换热机组控制方案说明
换热机组方案

换热机组设计方案此项目利用生产工艺废水进行二次热能利用,达到节能减排。
根据用户提供,用户可提供300t的40℃热水,二次能源利用后产生12t尽可能高水温的热水,作为工艺用补水。
由于受现有工艺及现场条件限制,经过综合测算,我公司建议采用一套高效率的换热机组,已达到性价比最高。
一、用户提供参数及要求:一次侧热媒为300t的40℃工艺热水,二次侧出水温度38-39℃,流量12t/h。
二、换热机组参数计算:1、热负荷Q=4.1868×12×(39-15)/3.6=335kw冷水温度取15℃2、一次网流量计算:G=335/4.2/(40-32)×3600/1000×1.21=35t/h选用管径DN803、二次网循环水量:g=Q×5%/1.163×σt=12t/h(σt为配水管道的热水温差,取24℃)选用管径DN65三、主要设备选择:1、换热器选择: 1台2、循环水泵选择:(一用一备) 2台循环水泵流量12t/h,扬程28m,功率3kw换热器设计选型Technical Specification板式换热器设计参数用户:型号: i60-ZM项目: CNSHMZU-3362位号: i60-ZM 75PL 304SS日期: 8/20/2015_____________________________________________________________________ ____________Hot side热侧Cold side冷侧Fluid 流体Water WaterDensity 密度kg/m³991.4 992.9 Specific heat Capacity 比热kJ/(kg*K) 4.18 4.18Thermal conductivity 导热系数W/(m*K) 0.629 0.6231Inlet viscosity进口粘度cP 0.654 1.14Outlet viscosity 出口粘度cP 0.756 0.667Volume flow rate 体积流量m³/h40.0 12.0Inlet temperature 进口温度°C40.0 15.0Outlet temperature 出口温度°C32.7 39.0Pressure drop 压力降kPa 98.1 9.30Heat exchanged 热负荷kW 334.4L.M.T.D.对数温差K 5.8O.H.T.C. service 传热系数(运行) W/(m²*K)5248Heat transfer area 换热面积m²11.0Duty margin 设计余量% 0.0Rel. directions of fluids 流动形式Countercurrent Number of plates 板片数75Number of passes 流程 1 1Plate material 板片材质ALLOY 304Sealing material 密封垫材质NITRILE CLIP-ON NITRILE CLIP-ONConnection material 接口材质Stainless steel Stainless steel Connection diameter 接口尺寸mm 60 60Nozzle orientation 接口方向S1 -> S2 S4 <- S3Pressure vessel code 压力容器标准ALSFlange rating 法兰标准GBDesign pressure 设计压力bar 10.0 10.0Test pressure 试验压力bar 13.0 13.0Design temperature 设计温度°C100.0 100.0Length 长 x width 宽 x height 高mm 476 x 300 x 798 Liquid volume 液体容积dm³11.1 11.1Net weight净重, empty空/operating运行kg 100 / 122_____________________________________________________________________ ___________换热机组主要部件技术说明换热器技术说明此项目提供热源温度40℃热水,要充分利用现有资源换出最大热量,要求换热器具有很高的换热效率。
HD-JZ06N换热机组电脑控制系统使用说明书

HD-JZ06N换热机组电脑控制系统使用手册一、系统概述HD-JZ06N微电脑控制器是专为全自动换热机组而设计的变频及温度自动控制系统,有多种变频控制模式和温度控制模式可供用户选择。
可同时控制两路温度调节阀及一路补水变频和一路循环变频。
采用最新高速CPU为硬件控制核心,人工智能模糊控制软件最新算法,有看门狗防止软件死机或跑飞,具有控制精度高、调节稳定、触摸屏显示人机交互界面、设定参数少、操作简单明了、参数修改密码锁定等功能。
