸区校级模拟)如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)求证:△ABC是等边三角形.(2)若⊙O的半径为2,求等边△ABC的边心距.【分析】(1)利用圆周角定理可得∠BAC=∠CPB,∠ABC=∠APC,而∠APC=∠CPB=60°,所以∠BAC=∠ABC=60°,从而可判断△ABC的形状;(2)过O作OD⊥BC于D,连接OB,根据直角三角形的性质即可得到结论.【解答】(1)证明:在⊙O中,∵∠BAC与∠CPB是BĈ对的圆周角,∠ABC与∠APC是AĈ所对的圆周角,∴∠BAC=∠CPB,∠ABC=∠APC,又∵∠APC=∠CPB=60°,∴∠ABC=∠BAC=60°,∴△ABC为等边三角形;(2)过O作OD⊥BC于D,连接OB,则∠OBD=30°,∠ODB=90°,∵OB=2,∴OD=1,∴等边△ABC的边心距为1.23.(2018秋•下城区期中)(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为劣弧BC上一动点.求证:P A=PB+PC;(2)已知:如图2,四边形ABCD是⊙O的内接正方形,点P为劣弧BC上一动点.求证:P A=PC+√2PB.【分析】(1)延长BP至E,使PE=PC,连接CE,证明△PCE是等边三角形.利用CE=PC,∠E=∠3=60°,∠EBC=∠P AC,得到△BEC≌△APC,所以P A=BE=PB+PC;(2)过点B作BE⊥PB交P A于E,证明△ABE≌△CBP,所以PC=AE,可得P A=PC+√2PB;【解答】证明:(1)延长BP至E,使PE=PC,连接CE,如图1,∵A 、B 、P 、C 四点共圆,∴∠BAC +∠BPC =180°,∵∠BPC +∠EPC =180°,∴∠BAC =∠CPE =60°,∵PE =PC ,∴△PCE 是等边三角形,∴CE =PC ,∠E =60°;又∵∠BCE =60°+∠BCP ,∠ACP =60°+∠BCP ,∴∠BCE =∠ACP ,∵△ABC 、△ECP 为等边三角形,∴CE =PC ,AC =BC ,在△BEC 和△APC 中,{CE =PC ∠BCE =∠ACP BC =AC,∴△BEC ≌△APC (SAS ),∴P A =BE =PB +PC ;(2)过点B 作BE ⊥PB 交P A 于E ,连接OA ,OB .如图2,∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,∵∠APB =12∠AOB =45°,∴BP =BE ,∴PE =√2PB ,在△ABE 和△CBP 中,{BE =BP ∠1=∠3AB =BC,∴△ABE ≌△CBP (SAS ),∴PC =AE ,∴P A =AE +PE =PC +√2PB ;24.(2017秋•青山区期中)如图正方形ABCD 内接于⊙O ,E 为CD 任意一点,连接DE 、AE .(1)求∠AED 的度数.(2)如图2,过点B 作BF ∥DE 交⊙O 于点F ,连接AF ,AF =1,AE =4,求DE 的长度.【分析】(1)如图1中,连接OA 、OD .根据∠AED =12∠AOD ,只要证明∠AOD =90°即可解决问题;(2)如图2中,连接CF 、CE 、CA ,作DH ⊥AE 于H .首先证明CE =AF =1,求出AC 、AD ,设DH =EH =x ,在Rt △ADH 中,利用勾股定理即可解决问题;【解析】(1)如图1中,连接OA 、OD .∵四边形ABCD 是正方形,∴∠AOD =90°,∴∠AED =12∠AOD =45°.(2)如图2中,连接CF ,CE ,CA ,BD ,作DH ⊥AE 于H .∵BF ∥DE ,AB ∥CD ,∴∠BDE =∠DBF ,∠BDC =∠ABD ,∴∠ABF =∠CDE ,∵∠CF A =∠AEC =90°,∴∠DEC =∠AFB =135°,∵CD =AB ,∴△CDE ≌△ABF ,∴AF =CE =1,∴AC =√AE 2+CE 2=√17,∴AD =√22AC =√342,∵∠DHE =90°,∴∠HDE =∠HED =45°,∴DH =HE ,设DH =EH =x ,在Rt △ADH 中,∵AD 2=AH 2+DH 2,∴344=(4﹣x )2+x 2,解得x =32或52(舍弃), ∴DE =√2DH =3√22。

