九年级数学下册综合测试卷真题
浙教版九年级下册数学全册综合检测试卷(二)含答案
![浙教版九年级下册数学全册综合检测试卷(二)含答案](https://img.taocdn.com/s3/m/240b4ff4f8c75fbfc77db234.png)
浙教版九年级下册数学全册综合检测试卷(二)含答案九年级下册数学全册综合检测二姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.若α为锐角,sinα=,则()A. 0°<α<30°B. 30°<α<45°C. 45°<α<60°D. 60°<α<90°2.如图,从⊙O外一点P引圆的两条切线PA、PB,切点分别是A、B,如果∠APB=60°,线段PA=10,那么弦AB的长是()A. 10B. 12C. 5D. 103.在△ABC中,(2cosA﹣)2+|1﹣tanB|=0,则△ABC一定是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰直角三角形4.如图,AC是旗杆AB的一根拉线,测得BC=6米,∠ACB=50°,则拉线AC的长为()A. 6sin50°B. 6cos50°C.D.5.如图,⊙O内切于△ABC,切点D,E,F分别在BC,AB,AC上.已知∠B=50°,∠C=60°,连结OE,OF,DE,DF,那么∠EDF等于()A. 40°B. 55°C. 65°D. 70°6. 下列所给的几何体中,主视图是三角形的是()A. B. C. D.7. 如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()A. B. C. D.8.已知⊙O1和⊙O2的半径分别为3、5,⊙O1上一点A与⊙O2的圆心O2的距离等于6,那么下列关于⊙O1和⊙O2的位置关系的结论一定错误的是()A. 两圆内含;B. 两圆内切;C. 两圆相交;D. 两圆外离.9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A. 6B. 16C. 18D. 2410.一个不透明的袋子中,装有2个白球和1个红球,这些球除颜色外其他都相同,从袋子中随机地摸出2个球,这2个球都是白球的概率为()A. B. C. D.11.如图,△ABC的三个顶点都在正方形网格的格点上,则tan∠A的值为()A. B. C. D.12.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB等于()A. 60°B. 90°C. 120°D. 150°二、填空题(共9题;共27分)13.如图,某长方体的表面展开图的面积为430,其中BC=5,EF=10,则AB=________ .14.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=________.15.利用计算器求sin20°tan35°的值时,按键顺序是________16.学习概率有关知识时,全班同学一起做摸球实验.布袋里装有红球和白球共5个,它们除了颜色不同其他都一样.每次从袋中摸出一个球,记下颜色后放回摇匀,一共摸了100次,其中63次摸出红球,由此可以估计布袋中红球的个数是________17.某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下:则该玉米种子发芽的概率估计值为________ (结果精确到0.1).18.如图,在边长为2的正六边形ABCDEF中,点P是其对角线BE上一动点,连接PC、PD,则△PCD的周长的最小值是________19.如图,在一个正方形围栏中均匀散布着许多米粒,正方形内画有一个圆.一只小鸡在围栏内啄食,则“小鸡正在圆圈内”啄食的概率为________.20.如图,下面两个正方体的六个面都按相同规律涂有红、黄、蓝、白、黑、绿六种颜色,那么黄色的对面是________ .21.如图,在Rt△AOB中,OA=OB=4 ,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值为________.三、解答题(共4题;共37分)22.如图,PA、PB是⊙O的切线,CD切⊙O于点E,△PCD的周长为12,∠APB=60°.求:(1)PA的长;(2)∠COD的度数.23. 如图所示,点P表示广场上的一盏照明灯.(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)24.如图,已知:射线PO与⊙O交于A、B两点,PC、PD分别切⊙O于点C、D.(1)请写出两个不同类型的正确结论;(2)若CD=12,tan∠CPO=,求PO的长.25.某市今年中考理、化实验操作考试,采用学生抽签方式决定自己的考试内容.规定:每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学实验(用纸签D、E、F表示)中各抽取一个进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.(1)用“列表法”或“树状图法”表示所有可能出现的结果;(2)小刚抽到物理实验B和化学实验F(记作事件M)的概率是多少?参考答案一、选择题C AD D B B A B B B B C二、填空题13.11 14.1 15.sin20DMS×tan35DMS16.3 17.0.9 18.6 19.20.绿色21.三、解答题22.解:(1)∵CA,CE都是圆O的切线,∴CA=CE,同理DE=DB,PA=PB,∴三角形PDE的周长=PD+CD+PC=PD+PC+CA+BD=PA+PB=2PA=12,即PA的长为6;(2)∵∠P=60°,∴∠PCE+∠PDE=120°,∴∠ACD+∠CDB=360°﹣120°=240°,∵CA,CE是圆O的切线,∴∠OCE=∠OCA=∠ACD;同理:∠ODE=∠CDB,∴∠OCE+∠ODE=(∠ACD+∠CDB)=120°,∴∠COD=180﹣120°=60°.23. 解:(1)如图线段AC是小敏的影子;(2)过点Q作QE⊥MO于E,过点P作PF⊥AB于F,交EQ于点D,则PF⊥EQ,在Rt△PDQ中,∠PQD=55°,DQ=EQ﹣ED=4.5﹣1.5=3(米),∵tan55°=,∴PD=3tan55°≈4.3(米),∵DF=QB=1.6米,∴PF=PD+DF=4.3+1.6=5.9(米)答:照明灯到地面的距离为5.9米.24.解:(1)不同类型的正确结论有:①PC=PD,②∠CPO=∠DP,③ACD⊥BA,④∠CEP=90°,⑤PC2=PA•PB;(2)连接OC∵PC、PD分别切⊙O于点C、D∴PC=PD,∠CPO=∠DPA∴CD⊥AB∵CD=12∴DE=CE=CD=6.∵tan∠CPO=,∴在Rt△EPC中,PE=12∴由勾股定理得CP=6∵PC切⊙O于点C∴∠OCP=90°在Rt △OPC 中, ∵tan ∠CPO=, ∴ ∴OC=3,∴OP==15.25. (1)解:方法一:列表格如下:方法二:画树状图如下:所有可能出现的结果AD ,AE ,AF ,BD ,BE ,BF ,CD ,CE ,CF(2)解:从表格或树状图可以看出,所有可能出现的结果共有9种,其中事件M 出现了一次,所以P (M )=。
人教版九年级数学(上下全册)综合测试卷(附带参考答案)
![人教版九年级数学(上下全册)综合测试卷(附带参考答案)](https://img.taocdn.com/s3/m/018ac758b6360b4c2e3f5727a5e9856a56122697.png)
人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。
九年级数学下册 各单元综合测试题附答案4套
![九年级数学下册 各单元综合测试题附答案4套](https://img.taocdn.com/s3/m/11e5b25ea8114431b80dd828.png)
人教版九年级数学下册第二十六章综合测试卷03一、选择题(每小题4分,共32分)1.下列函数是反比例函数的是()A .12y x =B .12y x =C .21y x =D .12y x =+2.当0x >时,函数5y x=-的图x 象在()A .第四象限B .第三象限C .第二象限D .第一象限3.反比例函数12ky x-=的图象x 经过点(2,3)-,则k 的值为()A .6B .6-C .72D .72-4.已知反比例函数1y x=,下列结论不正确的是()A .图象经过点1,1()B .图象在第一、第三象限C .当1x >时,01y <<D .当0x <时,y 随x 的增大而增大5.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,二氧化碳的密度也会随之改变,密度ρ(单位:3kg/m )是体积V (单位:3m )的反比例函数,它的图象如图26-8所示,当310 m V =时,二氧化碳的密度是()A .35 kg/mB .32 kg/mC .3100 kg/mD .31 kg/m 6.如图26-9,一次函数11y k x b =+的图象和反比例函数22k y x=的图象交2x 于1,2A (),2,1B --()两点,若12y y <,则x 的取值范围是()A .1x <B .2x -<C .20x -<<或1x >D .2x -<或01x <<7.若函数1y k x =-()和函数ky x=的图象在同一坐标系中,则其图象可为图中的()A .①③B .①④C .②③D .②④8.如果函数1ky x-=的图象与直线y x =没有交x 点,那么k 的取值范围是()A .1k >B .1k <C .1k ->D .1k -<二、填空题(每小题5分,共20分)9.试写出图象位于第二、第四象限的一个反比例函数的解析式________.10.点P 在反比例函数(0)ky k x=≠的图象上,点2,4Q ()与点P 关于y 轴对称,则反比例函数的解析式为________.11.若点,2P a ()在一次函数24y x =+的图象上,它关于y 轴的对称点在反比例函数ky x=的图象上,则该反比例函数的解析式为________.12.如图26-11,四边形OABC 是矩形,ADEF 是正方形,点A ,D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在上的图象AB 上,点B ,E 在反比例函数ky x=上,1OA =,6OC =,则正方形ADEF 的边长为________.三、解答题(共48分)13.(8分)已知变量y 与1x +成反比例,且当2x =时,1y =-,求y 和x 之间的函数解析式。
人教版数学九年级下册综合达标测试卷(含答案)
![人教版数学九年级下册综合达标测试卷(含答案)](https://img.taocdn.com/s3/m/a8ab61f0a48da0116c175f0e7cd184254b351bfe.png)
人教版数学九年级下册综合达标测试卷(本试题满分120分)一、选择题(本大题10小题,每小题3分,共30分)1. 若△ABC与△DEF的相似比为14,则△ABC与△DEF的周长比为()A. 14B.13C.12D.1162. 在△ABC中,∠C=90º,若cos B=32,则sin A的值为()A. 3B.33C.12D.323. 下列立体图形中,主视图是四边形的立体图形的个数是()A. 1B. 2C. 3D. 4第3题图第4题图第6题图4. 反比例函数y=kx在第一象限的图象如图所示,则k的值是()A. 1B. 2C. 3D. 45. 在阳光下,一块三角尺的投影不会是()A. 点B. 与原三角板全等的三角形C. 变形的三角形D. 线段6. 如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. EA EGBE EF= B.EG AGGH GD= C.AB BCAE CF= D.FH CFEH AD=7. 已知一次函数y1=ax+b与反比例函数y2=kx的图象如图所示,当y1<y2时,x的取值范围是()A. x<2B. x>5C. 2<x<5D. 0<x<2或x>5第7题图第8题图8. 如图,正方形OABC的边长为8,点P在边AB上,CP交对角线OB于点Q.若S△BPQ=19S△OQC,则OQ的长为()A. 6B. 62C. 1623D.1639. 如图,小叶与小高欲测量公园内某棵树DE的高度.他们在这棵树正前方的一座凉亭前的台阶上的点A处,测得这棵树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得这棵树顶端D的仰角为60°.已知台阶A处到地面的高度AB为3 m,台阶AC的坡度为1∶3,且B,C,E三点在同一条直线上,则这棵树DE 的高度为()A. 6 mB. 7 mC. 8 mD. 9 m第9题图第10题图10. 已知两个反比例函数y=kx和y=1x在第一象限内的图象如图所示.点P在y=kx的图象上,PC⊥x轴于点C,交y=1x的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B.当点P在y=kx的图象上运动时,有下列结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当A是PC的中点时,B一定是PD的中点.其中一定正确的是()A. ①②③B. ②③④C. ①②④D. ①③④二、填空题(本大题7小题,每小题4分,共28分)11. 如图是由小正方体组成的几何体的三视图,则该几何体有__________个小正方体组成.第11题图第13题图第14题图第15题图12. 反比例函数y=kx与一次函数y=ax+b的图象的两个交点分别为A(-1,-4),B(2,m),则a+2b=__________.13. 如图,已知△ABC是等边三角形,D是边AB上一点,E为边BC上一点.若∠CDE=60°,AD=3,BE=2,则△ABC的边长为__________.14. 如图,在半径为5的⊙O中,弦AB=6,C是优弧AB上一点(不与点A,B重合),则cos C的值为__________.15. 如图,在□ABCD中,E是边AD的中点,EC交对角线BD于点F.若S△DEC=3,则S△BCF =__________.16. 在△ABC中,已知O为AC的中点,点P在边AC上.若5,tan A=12,∠B=120°,BC=23AP=__________.三、解答题(本大题8小题,共72分)17. (6分)计算:tan30°cos30°+sin 260°- sin 245°tan45°.18. (8分)如图,在8×6的网格图中,每个小正方形的边长均为1,点O 和四边形ABCD 的顶点均在小正方形的顶点上.(1)以点O 为位似中心,在网格图中作四边形A 1B 1C 1D 1与四边形ABCD 位似,且相似比为12; (2)根据(1)填空:OD 1∶D 1D=__________.第18题图 第19题图19 (8分)如图,一次函数的图象与x 轴,y 轴分别相交于A ,B 两点,且与反比例函数y=kx(k ≠0)的图象在第一象限交于点C.如果点B 的坐标为(0,2),OA=OB ,B 是线段AC 的中点. (1)求点A 的坐标及一次函数的解析式; (2)求点C 的坐标及反比例函数的解析式.20. (10分)学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数(个)与碟子的高度(厘米)的关系如下表:(1)当桌子上放有x 个碟子时,请写出此时碟子的高度h ;(用含x 的式子表示)(2)桌子上摆放碟子的三视图如图所示,厨房师傅想把所有的碟子整齐叠成一摞,求叠成一摞后的高度.第20题图 第21题图 第22题图21. (10分)如图,小东在教学楼距地面9 m 高的窗口C 处,测得正前方旗杆顶部A 点的仰角为37°,旗杆底部B 点的俯角为45°.(1)求旗杆AB 的高;(结果精确到0.01 m ;参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)碟子的个数 1 2 3 4 … 碟子的高度22+1.52+32+4.5…(2)升旗时,国旗上端悬挂在距地面2.25 m处.