人教版数学中考知识点梳理-特殊平行四边形

合集下载

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。

2.平行线性质:特殊平行四边形的两对边分别是平行的。

根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。

3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。

这个性质可以通过两个相似三角形的性质证明得出。

4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。

这个性质可以通过垂直线的性质证明得出。

5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。

这个性质可以通过平行线的性质证明得出。

6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。

这个性质也可以通过夹角的定义和平行线的性质证明得出。

7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。

这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。

特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。

例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。

特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。

总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。

通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。

《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)知识讲解

《特殊平行四边形》全章复习与巩固(基础)【学习目标】1. 理解矩形、菱形的概念,探索并证明矩形、菱形的性质定理,以及它们的判定定理.2. 理解正方形的概念,探索并掌握正方形的对称性及其他有关性质,以及一个四边形是正方形的条件.3.会初步综合应用特殊平行四边形的知识,解决一些简单的实际问题. 【知识网络】【要点梳理】 要点一、矩形1.定义:有一个角是直角的平行四边形叫做矩形. 2.性质:(1)具有平行四边形的所有性质;(2)四个角都是直角;(3)对角线互相平分且相等;(4)中心对称图形,轴对称图形.3.面积:宽=长矩形 S4.判定:(1) 有一个角是直角的平行四边形是矩形. (2)对角线相等的平行四边形是矩形. (3)有三个角是直角的四边形是矩形. 要点诠释:由矩形得直角三角形的性质:(1)直角三角形斜边上的中线等于斜边的一半;(2)直角三角形中,30度角所对应的直角边等于斜边的一半. 要点二、菱形1. 定义:有一组邻边相等的平行四边形叫做菱形. 2.性质:(1)具有平行四边形的一切性质; (2)四条边相等;(3)两条对角线互相平分且垂直,并且每一条对角线平分一组对角;(4)中心对称图形,轴对称图形.3.面积:2对角线对角线高==底菱形⨯⨯S4.判定:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四边相等的四边形是菱形.要点三、正方形1. 定义:四条边都相等,四个角都是直角的四边形叫做正方形. 2.性质:(1)对边平行;(2)四个角都是直角;(3)四条边都相等;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形; (6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)一组邻边相等的矩形是正方形; (3)对角线相等的菱形是正方形; (4)对角线互相垂直的矩形是正方形;(5)对角线互相垂直平分且相等的四边形是正方形; (6)四条边都相等,四个角都是直角的四边形是正方形.【典型例题】 类型一、矩形1、(常州期末)如图,在△ABC 中,AB=AC ,D 为BC 的中点,AE ∥BC ,DE ∥AB . 试说明: (1)AE=DC ;(2)四边形ADCE 为矩形.【思路点拨】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论. 【答案与解析】证明:(1)如图,∵AE∥BC,∴AE∥BD.又∵DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵D为BC的中点,∴BD=DC,∴AE=DC;(2)∵AE∥CD,AE=BD=DC,即AE=DC,∴四边形ADCE是平行四边形.又∵AB=AC,D为BC的中点,∴AD⊥CD,∴平行四边形ADCE为矩形.【总结升华】本题考查了等腰三角形的性质,矩形的判定与性质以及平行四边形的性质.此题也可以根据“对角线相等的平行四边形是矩形”来证明(2)的结论.2、如图所示,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处,求EF的长.【思路点拨】要求EF的长,可以考虑把EF放入Rt△AEF中,由折叠可知CD=CF,DE=EF,易得AC=10,所以AF=4,AE=8-EF,然后在Rt△AEF中利用勾股定理求出EF的值.【答案与解析】解:设EF=x,由折叠可得:DE=EF=x,CF=CD=6,又∵在Rt△ADC中,22AC+=.6810∴ AF =AC -CF =4,AE =AD -DE =8-x . 在Rt △AEF 中,222AE AF EF =+, 即222(8)4x x -=+,解得:x =3 ∴ EF =3 【总结升华】在矩形折叠问题中往往根据折叠找出相等的量,然后把未知边放在合适的直角三角形中,再利用勾股定理进行求解. 举一反三: 【变式】把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3cm ,BC = 5cm ,则重叠部分△DEF 的面积是__________2cm .【答案】5.1.提示:由题意可知BF =DF ,设FC =x ,DF =5-x ,在Rt △DFC 中,222DC FC DF +=,解得x =85,BF =DE =3.4,则DEF 1=DE AB 2S ⨯△=12×3.4×3=5.1.类型二、菱形3、(遵义)在Rt△ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF∥BC 交BE 的延长线于点F . (1)求证:△AEF≌△DEB; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.