(2021年整理)正多边形和圆练习题

(2021年整理)正多边形和圆练习题

正多边形和圆练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(正多边形和圆练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为正多边形和圆练习题的全部内容。

正多边形和圆练习题1、如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是()A. 4 B. 5 C. 6 D. 72、下面给出五个命题(1)正多边形都有内切圆和外接圆,且这两个圆是同心圆(2)各边相等的圆外切多边形是正多边形(3)各角相等的圆内接多边形是正多边形(4)正多边形既是轴对�。

图形又是中心对称图形(5)正n边形的中心角,且与每一个外角相等其中真命题有()A.2个B.3个C.4个D.5个3、正五边形ABCDE中,已知△ABC面积为1,则这正五边形面积是()A.B.C.D.4、如果一个正三角形与一个正六边形的面积相等,那么它们的周长之比是( )A.1:2B.:2C.:2D.:35、正n边形的一个外角为60°,外接圆半径为4,则它的边长为( )A.4B.2C.4D.26、如图,在⊙O中,OA=AB,OC⊥AB,则下列结论正确的是( )①弦AB的长等于圆内接正六边形的边长;②弦AC的长等于圆内接正十二边形的边长;③弧AC=弧BC;④∠BAC=30°.A.①②④B.①③④C.②③④D.①②③7、以半径为1的圆内接正三角形、正方形、正六边形的边长为三边作三角形,则( )A.这个三角形是等腰三角形B.这个三角形是直角三角形C.这个三角形是锐角三角形D.不能构成三角形8、如图,一正方形同时外切和内接于两个同心圆,当小圆的半径为r时,大圆的半径为( )A.rB.1.5rC.rD.2r9、下列命题中的真命题是()A.三角形的内切圆半径和外接圆半径之比为2:1B.正六边形的边长等于其外接圆的半径C.圆外切正方形的边长等于其边A心距的倍D.各边相等的圆外切多边形是正方形10、圆的内接正四边形的边长与半径的比为()A.2:1B.:lC.:lD.3:111、如图,⊙O的内接多边形周长为3,⊙O的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是()A.B.C.D.12、一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周。

初中数学中考正多边形与圆的关系(含答案解析)

初中数学中考正多边形与圆的关系(含答案解析)

正多边形与圆的关系一、选择题(本大题共10小题,共30.0分)1.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A. a<b<cB. b<a<cC. a<c<bD. c<b<a2.若正方形的外接圆半径为2,则其内切圆半径为()A. √2B. 2√2C. √22D. 13.一个正方形的边长为a,则它的内切圆的面积为()A. 34a2π B. 14a2π C. 32a2π D. a2π4.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A. 45°B. 60°C. 72°D. 90°5.有下列四个命题:①各边相等的圆内接多边形是正多边形;②各边相等的圆外切多边形是正多边形;③各角相等的圆内接多边形是正多边形;④各角相等的圆外切多边形是正多边形.其中正确的个数为()A. 1B. 2C. 3D. 46.下列正多边形,通过直尺和圆规不能作出的是()A. 正三角形B. 正四边形C. 正五边形D. 正六边形7.正六边形的半径与边心距之比为()A. 1:√3B. √3:1C. √3:2D. 2:√38.若正六边形的边长为4,则它的外接圆的半径为().A. 4√3B. 4C. 2√3D. 29.正四边形的边心距为1,则它的半径是A. 2√2B. √2C. 2D. 110.如图,五边形ABCDE是⊙O的内接正五边形,则∠OCD的度数是()A. 60°B. 54∘C. 76°D. 72°二、填空题(本大题共10小题,共30.0分)11.若点O是正六边形ABCDEF的中心,∠MON=120°且角的两边分别交六边形的边AB、EF于M、N两点。

