河南省中考数学知识点梳理
河南中考数学知识点梳理
考点四、分式
( 8~10 分)
1、分式的概念
A
一般地,用 A、 B 表示两个整式, A÷ B 就可以表示成
的形式,如果 B 中含有字母,式子
B
式。其中, A 叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。
A
就叫做分
B
2、分式的性质
( 1)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
4 二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
x a 是 b 的平方根,当 b 0 时,
xa
b , x a b ,当 b<0 时,方程没有实数根。
2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广
泛的应用。配方法的理论根据是完全平方公式
a 2 2ab b 2 (a b) 2 ,把公式中的 a 看做未知数 x,并用
a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a 0)
a0
2
aa
;注意 a 的双重非负性:
- a ( a <0)
a0
3、立方根
如果一个数的立方等于 a,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 a
考点七、二元一次方程组
( 8~10 分)
1、二元一次方程
含有两个未知数,并且未知项的最高次数是
1 的整式方程叫做二元一次方程,它的一般形式是(
2、二元一次方程的解
2023河南数学中考考点归纳
2023河南数学中考考点归纳现今的符号使得数学对于人们而言更便于操作,少量的符号包含著大量的讯息,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。
今天小编在这给大家整理了一些河南数学中考考点归纳,我们一起来看看吧!河南数学中考考点归纳一、代数式1.概念:用基本的运算符号(加、减、乘、除、乘方、开方)把数与字母连接而成的式子叫做代数式。
单独的一个数或字母也是代数式。
2.代数式的值:用数代替代数式里的字母,按照代数式的运算关系,计算得出的结果。
二、整式单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数的项的次数,就是这个多项式的次数。
3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
三、整式的运算1.同类项——所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。
同类项与系数无关,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
即同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的,然后再合并同类项。
数学中考考点归纳一、考点分析考点一、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r点P在⊙O上;d>r点P在⊙O外。
2023河南中考数学考点归纳
2023河南中考数学考点归纳即使在专业人士中,对数学的定义也没有达成共识。
数学是否是艺术或科学,甚至没有一致意见。
许多专业数学家对数学的定义不感兴趣,或者认为它是不可定义的。
今天小编在这给大家整理了一些河南中考数学考点归纳,我们一起来看看吧!河南中考数学考点归纳一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。
2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。
连接圆上任意意两点的线段叫做弦。
经过圆心的弦叫做直径。
3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
6.圆锥侧面展开图是一个扇形。
这个扇形的半径称为圆锥的母线。
7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO 是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O 内,PO8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。
9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。
两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
河南中考数学知识点梳理.
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
(完整word版)河南中考数学知识点梳理(良心出品必属精品)
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;π+8等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3(3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值(3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
河南中考数学知识点梳理
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3分)1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; …等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。
河南中考数学知识点梳理【范本模板】
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0。
1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0.正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数. 考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2023年河南省近3年中考数学试卷结构按知识点归纳总结分
2023年河南省近3年中考数学试卷结构按知识点归纳总结分引言数学作为一门重要的学科,对于学生的综合素质和思维能力的培养具有重要意义。
中考是学生完成初级数学学科的重要考试,在备考中,了解试卷结构和重点知识点是非常关键的。
本文将根据近3年河南省中考数学试卷,按照知识点对试卷结构进行归纳和总结,以供广大学生备考参考。
一、选择题部分选择题部分是中考数学试卷中占比较大的一部分,题型多样,覆盖的知识点广泛。
近3年河南省中考数学试卷选择题部分主要包括以下几个知识点:1. 数与式•整数、有理数、实数的性质和运算•各种数的比较和大小的判断•分数、百分数的相互转化和运算•基本计算(加、减、乘、除)及其应用2. 代数式与变量表达•代数式的计算与化简•代数式的应用问题解答•变量表达式的计算与应用3. 几何图形•线段、角的性质和计算•各种图形的性质、分类和计算•坐标系与直角坐标系上点的位置关系判断4. 数据的收集、整理和分析•图表的读取与应用•数据的整理与分类•数据的分析和解读二、解答题部分解答题部分是对学生的思维能力和综合运用知识的考察,要求学生能够灵活应用所学的知识解决实际问题。