【答案与解析】(1)证明:①∵AF∥BC,∴∠AFE=∠DBE,∵E 是AD 的中点,AD 是BC 边上的中线, ∴AE=DE,BD=CD , 在△AFE 和△DBE 中,,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵,∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)解:设菱形DC边上的高为h,∴RT△ABC斜边BC边上的高也为h,∵BC==,∴DC=BC=,∴h==,菱形ADCF的面积为:DC•h=×=10.【总结升华】运用菱形的性质可以证明线段相等、角相等、线段的平行及垂直等问题,关键是要记住它们的判定和性质.举一反三:【变式】用两张等宽的纸带交叉重叠地放在一起,重合的四边形ABCD是菱形吗?如果是菱形请给出证明,如果不是菱形请说明理由.【答案】四边形ABCD是菱形;证明:由AD∥BC,AB∥CD得四边形ABCD是平行四边形,过A,C两点分别作AE⊥BC于E,CF⊥AB于F.∴∠CFB=∠AEB=90°.∵AE=CF(纸带的宽度相等)∠ABE=∠CBF,∴Rt△ABE≌Rt△CBF,∴AB=BC,∴四边形ABCD是菱形.4、如图,E、F、G、H分别是BD、BC、AC、AD的中点,且AB=CD.下列结论:①EG⊥FH,②四边形EFGH是矩形,③HF平分∠EHG,④EG=12(BC-AD),⑤四边形EFGH是菱形.其中正确的个数是()A.1 B.2 C.3 D.4【答案】C;【解析】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是矩形,错误;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=12BC,GN=12AD,∴EG=12(BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误;⑤四边形EFGH是菱形,正确.综上所述,①③⑤共3个正确.故选C.【总结升华】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.类型三、正方形5、如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P 作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【思路点拨】(1)问通过证明三角形全等来证明角相等;(2)先证明四边形MPND是矩形,再证明一组邻边相等,从而证明四边形MPND是正方形.【答案与解析】证明:(1) ∵BD平分∠ABC,∴∠ABD=∠CBD.又∵BA=BC,BD=BD,∴△ABD≌△CBD.∴∠ADB=∠CDB.(2) ∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,又∵∠ADC=90°,∴四边形MPND是矩形.∵∠ADB=∠CDB,PM⊥AD,PN⊥CD,∴PM=PN.∴四边形MPND是正方形.【总结升华】熟记正方形的判定定理,有一组邻边相等的矩形是正方形.6、如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【思路点拨】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=CE,根据CF平分∠DCE推出∠H=∠FCE,根据ASA证△HAE≌△CEF即可得到答案.【答案与解析】探究:AE=EF证明:∵△BHE为等腰直角三角形,∴∠H=∠HEB=45°,BH=BE.又∵CF平分∠DCE,四边形ABCD为正方形,∴∠FCE=12∠DCE=45°,∴∠H=∠FCE.由正方形ABCD知∠B=90°,∠HAE=90°+∠DAE=90°+∠AEB,而AE⊥EF,∴∠FEC=90°+∠AEB,∴∠HAE=∠FEC.由正方形ABCD知AB=BC,∴BH-AB=BE-BC,∴HA=CE,∴△AHE≌△ECF (ASA),∴AE=EF.【总结升华】充分利用正方形的性质和题目中的已知条件,通过证明全等三角形来证明线段相等.举一反三:【变式1】如图所示,E、F、G、H分别是四边形ABCD各边中点,连接EF、FG、GH、HE,则四边形EFGH为________形.(1)当四边形满足________条件时,四边形EFGH是菱形.(2)当四边形满足________条件时,四边形EFGH是矩形.(3)当四边形满足________条件时,四边形EFGH是正方形.在横线上填上合适的条件,并说明你所填条件的合理性.【答案】四边形EFGH为平行四边形;解:(1)AC=BD,理由:如图①,四边形ABCD的对角线AC=BD,此时四边形EFGH为平行四边形,且EH=12BD,HG=12AC,得EH=GH,故四边形EFGH为菱形.(2)AC⊥BD,理由:如图②,四边形ABCD的对角线互相垂直,此时四边形EFGH为平行四边形.易得GH⊥BD,即GH⊥EH,故四边形EFGH为矩形.(3)AC=BD且AC⊥BD,理由:如图③,四边形ABCD的对角线相等且互相垂直,综合(1)(2)可得四边形EFGH为正方形.本题是以平行四边形为前提,加上对角线的特殊条件来判定特殊的平行四边形,加上邻边相等为菱形,加上对角线互相垂直为矩形,综合得到正方形.【变式2】(黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.【答案】65°.提示:∠ABE=90°-20°=70°,由正方形的性质知,∠BAC=45°,∴∠AEB=180°-45°-70°=65°,由正方形的对称性可知,∠AED=∠AEB=65°.【巩固练习】一.选择题1.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.22.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°3.(武进区一模)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.32B232.75D24. 在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分 B.测量两组对边是否分别相等C.测量一组对角是否都为直角 D.测量其中三角形是否都为直角5.正方形具备而菱形不具备的性质是()A. 对角线相等;B. 对角线互相垂直;C. 每条对角线平分一组对角;D. 对角线互相平分.6.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.207.(桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.48. 如图,在菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点,且OE=a,则菱形ABCD的周长为()A.16a B.12a C.8a D.4a二.