若多边形AMONF的面积为2√3,则正六边形ABCDEF的边长是____.12.半径为2的圆内接正六边形的边心距等于_____.13.圆内接正六边形的边长为10cm,它的边心距等于__________cm.14.正六边形的半径为1,则正六边形的面积为____________________;15.如图,点O为正六边形ABCDEF的中心,连接EA,则∠AED=____度;若OA=4,则该正六边形的面积为__________.16.半径为4的正n边形边心距为2√3,则此正n边形的边数为_____.17.已知一个正六边形的外接圆半径为2,则这个正六边形的周长为________.18.如图,⊙O是正五边形ABCDE的外接圆,则∠ADC的度数是________.19.如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是______°.20.半径为3的圆的内接正方形的边长是________.答案和解析1.【答案】A【解析】【分析】此题主要考查了正多边形和圆的性质,解决本题的关键是构造直角三角形,得到用半径表示的边心距;注意:正多边形的计算一般要转化为解直角三角形的问题来解决.根据三角函数即可求解.【解答】解:设圆的半径为R,则正三角形的边心距为a=R×cos60°=12R.四边形的边心距为b=R×cos45°=√22R,正六边形的边心距为c=R×cos30°=√32R.∵12R<√22R<√32R,∴a<b<c,故选:A.2.【答案】A【解析】【分析】本题考查的是正方形和圆、等腰直角三角形的性质等知识,解题的关键是根据题意画出图形,属于中考常考题型.根据题意画出图形,再由正方形及等腰直角三角形的性质求解即可.【解答】解:如图所示,连接OA、OE,∵AB是小圆的切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,AE2+OE2=AO2,∴OE=√22OA=√2.故选:A.3.【答案】B【解析】【分析】本题考查了正多边形与圆的关系,知道正方形的内切圆的直径等于正方形的边长是解题的关键.根据正方形的内切圆的直径等于正方形的边长求得圆的半径,最后再求出圆的面积即可.【解答】解:因为正方形的内切圆的直径等于正方形的边长,所以r=a2,所以正方形的内切圆的面积为πr2=π(a2)2=14a2π,故选B.4.【答案】B【解析】【分析】本题考查正多边形与圆的关系、等边三角形的判定与性质;解题的关键是作辅助线,灵活运用等边三角形的判定与性质来分析、解答.如图,作辅助线,由题意可得OA=OB= AB,从而得出△OAB是等边三角形,进而求出∠AOB的度数,问题即可解决.【解答】解:如图,连接OA、OB;AB为⊙O的内接正多边形的一边,∵正多边形的边长与半径相等,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,即这个正多边形的中心角为60°.故选B.5.【答案】B【解析】【分析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题,经过推理论证的真命题称为定理.根据命题的“真”“假”进行判断即可.【解答】解:①各边相等的圆内接多边形是正多边形,正确;②各边相等的圆外切多边形不一定正多边形,比如菱形,所以错误;③各角相等的圆内接多边形不一定是正多边形,比如长方形,所以错误;④各角相等的圆外切多边形是正多边形,正确.故选B.6.【答案】C【解析】【分析】本题主要考查作图−复杂作图,解题的关键是熟练掌握圆上等分点的尺规作图.根据尺规作图取圆的等分点的作法即可得出答案.【解答】解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正五边形,故选C.7.【答案】D【解析】【试题解析】【分析】此题主要考查正多边形与圆的知识,等边三角形高的计算,要求学生熟练掌握应用.可设正六边形的半径为R,欲求半径与边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.解:如图所示,设正六边形的半径为R,又该多边形为正六边形,故∠OBA=60°,R,在Rt△BOG中,OG=√32∴边心距r=√3R2即半径与边心距之比2:√3,故选D.8.【答案】B【解析】【分析】本题考查正多边形与圆,用到的知识点为:n边形的中心角为360÷n,有一个角是60°的等腰三角形是等边三角形.根据正六边形的边长等于正六边形的半径,即可求解.【解答】解:正六边形的中心角为360°÷6=60°.那么外接圆的半径和正六边形的边长将组成一个等边三角形.∴它的外接圆半径是4.故选B.9.【答案】B【解析】【分析】本题考查了正多边形和圆的知识,解题的关键是正确的构造如图所示的直角三角形并求解.利用正四边形的外接圆的半径是边心距的√2倍计算.【解答】解:如图,∵正四边形的边心距为1,∴OB=1,∵∠OAB=45°,∴OA=√2OB=√2,故选:B.10.