若国旗随国歌声冉冉升起,并在国歌播放45 s结束时到达旗杆顶端,求国旗匀速上升的速度.22. (10分)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC与BD相交于点E,且DC2=CE•CA. (1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD,交CD的延长线于点F.若PB=OB,CD=22,求⊙O的半径.23. (10分)如图,一次函数y=kx+b与反比例函数y=mx(x>0)的图象交于点P,与x轴交于点A(-4,0),与y轴交于点C(0,1),PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数的图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.第23题图第24题图24.(12分)如图,在△ABC中,已知AB=AC=5 cm,BC=6 cm.点P从点B出发,沿BA方向匀速运动,速度为1 cm/s;同时,直线QD从点C出发,沿CB方向匀速运动,速度为1 cm/s,且QD⊥BC,与AC,BC分别交于点D,Q.当直线QD停止运动时,点P也停止运动,连接PQ,设运动时间为t s(0<t<3).解答下列问题:(1)当t为何值时,PQ∥AC?(2)设四边形APQD的面积为S cm2,求S与t之间的函数解析式;(3)是否存在某一时刻,使S四边形APQD∶S△ABC=23∶45?若存在,求出t的值;若不存在,请说明理由.人教版数学九年级下册综合达标测试卷一、1. A 2. D 3. B 4. C 5. A 6. C 7. D 8. B 9. D 10. C 二、11. 5 12. -2 13. 9 14.4515. 416. 提示:延长AB ,构造含60º角的直角三角形.三、17. 解:原式+2⎝⎭-2⎝⎭×1=34. 18. 解:(1)如图所示,四边形A 1B 1C 1D 1即为所求.第18题图(2)119. 解:(1)因为OA=OB,B(0,2),所以A(-2,0).将点A(-2,0),B(0,2)代入y=kx+b,得202k bb-+=⎧⎨=⎩,,解得12.kb=⎧⎨=⎩,所以一次函数的解析式为y=x+2.(2)因为B是线段AC的中点,所以C(2,4).将点C(2,4)代入y=kx,得k=8,所以反比例函数的解析式为y=8x.20. 解:(1)由题意,得h=2+1.5(x﹣1)=1.5x+0.5.(2)由三视图可知共有12个碟子,所以叠成一摞的高度为1.5×12+0.5=18.5(cm).21. 解:(1)过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°.因为∠ACD=37°,∠DCB=45°,所以△CDB是等腰直角三角形.由题意,知CD=BD=9 m,所以AD=CD•tan37º≈9×0.75=6.75(m).所以AB=BD+AD=9+6.75=15.75(m).答:旗杆AB的高度为15.75 m.(2)由(1)及题意,得(15.75-2.25)÷45=0.3(m/s).答:国旗匀速上升的速度是0.3 m/s.22.(1)证明:因为DC2=CE•CA,所以DC CACE DC=.因为∠ACD=∠DCE,所以△CAD∽△CDE.所以∠CAD=∠CDE.所以BC DC=.所以BC=DC. (2)解:连接OC.设⊙O的半径为r.由(1),知CD CB=,所以∠BOC=∠BAD.所以OC∥AD.所以2PC PO rCD OA r===2.所以PC=2CD=42.因为四边形ABCD内接于⊙O,所以∠DAB+∠DCB=180º.又∠DCB+∠PCB=180º,所以∠PCB=∠DAB.因为∠CPB=∠APD,所以△PCB∽△PAD.所以PC PBPA PD=4262=,解得r=4.所以⊙O的半径为4.23. 解:(1)将C(0,1),A(-4,0)代入y=kx+b,得140bk b=⎧⎨-+=⎩,,解得141.kb⎧=⎪⎨⎪=⎩,所以一次函数的解析式为y=14x+1.因为AC=BC,CO⊥AB,所以BO=AO=4.所以B(4,0).因为PB⊥x轴,所以点P的横坐标为4.当x=4时,y=14×4+1=2.所以P(4,2).将点P(4,2)代入y=mx,得m=8.所以反比例函数的解析式为y=8x.(2)假设存在这样的点D,使四边形BCPD为菱形,连接DC与PB交于点E. 因为四边形BCPD为菱形,所以CE=DE=4.所以CD=8.将x=8代入y=8x,得y=1,所以D(8,1).所以反比例函数的图象上存在点D,使四边形BCPD为菱形,此时点D的坐标为(8,1).24. 解:(1)由题意,知BP=t,BQ=6﹣t.因为PQ∥AC,所以△BPQ∽△BAC.所以BP BQBA BC=,即656t t-=,解得t=3011.所以当t=3011s时,PQ∥AC.(2)过点A作AN⊥BC于点N,过点P作PM⊥BC于点M.因为AB=AC=5 cm,BC=6 cm,所以BN=CN=3 cm.所以AN=4(cm).因为AN⊥BC,PM⊥BC,所以AN∥PM.所以△BPM∽△BAN.所以BP PMBA AN=,即54t PM=,解得PM=45t.所以S△BPQ=12BQ·PM=12(6﹣t)•45t=225t-+125t.在Rt△ANC中,AN=4,CN=3,所以tan C=43.所以tan C=DQQC=43,即DQt=43,得DQ=43t.所以S△CDQ=12CQ·DQ=23t2.因为S△ABC=12BC·AN=12×6×4=12,所以S=S四边形APQD=S△ABC﹣S△CDQ﹣S△BPQ=12﹣23t2﹣221255t t⎛⎫-+⎪⎝⎭=﹣415t2﹣125t+12(0<t<3). (3)存在.由(2),知S四边形APQD=﹣415t2﹣125t+12,S△ABC=12,所以24121215512t t--+=2345,解得t1=2,t2=﹣11(舍去).所以当t的值为2时,S四边形APQD∶S△ABC=23∶45.。
人教版九年级下册数学全册测试卷含答案完整版
![人教版九年级下册数学全册测试卷含答案完整版](https://img.taocdn.com/s3/m/da69cdd9bceb19e8b9f6ba1a.png)
人教版九年级下册数学全册测试卷含答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】二次函数测试题一、填空题(每空2分,共32分)1.二次函数y=2x 2的顶点坐标是 ,对称轴是 .2.函数y=(x -2)2+1开口 ,顶点坐标为 ,当 时,y 随x 的增大而减小.3.若点(1,0),(3,0)是抛物线y=ax 2+bx+c 上的两点,则这条抛物线的对称轴是 .4.一个关于x 的二次函数,当x=-2时,有最小值-5,则这个二次函数图象开口一定 .5.二次函数y=3x 2-4x+1与x 轴交点坐标 ,当 时,y>0.6.已知二次函数y=x 2-mx+m -1,当m= 时,图象经过原点;当m= 时,图象顶点在y 轴上.7.正方形边长是2cm ,如果边长增加xcm ,面积就增大ycm 2,那么y 与x 的函数关系式是________________.8.函数y=2(x -3)2的图象,可以由抛物线y=2x 2向 平移 个单位得到.9.当m= 时,二次函数y=x 2-2x -m 有最小值5.10.若抛物线y=x 2-mx+m -2与x 轴的两个交点在原点两侧,则m 的取值范围是 .二、选择题(每小题3分,共30分)11.二次函数y=(x -3)(x+2)的图象的对称轴是( )=3 =-3 C. 12x =-D. 12x = 12.二次函数y=ax 2+bx+c 中,若a>0,b<0,c<0,则这个二次函数的顶点必在( )A.第一象限B.第二象限C.第三象限D.第四象限13.若抛物线y=+3x+m 与x 轴没有交点,则m 的取值范围是( )≤ ≥4.5 C.m> D.以上都不对14.二次函数y=ax 2+bx+c 的图如图所示,则下列结论不正确的是( )<0,b>0 -4ac<0 C.a -b+c<0 -b+c>015.函数是二次函数m x m y m +-=-22)2(,则它的图象( )A.开口向上,对称轴为y 轴B.开口向下,顶点在x 轴上方C.开口向上,与x 轴无交点D.开口向下,与x 轴无交点16.一学生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是35321212++-=x x y ,则铅球落地水平距离为( ) 53B.3mC.10mD.12m (第14题)17.抛物线y=ax 2+bx+c 与y 轴交于A 点,与x 轴的正半轴交于B 、C 两点,且BC=2,S ΔABC =4,则c 的值( )A.-5 或-4 C.4 D.-418.二次函数y=ax 2+bx+c 的图象如图所示,则此函数解析式为( )=-x 2+2x+3 =x 2-2x -3 C.y=-x 2-2x+3 = -x 2-2x -319.函数y=ax 2+bx+c 和y=ax+b 在同一坐标系中大致图象是( )20.若把抛物线y=x 2+bx+c 向左平移2个单位,再向上平移3个单位,得到抛物线y=x 2,则( )=-2,c=3 =2,c=-3 C.b=-4,c=1 =4,c=7三、计算题(共38分)21.已知抛物线y=ax 2+bx+c 与x 轴交点的横坐标分别为-1,2,且抛物线经过点(3,8),求这条抛物线的解析式。
九年级(下)数学第一、二章综合测试卷(含答案)
![九年级(下)数学第一、二章综合测试卷(含答案)](https://img.taocdn.com/s3/m/b5eff255a98271fe900ef926.png)
DCA九年级(下)数学第一、二章综合检测试卷一、选择题(10×3=30分)1. 在△ABC 中,∠C =90O ,∠B =2∠A ,则CosA 等于( ) A.23 B. 21C. 3D.332.在△ABC 中,∠C =90O ,BC :CA =3:4,那么SinA 等于( ) A .43 B.34 C.53 D.54 3.二次函数y =(X -1)2+2的最小值是( ) A .-2 B.2 C.1 D.-14.二次函数y =ax 2+bx +c 的图像如图所示,根据图像可得a ,b ,c 与0的大小关系是( ) A. a>0,b<0,c<0 B. a>0,b>0,c>0 C. a<0,b<0,c<0 D. a<0,b>0,c<0 5.已知∠A 为锐角,且COSA≤21,那么( ) A .00<A≤600 B.600≤A<900 C.00<A<300 D.300≤A<900 6.函数y =ax 2-a 与y =xa(a≠0)在同一直角坐标系中的图像可能是图中的( )7.已知二次函数y =x 2+(2a +1)x +a 2-1的最小值为O ,则a 的值是( ) A .43 B.43- C.45 D.45- 8.如图在等腰三角形ABC 中,∠C =900,AC =6,D 是AC 上一点, 若tan ∠DBA =51,则AD 的长为( ) A.2 B.2 C.1 D.229.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品在一定范围内每降价1元,每日销量就增加1个,为了获得最大利润,则应该降价( )A.5元B.10元C.15元D.20元10.某二元方程的解是21x m y m m =⎧⎨=++⎩,若把x 看作平面直角坐标系中点的横坐标,y 看作是纵坐标,下面说法正确的是( )A.点(x,y )一定不在第一象限B.点(x,y )一定不是坐标原点C.y 随x 的增大而增大D.y 随x 的增大而减小二、填空题:(8×3=24分)11.∠A 和∠B 是一直角三角形的两锐角,则tan2BA +=_________. 12.如图,某中学生推铅球,铅球在点A 处出手,在点B 处落地,它的运行路线满足y =-121x 2+32x +35,则这个学生推铅球的成绩是_______米.13.把抛物线y =ax 2+bx+c 的图像向右平移3个单位,再向下平移2个单位,得到图像解析式为y=x 2-4x+5,则有a=______ b=_______ c=_______.14.已知等腰三角形腰长为2cm ,面积为1cm ,则这个等腰三角形的顶角为_______度。
苏科版九年级数学下册综合检测试卷(全册)【有答案】
![苏科版九年级数学下册综合检测试卷(全册)【有答案】](https://img.taocdn.com/s3/m/a79264e683c4bb4cf6ecd117.png)
苏科版九年级数学下册综合检测试卷(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.在中,,,,,则下列各式中正确的是()A. B.C. D.2.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请你根据图中提供的信息,若全校共有名学生,估计这所学校所有知道母亲的生日的学生有()名.A. B. C. D.3.设,,是抛物线上的三点,则,,的大小关系为()A. B.C. D.4.设为锐角,则与的大小关系是()A. B.C. D.5.二次函数的图象与轴有两个交点,则的取值范围是()A. B.且C. D.且6.下列式子错误的是()A. B.C. D.7.一箱灯泡的合格率是,小刚由箱中任意买一个,则他买到次品的概率是()A. B. C. D.8.已知在中,.若,则等于()A. B. C. D.9.如图,以为圆心,任意长为半径画弧,与射线交于点,再以为圆心,长为半径画弧,两弧交于点,画射线,则A. B. C. D.10.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是()A.在装有个红球和个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B.从一副扑克牌中任意抽取一张,这张牌是“红色的”C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”D.只一个质地均匀的正六面体骰子,落地时面朝上的点数是二、填空题(共 10 小题,每小题 3 分,共 30 分)11.点、分别是的边、的反向延长线上的点,如果,当的值是________时,.12.一个三角形的各边长扩大为原来的倍,这个三角形的面积也扩大为原来的倍.________(判断对错)13.矩形中,若,,则这个矩形的两条对角线所成的锐角是________.14.如图,,,,,则的长为________.15.如图是根据某初中为地震灾区捐款的情况而制作的统计图,已知该校在校学生有人,请根据统计图计算该校共捐款________元.16.如图,在中,于,正方形内接于,点、分别在边、上,点、在边上.如果,正方形的面积为,那么的长是________.17.如图,水库大坝的横断面是梯形,坝顶宽米,坝高米,斜坡的坡比为,斜坡的坡角,则坝底宽的长为________米.18.小华在距离路灯米的地方,发现自己在地面上的影长是米,如果小华的身高为米,那么路灯离地面的高度是________米.19.要了解我国体育健儿在最近六界奥运会上获得奖牌数的变化趋势,通常选择的统计图是________.20.中国象棋中一方个棋子,按兵种不同分布如下:个帅,个兵、士、象、马、车、炮各个.若将这个棋子反面朝上放在棋盘中,任取个是兵的概率是________.三、解答题(共 7 小题,共 60 分)21.(8分) 的坐标分别为,,,以原点为位似中心,在第一象限将扩大,使变换得到的与对应边的比为,画出;求四边形的面积.22.(8分)如图,中,,于,,,求的长.23.(8分)如图,已知的两条中线,相交于点,得到个图形:,,,,,,,四边形,现从中任取两个图形,求取得的这两个图形面积相等的概率.24.(8分) 某电视台播放一则新闻,奶粉“合格率为”,请据此回答下列问题:这则新闻是否说明市场上所有奶粉的合格率恰好有为合格?你认为这则新闻来源于普查还是抽样调查?为什么?如果已知在这次抽查中各项指标均合格的奶粉共有袋,你能算出共有多少袋奶粉接受检查了吗?25.(8分)在一个不透明的布袋里装有个完全相同的标有数字、、、的小球.小明从布袋里随机取出一个小球,记下数字为,小红从布袋里剩下的小球中随机取出一个,记下数字为.计算由、确定的点在函数的图象上的概率.26.(10分)如图,一天,我国一渔政船航行到处时,发现正东方向的我领海区域处有一可疑渔船,可疑渔船正向西北方向航行,我渔政船立即沿北偏东方向航行,在我领海区域的处截获可疑渔船.我渔政船的航行路程为是海里,问可疑渔船的航行路程是多少海里?(结果保留根号)27.(10分) 如图,在中,,,.动点、分别从点、点同时出发,相向而行,速度都为.以为一边向上作正方形,过点作,交于点.设运动时间为,单位:,正方形和梯形重合部分的面积为.当________时,点与点重合.当________时,点在上.当点在,两点之间(不包括,两点)时,求与之间的函数表达式.答案1.B2.C3.A4.C5.B6.D7.D8.B9.B10.D11.12.13.14.15.16.17.18.19.折线统计图20.21.解:作出相应的图形,如图所示;由题意得:,,,,与都为直角三角形,则.22.解:∵,,,∴,∵,,∴,∴.23.解:从个图形中任取两个图形有种取法,其中面积相等的有三种情况:面积为的三角形有个,得面积相等的图形有对;面积为的三角形有个,得面积相等的图形有对;面积为的图形有个,四边形,得面积相等的图形有对.故共计面积相等的图形有对,从而取得两个图形面积相等的概率为.24.解:不一定;抽样调查,不可能普查;(3)袋.25.解:画树状图得:∵共有等可能的结果种:为、、、、、、、、、、、;其中所表示的点在函数的图象上的有种,∴(点在函数的图象上).26.我渔政船的航行路程是海里.27..当点在上时,如图所示,此时.∵,为正方形,∴,∴,则.由,得,解得:.故答案:.当、重合时,由知,此时;当点在上时,如答图所示,此时,,求得,进一步分析可知此时点与点重合;当点到达点时,此时.因此当点在,两点之间(不包括,两点)时,其运动过程可分析如下:①当时,如答图所示,此时重��部分为梯形.此时,∴,;易知,可得,.∴,,∴.,•,;②当时,如答图所示,此时重合部分为一个多边形.此时,∴,易知,可得,,,∴,.又∵,∴,..综上所述,当点在,两点之间(不包括,两点)时,与之间的函数关系式为:.。