填空题9.如图,Rt△ABC中,∠C=90°,AC=BC=6,E是斜边AB上任意一点,作EF⊥AC于F,EG⊥BC于G,则矩形CFEG的周长是_______.10.矩形的两条对角线所夹的锐角为60 ,较短的边长为12,则对角线长为__________. 11.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为______.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CB的中点,则OE的长等于_______.13.如图, 有一块边长为4的正方形塑料模板ABCD,将一块足够大的直角三角形的直角顶点落在点A,两条直角边分别与CD交于点F,与CB的延长线交于点E,则四边形AECF的面积是 _________.cm,对角线AC=4cm,则菱形的边长是______cm.14.已知菱形ABCD的面积是12215.菱形ABCD中,AE垂直平分BC,垂足为E,AB=4cm.那么,菱形ABCD的面积是________,对角线BD的长是_________.16.(昆明校级期中)如图,将两条宽度都为3的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为________.三.解答题17.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.18.(无棣县期中)如图,在△ABC中,AB=AC,AD是△ABC的角平分线,作AE∥BC,CE∥AD,AE、CE交于点E.(1)证明:四边形ADCE是矩形.(2)若DE交AC于点O,证明:OD∥AB且OD=AB.19.(崂山区一模)已知:如图,E是正方形ABCD的对角线BD上的点,连接AE、CE.(1)求证:AE=CE;(2)若将△ABE沿AB对折后得到△ABF;当点E在BD的何处时,四边形AFBE是正方形?请证明你的结论.20. 已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.(1)求证:BE = DF;(2)连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.【答案与解析】一.选择题1.【答案】C;【解析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.2.【答案】B;【解析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=CD,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.3.【答案】D;4.【答案】D;5.【答案】A;6.【答案】B;【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.7.【答案】B;【解析】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,此时,S△ABC=BC•AC=AB•CD,即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.8.【答案】C;【解析】OE=a,则AD=2a,菱形周长为4×2a=8a.二.填空题9.【答案】12;【解析】推出四边形FCGE 是矩形,得出FC =EG ,FE =CG ,EF∥CG,EG∥CA,求出∠BEG =∠B,推出EG =BG ,同理AF =EF ,求出矩形CFEG 的周长是CF +EF +EG +CG =AC +BC ,代入求出即可. 10.【答案】24;11.【答案】).2,22(+;【解析】过D 作DH ⊥OC 于H ,则CH =DH =2,所以D 的坐标为).2,22(+ 12.【答案】4;【解析】根据菱形的性质得出OA =OC ,根据三角形的中位线性质得出OE =12AB ,代入求出即可.13.【答案】16;【解析】证△ABE ≌△ADF ,四边形AECF 的面积为正方形ABCD 的面积. 14.【答案】13; 【解析】设BD =x ,1412,62x x ⨯==,所以边长=222313+=. 15.【答案】832cm ;43cm ;【解析】由题意知△ABC 为等边三角形,AE =23,面积为832cm ,BD =2AE = 43cm .16.【答案】6.【解析】∵纸条的对边平行,即AB∥CD,AD∥BC,∴四边形ABCD 是平行四边形, ∵两张纸条的宽度都是3,∴S 四边形ABCD =AB×3=BC×3, ∴AB=BC,∴平行四边形ABCD 是菱形,即四边形ABCD 是菱形. 如图,过A 作AE⊥BC,垂足为E , ∵∠ABC=60°,∴∠BAE=90°﹣60°=30°, ∴AB=2BE,在△ABE 中,AB 2=BE 2+AE 2, 即AB 2=AB 2+32, 解得AB=2, ∴S 四边形ABCD =BC•AE=2×3=6.故答案是:6.三.解答题17.【解析】证明:∵四边形ABCD 是菱形,∴AB=BC ,∠A=∠C, ∵在△ABF 和△CBE 中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△CBE(SAS ), ∴BF=BE . 18.【解析】 证明:(1)∵AB=AC,AD 是△ABC 的角平分线,∴AD⊥BC,且BD=CD , ∵AE∥BC,CE∥AD,∴四边形ADCE 是平行四边形, ∴四边形ADCE 是矩形;(2)∵四边形ADCE 是矩形, ∴OA=OC,∴OD 是△ABC 的中位线,∴OD∥AB 且OD=12AB. 19.【解析】(1)证明:∵四边形ABCD 是正方形,∴AB=CB ,∠BAD=∠ABC=90°,∠ABE=∠CBE=45°, 在△ABE 和△CBE 中,,∴△ABE ≌△CBE (SAS ), ∴AE=CE .(2)解:点E 在BD 的中点时,四边形AFBE 是正方形;理由如下:由折叠的性质得:∠F=∠AEB ,AF=AE ,BF=BE , ∵∠BAD=90°,E 是BD 的中点, ∴AE=BD=BE=DE , ∵AE=CE ,∴AE=BE=CE=DE=AF=BF ,∴四边形AFBE 是菱形,E 是正方形ABCD 对角线的交点, ∴AE ⊥BD ,∴∠AEB=90°,∴四边形AFBE是正方形.20.【解析】证明:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°.∵AE = AF,∴Rt RtABE ADF△≌△.∴BE=DF.(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA =∠DCA=45°,BC=DC.∵BE=DF,∴BC-BE=DC-DF. 即CE=CF.∴OE=OF.∵OM=OA,∴四边形AEMF是平行四边形.∵AE=AF,∴平行四边形AEMF是菱形.A DB EFOC。