【答案】B【解析】【分析】是解题的关键.本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°n根据正多边形的中心角的计算公式:360°计算出∠COD,再由等腰三角形的性质可得.n【解答】解:∵五边形ABCDE是⊙O的内接正五边形,=72°,∴五边形ABCDE的中心角∠COD的度数为360°5∵OC=OD,∴∠OCD=∠ODC,∴∠OCD=(180°−72°)÷2=54°.故选B.11.【答案】2【解析】略12.【答案】√3【解析】【分析】此题主要考查了正多边形和圆、解直角三角形,正确掌握正六边形的性质是解题关键.构建直角三角形,利用直角三角形的边角关系即可求出.【解答】解:连接OA,作OM⊥AB,得到∠AOM=30°,AB=2,则AM=1,∴OM=OA⋅cos30°=√3∴正六边形的边心距是√3.故答案为√3.13.【答案】5√3【解析】【分析】本题考查的是正多边形与圆,熟知正六边形的性质是解答此题的关键.根据题意画出图形,利用等边三角形的性质及勾股定理直接计算即可.【解答】解:如图所示,连接OB、OC,过O作OG⊥BC于G,∵此多边形是正六边形,∴△OBC是等边三角形,∴∠OBG=60°,∴BG=5cm,OB=10cm,根据勾股定理可得:边心距OG=5√3cm;故答案为:5√3.14.【答案】3√32【解析】略15.【答案】90°;24√3【解析】【试题解析】【分析】本题考查了正多边形的性质,勾股定理的应用,等腰三角形的性质,属于中档题.六边形ABCDEF为正六边形,可得出∠AFE和∠FED的度数,进而得出∠AEF的度数,从而得出∠AED;连接OA,OF,过O作OG⊥AF于点G,先得出△AOF的面积,再乘以6,即可得出该正六边形的面积.【解答】解:∵六边形ABCDEF为正六边形,∴AF=FE,且∠AFE=∠FED=(6−2)×180°=120°,6=30°,则∠AEF=180°−120°2∴∠AED=∠FED−∠AEF=120°−30°=90°,连接OA,OF,过O作OG⊥AF于点G,∵点O为正六边形ABCDEF的中心,∴∠OAF=60°,则△AOF为等边三角形,∠AOG=30°,(三线合一)在Rt△OGA中,GA=12OA=12×4=2,则OG=√OA2−AG2=√42−22=2√3,故该正六边形的面积为:6S△AOF=6×12×4×2√3=24√3.故答案为90°;24√3.16.【答案】6【解析】【分析】此题主要考查了正多边形和圆的有关计算,根据已知得出中心角∠AOB=60°是解题关键.由三角函数求出∠DAO=60°,得出∠AOD=30°,求出中心角∠AOB=60°,即可得出答案.【解答】解:如图所示AB为正n边形的边长,OA为半径,OD为边心距,∵半径为4的正n边形边心距为2√3,∴sin∠DAO=DO AO =2√34=√32,∴∠DAO=60°,∴∠AOD=30°,∴∠AOB=60°,∴n=360°60°=6故答案为6.17.【答案】12【解析】解:∵l正六边形的半径等于边长,∴正六边形的边长a=2,正六边形的周长=6a=12,故答案为12.根据正六边形的半径等于边长进行解答即可.本题考查的是正六边形的性质,解答此题的关键是熟知正六边形的边长等于半径.18.【答案】72°【解析】【分析】本题主要考查了正多边形和圆的关系,以及圆周角定理的应用由正五边形的性质得出∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,得出AE⏜= AB⏜=BC⏜,由圆周角定理即可得出答案.【解答】解:∵⊙O是正五边形ABCDE的外接圆,∴∠CDE=(5−2)×180°÷5=108°,AE=AB=BC,∴AE⏜=AB⏜=BC⏜,×108°=72°;∴∠ADC=23故答案为72°.19.【答案】54【解析】【分析】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C= 108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【解答】解:连接AD,∵AF 是⊙O 的直径,∴∠ADF =90°,∵五边形ABCDE 是⊙O 的内接正五边形,∴∠ABC =∠C =108°,∵BC =CD ,,∴∠ABD =72°,∴∠F =∠ABD =72°,∴∠FAD =18°,∴∠CDF =∠DAF =18°,∴∠BDF =36°+18°=54°,故答案为54.20.【答案】3√2 【解析】 【分析】该题主要考查了正多边形和圆,解直角三角形,正方形的性质,正确的理解题意是解题的关键.画出图形,先根据题意首先求出BE 的长,即可解决问题.【解答】解:如图,∵四边形ABCD 是⊙O 的内接正方形,∴∠OBE =45°;∵OE ⊥BC ,∴BE =CE ;又OB =3,∴sin45°=OE OB ,cos45°=BE OB ,∴OE =3√22,即BE =3√22,∴BC=3√2,故答案为3√2.。