以下列举了近3年河南省中考数学试卷解答题部分的主要知识点:1. 方程与不等式•一元一次方程与不等式•一元一次方程与不等式的应用•解方程问题的建立和解答2. 几何变换•平移、旋转、翻折、对称等几何变换的性质和计算•对称图形的性质和应用3. 空间与图形•空间几何体的性质与计算•几何体的表面积与体积的计算•平面图形的计算与应用4. 数据统计与概率•数据统计与概率的计算和应用•数据统计和概率问题的建立和解答总结通过对近3年河南省中考数学试卷结构按知识点的归纳总结,我们可以看出选择题部分主要涉及数与式、代数式与变量表达、几何图形和数据的收集、整理和分析等知识点;解答题部分主要包括方程与不等式、几何变换、空间与图形和数据统计与概率等知识点。
备考时,学生应重点复习这些知识点,了解各个知识点在试卷中的分布和考察形式,有针对性地进行复习和训练,提高解题的能力和应对考试的水平。
河南中考知识点归纳数学
河南中考知识点归纳数学河南中考数学知识点归纳主要包括以下几个方面:1. 数与代数:- 有理数:包括正数、负数、零的概念,有理数的四则运算。
- 代数式:包括代数式的基本运算,如加、减、乘、除、乘方和开方。
- 整式:包括多项式、单项式的概念,以及它们的加减、乘除法则。
- 分式:分式的基本性质,通分、约分,分式的加减乘除。
- 根式:平方根、立方根的概念,以及根式的化简。
2. 几何:- 平面图形:包括线段、角、三角形、四边形、圆等平面图形的性质和计算。
- 立体图形:立方体、长方体、圆柱、圆锥、球等立体图形的表面积和体积计算。
- 坐标几何:坐标系中点的坐标表示,线段的中点坐标公式,图形的平移和旋转。
3. 统计与概率:- 数据收集与处理:数据的收集方法,数据的整理和描述。
- 统计图表:条形图、折线图、饼图的绘制和解读。
- 概率:事件的概率计算,包括古典概型和几何概型。
4. 函数与方程:- 一次函数:一次函数的表达式、图象和性质。
- 二次函数:二次函数的表达式、图象、顶点、对称轴以及性质。
- 方程与不等式:一元一次方程、一元二次方程的解法,不等式的解法。
5. 空间几何:- 空间图形:空间直线、平面的位置关系,空间多面体和旋转体的性质。
6. 解析几何:- 坐标系:直角坐标系、极坐标系的基本概念。
- 直线方程:直线的斜率、截距,直线的一般式和两点式。
- 圆的方程:圆的标准方程和一般方程。
7. 数学思维与方法:- 归纳推理:从特殊到一般的推理方法。
- 类比推理:通过比较相似性质进行推理。
- 反证法:通过假设结论的否定来证明结论的正确性。
结束语:河南中考数学知识点的归纳不仅要求学生掌握数学的基本概念和运算规则,还要求学生能够运用数学思维解决问题。
通过系统地学习和复习这些知识点,学生可以更好地准备中考,提高解题能力和数学素养。
完整word版河南中考数学知识点梳理良心出品必属
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类(3分) 1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;32,7π等;的数,如+82)有特定意义的数,如圆周率π,或化简后含有π(3…等;(3)有特定结构的数,如0.1010010001o)某些三角函数,如sin60等4(( 3分)考点二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数互为相与b,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a是零),反之亦成立。
,a=—b反数,则有a+b=0 2、绝对值零的绝对值时它本身,0。
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥。
正数大于零,负数小于0≤a,则|a|=-a;若0≥a,则|a|=a也可看成它的相反数,若.零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数。
零没如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1 有倒数。
分)—10考点三、平方根、算数平方根和立方根(3 、平方根1 的平方根(或二次方跟)a。
如果一个数的平方等于a,那么这个数就叫做一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
”。
正数a的平方根记做“a?2、算术平方根”的正的平方根叫做a。
的算术平方根,记作“正数a a正数和零的算术平方根都只有一个,零的算术平方根是零。
(0)0?a aa?;注意的双重非负性:2??aa a-(<0)aaa?3、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:,这说明三次根号内的负号可以移到根号外面。
(完整)河南(郑州)中考数学知识点梳理,推荐文档
3 2 a a a a 河南(郑州)数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3 分)1、实数的分类正有理数有理数零 有限小数和无限循环小数实数负有理数 正无理数 无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 7, 等;π (2) 有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001…等;(4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值 (3 分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与b 互为相反数,则有 a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若 |a|=a ,则 a≥0;若|a|=-a ,则 a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。
倒数等于本身的数是 1 和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10 分)1、平方根如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ ± ”。
2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a ( a ≥ 0)≥ 0= a =3、立方根- a ( a <0);注意 的双重非负性:a ≥ 0如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。
最新河南中考数学知识点梳理
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
河南中考数学知识点梳理
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环"这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0。