特殊平行四边形的性质和判定总结

特殊平行四边形的性质和判定总结
2.菱形(重点):
平行四边形有一组领边相等_菱形
性质:
判定
周长
面积
菱形具有平行四边形的所有性质

四条边相等的四边形是菱形
边长×4
对角线积的一半或底×高
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
对角线互相垂直的矩形是正方形
对角线相等的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
对角线互相垂直平分且相等的四边形是正方形
一.平行四边形的性质及判定:
特殊的平行四边形:1.矩形:
平行四边形_有一个角是直角_矩形
性质:
判定
周长
面积
矩形具有平行四边形的所有性质

有一个角是直角的平行四边形是矩形
邻边之和的二倍
底×高
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
性质:
判定:
周长
面积
平行四边形的对边平行且相等

两组对边分别平行的四边形是平行四边形
邻边之和的二倍
底×高
平行四边形的对角相等
两组对边分别相等
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补

两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
平行四边形有一组邻边相等且有一个角是直角___正方形
性质:
判定:

人教八年级数学特殊平行四边形相关知识归纳总结与例题精讲

人教八年级数学特殊平行四边形相关知识归纳总结与例题精讲
【强调】 菱形( 1)是平行四边形; (2)一组邻边相等.
菱形的性质
性质 1 菱形的四条边都相等; 性质 2 菱形的对角线互相平分,并且每条对角线平分一组对角;
菱形的判定
菱形判定方法 1:对角线互相垂直的平行四边形是菱形.
注意此方法包括两个条件: (1)是一个平行四边形;(2)两条对角线互相垂 直.
菱形判定方法 2:四边都相等的四边形是菱形.
例 1 已知:如图,四边形 ABCD 是菱形, F 是 AB 上一点, DF 交 AC 于 E. 求证:∠ AFD= ∠CBE .
例 2 已知:如图 ABCD 的对角线 AC 的垂直平分线与边 AD 、 BC 分别交于 E、 F. 求证:四边形 AFCE 是菱形.
然后再加上相
学习必备
欢迎下载
例 1 已知:如图,正方形 ABCD 中,对角线的交点为 OB 上的一点, DG ⊥ AE 于 G,DG 交 OA 于 F. 求证: OE=OF .
O, E 是
例 2 已知:如图,四边形 ABCD 是正方形,分别过点 A 、 C 两点作 l 1∥ l2,作 BM ⊥ l 1 于 M , DN ⊥ l1 于 N ,直线 MB 、DN 分别交 l 2 于 Q、P 点.
求证:四边形 PQMN 是正方形.
例 3、( 2008 海南) 如图, P 是边长为 1 的正方形 ABCD 对角线 AC 上一动点( P 与 A、C 不重合),点 E 在射线 BC 上,且 PE=PB .
( 1)求证:① PE=PD ; ② PE⊥ PD ; ( 2)设 AP=x, △PBE 的面积为 y.
A
B
E
D
C
图5
例题讲解 例一 .分析:( 1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形

