中考数学总复习知识点总结(经典、好用)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年中考数学复习计划

一、第一轮复习(2-3周)

1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅

(1)目的:过三关

①过记忆关

必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关

需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。

③过基本技能关。

应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化

在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数

分为3个大单元:数与式、方程与不等式、函数。

②空间和图形

分为3个大单元:几何基本概念(线与角),平面图形,立体图形

③统计与概率

分为2个大单元:统计与概率

2、第一轮复习应注意的问题

(1)必须扎扎实实夯实基础

中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本

按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造。(3)掌握基础知识,一定要从理解角度出发

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。相对而言,“题海战术”在这个阶段是不适用的。

二、第二轮复习(2周)

1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化

(1)目的:融会贯通考纲上的所有知识点

①进行专题化训练

将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。

②突出重点,难点和热点的内容

在专题训练的基础上,要突出重点,抓住热点,突破难点。按照中考的出题规律,每年的重点、难点和热点内容都大同小异,。

(2)宗旨:建立数学思想,培养数学能力

在对初中阶段所有数学基本知识的理解掌握前提下,应该努力做到:

①建立函数与方程的思想

从函数的角度,去理解数,函数,方程、代数式以及跟图像的对应转化关系。

②提高数学阅读分析的能力

学会用数学语言描述问题,并能还原问题的数学描述。

2、第二轮复习应注意的问题

(1)专题的划分要合理

专题的划分标准为相关知识点的联系紧密程度。专题要有代表性和针对性,切忌面面俱到;始终围绕热点、难点、重点特别是中考必考内容选定专题。

(2)保证一定的习题量

所谓“熟能生巧”,在这个阶段,所要做的就是将关键知识点进行综合、巩固、完善、提高。要尽可能多的接触各类典型题。

(3)注重多思考,并及时总结规律

每个专题内的知识点具有必然的紧密联系,不同专题之间的知识点同样会发生关联融合,要注重解题后的反思,总结规律。

三、第三轮复习(2周)

1、第三轮复习的形式:“模拟训练,查缺补漏”

目的:突破中考分数的非知识角度的障碍

①研究历年中考真题,选择含金量高的模拟题

分析历年中考题,对考点的掌握做到心中有数。选择梯度设计合理,立足中考又稍高于中考难度的模拟题来做。

②调整自己的心里状态

考试的成绩绝不仅仅取决于对知识点的掌握,在真正的考场上,心理状态和心里素质会带来很大的影响,所以在模拟训练时,一定要严格按照真正中考的时间以及相关要求来训练。

2、第三轮复习应注意的问题

(1)通过做模拟题进行查缺补漏

中考大纲要求掌握的知识点可谓众多,在经过前两轮的复习后,最后需要用做模拟题的方式来检查是否有遗漏生疏的知识点。

(2)克服不良的考试习惯

中考考题都有相应的判分规则,要按照判分规则去优化答题思路和步骤,必须避免因为“审题不仔细,凭印象答题以及答题不规范”等原因造成的失分。

(3)总结适当的应试技巧

在实际的考试过程中,完成一道题目并不一定非要按照从知识点的应用角度出发。针对不少典型题,都有相应的解题技巧,既节约了做题时间,还保证了结果正确。

第一章实数

考点一、实数的概念及分类(3分)

1、实数的分类

正有理数

有理数零有限小数和无限循环小数

实数负有理数

正无理数

无理数无限不循环小数

负无理数

2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

(1)开方开不尽的数,如等;

(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

(3)有特定结构的数,如0.1010010001…等;

(4)某些三角函数,如sin60o等

考点二、实数的倒数、相反数和绝对值(3分)

1、相反数

实数与它的相反数时一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a= -b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。

考点三、平方根、算数平方根和立方根(3—10分)

1、平方根

如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“”。

2、算术平方根

正数a的正的平方根叫做a的算术平方根,记作“”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

(0)

;注意的双重非负性:

-(<0)0

3、立方根

如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:,这说明三次根号内的负号可以移到根号外面。

考点四、科学记数法和近似数(3—6分)

1、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法

把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。

考点五、实数大小的比较(3分)

1、数轴

相关文档
最新文档