2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)
![2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)](https://img.taocdn.com/s3/m/82af5ff0a48da0116c175f0e7cd184254b351bfa.png)
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
九年级数学下册综合试卷(含答案)
![九年级数学下册综合试卷(含答案)](https://img.taocdn.com/s3/m/ae1a282c647d27284b735190.png)
九年级数学下册综合试卷(时间90分钟 满分100分)班级 _____________ 学号 姓名 ________ 得分____一、选择题(本大题共10小题,每小题4分,共40分)1.如果α∠是等腰直角三角形的一个锐角,那么cos α的值等于( B ) A.12BD.12.如果∠A 为锐角,且sinA =0.6,那么( B )A.0°<A <30° B .30°<A <45° C.45°<A <60° D.60°<A <90° 3.已知△ABC 的三边长分别为2,6,2,△A /B /C /的两边长分别是1和3,如果△ABC ∽△A /B /C /相似,那么△A /B /C /的第三边长是( A ) A .2B .22C .26D .33 4.无论m 为任何实数,二次函数y =2x +(2-m )x +m 的图象总过的点是( A ) A.(1,3) B .(1,0) C.(-1,3) D.(-1,0)5.下图中几何体的左视图是( D )6.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何 体最多..可由多少个这样的正方体组成?(B ) A.12个B.13个 C.14个 D.18个7.如图,晚上小亮在路灯下散步,在小亮由A 处走到B 处这一过程中,他在地上的影子 ( C )A.逐渐变短B.逐渐变长 C.先变短后变长 D.先变长后变短(第6题) (第7题) 8.抛物线)0(2≠++=a c bx ax y 过第二、三、四象限,则( C ) A .000<>>c b a ,, B .000>><c b a ,, C .000<<c b <a ,, D .000>>>c b a ,,A B C D 主视图 左视图9.如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球 孔。
九年级数学下册 各单元综合测试题及答案4套
![九年级数学下册 各单元综合测试题及答案4套](https://img.taocdn.com/s3/m/92f3a0554431b90d6d85c728.png)
人教版九年级数学下册第二十六章综合测试卷02一、选择题(30分)1.已知反比例函数ky x=的图象经过点2,3(),那么下列四个点中,也在这个函数图象上的是()A .()6,1-B .()1,6C .()2,3-D .()3,2-2.已知矩形的面积为220 cm ,设该矩形的一边长为 cm y ,另一边的长为 cm x ,则y 与x 之间的函数图象大致是()A B C D3.已知点(),P a m ,(),Q b n 都在反比例函数2y x=-的图象上,且0a b <<,则下列结论一定正确的是()A .0m n +<B .0m n +>C .m n <D .m n>4.如图,ABC △的三个顶点分别为(1,2)A ,(4,2)B ,(4,4)C .若反比例函数ky x=在第一象限内的图象与ABC △有交点,则k 的取值范围是()A .14k ≤≤B .48k ≤≤C .216k ≤≤D .816k ≤≤5.在同一平面直角坐标系中,若正比例函数1y k x =的图象与反比例函数2k y x=的图象没有公共点,则()A .120k k +<B .120k k +>C .120k k <D .120k k >6.如果点()12,A y -,()21,B y -,()32,C y 都在反比例函数(0)ky k x=>的图象上,那么1y ,2y ,3y 的大小关系是()A .132y y y <<B .213y y y <<C .123y y y <<D .321y y y <<7.反比例函数3(0)y x x=-<的图象如图所示,则矩形OAPB 的面积是()A .3B .3-C .32D .32-8.如图,在同一平面直角坐标系中,一次函数1y kx b =+(k ,b 是常数,且0k ≠)与反比例函数2c y x=(c 是常数,且0c ≠)的图象相交于(3,2)A --,(2,3)B 两点,则不等式12y y >的解集是()A .32x -<<B .3x -<或2x >C .30x -<<或2x >D .02x <<9.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数4y x =-和2y x=的图象交于点A 和点B .若点C 是x 轴上任意一点,连接AC ,BC ,则ABC △的面积为()A .3B .4C .5D .610.如图,点A ,B 在反比例函数()10y x x =>的图象上,点C ,D 在反比例函数()0ky k x=>的图象上,AC BD y ∥∥轴,已知点A ,B 的横坐标分别为1,2,OAC △与ABD △的面积之和为32,则k 的值为()A .4B .3C .2D .32二、填空题(24分)11.在ABC △的三个顶点(2,3)A -,(4,5)B --,(3,2)C -中,可能在反比例函数(0)ky k x=>的图象上的点是_________.12.若一个反比例函数的图象经过点(,)A m m 和(2,1)B m -,则这个反比例函数的解析式为_________.13.如图,已知反比例函数ky x=(k 为常数,0k ≠)的图象经过点A ,过A 点作AB x ⊥轴,垂足为B ,若AOB △的面积为1,则k =_________.14.已知一次函数y ax b =+与反比例函数ky x=的图象相交于(4,2)A ,(2,)B m -两点,则一次函数的解析式为_________.15.若点(,2)A m -在反比例函数4y x=的图象上,则当函数值2y -≥时,自变量x 的取值范围是_______.16.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x =>及22(0)ky x x=>的图象分别交于点A ,B ,连接OA ,OB ,已知OAB △的面积为2.则12k k -=_______.17.如图,反比例函数ky x=的图象经过ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD DC ⊥,ABCD 的面积为6,则k =_______.18.如图,在平面直角坐标系中,反比例函数(0)ky x x=>的图象与边长是6的正方形OABC 的两边AB ,BC 分别相交于M ,N 两点,OMN △的面积为10.若动点P 在x 轴上,则PM PN +的最小值是_______.三、解答题(8+8+10+10+10=46分)19.如图,在平面直角坐标系中有三点(1,2),(3,1),(2,1)--,其中有两点同时在反比例函数ky x=的图象上,将这两点分别记为A ,B ,另一点记为C .(1)求出k 的值.(2)求直线AB 对应的一次函数的解析式.(3)设点C 关于直线AB 的对称点为O ,P 是x 轴上的一个动点,直接写出PC PD +的最小值(不必说明理由).20.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点。
人教版九年级下册数学全册综合复习练习试卷【答案+解析】
![人教版九年级下册数学全册综合复习练习试卷【答案+解析】](https://img.taocdn.com/s3/m/1c4fca1058fafab069dc02ca.png)
人教版九年级下册数学全册综合复习练习试卷一.选择题(共10小题,每小题2分,共20分)1.反比例函数y=的图象生经过点(1,﹣2),则k的值为()A.﹣1 B.﹣2 C.1 D.2【答案】B【精准解析】解:∵反比例函数y=的图象生经过点(1,﹣2),∴k=1×(﹣2)=﹣2.故选B.2.如图,点A(1.5,3)在第一象限,OA与x轴所夹的锐角为α,tanα=()A.1 B.1.5 C.2 D.3【答案】C【精准解析】解:根据题意得:tanα==2;故选:C.3.如图,不能判定△AOB和△DOC相似的条件是()A.AO•CO=BO•DO B.C.∠A=∠D D.∠B=∠C【答案】B【精准解析】解:A、能判定.利用两边成比例夹角相等.B、不能判定.C、能判定.两角对应相等的两个三角形相似.D、能判定.两角对应相等的两个三角形相似.故选B.4.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【答案】D【精准解析】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.5.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1)C.(,)D.(2,1)【答案】B【精准解析】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD 是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.6.一个三角形三遍的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6 B.9 C.10 D.15【答案】B【精准解析】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选B.7.如图所示,平行四边形ABCD中,点E是AD边的中点,BE交对角线AC于点F.若AF=2,则对角线AC的长为()A.4 B.5 C.6 D.8【答案】C【精准解析】解:∵四边形ABCD是平行四边形,AD=BC,∴AD∥BC,∴△AEF∽△CBF.∵E是A的中点,∴AE=AD=BC,∴==∵AF=2,∴CF=4.∴AC=AF+CF=6.故选:C.8.在同一平面直角坐标系中,函数y=mx+m与y=﹣(m≠0)的图象可能是()A.B.C.D.【答案】B【精准解析】解:方法一:A、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m 中,与y轴相交于正半轴,则常数项m>0,y随x的增大而增大,则一次项系数m>0,三个m 不同号,故选项错误;B、y=﹣的图象在一三象限,则﹣m>0,即m<0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m<0,三个m同号,故选项正确;C、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于正半轴,则常数项m>0,y随x的增大而减小,则一次项系数m<0,三个m不同号,故选项错误;D、y=﹣的图象在二、四象限,则﹣m<0,即m>0.y=mx+m中,与y轴相交于负半轴,则常数项m<0,y随x的增大而增大,则一次项系数m>0,三个m不同号,故选项错误.故选B.方法二:①当m>0时,一次函数y=mx+m的图象过第一、二、三象限,符合一次函数图象的只有A选项,反比例函数y=﹣的图象过点第二、四象限,符合反比例函数图象的有C,D选项,∴同时符合的一次函数和反比例函数图形的选项没有;②当m<0时,一次函数y=mx+m的图象过第二、三、四象限,符合一次函数图象的只有B选项,反比例函数y=﹣的图象过点第一、三象限,符合反比例函数图形的有A,B选项,∴同时符合一次函数图象和反比例函数图象的选项是B,故选B.9.反比例函数y=﹣的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0 B.y1<0<y2C.y1>y2>0 D.y1>0>y2【答案】D【精准解析】解:∵反比例函数y=﹣中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选D.10.如图,在矩形ABCD中,点E为AB的中点,EF⊥EC交AD于点F,连接CF(AD>AE),下列结论正确的是()①∠AEF=∠BCE;②AF+BC>CF;③S△CEF=S△EAF+S△CBE;④若=,则△CEF≌△CDF.A.①②③B.①②④C.①③④D.①②③④【答案】C【精准解析】解:∵EF⊥EC,∴∠AEF+∠BEC=90°,∵∠BEC+∠BCE=90°,∴∠AEF=∠BCE,故①正确;又∵∠A=∠B=90°,∴△AEF∽△BCE,∴,∵点E是AB的中点,∴AE=BE,∴,又∵∠A=∠CEF=90°,∴△AEF∽△ECF,∴∠AFE=∠EFC,过点E作EH⊥FC于H,则AE=HE,在△AEF和△HEF中,∴△AEF≌△HEF(HL),∴AF=FH,同理可得△BCE≌△HCE,∴BC=CH,∴AF+BC=CF,故②错误;∵△AEF≌△HEF,△BCE≌△HCE,∴S△CEF=S△EAF+S△CBE,故③正确;若=,则cot∠BCE═=,∴∠BCE=30°,∴∠DCF=∠ECF=30°,在△CEF和△CDF中,,∴△CEF≌△CDF(AAS),故④正确,综上所述,正确的结论是①③④.故选C.二.填空题(共10小题,每小题2分,共20分)11.已知C是线段AB上一点,若=,则=.【答案】【精准解析】解:∵C是线段AB上一点,=,∴=,即=.