特殊的平行四边形初中数学知识点总结

特殊的平行四边形初中数学知识点总结

特别的平行四边形初中数学知识点总结一、特别的平行四边形1.矩形:(1)定义:有一个角是直角的平行四边形。

(2)性质:矩形的四个角都是直角;矩形的对角线均分且相等。

(3)判断定理:①有一个角是直角的平行四边形叫做矩形。

②对角线相等的平行四边形是矩形。

③有三个角是直角的四边形是矩形。

直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

2.菱形:(1)定义:邻边相等的平行四边形。

(2)性质:菱形的四条边都相等;菱形的两条对角线相互垂直,而且每一条对角线均分一组对角。

(3)判断定理:①一组邻边相等的平行四边形是菱形。

②对角线相互垂直的平行四边形是菱形。

③四条边相等的四边形是菱形。

(4)面积:3.正方形:(1)定义:一个角是直角的菱形或邻边相等的矩形。

(2)性质:四条边都相等,四个角都是直角,对角线相互垂直均分。

正方形既是矩形,又是菱形。

(3)正方形判断定理:①对角线相互垂直均分且相等的四边形是正方形;②一组邻边相等,一个角为直角的平行四边形是正方形;③对角线相互垂直的矩形是正方形;④邻边相等的矩形是正方形⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形。

二、矩形、菱形、正方形与平行四边形、四边形之间的联系:1.矩形、菱形和正方形都是特别的平行四边形,其性质都是在平行四边形的基础上扩大来的。

矩形是由平行四边形增添“一个角为90°”的条件获得的,它在角和对角线方面拥有比平行四边形更多的特征;菱形是由平行四边形增添“一组邻边相等”的条件获得的,它在边和对角线方面拥有比平行四边形更多的特征;正方形是由平行四边形增添“一组邻边相等”和“一个角为90°”两个条件获得的,它在边、角和对角线方面都拥有比平行四边形更多的特征。