初中数学正多边形和圆解答题专项练习题1(附答案详解)

初中数学正多边形和圆解答题专项练习题1(附答案详解)
(2)如图②,当点G在边CD上时,试写出y关于x的函数关系式,并写出x的取值范围;
(3)联结AH、EG,如果△AFH与△DEG相似,求CG的长.
16.观察下面的表格,根据表格解答下列问题:
-2
0
1
1
-3
-3
(1)写出 , , 的值;
(2)在直角坐标系中画出二次函数 的图象;并根据图象写出使不等式 成立时 的取值范围;
13.如图,方格纸中每个小正方形的边长都是1个单位长度.线段AB的端点A、B都在格点上,请你仅用无刻度的直尺完成下列作图.(保留必要的作图痕迹,不必写作法)
(1)在图①中以AB为边作一个正方形ABCD;
(2)在图②中以点A、点B为顶点作一个面积为12的菱形.
14.图1、图2分别是 的网格,网格中每个小正方形的边长均为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
(1)在图1中画一个菱形 ,使得菱形 的面积为 ;
(2)在图2中画一个直角三角形 为直角,其面积等于(1)中菱形 的面积,画一条线段(两端点与小正方形的顶点重合)将此直角三角形 分成两个等腰三角形,并直接写出分割线段的长.
12.下列网格中的六边形 是由一个边长为6的正方形剪去左上角一个边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.
(3)若点 分别在线段 , 上运动(不含端点),经过探究发现,点 运动到每一个确定的位置, 的周长有最小值 ,随着点 的运动, 的值会发生变化,求所有 值中的最大值.
3.中心为O的正六边形 的半径为 .点 同时分别从 两点出发,以 的速度沿 向终点 运动,连接 ,设运动时间为 .
(1)求证:四边形 为平行四边形;
(3)设该图象与 轴两个交点分别为 , ,与 轴交点为 ,直接写出 的外心坐标.

2022-2023学年九年级上数学:正多边形和圆(附答案解析)

2022-2023学年九年级上数学:正多边形和圆(附答案解析)
∵正方形ABCD的面积是18,
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).
15.在一节数学实践活动课上,老师拿出三个边长都为5cm的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如下图所示:
6.如图,在正八边形△ABCDEFGH中,AC、AE是两条对角线,则∠CAE的度数为°.
7.已知正三角形ABC的边心距为 cm,则正三角形的边长为cm.
8.如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为.
9.已知边长为2的正三角形,能将其完全覆盖的最小圆的面积为.
10.如图,在⊙O中,AB是⊙O的内接正六边形的一边,BC是⊙O的内接正十边形的一边,则∠ABC=°.
14.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,求证:PA=PB+PC;
(2)如图2,四边形ABCD是⊙O的内接正方形,点P为弧பைடு நூலகம்C上一动点,求证: ;
(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为弧BC上一动点,请探究PA、PB、PC三者之间有何数量关系,并给予证明.

正多边形和圆—巩固练习(提高)

正多边形和圆—巩固练习(提高)