故答案为.12.如图是某超市楼梯示意图,若BA与CA的夹角为α,∠C=90°,AC=6米,则楼梯高度BC为米.【答案】6tanα【精准解析】解:在Rt△ABC中,=tanα;即=tanα,BC=6tanα米.故答案为6tanα.13.如图,小明想测量院子里一棵树的高度,在某一时刻,他站在该树的影子上,前后移动,直到他本身的影子的顶端正好与树影的顶端重叠.此时,他与该树的水平距离2m,小明身高1.5m,他的影长是1.2m,那么该树的高度为.【答案】4m【精准解析】解:如图,CE=1.5m,∵CE∥BD,∴△ACE∽△ABD,∴=,即=,∴BD=4(m),即树的高度为4m.故答案为:4m.14.在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k 的值为.【答案】2【精准解析】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.15.在△ABC中,∠A,∠B都是锐角,cosA=,sinB=,则△ABC的形状是.【答案】等边三角形【解析】解:∵cosA=,sinB=,∴∠A=60°,∠B=60°.∴∠C=60°.则△ABC是等边三角形.16.小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,如图,出发时,在B 点他观察到仓库A在他的北偏东30°处,骑行20分钟后到达C点,发现此时这座仓库正好在他的东南方向,则这座仓库到公路的距离为千米.(参考数据:≈1.732,结果保留两位有效数字)【答案】1.8【解析】解:过点A作AD⊥BC于点D.设AD=x,则BD=x.∵△ACD是等腰直角三角形,∴CD=AD=x.∵小明骑自行车以15千米/小时的速度在公路上向正北方向匀速行进,骑行20分钟后到达C点,∴15×=5,∴BC=5.∴x+x=5.∴x=≈1.8(千米).即仓库到公路的距离为1.8千米.17.若α为锐角,且3tan2α﹣4tanα+3=0,则α的度数为.【答案】60°或30°【解析】解:∵α为锐角,∴tanα=x(x>0),则由原方程,得3x2﹣4x+3=0,∴x==,∴x1=,x2=;当x1=,即tanα=时,α=60°;当x2=,即tanα=时,α=30°;综上所述,α的度数为60°或30°;故答案是:60°或30°.18.如图,等边△OAB和等边△BCD的顶点A、C分别在双曲线y=的图象上,若OA=1,则点C的坐标为.【答案】(,)【解析】解:过A作AE⊥OB于E,过C作CF⊥BD于F,∵△OAB是等边三角形,∴∠AOB=∠OAB=60°,OB=OA=1,∴OE=,AE=,∴k=,∴双曲线的解析式为y=,设等边三角形CBD的边长为2a,∴BF=a,CF=a,∴C(1+a,a),∴(1+a)•a=,∴a=,(负值舍去),∴C(,).故答案为:(,).19.如图,△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,其中AB=2,BB1=1,底边BB1,B1B2,…,B n﹣2B n﹣1,B n﹣1B n在同一条直线上,连接AB n 交A n﹣2B n﹣1于点P,则PB n﹣1的值为.【答案】【解析】解:∵△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,∴∠AB1B=∠PB n﹣1B,∴AB1∥PB n﹣1,∴PB n B n﹣1∽△AB n B1,∴=,∵AB1=AB=2,B1B n=n﹣1,B n B n﹣1=1,∴=,∴PB n﹣1=.故答案为:.20.如图,矩形ABCD的一边BC与⊙O相切于G,DC=6,且对角线BD经过圆心O,AD 交⊙O于点E,连接BE,BE恰好是⊙O的切线,已知点P在对角线BD上运动,若以B、P、G三点构成的三角形与△BED相似,则BP=.【答案】4或12【解析】解:连接OE、OG、DG,如图,GO的延长线交AD于H,∵BE和BG为⊙O的切线,∴BG=BE,OB平分∠GBE,OG⊥BC,而BC∥AD,∴GH⊥AD,∴EH=DH,易得四边形CDHG为矩形,∴CG=DH,∴DE=2CG,∵∠EDB=∠CBD,∴∠EBD=∠EDB,∴EB=ED,∴BE=BG=DE,∴AE=CG,四边形BGDE为菱形,在Rt△ABE中,∵sin∠ABE==,∴∠ABE=30°,∴∠EBD=∠CBD=30°,∴BC=6,BD=12,∴BE=DE=BG=4,当=时,△PBG∽△EBD,即=,解得PB=4;当=时,△PBG∽△DBE,即=,解得PB=12,综上所述,BP的长为4或12.故答案为4或12.三.解答题(共10小题,每小题6分,共60分)21.(1)计算sin245°+cos30°•tan60°(2)在直角三角形ABC中,已知∠C=90°,∠A=60°,BC=3,求AC.【答案】解:(1)sin245°+cos30°•tan60°=+=2;(2)∵∠B=90°﹣∠A=90°﹣60°=30°,tanB==,∴AC=3•tanB=3tan30°=3×=.22.已知点P(﹣2,3)在反比例函数y=(k为常数,且k≠0)的图象上.(1)求这个函数的解析式;(2)判断该反比例函数图象是否经过点A(﹣1,﹣3),并说明理由.【答案】解:(1)∵将P(﹣2,3)代入反比例函数y=,得3=,解得,k=﹣6.∴反比例函数表达式为:y=﹣;(2)反比例函数图象不经过点A.理由是:∵将x=﹣1代入y=,得y=6≠﹣3,∴反比例函数图象不经过点A.【解析】(1)直接把点P(﹣2,3)代入反比例函数y=,求出k的值即可;(2)把点A (﹣1,﹣3)代入反比例函数的解析式进行检验即可.23.如图,四边形ABCD是平行四边形,E为边CD延长线上一点,连接BE交边AD于点F.请找出一对相似三角形,并加以证明.【答案】解:△ABF∽△DEF.①选择:△ABF∽△DEF理由:∵四边形ABCD是平行四边形,∴AB∥CD.∴∠ABF=∠E,∠A=∠FDE,∴△ABF∽△DEF.②选择:△EDF∽△ECB理由:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠C=∠FDE.又∵∠E=∠E,∴△EDF∽△ECB.③选择:△ABF∽△CEB理由:∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C.∴∠ABF=∠E.∴△ABF∽△CEB.【解析】选择△ABF∽△DEF,根据四边形ABCD是平行四边形可知AB∥CD,再由平行线的性质得出∠ABF=∠E,∠A=∠FDE,据此可得出结论.24.如图,已知∠A=36°,线段AB=6.(1)尺规作图:求作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;(2)求(1)中菱形对角线AC的长.(精确到0.1,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan36°≈0.7265)【答案】解:(1)如图,菱形ABCD为所求作的图形.(2)连接BD交AC于点O.∵四边形ABCD是菱形,∴BD⊥AC,AC=2AO.在Rt△ABO中,∠A=36°,AB=6.∵cos∠BAO=,∴AO=AB•cos36°≈4.85.∴AC=2AO≈9.7.【解析】(1)根据菱形的性质画出图形即可;(2)连接BD交AC于点O,根据菱形的性质可知BD⊥AC,AC=2AO,再由锐角三角函数的定义即可得出结论.25.近年来交通事故发生率逐年上升,交通问题成为重大民生问题,鄱阳二中数学兴趣小组为检测汽车的速度设计了如下实验:如图,在公路MN(近似看作直线)旁选取一点C,测得C到公路的距离为30米,再在MN上选取A、B两点,测得∠CAN=30°,∠CBN=60°;(1)求AB的长;(精确到0.1米,参考数据=1.41,=1.73)(2)若本路段汽车限定速度为40千米/小时,某车从A到B用时3秒,该车是否超速?【答案】解:(1)作CD⊥MN于D,如图所示:则CD=30米,在Rt△CBD中,BC===20≈34.6(米),又∵∠CBN=60°,∠CAN=30°,∴∠ACB=60°﹣30°=30°=∠CAN,∴AB=BC=34.6米;(2)∵40千米/小时≈11.1米/秒,34.6÷3≈11.53(米/秒),11.1<11.53,∴该车是超速.(1)作CD⊥MN于D,则CD=30米,在Rt△CBD中,由三角函数求出BC=【解析】≈34.6(米),由三角形的外角性质求出∠ACB=∠CAN,得出AB=BC=34.6米即可;(2)求出汽车的速度,即可得出答案.26.如图,在正方形ABCD中,点A在y轴正半轴上,点B的坐标为(0,﹣3),反比例函数y=﹣的图象经过点C.(1)求点C的坐标;(2)若点P是反比例函数图象上的一点且S△PAD=S正方形ABCD;求点P的坐标.【答案】解:(1)∵点B的坐标为(0,﹣3),∴点C的纵坐标为﹣3,把y=﹣3代入y=﹣得,﹣3=﹣,解得x=5,∴点C的坐标为(5,﹣3);(2)∵C(5,﹣3),∴BC=5,∵四边形ABCD是正方形,∴AD=5,设点P到AD的距离为h.∵S△PAD=S正方形ABCD,∴×5×h=52,解得h=10,①当点P在第二象限时,y P=h+2=12,此时,x P==﹣,∴点P的坐标为(﹣,12),②当点P在第四象限时,y P=﹣(h﹣2)=﹣8,此时,x P==,∴点P的坐标为(,﹣8).综上所述,点P的坐标为(﹣,12)或(,﹣8).【解析】(1)先由点B的坐标为(0,﹣3)得到C的纵坐标为﹣3,然后代入反比例函数的解析式求得横坐标为5,即可求得点C的坐标为(5,﹣3);(2)设点P到AD的距离为h,利用△PAD的面积恰好等于正方形ABCD的面积得到h=10,再分类讨论:当点P在第二象限时,则P点的纵坐标y P=h+2=12,可求的P点的横坐标,得到点P的坐标为(﹣,12);②当点P在第四象限时,P点的纵坐标为y P=﹣(h﹣2)=﹣8,再计算出P点的横坐标.于是得到点P的坐标为(,﹣8).27.如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若坡脚∠FAE=30°,求大树的高度.(结果保留整数,参考数据:sin48°≈0.7,cos48°≈0.7,tan48°≈1.1,≈1.7)【答案】解:如图,过点D作DG⊥BC于G,DH⊥CE于H,则四边形DHCG为矩形.故DG=CH,CG=DH,在直角三角形AHD中,∵∠DAH=30°,AD=6,∴DH=3,AH=3,∴CG=3,设BC为x,在直角三角形ABC中,AC==,∴DG=3+,BG=x﹣3,在直角三角形BDG中,∵BG=DG•tan30°,∴x﹣3=(3+)×,解得:x≈13,∴BC=13米,答:大树的高度为13米.【解析】过点D作DG⊥BC于G,DH⊥CE于H,设BC为x,根据矩形性质得出DG=CH,CG=DH,再利用锐角三角函数的性质求x的值即可.28.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.(1)求边AB的长;(2)求反比例函数的解析式和n的值;(3)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求线段OG的长.【答案】解:(1)∵点E(4,n)在边AB上,∴OA=4,在Rt△AOB中,∵tan∠BOA=,∴AB=OA×tan∠BOA=4×=2;(2)根据(1),可得点B的坐标为(4,2),∵点D为OB的中点,∴点D(2,1)∴=1,解得k=2,∴反比例函数解析式为y=,又∵点E(4,n)在反比例函数图象上,∴=n,解得n=;(3)如图,设点F(a,2),∵反比例函数的图象与矩形的边BC交于点F,∴=2,解得a=1,∴CF=1,连接FG,设OG=t,则OG=FG=t,CG=2﹣t,在Rt△CGF中,GF2=CF2+CG2,即t2=(2﹣t)2+12,解得t=,∴OG=t=.【解析】(1)根据点E的纵坐标判断出OA=4,再根据tan∠BOA=即可求出AB的长度;(2)根据(1)求出点B的坐标,再根据点D是OB的中点求出点D的坐标,然后利用待定系数法求函数解析式求出反比例函数解析式,再把点E的坐标代入进行计算即可求出n的值;(3)先利用反比例函数解析式求出点F的坐标,从而得到CF的长度,连接FG,根据折叠的性质可得FG=OG,然后用OG表示出CG的长度,再利用勾股定理列式计算即可求出OG的长度.29.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)证明:∵GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴AD=BC;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,在△AGB和△DGC中,,∴△AGB∽△DGC,∴,又∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF;(3)解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴,又∵△AGD∽△EGF,∴==.【解析】(1)由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD≌△BGC,得出对应边相等即可;(2)先证出∠AGB=∠DGC,由,证出△AGB∽△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出△AGD∽△EGF;(3)延长AD交GB 于点M,交BC的延长线于点H,则AH⊥BH,由△AGD≌△BGC,得出∠GAD=∠GBC,再求出∠AGB=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,由△AGD∽△EGF,即可得出的值.30.如图,四边形ABCD是平行四边形,点A(1,0),B(4,1),C(4,3),反比例函数y=的图象经过点D,点P是一次函数y=mx+3﹣4m(m≠0)的图象与该反比例函数图象的一个公共点;(1)求反比例函数的解析式;(2)通过计算说明一次函数y=mx+3﹣4m的图象一定过点C;(3)对于一次函数y=mx+3﹣4m(m≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围,(不必写过程)【答案】解:(1)∵B(4,1),C(4,3),∴BC∥y轴,BC=2,又∵四边形ABCD是平行四边形,∴AD=BC=2,AD∥y轴,而A(1,0),∴D(1,2),∴由反比例函数y=的图象经过点D,可得k=1×2=2,∴反比例函数的解析式为y=;(2)∵在一次函数y=mx+3﹣4m中,当x=4时,y=4m+3﹣4m=3,∴一次函数y=mx+3﹣4m的图象一定过点C(4,3);(3)点P的横坐标的取值范围:<x<4.如图所示,过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,当y=3时,3=,即x=,∴点E的横坐标为;由点C的横坐标为4,可得F的横坐标为4;∵一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,∴直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,∴点P的横坐标的取值范围是<x<4.【解析】(1)根据四边形ABCD是平行四边形,可得AD=BC=2,AD∥y轴,进而得出D(1,2),再根据反比例函数y=的图象经过点D,可得反比例函数的解析式;(2)在一次函数y=mx+3﹣4m中,当x=4时,y=3,据此可得一次函数y=mx+3﹣4m的图象一定过点C;(3)过C(4,3)作y轴的垂线,交双曲线于E,作x轴的垂线,交双曲线于F,根据一次函数y=mx+3﹣4m的图象一定过点C(4,3),且y随x的增大而增大,可知直线y=mx+3﹣4m与双曲线的交点P落在EF之间的双曲线上,据此可得点P的横坐标的取值范围.训练小能手1.