2.矩形、菱形的判断能够依据出发点不一样而分红两类:一类是以四边形为出发点进行判断,另一类是以平行四边形为出发点进行判断。

而正方形除了上述两个出发点外,还能够从矩形和菱形出发进行判断。

人教版初中数学第十八章平行四边形知识点

人教版初中数学第十八章平行四边形知识点

第十八章平行四边形18.1 平行四边形平行四边形定义:两组对边分别平行的四边形叫做平行四边形.平行四边形用“□”表示,读作“平行四边形”.平行四边形ABCD记作“□ABCD”.18.1.1 平行四边形的性质平行四边形是中心对称图形,对称中心是两条对角线的交点.例、已知:□ABCD求证:AD=BC,AB=DC;∠A=∠C,∠B=∠D.AD CD AD BC证明:连接AC,//,//∴∠=∠∠=∠12,34又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA,AD CB AB CD B D∴==∠=∠,,平行四边形性质1:平行四边形的两组对边分别相等.平行四边形性质2:平行四边形的两组对角分别相等.例、已知:如图:□ABCD的对角线AC、BD相交于点O.求证:OA=OC,OB=OD.证明:四边形ABCD是平行四边形∴AD=BC,AD∥BC.∴∠1=∠2,∠3=∠4.∴△AOD≌△COB(ASA).∴OA=OC,OB=OD.平行线之间的距离定义:若两条直线互相平行,则其中一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线之间的距离特征1:平行线之间的距离处处相等.平行线之间的距离特征2:夹在两条平行线之间的平行线段相等.平行四边形性质3:平行四边形的两条对角线互相平分.例、如图,□ABCD中,BD⊥AB,AB=12cm,AC=26cm,求AD、BD长.解:∵四边形ABCD 是平行四边形,∴AO=CO=21AC ,OB=OD . ∵BD ⊥AB ,∴在Rt △A BO 中,AB=12cm ,AO=13cm .∴BO=522=-AB AO .∴BD=2B0=10cm .∴在Rt △ABD 中,AB=12cm ,BD=10cm .∴AD=61222=+BD AB (cm).例、如图,在□ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB 的周长为25,AB=12,求对角线AC 与BD 的和.解:∵△AOB 的周长为25,∴OA+BO+AB=25,又AB=12,∴AO+OB=25-12=13,∵平行四边形的对角线互相平分,∴AC+BD=2OA+2OB=2(0A+OB)=2×13=2618.1.2 平行四边形的判定平行四边形判定1:两组对边分别平行的四边形是平行四边形.平行四边形判定2:两组对边分别相等的四边形是平行四边形.平行四边形判定3:两组对角分别相等的四边形是平行四边形.平行四边形判定4:两条对角线互相平分的四边形是平行四边形.平行四边形判定5:一组对边平行且相等的四边形是平行四边形.中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.例、 如图,在□ABCD 中,已知点E 和点F 分别在AD 和BC 上,且AE=CF ,连结CE 和AF ,试说明四边形AFCE 是平行四边形.证明:∵四边形ABCD 是平行四边形,∴AD//BC ,∵点E 在AD 上,点F 在BC 上,∴AE//CF ,又∵AE=CF ,∴四边形AFCE 是平行四边形.例、如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE .求证:(1)△AFD ≌△CEB .(2)四边形ABCD 是平行四边形.解:(1)∵DF ∥BE , ∴∠AFD =∠CEB . 又∵AF=CE , DF=BE ,∴△AFD ≌△CEB .(2)由(1)△AFD ≌△CEB 知AD=BC ,∠DAF =∠BCE , ∴AD ∥BC ,∴四边形ABCD 是平行四边形.例、如图,平行四边形ABCD 中,E 、F 为边AD 、BC 上的点,且AE=CF ,连结AF 、EC 、BE 、DF 交于M 、N ,试说明:MFNE 是平行四边形.解:∵四边形ABCD 是平行四边形,∴AD ∥BC , AD ∥BC又∵AE=CF ,∴ED=FB ,四边形AFCE 是平行四边形∴AF ∥EC .同理:BE ∥FD .∴四边形MFNE 是平行四边形.18.2 特殊的平行四边形18.2.1 矩形矩形定义1:有一个角是直角的平行四边形叫做矩形矩形定义2:有三个角是直角的四边形叫做矩形矩形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线. 矩形性质1:矩形的四个角都是直角.矩形性质2:矩形的对角线相等且互相平分.直角三角形的性质:直角三角形斜边上的中线等于斜边的一半矩形判定1:有一个角是直角的平行四边形是矩形.矩形判定2:有三个角是直角的四边形是矩形.矩形判定3:对角线相等的平行四边形是矩形.N M F E A B C D例、如图,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCED是矩形.证明:在△ABD和△ACE中,,,AB AC AD AE BAD CAE==∠=∠∴△ABD≌△ACE,∴BD=CE,又DE=BC,∴四边形BCED为平行四边形.在△ACD和△ABE中,∵AC=AB,AB=AE,∠=∠+∠=∠+∠=∠,CAD CAB BAD CAB CAE BAE∴△ADC≌△AEB∴CD=BE∴四边形BCED为矩形18.2.2 菱形菱形定义1:有一组邻边相等的平行四边形叫做菱形.菱形定义2:四条边都相等的四边形叫做菱形.菱形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是对角线所在的直线.菱形性质1:菱形的四条边都相等.菱形性质2:菱形的对角线互相垂直平分.菱形性质3:菱形的每一条对角线平分一组对角.菱形的面积:菱形的面积等于对角线乘积的一半.推广:对角线互相垂直的四边形面积等于对角线乘积的一半.菱形判定1:有一组邻边相等的平行四边形是菱形.菱形判定2:四条边都相等的四边形是菱形.菱形判定3:对角线互相垂直的平行四边形是菱形.菱形判定4:每条对角线平分一组对角的四边形是菱形.18.2.3 正方形正方形定义1:有一组邻边相等的矩形叫做正方形.正方形定义2:有一个角是直角的菱形叫做正方形.正方形定义3:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.正方形既是中心对称图形又是轴对称图形,对称中心是两条对角线的交点,对称轴是各边的垂直平分线和对角线所在的直线.正方形性质1:正方形的四个角都是直角.正方形性质2:正方形的四条边都相等.正方形性质3:正方形的两条对角线互相垂直平分且相等.正方形判定1:有一组邻边相等的矩形是正方形.正方形判定2:有一个角是直角的菱形是正方形.正方形判定3:有一组邻边相等并且有一个角是直角的平行四边形是正方形.正方形判定4:对角线垂直平分且相等的四边形是正方形.例、如图,四边形ABCD 是菱形,对角线AC =8 cm ,BD =6 cm , DH ⊥AB 于H ,求:DH 的长. ∵四边形ABCD 是菱形, 1AC BD OA OC AC 4cm OB OD 3cm 2∴⊥=====,,,∴AB=5cm ,ABCD S AC BD AB DH ∴=⋅=⋅菱形,4.82AC BDDH cm AB ⋅∴==.例、已知:如图,菱形ABCD 的周长为16 cm ,∠ABC =60°,对角线AC 和BD相交于点O ,求AC 和BD 的长.解:∵菱形ABCD 的周长为16cm ,060ABC ∠=∴AB=BC=4cm ,△ABC 是等边三角形,∴AC=4cm ,∵AC ,BD 互相垂直平分,∴OA=2224223OB cm ∴=-=43BD cm ∴=例、如图,在正方形ABCD 中,P 为对角线BD 上一点,PE ⊥BC ,垂足为E , PF ⊥CD ,垂足为F ,求证:EF =AP证明:连接PC ,∵PE ⊥BC ,PF ⊥CD ,四边形ABCD 是正方形,∴∠PEC=∠PFC=∠C=90°,∴四边形PECF 是矩形,∴PC=EF ,∵P 是正方形ABCD 对角线上一点,∴AD=CD ,∠PDA=∠PDC ,在△PAD 和△PCD 中, AD =CD ,∠PDA =∠PDC ,PD =PD ,∴△PAD ≌△PCD ,∴PA=PC ,∴EF=AP ,例、在△ABC 中,AB=AC ,D 是BC 的中点,DE ⊥AB , DF ⊥AC ,垂足分别是E ,F. 试说明:DE=DF解:∵AB=AC ,∠B=∠C∵DE ⊥ AB ,DF ⊥ AC∴∠DEB ≌DFC= 90°∵D 是BC 的中点∴BD=DC∴△BDE ≌△CDF∴DE=DF.例、如图,ABCD 中,AE 平分∠BAD 交BC 于E ,EF ∥AB 交AD 于F , 试问:四边形ABEF 是什么图形吗?请说明理由.解:四边形ABEF 是菱形.理由:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∵EF ∥AB ,∴四边形ABEF 是平行四边形,∵AE 平分∠BAD , A B C DE F∴∠BAE=∠FAE,∵AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴▱ABEF是菱形.。