正多边形和圆—巩固练习(提高)【巩固练习】 一、选择题1. (2016•南平)若正六边形的半径长为4,则它的边长等于( ) A .4B .2C .2D .42.将边长为3cm 的正三角形各边三等分,以这六个分点为顶点构成一个正六边形,则这个正六边形的面积为 ( )A .233cm 2 B .334cm 2 C .338cm 2 D .33cm 23.如图,△PQR 是⊙O 的内接正三角形,四边形ABCD 是⊙O 的内接正方形, BC ∥QR ,则∠AOQ=( ) A .60° B .65° C .72° D .75°第3题 第5题4.周长是12的正三角形、正方形、正六边形的面积分别是S 3、S 4、S 6,则它们的大小关系是( ). A .S 6>S 4>S 3 B .S 3>S 4>S 6 C .S 6>S 3>S 4 D .S 4>S 6>S 35. 如图所示,八边形ABCDEFGH 是正八边形,其外接⊙O 的半径为2,则正八边形的面积S 为( ).A.22B. 42C. 8D.4 6.先作半径为的圆的内接正方形,接着作上述内接正方形的内切圆,再作上述内切圆的内接正方形,…,则按以上规律作出的第7个圆的内接正方形的边长为( ) A .B .C .D .二、填空题7.一个正方形与圆有相等的周长,则圆面积与正方形的面积比为________.8.如图所示,正六边形内接于圆O ,圆O 的半径为10,则图中阴影部分的面积为________.PDR CQ BOA9.半径相等的圆内接正三角形、正方形、正六边形的边长之比为.10.(2016•威海)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.11.如图所示,有一个圆O和两个正六边形T1、T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).(1)设T1,T2的边长分别为a,b,圆O的半径为r,则r:a= ; r:b= ;(2)正六边形T1,T2的面积比S1:S2的值是.第11题图第12题图12.如图所示,已知正方形ABCD中,边长AB=3,⊙O与⊙O′外切且与正方形两边相切,两圆半径为R、r,则R+r= .三、解答题13.如图,正六边形ABCDEF的边长为2cm,点P为六边形内任一点.则点P到各边距离之和为多少cm?14.如图①、②、③,正三角形ABC、正方形ABCD、正五边形ABCDE分别是⊙O的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度中⊙O上逆时针运动.(1)求图①中∠APB的度数;(2)图②中,∠APB的度数是,图③中∠APB的度数是;(3)根据前面探索,你能否将本题推广到一般的正n边形情况?若能,写出推广问题和结论;若不能,请说明理由.15.如图,正三角形、正方形、正六边形等正n边形与圆的形状有差异,我们将正n边形与圆的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设正n边形的每个内角的度数为m°,将正n边形的“接近度”定义为|180-m|.于是,|180-m|越小,该正n边形就越接近于圆,①若n=20,则该正n边形的“接近度”等于;②当“接近度”等于时,正n边形就成了圆.(2)设一个正n边形的半径(即正n边形外接圆的半径)为R,边心距(即正n边形的中心到各边的距离)为r,将正n边形的“接近度”定义为|R-r|,于是|R-r|越小,正n边形就越接近于圆.你认为这种说法是否合理?若不合理,请给出正n边形“接近度”的一个合理定义.【答案与解析】一、选择题1.【答案】A【解析】正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于4,则正六边形的边长是4.故选:A.2.【答案】A;【解析】所得正六边形边长为1,∴ 23331642S =⨯⨯=. 3.【答案】D ;【解析】易求∠POQ=120°,∠AOP=45°,则∠AOQ=∠POQ-∠AOP=120°-45°=75°. 4.【答案】A ;【解析】如图(1),∵ AB =4,AD =2,∠OAD =30°,∴ OD =233. ∴ 31123666243223AOD S S AD OD ∆==⨯⨯⨯=⨯⨯⨯=.如图(2),∵ AB =AC =3,∴ S 4=3×3=9. 如图(3),∵ CD =2,∴ OC =2,CM =1,∴ OM =3.∴ 61121213632COM S S ∆==⨯⨯⨯=.又∵ 222(63)9(43)>>,∴ 643S S S >>,故选A .5.【答案】B ;【解析】连接OA 、OB ,过A 作AM ⊥OB 于M ,∵ 360458AOB ∠==°°, ∴ △AOM 是等腰直角三角形. 又2AO =,∴ AM =1,∴ 11221222AOB S OB AM ∆=⨯=⨯⨯=, ∴ 288422AOB S S ∆==⨯=, 6.【答案】A .【解析】由于圆内接正方形的边长与圆的半径的比为,内接正方形的内切圆的半径与正方形的边长的比为,即这样做一次后,圆的内接正方形的边长为×=1;做第二次后的正方形的边长为;依次类推可得:第n 个正方形的边长是()n-1,则做第7次后的圆的内接正方形的边长为.故选A .二、填空题 7.【答案】4π; 【解析】 设正方形边长为a ,则周长为4a ,面积为2a ,圆周长也为4a ,则224r a π=,∴ 422a a r ππ==,∴ 222244a a S r ππππ==⨯=圆 ∴22414S a S a ππ=⨯=圆正方形. 8.