如图,点A是反比例函数y=2x(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣3x的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.5【答案】D【解析】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.2.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】解:如图所示几何体的左视图是.故选:B.3.由下列光源产生的投影,是平行投影的是()A.太阳B.路灯C.手电筒D.台灯【答案】A【解析】解:用光线照射物体所产生的投影为平行投影,而用路灯、手电筒、台灯等照射物体所产生的投影为中心投影.故选A.4.如图,以点O为位似中心,将△ABC缩小后得到△DEF,已知OD=1,OA=3.若△DEF的面积为S,则△ABC的面积为()A.2S B.3S C.4S D.9S【答案】D【解析】解:∵△ABC与△DEF位似,∴=()2=,∴△ABC的面积=9S.故选D.5.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别是(0,1)、(2,0),点A、D在函数y=(x>0)的图象上,则k的值为.【答案】4【解析】解:连结AC,如图,∵四边形ABCD为菱形,∴AC与BD互相垂直平分,∵BD∥x轴,∴AC⊥x轴,∴A点坐标为(2,2),∴k=2×2=4.故答案为4.6.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB 于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线.(2)过点E作EH⊥AB于点H,求证:EF2=CD•BF.【答案】(1)证明:如图1,连接OE.∵BE⊥EF,∴∠BEF=90°,∴BF是圆O的直径.∵BE平分∠ABC,∴∠CBE=∠OBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠AEO=∠C=90°,∴AC是⊙O的切线;(2)证明:如图2,连结DE.∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,∴EC=EH.∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,∴∠CDE=∠HFE.在△CDE与△HFE中,,∴△CDE≌△HFE(AAS),∴CD=HF.∵∠BEF=∠EHF=90°,∠BFE=∠EFH,∴△BEF∽△EHF,∴EF2=HF•BF,∴EF2=CD•BF.【解析】(1)连接OE,由于BE是角平分线,则有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代换有∠OEB=∠CBE,那么利用内错角相等,两直线平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切线;(2)连结DE,先根据AAS证明△CDE ≌△HFE,再由全等三角形的对应边相等即可得出CD=HF,证明∴△BEF∽△EHF,得出对应边成比例,即可得出结论.例7.如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),交y轴于C(0,2);(1)求二次函数的解析式;(2)连接AC,在直线AC上方的抛物线上是否存在点N,使△NAC的面积最大,若存在,求出这个最大值及此时点N的坐标,若不存在,说明理由.(3)若点M在x轴上,是否存在点M,使以B、C、M为顶点的三角形是等腰三角形,若存在,直接写出点M的坐标;若不存在,说明理由.(4)若P为抛物线上一点,过P作PQ⊥BC于Q,在y轴左侧的抛物线是否存在点P使△CPQ ∽△BCO(点C与点B对应),若存在,求出点P的坐标,若不存在,说明理由.【答案】解:(1)∵二次函数y=ax2+bx+c的图象交x轴于A(﹣2,0),B(1,0),设二次函数的解析式为:y=a(x+2)(x﹣1),把C(0,2)代入得:2=a(0+2)(0﹣1),解得a=﹣1,∴y=﹣(x+2)(x﹣1)=﹣x2﹣x+2,∴二次函数的解析式为:y=﹣x2﹣x+2;(2)如图1,过N作ND∥y轴,交AC于D,设N(n,﹣n2﹣n+2),设直线AC的解析式为:y=kx+b,把A(﹣2,0)、C(0,2)代入得:,解得:,∴直线AC的解析式为:y=x+2,∴D(n,n+2),∴ND=(﹣n2﹣n+2)﹣(n+2)=﹣n2﹣2n,∴S△ANC=×2×[﹣n2﹣2n]=﹣n2﹣2n=﹣(n+1)2+1,∴当n=﹣1时,△ANC的面积有最大值为1,此时N(﹣1,2),(3)存在,分三种情况:①如图2,当BC=CM1时,M1(﹣1,0);②如图2,由勾股定理得:BC==,以B为圆心,以BC为半径画圆,交x轴于M2、M3,则BC=BM2=BM3=,此时,M2(1﹣,0),M3(1+,0);③如图3,作BC的中垂线,交x轴于M4,连接CM4,则CM4=BM4,设OM4=x,则CM4=BM4=x+1,由勾股定理得:22+x2=(1+x)2,解得:x=,∵M4在x轴的负半轴上,∴M4(﹣,0),综上所述,当B、C、M为顶点的三角形是等腰三角形时,M的坐标为(﹣1,0)或(1±,0)或(﹣,0);(4)存在两种情况:①如图4,过C作x轴的平行线交抛物线于P1,过P1作P1Q⊥BC,此时,△CP1Q∽△BCO,∴点P1与点C关于抛物线的对称轴对称,∴P1(﹣1,2),②如图5,由(3)知:当M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,过P2作P2Q⊥BC,此时,△CP2Q∽△BCO,易得直线CM的解析式为:y=x+2,则,解得:P2(﹣,﹣),综上所述,点P的坐标为:(﹣1,2)或(﹣,﹣).【解析】(1)利用交点式求二次函数的解析式;(2)求直线AC的解析式,作辅助线ND,根据抛物线的解析式表示N的坐标,根据直线AC的解析式表示D的坐标,表示ND的长,利用铅直高度与水平宽度的积求三角形ANC的面积,根据二次函数的最值可得面积的最大值,并计算此时N的坐标;(3)分三种情况:当B、C、M为顶点的三角形是等腰三角形时,分别以三边为腰,画图形,求M的坐标即可;(4)存在两种情况:①如图4,点P1与点C关于抛物线的对称轴对称时符合条件;②如图5,图3中的M(﹣,0)时,MB=MC,设CM与抛物线交于点P2,则△CP2Q∽△BCO,P2为直线CM的抛物线的交点.。
2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)
![2023年北师大版初中数学九年级(下)期末综合测试卷及部分答案(五套)](https://img.taocdn.com/s3/m/ab58b495c67da26925c52cc58bd63186bceb929b.png)
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
浙教版九年级数学下册综合测试试题及答案(九下全册,含答案)
![浙教版九年级数学下册综合测试试题及答案(九下全册,含答案)](https://img.taocdn.com/s3/m/331e6f29b5daa58da0116c175f0e7cd184251812.png)
浙教版九年级数学下册综合测试试题及答案一、选择题:(本大题共12小题,每小题3分,共36分) 1.下列“QQ 表情”中属于轴对称图形的是( )A B C D 2.下列各式中计算结果等于62x 的是( )A .33x x +B .32(2)xC .2x 2•x3D .72x x ÷3.两个圆的半径分别为4cm 和3cm ,圆心距是7cm ,则这两个圆的位置关系是( )A .内切B .相交C .外切D .外离4.如图是一个圆柱体和一长方体组成的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图为( )上面5.一种细胞的直径约为61.5610-⨯米,那么它的一百万倍相当于( ) A.玻璃跳棋棋子的直径 B.数学课本的宽度 C.初中学生小丽的身高 D.五层楼房的高度 6.如图,AB AC ,是圆的两条弦,AD 是圆的一条直径, 且AD 平分BAC ∠,下列结论中不一定正确.....的是( ) A .AB DB >B .BD CD =C . BC AD ⊥ D . B C ∠=∠7.如图,若A B C P Q ,,,,,甲,乙,丙,丁都是方格纸中的格点,为使PQR ABC △∽△,则点R 应是甲,乙,丙,丁四点中的( ) A.丁 B.丙C.乙 D.甲A .第4题B .C .D .BD C APQA BC甲 乙 丙 丁8.如图,已知二次函数2(0)y kx k k =+≠与反比例函数ky x=-,它们在同一直角坐标系中的图象大致是( )9.如图,把直线2y x =-向上平移后得到直线AB ,直线AB经过点()m n ,,且26m n +=,则直线AB 的解析式是() A .23y x=-- B .26y x =-- C .23y x =-+D .26y x =-+10.在下图右侧的四个三角形中,不能由ABC △经过旋转或平移得到的是( )11.如图,矩形ABCD 中,1AB =,2AD =,M 是CD 的中点,点P 在矩形的边上沿A B C M →→→运动,则APM △的面积y 与点P 经过的路程x 之间的函数关系用图象表示大致是下图中的( )(第9题)x2y =-A. B. C. A . B .D CBA P(第11题)C A B A. B. C.D.A C DC .D .12.如图,梯形ABCD 中,AB DC ∥,AB BC ⊥, 2cm AB =,4cm CD =,以BC 上一点O 为圆心的圆 经过A D ,两点,且90AOD ∠=,则圆心O 到弦AD 的距离是( ) AcmBC.D.二、填空题:(本大题共7小题,每小题3分,共21分)13.一电冰箱冷冻室的温度是18-℃,冷藏室的温度是5℃,该电冰箱冷藏室的温度比冷冻室的温度高 ℃.14.袋中有同样大小的4个小球,其中3个红色,1个白色.从袋中任意地同时摸出两个球,这两个球颜色相同的概率是 .15.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示为 .16.如图,请你补充一个你认为正确的条件,使.ABC ∆∽ACD ∆:(第16题)17.如图,小华用一个半径为36cm ,面积为2324πcm 的扇形纸板,制作一个圆锥形的玩具帽,则帽子的底面半径r =cm. 18.按如下规律摆放三角形:(第12题)ABCDO3()2()1()则第(n)堆三角形的个数为.19.如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n-是质数,那么2n-1•(2n-1)是一个完全数,请你根据这个结论写出6之后的下一个完全数是.三、解答题(共7个小题,共63分)20(本小题满分6分).1 01 (π1)2cos454-⎛⎫--+ ⎪⎝⎭°21.(本小题满分6分)解下列不等式组:5224233x xx+2+⎧⎪⎨+>⎪⎩≥22.(本小题满分7分)观察下列各式:111111111111 ,,,, 623123420452045 =-=-=-=-(1)由此可以推断130=。
2023年青岛版初中数学九年级(下)期末综合测试卷及部分答案(共四套)
![2023年青岛版初中数学九年级(下)期末综合测试卷及部分答案(共四套)](https://img.taocdn.com/s3/m/086dfa4e26d3240c844769eae009581b6bd9bd12.png)
青岛版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题1.下列标志图中,既是轴对称图形,又是中心对称图形的是( ).A .B .C .D .2. )A B . C .D .53.新型冠状病毒“CCCCC −19”的平均半径约为50纳米(1纳米=10−9米),这一数据用科学记数法表示,正确的是( )A. 50×10−9米B. 5.0×10−9米C. 5.0×10−8米D. 0.5×10−7米 4.下列运算正确的是( )A .232235x y xy x y +=B .()323626ab a b -=-C .()22239a b a b +=+D .()()22339a b a b a b +-=- 5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125° 6.如图,将ABC 先向上平移1个单位,再绕点P 按逆时针方向旋转90︒,得到'A B C '',则点A 的对应点'A 的坐标是( )A .(0,4)B .(2,-2)C .(3,-2)D .(-1,4) 7.如图,矩形ABCD 中,AB =12,点E 是AD 上的一点,AE =6,BE 的垂直平分线交BC 的延长线于点F ,连接EF 交CD 于点G ,若G 是CD 的中点,则BC 的长是( )A .12.5B .12C .10D .10.58.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .二、填空题9)0132cos 60-+---︒=_________. 10.一组数据6,4,x ,3,2的平均数是5,则这组数据的方差为_________.11.如图,C 为半圆内一点,O 为圆心,直径AB 长为4cm ,∠BOC =60°,∠BCO =90°,将△BOC 绕圆心O 逆时针旋转至△B′OC′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.12.如图,在平面直角坐标系中,点A (-3,1),以点O 为顶点作等腰直角三角形AOB ,双曲线11k y x=在第一象限内的图象经过点B .设直线AB 的表达式为22y k x b =+,当y 1>y 2时,x 的取值范围是_________.13.如图,在矩形ABCD 中,AB=4,点E ,F 分别在BC ,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B′处,又将△CEF 沿EF 折叠,使点C 落在直线EB′与AD 的交点C′处,DF=_______.14.如图,若△ABC 内一点P 满足∠PAC =∠PCB =∠PBA ,则称点P 为△ABC 的布罗卡尔点,已知△ABC 中,CA =CB ,∠ACB =120°,P 为△ABC的布罗卡尔点,若PA =,则PB+PC=_____.三、解答题15.如图,有一块三角形材料(△ABC ),请你在这块材料上作一个面积最大的圆.16.(1)化简:221631()3969a a a a a +-+÷+--+ (2)解不等式组:2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩17.某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成两幅不完整的统计图如图所示,请根据图中提供的信息,解答下列问题:(1)这次共抽取______名学生进行调查;并补全条形图;(2)扇形统计图中“步行”所在扇形的圆心角为______.(3)如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?18.袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小丽和小红做摸球游戏,约定游戏规则是:小丽先从袋中任意摸出1个球记下颜色后放回,小红再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小丽赢,否则小红赢.这个游戏规则对双方公平吗?请说明理由.19.某幼儿园准备改善原有滑梯的安全性能,把倾斜角由原来的40°减为35°,已知原滑梯AB的长为5米,为了改造后新滑梯的安全,滑梯前方必须有2米的空地,请问距离原来滑梯B处3米的大树对滑梯的改造有影响吗?(sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,Sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)20.为了加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机,经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元(2)该市明年计划采购A型、B型一体机1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?21.已知:在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF∥BC 交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.22.即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OMNE 为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O 点为原点,OM 所在的直线为x 轴,OE 所在的直线为y 轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD ,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB ,AD ,CD 为三根承重钢支架,A 、D 在抛物线上,B ,C 在地面上,已知钢支架每米50元,问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?23.小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt △ABC 中,如果∠C =90°,∠A =30°,BC =a =1,AC =b AB =c =2,那么2sin sin a b A B==.通过上网查阅资料,他又知“sin 90°=1”,因此他得到“在含30°角的直角三角形中,存在着sin sin sin a b c A B C==的关系”.这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt △ABC 中,∠C =90°,BC =a ,AC =b ,AB =c ,请判断此时“sin sin sin a b c A B C==”的关系是否成立? 答:______________.(2)完成上述探究后,他又想“对于任意的锐角△ABC ,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC 中,BC =a ,AC =b ,AB =c ,过点C 作CD ⊥AB 于D ,设CD =h , ∵在Rt △ADC 和Rt △BDC 中,∠ADC =∠BDC =90°,∴sinA =______________,sinB =______________. ∴sin a A =_____________,sin b B=____________. ∴sin sin a b A B= 同理,过点A 作AH ⊥BC 于H ,可证sin sin b c B C = ∴sin sin sin a b c A B C== 请将上面的过程补充完整.(3)运用上面结论解答下列问题:①如图4,在△ABC 中,如果∠A =75°,∠B =60°,AB =6,求AC 的长.②在△ABC 中,如果∠B =30°,AB =,AC =2,那么△ABC 内切圆的半径为______. 24.已知,如图,在△ABC 中,AB=AC =10cm ,BC =12cm ,AD ⊥BC 于点D ,直线PM 交BC 于点P ,交AC 于点M ,直线PM 从点C 出发沿CB 方向匀速运动,速度为1cm/s ;运动过程中始终保持PM ⊥BC ,过点P 作PQ ⊥AB ,交AB 于点Q ,交AD 于点N ,连接QM ,设运动时间是t (s)(0<t <6),解答下列问题:(1)当t 为何值时,QM //BC ?(2)设四边形ANPM 的面积为y (cm 2),试求出y 与t 的函数关系式;(3)是否存在某一时刻t ,使四边形ANPM 的面积是△ABC 面积的13?若存在,求出t 的值;若不存在,请说明理由;(4)是否存在某一时刻t,使点M在线段PQ的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.参考答案1.D【分析】根据轴对称和中心对称图形的性质,对各个选项逐个分析,即可得到答案.解:选项A 是中心对称图形,不是轴对称图形,故不正确;选项B 不是中心对称图形,是轴对称图形,故不正确;选项C 既不是轴对称图形,也不是中心对称图形,故不正确;选项D 既是轴对称图形,又是中心对称图形,故正确;故选:D .【点评】本题考查了轴对称和中心对称图形的知识;解题的关键是熟练掌握轴对称和中心对称图形的性质,从而完成求解.2.A【分析】根据绝对值的定义即可解答.解:||=.故选:A .【点评】本题考查了绝对值的定义,负数的绝对值等于它的相反数是解题的关键.3.略4.D【分析】根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可. 解:A .22x y 和3xy 不是同类项,不能合并,故该选项计算错误,不符合题意; B .()323628ab a b -=-,故该选项计算错误,不符合题意;C .()222396a b a ab b +=++,故该选项计算错误,不符合题意;D .()()22339a b a b a b +-=-,故该选项计算正确,符合题意. 故选D .【点评】本题主要考查了合并同类项、幂的运算性质以及乘法公式,熟练掌握相关公式及运算法则是解答本题的关键.5.B【分析】根据圆周角定理构造它所对的弧所对的圆心角,即连接OA ,OB ,求得∠AOB =110°,再根据切线的性质以及四边形的内角和定理即可求解.解:连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,∴∠APB=360°−90°−90°−110°=70°.故选B.【点评】本题考查了多边形的内角和定理,切线的性质,圆周角定理的应用,关键是求出∠AOB的度数.6.D【分析】根据平移的规律找到A点平移后对应点,然后根据旋转的规律找到旋转后对应点'A,即可得出'A的坐标.解:如图所示:A的坐标为(4,2),向上平移1个单位后为(4,3),再绕点P逆时针旋转90°后对应'A点的坐标为(-1,4).故选:D.【点评】本题考查了根据平移变换和旋转变换作图,熟练掌握平移的规律和旋转的规律是解7.D【分析】利用“ASA ”易证△EDG ≌△FCG ,从而求得DE =CF ,12EG GF EF ==,根据矩形的性质,设BC =x ,则DE =x -6,DG =6,BF =2x -6,根据垂直平分线的性质求得11322EG EF BF x ===-,最后在Rt EDG 中根据勾股定理列方程求出x 即可.解:在矩形ABCD 中,AD =BC ,AB =CD =12,∠D =∠DCF =90°,∵G 为CD 中点,∴DG =CG .又∵∠EGD =∠FGC ,∴()EDG FCG ASA ≌,∴DE =CF ,12EG GF EF ==. 设BC =x ,则6DE AD AE BC AE x =-=-=-,11622DG CG CD AB ====,26BF BC CF BC DE x =+=+=-.又∵BE 的垂直平分线交BC 的延长线于点F , ∴11322EG EF BF x ===-. ∴在Rt EDG 中,222DE E G G D ,即222(3)(6)6x x -=-+, 解得:x =10.5则BC 的长是10.5.故选D .【点评】本题考查全等三角形的判定和性质,矩形的性质,线段垂直平分线的性质及勾股定理,题目难度不大有一定的综合性,掌握相关性质定理正确列出方程是解题关键. 8.C直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y轴于正半轴,常数项为负,交y轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.解:由方程组2y ax bxy bx a⎧=+⎨=-⎩得ax2=−a,∵a≠0∴x2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B.A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点评】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.9【分析】根据分母有理化、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可求得答案.)0132cos60----︒=1122--=【点评】本题主要考查了实数的混合运算,熟练掌握运算法则是解答此题的关键. 10.8【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算即可.解:∵数据6、4、x 、3、2平均数为5,∴(6+4+x +3+2)÷5=5,解得:x =10,∴这组数据的方差是15×[(6-5)2+(4-5)2+(10-5)2+(3-5)2+(2-5)2]=8. 故答案为:8.【点评】本题主要考查了方差,解题的关键是掌握算术平均数和方差的定义.11.π【分析】根据旋转和含60︒角的直角三角形的性质,可求出BOB '∠和BO 、DO 的长度,再结合图形=BOB DOD S S S ''-阴影扇形扇形,即可求出阴影部分面积.解:如图可知=BOB DOD S S S ''-阴影扇形扇形,又已知=60∠︒BOC ,B OC ''△是由BOC 绕圆心O 逆时针旋转得到,∴=60B OC ''∠︒,∴=1801806060=60B OC B OC BOC ''∠︒-∠-∠=︒-︒-︒︒,∴6060120BOB B OC BOC ''∠=∠+∠=︒+︒=︒,又∵4AB cm =, ∴4222AB BO cm ===, ∴2122BO DO cm ===, ∴2212024()3603BOB S cm ππ'︒⨯⨯==︒扇形 ,2212011()3603DOD S cm ππ'︒⨯⨯==︒扇形, 24==()33S cm πππ-阴影.故答案为π.【点评】本题考查旋转和含60︒角的直角三角形的性质以及扇形的面积公式.根据题意结合图形可知=BOB DOD S S S ''-阴影扇形扇形是解题关键.12.0<x <1或x <﹣6【分析】过点A 、B 分别作AE ⊥x 轴于E ,BD ⊥x 轴于D ,易证△AEO ≌△ODB ,可得求点B 坐标,再利用待定系数法求出双曲线和直线的解析式,然后联立方程组求出交点的横坐标,根据图象即可确定x 的取值范围.解:如图,过点A 、B 分别作AE ⊥x 轴于E ,BD ⊥x 轴于D ,则∠AEO =∠ODB =90°, ∵A (﹣3,1)∴AE =1,OE =3,∵△AOB 为等腰直角三角形,∴OA =OB ,∠AOB =90°,∴∠AOE +∠BOD =90°,又∠BOD +∠OBD =90°,∴∠AOE =∠OBD ,∴△AEO ≌△ODB (AAS),∴OD =AE =1,BD =OE =3,∴B (1,3),将B (1,3)坐标代入11k y x =中,得:k 1=1×3=3, ∴13y x=, 将A (﹣3,1)、B (1,3)代入直线的表达式22y k x b =+中,得:22313k b k b -+=⎧⎨+=⎩,解得:21252k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴21522y x =+, 由1231522y x y x ⎧=⎪⎪⎨⎪=+⎪⎩解得:1113x y =⎧⎨=⎩,22612x y =-⎧⎪⎨=-⎪⎩, ∴交点C 坐标为(﹣6,12-), 根据图象可知,当y 1>y 2时,双曲线位于直线的上方,∴x 的取值范围为0<x <1或x <﹣6,故答案为:0<x <1或x <﹣6.【点评】本题考查反比例函数和一次函数的交点问题、待定系数法求函数解析式、解一元二次方程、函数与不等式的关系,解答的关键是求得双曲线和直线的交点坐标,会利用数形结合思想求解不等式的解集.13.43【分析】连接CC ',可以得到CC '是∠EC 'D 的平分线,所以CB '=CD ,又AB '=AB ,所以B '是对角线中点,AC =2AB ,所以∠ACB =30°,即可得出答案.解:连接CC '.∵将△ABE 沿AE 折叠,使点B 落在AC 上的点B '处,又将△CEF 沿EF 折叠,使点C 落在EB '与AD 的交点C '处,∴EC=EC',∴∠1=∠ECC'.∵AD∥BC,∴∠DC'C=∠ECC',∴∠1=∠DC'C.在△CC'B'与△CC'D中,∵''901'''D CB CDC CC C C C∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△CC'B'≌△CC'D,∴CB'=CD,∠ACC'=∠DCC'.又∵AB'=AB,∴AB'=CB',∴B'是对角线AC中点,即AC=2AB=8,∴∠ACB=30°,∴∠BAC=60°,∠ACC'=∠DCC'=30°,∴∠DC'C=∠1=60°,∴∠DC'F=∠FC'C=30°,∴C'F=CF=2DF.∵DF+CF=CD=AB=4,∴DF43=.故答案为:43.【点评】本题考查了矩形的性质、翻折变换的性质和角平分线的判定与性质,解答本题要抓住折叠前后的图形全等的性质,得出CC'是∠EC'D的平分线是解答本题的关键.14.【分析】作CH ⊥AB 于H ,首先证明AB BC ,再证明△PAB ∽△PBC ,可得PA PB AB PB PC BC===即可求出PB 、PC . 解:作CH ⊥AB 于H .∵CA =CB ,CH ⊥AB ,∠ACB =120°,∴AH =BH ,∠ACH =∠BCH =60°,∠CAB =∠CBA =30°,∴AB =2BH =2•BC •cos30°BC ,∵∠PAC =∠PCB =∠PBA ,∴∠PAB =∠PBC ,∴△PAB ∽△PBC ,∴PA PB AB PB PC BC===∴PA∴PB =1,PC∴PB+PC =故答案为. 【点评】本题主要考查相似三角形的判定和性质,等腰三角形的性质,三角函数等,解决本题的关键是要熟练掌握相似三角形的判定和性质,等腰三角形的性质,三角函数.15.作图见解析【分析】分别作∠B 和∠C 的角平分线,它们的交点即为圆心O ,再过O 点作任意一边的垂线,以垂线段长为半径作圆,该圆为三角形的内切圆,即是能在这块材料上作出的面积最大的圆. 解:如图所示,O 为△ABC 的内切圆.尺规作图如下:【点评】此题主要考查的是三角形内切圆的意义及作法, 由于三角形的内心是三角形三个内角平分线的交点,可作△ABC 的任意两角的角平分线,它们的交点即为△ABC 的内切圆的圆心(设圆心为O ),以O 为圆心、O 点到任意一边的距离长为半径作圆,即可得出△ABC 的内切圆,即为能作出的最大圆,解决本题的关键是学生能正确理解三角形的内切圆并掌握其作法.16.(1)63a +;(2)-2<x ≤-1 【分析】(1)按照分式的混合运算顺序进行,先算括号里的加法运算,再算除法运算,最后算减法运算;(2)分别求出每个不等式的解集,再求两个不等式解集的公共部分即得不等式组的解集. 解:(1)2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭236(3)1(3)(3)(3)(3)3a a a a a a a ⎡⎤--=-+⨯⎢⎥+-+-+⎣⎦23(3)1(3)(3)3a a a a a +-=-⨯+-+ 313a a -=-+ 63a =+ ; (2)2(1)7122x x x x +>⎧⎪⎨+-≥⎪⎩解第一个不等式得解集:x >-2;解第二个不等式得解集:x ≤-1;故不等式组的解集为:-2<x ≤-1.