1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a |≥0.零的绝对值时它本身,也可看成它的相反数,若|a |=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和—1.零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟).一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±". 2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a 〈0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
2023河南中考数学知识考点梳理
2023河南中考数学知识考点梳理许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。
数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。
今天小编在这给大家整理了一些河南中考数学知识考点梳理,我们一起来看看吧!河南中考数学知识考点梳理一次函数的图象和性质:(1)图象:一次函数的图象是过点(,0),(0,b)的一条直线,正比例函数的图象是过点(0,0),(1,k)的直线;|k|越大,(1,k)就越远离x轴,直线与x轴的夹角越大;|k|越小,(1,k)就离x轴越近,直线与x轴的夹角越小;(2)性质:k>0时,y随x增大而增大;k<0时,y随x增大而减小;(3)图象跨越的象限:①k>0,b>0经过一、二、三象限;②k<0,b>0经过一、二、四象限;③k>0,b<0经过一、三、四象限;④k<0,b<0经过二、三、四象限。
即k>0,一三;k<0,二四;b>0,一二;b<0,三四。
(4)直线和的位置关系为:;相交于y轴上;b>0b=0b<0增减性k>0y随着x增大而增大k<0y随着x 增大而减小1、用割补法求面积,基本思想是全面积等于各部分面积之和,在割补时需要注意:尽可能使分割出的三角形的边有一条在坐标轴上,这样表示面积较为方便。
坐标平面内图形面积算法:把图形分割或补为底边在坐标轴或平行于坐标轴的直线上的三角形、梯形等。
2、求函数的解析式往往运用待定系数法,待定系数法的步骤:(1)设出含待定系数的函数解析式;(2)由已知条件得出关于待定系数的方程(组),解这个方程(组);(3)把系数代回解析式。
3、仔细体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程kx+b=y0(y0是已知数)的解就是直线上,y=y0这点的横坐标;(2)一元一次不等式y1≤kx+b≤y2(y1,y2是已知数,且y14、反比例函数的定义及解析式求法:(1)定义:形如(k≠0,k是常数)的函数叫做反比例函数,其自变量取值范围是x≠0;(2)解析式求法:应用待定系数法求k值,由于k=xy,故只需要已知函数图象上一点,即求出函数的解析式。
2023河南中考数学知识考点总结
2023河南中考数学知识考点总结数学起源于人类早期的生产活动,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献。
今天小编在这给大家整理了一些河南中考数学知识考点总结,我们一起来看看吧!河南中考数学知识考点总结1.点与圆的位置关系及其数量特征:如果圆的半径为r,点到圆心的距离为d,则①点在圆上<===>d=r;②点在圆内<===>dd>r.二.圆的对称性:1.与圆相关的概念:④同心圆:圆心相同,半径不等的两个圆叫做同心圆。
⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。
⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦圆心角:顶点在圆心的角叫做圆心角.⑧弦心距:从圆心到弦的距离叫做弦心距.2.圆是轴对称图形,直径所在的直线是它的对称轴,圆有无数条对称轴。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。
上述五个条件中的任何两个条件都可推出其他三个结论。
4.定理:在同圆或等圆中,相等的圆心角所对弧相等、所对的弦相等、所对的弦心距相等。
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.三.圆周角和圆心角的关系:1.圆周角的定义:顶点在圆上,并且两边都与圆相交的角,叫做圆周角.2.圆周角定理;一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对圆周角相等;反之,在同圆或等圆中,相等圆周角所对弧也相等;推论2:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径;四.确定圆的条件:1.理解确定一个圆必须的具备两个条件:经过一点可以作无数个圆,经过两点也可以作无数个圆,其圆心在这个两点线段的垂直平分线上.2.定理:不在同一直线上的三个点确定一个圆.3.三角形的外接圆、三角形的外心、圆的内接三角形的概念:(1)三角形的外接圆和圆的内接三角形:经过一个三角形三个顶点的圆叫做这个三角形的外接圆,这个三角形叫做圆的内接三角形.(2)三角形的外心:三角形外接圆的圆心叫做这个三角形的外心.(3)三角形的外心的性质:三角形外心到三顶点的距离相等.中考数学知识考点总结平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
河南中考数学知识点梳理
河南数学中考知识点梳理第一章:实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根(3—10分)1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
±”。
正数a的平方根记做“a2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“a”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a(a≥0)0≥aa2;注意a的双重非负性:=a=-a(a<0)a≥03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意:33a-,这说明三次根号内的负号可以移到根号外面。
河南中考数学必考知识点
河南中考数学必考知识点
1. 函数那可是必考的呀!就像你去爬山,函数就是那条必须要走的路。
比如给你一个二次函数,让你求出它的顶点坐标,这可难不倒大家哟!
2. 几何图形这一块重要得很嘞!可以把它想象成搭积木,不同形状的积木怎么组合在一起,这里边的学问可大啦!像证明三角形全等这种题,一定要拿下呀!
3. 概率问题也常常出现呀!这不就像抽奖嘛,你得算出中奖的可能性有多大。
比如扔骰子,让你算某个点数出现的概率,你会不会算嘞?
4. 方程可是解题的好帮手呢!就像给你一把钥匙,能打开很多难题的锁。
像解一元一次方程,那不是小菜一碟嘛!
5. 数据统计不能忽视哦!比如说统计班级同学的身高,然后算出平均数啥的,这也是要掌握好的呀!
6. 代数式也很关键呀!它就像魔法咒语,能变来变去。
比如化简一个代数式,要细心哦!
7. 图形的变换超有意思的!就像给图形变魔术一样,平移、旋转、对称,可得搞清楚呀!
8. 三角形的知识点好多呢!它就像一个团队,各种特性都要熟悉。
比如知道三角形内角和是 180 度,这就是基本常识呀!
结论:这些中考数学必考知识点都很重要,大家一定要认真复习,争取在考场上取得好成绩呀!。