特殊四边形的知识点、定义、性质、判定

特殊四边形的知识点、定义、性质、判定

特殊四边形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“□”表示平行四边形,例如:平行四边形ABCD 记作“□ABCD ”,读作“平行四边形ABCD ”. 2.熟练掌握性质:平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的. (1)角:对角相等,邻角互补; (2)边:对边分别平行且相等; (3)对角线:对角线互相平分;(4)面积:①S ==⨯底高ah ;②平行四边形的对角线将四边形分成4个面积相等的三角形.(5)平行四边形不是轴对称图形。

3.平行四边形的判别方法①定义判定:两组对边分别平行的四边形是平行四边形。

②方法2:两组对角分别相等的四边形是平行四边形。

③方法3:两组对边分别相等的四边形是平行四边形。

④方法4:对角线互相平分的四边形是平行四边形。

⑤方法5:一组平行且相等的四边形是平行四边形。

二、几种特殊平行四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:① 平行四边形; ② 一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:① 平行四边形;② 一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.三、几种特殊四边形的有关性质(1)矩形: ①边:对边平行且相等;②角:四个角都是直角; ③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条). ⑤面积S =长×宽;A BD OC AD B CO【注意:矩形具有平行四边形的一切性质】(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角; ④对称性:轴对称图形(对角线所在直线,2条). ⑤面积S =底×高=对角线乘积的一半;【注意:菱形具有平行四边形的一切性质】(3)正方形:①边:四条边都相等;②角:四角相是直角;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450; ④对称性:轴对称图形(4条).⑤面积S =边长×边长=对角线乘积的一半;【注意:正方形具有平行四边形、矩形、菱形的一切性质】四、几种特殊四边形的判定方法(1)矩形的判定: ①有一个角是直角的平行四边形;②对角线相等的平行四边形; ③有三个角是直角的四边形。