【点评】本题分别考查了分式的混合运算及解一元一次不等式组,对于分式的混合运算要注意运算顺序不要出错,最后要化成最简分式;对于解一元一次不等式组,在使用不等式的基本性质3时,不等号的方向要改变,切记.17.(1)50;见解析;(2)93.6°;(3)300名【分析】(1)根据频数÷百分比=样本容量求出调查的学生数,根据骑自行车所占的百分比求出骑自行车的人数,补全条形图;(2)用步行人数所占的百分比乘以360°即可得出结论;(3)根据骑自行车上学的学生所占的百分比求出该校骑自行车上学的学生数. 解:(1)1-40%-20%-14%=26%,则m=26%,由统计图可知,乘公交车的学生有20人,占40%,则学生数为:20÷40%=50,骑自行车人数:50×20%=10,条形图如图:(2)360°26%=93.6⨯︒故答案为:93.6°;(3)该校骑自行车上学的学生:1500×20%=300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.不公平,见解析【分析】先画出树状图,然后求出相应的概率,比较概率是否相等即可做出判断.解:这个游戏不公平,理由为:根据题意,画出树状图如下:一共有9种等可能的结果,其中两人摸到的球的颜色相同的有5种结果,颜色不同的有4种结果,∴P(小丽赢)=59,P(小红赢)=49,∵59≠49,∴这个游戏不公平.【点评】本题考查游戏的公平性、画树状图或列表法求概率,解答的关键是得出相应的概率,概率相等游戏就公平,否则就不公平.19.没有影响,见解析【分析】在Rt ABC 中,利用三角函数求出BC 和AC 长.再在Rt ACD △中,利用三角函数求出CD 长,从而求出BD 长,最后求出D 点到大树的距离和2米作比较即可.解:在Rt ABC 中,40ABC ∠=︒, ∴cos cos 40BC ABC AB ∠=︒=,即0.775BC =;sin sin 40AC ABC AB∠=︒=,即0.645AC =. ∴ 3.85BC =米; 3.2AC =米.在Rt ACD △中,35ADC ∠=︒, ∴tan tan 35AC ADC CD ∠=︒=,即 3.20.7CD=, ∴ 4.57CD ≈米.∴ 4.57 3.850.72BD CD BC =-=-=米.∵30.72 2.282-=>,∴没有影响.【点评】本题考查解直角三角形的实际应用.利用数形结合的思想是解答本题的关键. 20.(1)今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)该市明年至少需投入1800万元才能完成采购计划.【分析】(1)直接利用今年每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.解:(1)设今年每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元, 由题意可得:0.6500200960y x x y -=⎧⎨+=⎩, 解得: 1.21.8x y =⎧⎨=⎩, 答:今年每套A 型的价格各是1.2万元、B 型一体机的价格是1.8万元;(2)设该市明年购买A 型一体机m 套,则购买B 型一体机(1100m)-套,由题意可得:1.8(1100m) 1.2(125%)m -≥+,解得:m 600≤,设明年需投入W 万元,W 1.2(125%)m 1.8(1100m)=⨯++-0.3m 1980=-+,∵0.30-<,∴W 随m 的增大而减小,∵m 600≤,∴当m 600=时,W 有最小值0.360019801800-⨯+=,故该市明年至少需投入1800万元才能完成采购计划.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.21.(1)见解析;(2)当AB =AC 时,四边形ADCF 是正方形,见解析【分析】(1)根据全等三角形的判定解答即可;(2)由全等三角形的性质和菱形的判定四边形ADCF 是菱形,根据正方形的判定解答即可. 解:证明:(1)∵AF ∥BC ,∴∠AFE =∠DBE ,∵E 是AD 的中点,D 是BC 的中点,∴AE =DE ,BD =CD ,在△AEF 和△DEB 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△DEB (AAS );(2)当AB =AC 时,四边形ADCF 是正方形,理由:由(1)知,△AEF ≌△DEB ,则AF =DB ,∵DB =DC ,∴AF =CD ,∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC , ∴四边形ADCF 是菱形;∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∴菱形ADCF 是正方形.【点评】此题考查全等三角形的判定,全等三角形的性质以及菱形的判定,正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.22.(1)()2124042y x x x =-++≤≤;(2)能正常进入;(3)650元 【分析】(1)根据题意可写出E 点,N 点和抛物线顶点坐标.再设该抛物线表达式为2y ax bx c =++,即利用待定系数法可求出该抛物线解析式.(2)令 4.5y =,即求出方程2124 4.52x x -++=的两个根,比较两个根的差的绝对值和3米的大小即可判断.(3)设B 点最标为(t ,0),需要花费W 元,根据题意可知A 点坐标为(t ,21242t t -++),C 点坐标为(4-t ,0),由此即可求出AB 、CD 和AD 的长,即可列出W 和t 的二次函数关系式,最后利用二次函数的顶点式求出其最值即可.解:(1)根据题意可知E (0,4)、N (4,4)、抛物线顶点(2,6).设该抛物线表达式为2y ax bx c =++,∴44164642c a b c a b c =⎧⎪=++⎨⎪=++⎩,解得:1224a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,由图可知自变量x 的取值范围是04x ≤≤. 故该抛物线表达式为2124(04)2y x x x =-++≤≤. (2)对于21242y x x =-++,当 4.5y =时,即2124 4.52x x -++=,解得:12x =22x =-,∵12(2(23x x -=--=>,∴该消防车能正常进入.(3)设B 点最标为(t ,0),需要花费W 元,根据题意可知A 点坐标为(t ,21242t t -++),C 点坐标为(4-t ,0), ∴21242A B AB CD y y t t ==-=-++,442C B AD BC x x t t t ==-=--=-. ∴()50W AB CD AD =++⨯,即221242()(42)5050(162)50W t t t t ⎡⎤=⨯+--++⨯=--⎢⎥⎣⎦+. ∵014t ≤=≤,∴最多需要花费650元.23.(1)成立;(2)h b ;h a ;ab h ; ab h;(3)①;1- 解:解;(1)成立, 理由如下:∵,sin ,sin 1sin a b B cA C c === ∴,,,sin sin sin a b c c c c A B C === ∴sin sin sin a b c A B C== (2)在锐角△ABC 中,BC =a ,AC =b ,AB =c .过点C 作CD ⊥AB 于D .设CD =h ,∵在Rt △ADC 和Rt △BDC 中,∠ADC =∠BDC =90°, ∴sin h A b =,sin h B a=. ∴sin a ab A h =,sin b ab B h=. ∴sin sin a b A B =. 同理,过点A 作AH ⊥BC 于H ,可证sin sin b c B C=.∴sin sin sin a b c A B C==. 故答案为:h b ;h a ;ab h ; ab h; (3)①∵∠A =75°,∠B =60°,∴∠C =45°∴把∠C =45°,∠B =60°,AB =c =6,代入sin sin b c B C=得: 6sin 60sin 45b ︒︒=,∴=,解得:b=,即AC=②∵AB=AC =2,∴tan 30AC AB ===︒ ∴90CAB ∠=︒过△ABC 内切圆的圆心O 作OE ⊥AB ,OG ⊥AC ,OF ⊥BC ,则OG =OE =OF =r ,∵90CAB ∠=︒∴AG =AE =OE =OG =r∴四边形AEOC 是正方形∵AC =2,∴CG =2-r∵AB =∴BE =r连接OC ,OB ,∵OC 为ACB ∠的平分线,∴FCO GCO ∠=∠又90OGC OFC ∠=∠=︒,OC =OC∴GCO FCO ∆≅∆同理可得BEO BFO ∆≅∆∴CF =CG =2-r ,BF =BE =r而22222216BC AC AB =+=+=∴BC =4∴BC =CF +BF =2-r +r =4解得,r 11-24.(1)5417t =;(2)2259212422y t t =-++;(3)不存在,见解析;(4)存在,t =4 解:(1)由题意知,PC =t ,BP =12﹣t ,∵AB=AC ,AD ⊥BC ,AB =AC =10,BC =12,∴BD=DC=6,AD =8,∵QM ∥BC , ∴BQ CMAB AC =,∵AB=AC ,∴BQ=CM ,∵PM ⊥BC ,AD ⊥BC ,∴ PM ∥AD ,∴PC CM CD AC =即610t CM =, ∴CM =53t ,在Rt △ABD 和Rt △PBQ 中,cos ∠B =BQ BD BP AB =,即61210BQ t =-, 解得:BQ =35(12﹣t )= 36355t -, 由BQ=CM 得:36355t -=53t , 解得:5417t =, 故当 5417t =时,QM ∥BC ; (2)∵∠B +∠BAD =90°,∠DPN +∠B =90°,∴∠BAD =∠DPN ,又∠PDN =∠ADB =90°,∴△PDN ∽△ADB , ∴DN PD BD AD =,即668DN t -=, 解得:9324DN t =-, ∴21933927(6)()224822PDN S t t t t =⨯-⨯-=-+, ∵PM ∥AD ,∴△CPM ∽△CDA , ∴PM CP AD CD =即86PM t =, 解得:43PM t =, ∴2142233PCM S t t t =⨯⨯=, ∴ADC PCM PDN y S S S =--=2212392768()23822t t t ⨯⨯---+=2259212422t t -++,即y 与t 的函数关系式为2259212422y t t =-++; (3)假设存在某一时刻t ,使四边形ANPM 的面积是△ABC 面积的13, 则2259212422y t t =-++= 1112832⨯⨯⨯, 整理得:2251081320t t -+=,∵△= 2108425132-⨯⨯=﹣1536<0,∴此方程无解,∴不存在某一时刻t ,使四边形ANPM 的面积是△ABC 面积的13; (4)假设存在某一时刻t ,使点M 在线段PQ 的垂直平分线上,则MP =MQ ,过点M 作ME ⊥PQ 于E ,则PE =12PQ ,∠PEM =90°, 在Rt △ABD 和Rt △PBQ 中,sin ∠B= 81210PQ t =-, 解得:4(12)5PQ t =-, ∵∠BPQ +∠B =90°,∠BPQ +∠MPE =90°,∴∠B =∠MPE ,在Rt △PEM 和Rt △BDA 中,cos ∠B =cos ∠MPE ,即64103PE t =, 解得:45PE t =, 由PE =12PQ 得45t =14(12)25t ⨯-, 解得:t =4,∵0<t <6,∴存在某一时刻t =4时,点M 在线段PQ 的垂直平分线上.青岛版初中数学九年级(下)期末综合测试卷(二)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出A、B、C、D 四个结论,其中只有一个是正确的,每小题选对得分;不选、错选或选出的标号超过一个的不得分.1.π-7的绝对值是().A.πB.7-πC.7D.π-72.下列数学符号中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为( ).A .13×105 B .1.3×105 C .1.3×106 D .1.3×1074.下面计算错误的是( )A.()36328a 2b a b -=- B.a a =÷-12aC.()2222a -b ab a b ++=-D.()()224a 2b -a 2b a b -=+5.某校学行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是( )A. 众数是92B.中位数是92C.平均数是92D. 极差是66.如图,四边形ABCD 的顶点坐标A(-3,6)、B(-1,4)、C(_1,3))、D(-5,3),若四边形ABCD 绕点C 按顺时针方向旋转90°,再向左平移2个单位,得到四边形A'B'C'D',则点A 的对应点A'的坐标是( )A.(4,5)B.(4,3)C. (2,5)D.(0,5)7. 如图,在Rt △ABC 中,∠A=30°,BC=32,以直角边AC 为直径做圆O 交AB 于点D ,则图中阴影部分的面积是( ) A. π234315- B. π232315- C. π61437- D. π61237- 8.如图,直线y =−43x +8与x 轴,y 轴分别交于A ,B 两点,将线段AB 沿x 轴方向向右平移5个单位长度得到线段CD ,与双曲线y =k x(k >0)交于点N ,点M 在线段AB 上,连接MN ,BC ,若四边形BMNC 是菱形,则k 的值为( )A .12B .24C .32D .8二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:10.如图,BD是⊙O的直径,点A,C在⊙O上,=,AC交BD于点G.若∠COD=126°,则∠AGB 的度数为11.某校去年投资2万元购买实验器材,预期今明两年的投资总额为8万元,若该校这两年购买实验器材的投资的年平均增长率为x,则可列方程___________________12.已知菱形ABCD的两条对角线AC、BD的乘积等于菱形的一条边长的平方, 则菱形的一个钝角的大小是_________.13.如图,正五边形ABCDE的边长为10,它的对角线分别交于点A1,B1,C1,D1,E1.则五边形A1B1C1D1E1的边长为.14、如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B= .三、作图题(本题满分4分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15.已知:线段a,求作:等腰直角三角形的内切圆,使此等腰直角三角形的斜边长等于线段a的长度a结论:四、解答题(本大题共9道小题,满分74分)16.计算(本题满分8分,每小题4分) (1)(3a+2+a −2)÷a 2−2a+1a+2(2)解不等式组{3(x −2)+1≥5x +2,1−x−12<5−2x3,并写出不等式组的最大整数解.17.(本题满分6分)为了回馈顾客,某商场在“五一”期间,对一次购物超过200元的顾客,进行抽奖返券的活动:顾客分别转动甲、乙两个转盘各一次,根据转盘停止时指针对应的文字组合,按表格获得一张对应面值的购物券。
浙教版九年级下册数学全册综合检测试卷(一)含答案
![浙教版九年级下册数学全册综合检测试卷(一)含答案](https://img.taocdn.com/s3/m/b86779df19e8b8f67d1cb913.png)