【答案】1001503π-;【解析】图中阴影部分面积等于圆的面积减去正六边形的面积. ∵ 210100OSππ==,11053615032S =⨯⨯⨯=正六边形, ∴ 1001503OS SS π=-=-阴影正六边形9.【答案】::1;【解析】设圆的半径为R ,如图(一),连接OB ,过O 作OD ⊥BC 于D , 则∠OBC=30°,BD=OB•cos30°=R ,(或由勾股定理求)故BC=2BD=R ;如图(二),连接OB 、OC ,过O 作OE ⊥BC 于E ,则△OBE 是等腰直角三角形, 2BE 2=OB 2,即BE=,故BC=R ;如图(三),连接OA 、OB ,过O 作OG ⊥AB , 则△OAB 是等边三角形,故AG=OA•cos60°=R ,AB=2AG=R ,(或由勾股定理求) 故圆内接正三角形、正方形、正六边形的边长之比为R :R :R=::1.10【答案】2.【解析】连接AC 、OE 、OF ,作OM ⊥EF 于M , ∵四边形ABCD 是正方形, ∴AB=BC=4,∠ABC=90°, ∴AC 是直径,AC=4,∴OE=OF=2,∵OM ⊥EF ,∴EM=MF ,∵△EFG 是等边三角形, ∴∠GEF=60°,在RT △OME 中,∵OE=2,∠OEM=∠GEF=30°, ∴OM=,EM=OM=, ∴EF=2.故答案为2.11.【答案】(1)r:a =1:1;32r b =:;(2)1234S S =:. 【解析】如图所示.(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形,所以r:a =1:1;连接圆心O 和T 2相邻的两个顶点,得以圆O 半径为高的正三角形,所以32r b =:.(2)T 1∶T 2的边长比是3∶2,所以S 1∶S 2=4:3):(2=b a .所以1234S S =:.12.【答案】6-32;【解析】连结OA 、OO ′、O C .(如图所示) ∵⊙O 与AB ,AD 相切,⊙O ′与BC,CD 相切,∴OA 平分∠BAD,O ′C 平分∠BCD, ∴∠BAO=∠BCO ′=45°, 若连结AC,则∠BAC=45°,∴直线OO ′与直线AC 重合, 设⊙O 切AB 、AD 于E 、F ,⊙O ′切BC 、CD 于G 、H . ∵⊙O 与⊙O ′互相外切,∴OO ′=R+r .连接OF 、OE 、O H '、O G ',则22OA OF R ==. 同理22O C OH r '==,∴ 22(12)()AC R r R r R r =+++=++.又∵32AC =,∴ (12)()32R r ++=,∴ 3232(21)=6-3212R r +==-+.三、解答题13.【答案与解析】解:过P 作AB 的垂线,交AB 、DE 分别为H 、K ,连接BD , ∵六边形ABCDEF 是正六边形,∴AB ∥DE ,AF ∥CD ,BC ∥EF ,且P 到AF 与CD 的距离和及P 到EF 、BC 的距离和均为HK 的长,∵BC=CD ,∠BCD=∠ABC=∠CDE=120°, ∴∠CBD=∠BDC=30°, ∴BD ∥HK ,且BD=HK ,∵CG⊥BD,∴BD=2BG=2×2×=6,∴点P到各边距离之和为3BD=3×6=18.14.【答案与解析】(1)∠APB=120°(如图①)∵点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动,∴∠BAM=∠CBN,又∵∠APN=∠BPM,∴∠APN=∠BPM=∠ABN+∠BAM=∠ABN+∠CBN=∠ABC=60°,∴∠APB=120°;(2)同理可得:图②中∠APB=90°;图③中∠APB=72°.(3)由(1)可知,∠APB=所在多边形的外角度数,故在图n中,∠APB=.15.【答案与解析】(1)①∵正20边形的每个内角的度数m==162°,∴|180-m|=18;②当“接近度”等于0时,正n边形就成了圆.(2)不合理.例如,对两个相似而不全等的正n边形来说,它们接近于圆的程度是相同的,但|R-r|却不相等.合理定义方法不唯一,如定义为、越小,正n边形越接近于圆;越大,正n边形与圆的形状差异越大;当=1时,正n边形就变成了圆.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题
正八边形的中心角的大小为(
A.30° B.45° C.60° D.90°
).
【答案】B
中小学数学精品视频课程
习题
边长为������的正六边形的边心距为(
A.
2 ������ 2
).
D.������
B.
D
3 ������ 2
C. 3������
E
F
O
C
A
B
【答案】B
中小学数学精品视频课程
习题
已知,如图所示,正六边形内接于⊙ ������,⊙ ������的半径为10,则图中阴影
部分的面积为 .
【答案】100������ − 150 3
中小学数学精品视频课程
习题
如图所示,正六边形������������������������������������ 内接于⊙ ������,图中阴影部分的面积为12 3,
习题
如图所示,⊙ ������过正方形������������������������的顶点������, ������且与������������边相切,若正方形的
边长为2,则⊙ ������的半径为( A.
4 3
). C.
5 2
B.
5 4
D.1
A O D
B

C
【答案】B
中小学数学精品视频课程
则⊙ ������的半径为 .
【答案】4
中小学数学精品视频课程
相关文档
最新文档