初三数学特殊的平行四边形图形的相似知识点

初三数学特殊的平行四边形图形的相似知识点

初三数学特殊的平行四边形图形的相似知识点初三数学特殊的平行四边形知识点一、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的对边平行且相等。

(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。

(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。

(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。

(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。

(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。

(对角)(5)定理4:对角线互相平分的四边形是平行四边形。

(对角线)4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

注意:平行线间的距离处处相等。

5、平行四边形的面积: S平行四边形=底边长×高=ah111二、菱形1、菱形的定义:有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行。

(边)(2)菱形的相邻的角互补,对角相等。

(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。

(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。

(2)定理1:四边都相等的四边形是菱形。

(边)(3)定理2:对角线互相垂直的平行四边形是菱形。

(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20讲特殊的平行四边形
一、知识清单梳理
知识点一:特殊平行四边形的性质与判定关键点拨及对应举例
1.性质(具有平行四边形的一切性质,对边平行且相等)
矩形菱形正方形(1)矩形中,Rt△ABD≌Rt
△DCA≌Rt△CDB≌Rt△
BAC; _两对全等的等腰
三角形.所以经常结合勾
股定理、等腰三角形的性
质解题.
(2)菱形中,有两对全
等的等腰三角形;Rt△
ABO≌Rt△ADO≌Rt△CBO
≌Rt△CDO;若∠
ABC=60°,则△ABC和△
ADC为等边三角形,且
四个直角三角形中都有
一个30°的锐角.
(3)正方形中有8个等
腰直角三角形,解题时结
合等腰直角三角形的锐
角为45°,斜边=直角边. (1)四个角都是
直角
(2)对角线相等
且互相平分.

AO=CO=BO=DO
.
(3)面积=长×

=2S△ABD=4S
△AOB.
(1)四边相等
(2)对角线互相垂
直、平分,一条对
角线平分一组对角
(3)面积=底×高
=对角线_乘积的
一半
(1)四条边都相等,四个
角都是直角
(2)对角线相等且互相
垂直平分
(3)面积=边长×边长
=2S△ABD
=4S△AOB
2.判定(1)定义法:有
一个角是直
角的平行四
边形
(2)有三个角是
直角
(3)对角线相等
的平行四边
(1)定义法:有一组
邻边相等的平行
四边形
(2)对角线互相垂直
的平行四边形
(3)四条边都相等的
四边形
(1)定义法:有一个角
是直角,且有一组邻
边相等的平行四边

(2)一组邻边相等的矩

(3)一个角是直角的菱

例:判断正误.
邻边相等的四边形为菱
形.()
有三个角是直角的四边
形式矩形.
()
对角线互相垂直平分的
形(4)对角线相等且互相
垂直、平分四边形是菱形. ()
对边相等的矩形是正方
形.()
3.联系
包含关系:知识点二:特殊平行四边形的拓展归纳
4.中点四边形(1)任意四边形多得到的中点四边形一定是平行四边形.
(2)对角线相等的四边形所得到的中点四边形是矩形.
(3)对角线互相垂直的四边形所得到中点四边形是菱形.
(4)对角线互相垂直且相等的四边形所得到的中点四边形是正方
形.
如图,四边
形ABCD为菱
形,则其中点四边形EFGD
的形状是矩形.
5.特殊四边形中的解题模型(1)矩形:如图①,E为AD上任意一点,EF过矩形中心O,则△AOE≌△COF,S1=S2. (2)正方形:如图②,若EF⊥MN,则EF=MN;如图③,P为AD边上任意一点,则PE+PF=AO. (变式:如图④,四
边形ABCD为矩
形,则PE+PF的
求法利用面积法,需连接PO.)
图①图②图③
图④
【素材积累】
1、人生只有创造才能前进;只有适应才能生存。

博学之,审问之,慎思之,明辨之,笃行之。

我不知道将来会去何处但我知道我已经摘路上。

思想如钻子,必须集中摘一点钻下去才有力量。

失败也是我需要的,它和成功对我一样有价值。

2、为做有效的生命潜能管理,从消极变为积极,你必须了解人生的最终目的。

你到底想要什么?一生中哪些对你而言是最重要的?什么你一生当中最想完成的事?或许,你从来没有认真思量过生命潜能管理旧是以有系统的方法管理自我及周边资源,达成。

相关文档
最新文档