九年级下册数学全册综合检测一姓名:__________ 班级:__________一、选择题(共12小题;每小题3分,共36分)1.做重复试验:抛掷同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的次数约为420次,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A. 0.22B. 0.42C. 0.50D. 0.582.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A. 美B. 丽C. 肇D. 庆3.如图,Rt△ABC中,∠C=90°,若AB=5,sinA= ,则AC的长是()A. 3B. 4C. 5D. 64.在直角三角形中,如果各边都扩大1倍,则其锐角的三角函数值()A. 都扩大1倍B. 都缩小为原来的一半C. 都没有变化D. 不能确定5.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A. B. C. D.6.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A. 20B. 30C. 40D. 507.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A. cmB. cmC. cmD. 1cm8.已知如图,PA、PB切⊙O于A、B,MN切⊙O于C,交PB于N;若PA=7.5cm,则△PMN的周长是()A. 7.5cmB. 10cmC. 15cmD. 12.5cm9.如图,Rt△ABC中,∠C=90°,AC=6,CB=8,则△ABC的内切圆半径r为()A. 1B. 2C. 1.5D. 2.510.下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是()A. B. C. D.11.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,则cosA的值为()A. B. C. D.12.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A. 米B. 米C. 米D. 米二、填空题(共10题;共30分)13.如图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是________14.若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是________.15. 如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 ________m(结果保留根号).16.如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,OB长为半径作⊙O,将射线BA绕点B按顺时针方向旋转至BA′,若BA′与⊙O相切,则旋转的角度α(0°<α<180°)等于________.17.大双、小双兄弟二人的身高相同,可是在灯光下,哥哥大双的影子比弟弟小双的影子短,这是因为________ .18.如图,PA,PB是⊙O的切线,CD切⊙O于E,PA=6,则△PDC的周长为 ________.19.随机抛掷一枚图钉10000次,其中针尖朝上的次数为2500次,则抛掷这枚图钉1次,针尖朝上的概率是________ .20.若sin28°=cosα,则α=________.21.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近________ ;(精确到0.1)(2)假如你摸一次,你摸到白球的概率P(摸到白球)=________ ;(3)试验估算这个不透明的盒子里黑球有________ 只?22.在直角坐标平面内,圆心O的坐标是(3,﹣5),如果圆O经过点(0,﹣1),那么圆O与x轴的位置关系是 ________.三、解答题(共3题;共34分)23. 如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)24.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)25.已知:A是以BC为直径的圆上的一点,BE是⊙O的切线,CA的延长线与BE交于E点,F是BE的中点,延长AF,CB交于点P.(1)求证:PA是⊙O的切线;(2)若AF=3,BC=8,求AE的长.参考答案一、选择题D D B C B C A C B A A B二、填空题13. 9 14.15. 10 16. 60°或120° 17. 哥哥比弟弟更靠近灯18. 12 19.20. 62° 21. 0.6;0.6;16 22. 相切三、解答题23. 解:设BD=x 米,则BC=x 米,BE=(x+2)米,在Rt △BDE 中,tan ∠EDB=,即 , 解得,x≈6.06,∵sin ∠EDB=,即0.8=, 解得,ED≈10即钢线ED 的长度约为10米24. 解:过B 作BD ⊥AC ,∵∠BAC=75°﹣30°=45°,∴在Rt △ABD 中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理得:BD=AD= ×20=10 (海里), 在Rt △BCD 中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10 ×3.732=52.77048,则AC=AD+DC=10 +10 ×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.25.(1)证明:连接AB,OA,OF;∵F是BE的中点,∴FE=BF.∵OB=OC,∴OF∥EC.∴∠C=∠POF.∴∠AOF=∠CAO.∵∠C=∠CAO,∴∠POF=∠AOF.∵BO=AO,OF=OF,∴∠OAP=∠EBC=90°.∴PA是⊙O的切线(2)解:∵BE是⊙O的切线,PA是⊙O的切线,∴BF=AF=3,∴BE=6.∵BC=8,∠CBE=90°,∴CE=10.∵BE是⊙O的切线,∴EB2=AE•EC.∴AE=3.6.。
九年级数学下册 各单元综合测试题含答案4套
![九年级数学下册 各单元综合测试题含答案4套](https://img.taocdn.com/s3/m/81f84c75b90d6c85ed3ac628.png)
所以撤离的最长时间为 7 5 2 (h). 所以撤离的最小速度为 3 2 1.5 (km/h). (3)当 y 4 时,由 y 322 得, x 80.5, 80.57 73.5 (h).
x 所以矿工至少在爆炸后 73.5h 才能下井. 19.【答案】(1)因为 OA OB OD 1,
18.(9 分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是 CO .在一次矿 难事件的调查中发现:从零时起,井内空气中 CO 的浓度达到 4 mg/L ,此后浓度呈直线型增加,在第 7 小 时达到最高值 46 mg/L ,发生爆炸;爆炸后,空气中的 CO 浓度成反比例下降.如图所示,根据题中相关信 息回答下列问题: (1)求爆炸前后空气中 CO 浓度 y 与时间 x 的函数解析式,并写出相应的自变量的取值范围. (2)当空气中的 CO 浓度达到 34 mg/L 时,井下 3km 的矿工接到自动报警信号,这时他们至少要以多少千 米每小时的速度撤离才能在爆炸前逃生? (3)矿工只有在空气中的 CO 浓度降到 4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸 后多少小时才能下井?
,由反比例函数
y
k x
k<0
的性质可得 y1<y2 ,所以 y1 y2<0 ,即 y1 y 2 的值是负数.
所以 y1 y 2 的值不确定.
4.【答案】B
【解析】因为二次函数 y ax2 bxc a 0 的图象开口向下,所以 a<0.
因为对称轴经过 x 轴的负半轴,所以 a , b同号,所以 b<0 .
交于 2,0 点即可;若是反比例函数 y k ,需 k>0,且 x>0 .另外,还可以写其他函数解析式,只要满足 x
2022—2023年部编版九年级数学(下册)期末综合能力测试卷及答案
![2022—2023年部编版九年级数学(下册)期末综合能力测试卷及答案](https://img.taocdn.com/s3/m/3d8802cb900ef12d2af90242a8956bec0975a511.png)
2022—2023年部编版九年级数学(下册)期末综合能力测试卷及答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,在平行四边形ABCD中,M、N是BD上两点,BM DN=,连接AM、MC、CN、NA,添加一个条件,使四边形AMCN是矩形,这个条件是()A.12OM AC=B.MB MO=C.BD AC⊥D.AMB CND∠=∠10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2x2﹣8=_______.3.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是_____.4.如图1是一个由1~28的连续整数排成的“数阵”.如图2,用2×2的方框围住了其中的四个数,如果围住的这四个数中的某三个数的和是27,那么这三个数是a,b,c,d中的__________.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,在ABC 中,ACB 90∠=,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连结CD ,将线段CD 绕点C 按逆时针方向旋转90得到线段CE ,连结DE交BC于点F,连接BE.()求证:ACD≌BCE;1()当AD BF2∠的度数.=时,求BEF4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.6.某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、B5、B6、D7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、2(x+2)(x﹣2)3、0或14、a,b,d或a,c,d5、)6、三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k>﹣3;(2)取k=﹣2, x1=0,x2=2.3、()1略;()2BEF67.5∠=.4、(1)略;(2)45°;(3)略.5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)y=﹣40x+880;(2)当销售单价为19元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为880元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学下册综合测试卷
一、单选题
1. 下列各式中不是反比例函数关系的是()
A .
B .
C . ()
D .
2. 如图,将沿边上的中线平移到
的位置,已知的面积为9,阴影部分三角形的面积为4.若
,则等于()
A . 2
B . 3
C .
D .
3. 如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()
A .
B .
C . 2
D .
4. 如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,
测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P之间的距离(即PC的长)为()
A . 40海里
B . 60海里
C . 20 海里
D . 40 海里
5. 如图,∠AOB=90°,且OA,OB分别与反比例函数y= (x>0)、y=﹣(x<0)的图象交于A,B两点,则tan∠OAB的值是()
A .
B .
C . 1
D .
6. 如图,经过位似变换得到,点
是位似中心且,则与的面积比是()
A . 1:6
B . 1:5
C . 1:4
D . 1:2
7. 如图,在菱形ABCD中,对角线AC、BD相交于点0,BD=8,tan∠ABD=
,则线段AB的长为.
A .
B . 2
C . 5
D . 10
8. 下列几何体中,主视图与俯视图不相同的是
A . 正方体
B . 四棱锥
C . 圆柱
D . 球
9. 如图,已知双曲线y= (k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()
A . 12
B . 9
C . 6
D . 4
10. 一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2018B2018C2018D2018的边长是()
A . ()2017
B . ()2016
C . ()2017
D . ()2016
二、填空题
11. 下图是某天内,电线杆在不同时刻的影长,按先后顺序应当排列为________.
12. 如图,某商店营业大厅自动扶梯AB的倾斜角为31°,AB的长为12米,则大厅两层之间的高度为________米.(结果保留两个有效数字)【参考数据;sin31°=0.515,cos31°=0.857,tan31°=0.601】
13. 如图中两三角形相似,则x=________.
14. 如图,直线l1∥l2∥l3,直线AC交l1,l2,l3,于点A,B,C;直线DF 交l1,l2,l3于点D,E,F,已知,则=________。
15. 已知A、B是反比例函数图像上的两个点,则与
的大小关系为________.
16. 如图,矩形ABCD中,AB=2 ,AD=6,P为边AD上一点,且AP=2,在对角线BD上寻找一点M,使AM+PM最小,则AM+PM的最小值为________.
17. 如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达
18. 如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,,得到,若
厘米,则的边的长为________厘米.
19. 如图,中,,,
,将绕点顺时针旋转得到
,为线段上的动点,以点为圆心,长为半径作,当与的边相切时,的半径为________.
20. 如图,和都是等腰直角三角形,
,反比例函数在第一象限的图象经过点B,若,则的值为________.
三、解答题
21. 一个长方体的三视图如图所示.若其俯视图为正方形,求这个长方体的表面积.
22. 京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).
23. 如图双曲线与矩形的边、分别交于、点,、在坐标轴上,且,求.
24. 如图△ABC中,AB=8,AC=6,如果动点D以每秒2个单位长的速度,从点B出发沿BA方向向点A运动,同时点E以每秒1个单位的速度从点A出发沿AC方向向点C运动,设运动时间为t(单位:秒),问t为何值时△ADE与△ABC相似.
25. 某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件)
n=50﹣x
销售单价m(元/件)
当1≤x≤20时,
当21≤x≤30时,
(1)请计算第15天该商品单价为多少元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少?
26. 如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设。
(1)求证:AE=BF;
(2)连接BE,DF,设∠EDF= ,∠EBF= 求证:
(3)设线段AG与对角线BD交于点H,△AHD和四边形CDHG的面积分别为S1和S2,求的最大值.。