二、主要性能指标1.补水泵控制方案:a >根据二次网回水压力进行控制;b >根据二次网供水压力进行控制;c >可根据压力区间模式进行补水控制;d >可定时自动换泵,两台泵自动轮换工作;e >具有欠压保护及超压自动泄水控制功能;f >当一台补水泵不够用,可自动启动另一台补水泵投入工作;g>两台补水泵互为备用,一台出现故障时,另一台自动投入运行;2.温度调节阀控制方案:a> 二次网供水温度控制b> 户外温度补偿控制c> 二次网回水温度控制d> 手动控制3.循环泵控制方案:a> 根据二次网供水压力变频控制;b> 根据二次网供、回水压差变频控制;d> 可根据一次网来水温度自动起停循环泵;e> 一用一备工作方式,工作泵故障备用泵自投;f> 两用一备工作方式,工作泵故障备用泵自投;g> 二次网出口压力超压保护运行模式;4. 可同时接入机组运行的5路温度及4路压力信号;5. 可接入各种压力传感器的压力信号输入,温度传感器可接多种Pt1000或Ni1000电阻温度传感器。
6. 具有四路模拟量输出;两路控制温度调节阀,一路控制补水变频,另一路控制循环泵变频;7. 可接入三路模拟量流量信号,一路水箱模拟液位信号;8. 具有动压补水输入接口和水箱低水位开关量输入接口;7. 通过触摸屏可配接远程程数据采集和集中监控接口,可通过GPRS或ADSL进行联网控制;三、安装和配线说明1.控制柜开口尺寸:186mm×136mm(HITECH触摸屏);193mm×139mm(EVIEW触摸屏)2.安装方式: 主机导轨式安装,操作面板卡入式安装;3.使用环境:无水滴、蒸汽、腐蚀、易燃、灰尘及金属微粒的场所;4.使用温度:-10℃~50℃相对湿度:20~90RH;5.使用电压:AC12V±10%;6.系统功耗:<=20W;7.外部接线端子定义图:四、控制器接线端子定义说明ACIN -----交流电源输入端AC 12V/ 20WNC1,NC2 -----空端CMO1 -----循环泵继电器输出公共点XHB1 -----1#循环泵继电器输出触点XHB2 -----2#循环泵继电器输出触点XHB3 -----3#循环泵继电器输出触点CMO2 -----补水泵继电器输出公共点BSB1 ----- 1#补水泵继电器输出触点BSB2 ----- 2#补水泵继电器输出触点XYF ------ 泄压电磁阀继电器输出触点NC3,NC4,NC5,NC6 -----空端ACM0 -----流量模拟输入公共点LL1-----一次网流量输入点(DC0-10V或4-20mA)LL2-----二次网流量输入点(DC0-10V或4-20mA)LL3-----补水流量输入点(DC0-10V或4-20mA)ADI1-----备用模拟量输入点1 (DC0-10V或4-20mA)ADI2-----备用模拟量输入点2 (DC0-10V或4-20mA)ACM1-----循环泵变频器频率控制电压信号地XHDA-----循环泵变频器频率控制电压信号(DC 0-10V)ACM2-----补水泵变频器频率控制电压信号地BSDA-----补水泵变频器频率控制电压信号(DC 0-10V)ACM3-----1#电动调节阀开度控制电压信号地FDA1 -----1#电动调节阀开度控制电压信号(DC 0-10V)ACM4-----2#电动调节阀开度控制电压信号地FDA2 -----2#电动调节阀开度控制电压信号(DC 0-10V)CMI1----- 输入信号公共点1XHRUN-----循环泵运行信号输入端(无源触点)BSRUN-----补水泵运行信号输入端(无源触点)TJFRUN----电动调节阀运行信号输入端(无源触点)DYBS ----- 动压补水或第二补水压力信号输入端(无源触点)CMI2----- 输入信号公共端2JNIN------ 补水箱缺水报警输入端(无源触点)BSPBJ---- 补水泵变频器故障报警输入端(无源触点)XHBBJ--- 循环泵故障报警输入端(无源触点)BSBBJ----补水泵故障报警输入端(无源触点)CMT1-----温度传感器输入公共端1T1R -----一次网入口温度传感器输入端(PT1000)CMT2----温度传感器输入公共端2T1H -----一次网回水温度传感器输入端(PT1000)CMT3----温度传感器输入公共端3T2C -----二次网出口温度传感器输入端(PT1000)CMT4----温度传感器输入公共端4T2H-----二次网回水温度传感器输入端(PT1000)CMT5----温度传感器输入公共端5THW -----户外温度传感器输入端(PT1000)CMP1-----压力传感器输入公共端1P1R -----一次网入口压力传感器信号输入端(DC0-10V或4-20mA) CMP2-----压力传感器输入公共端2P1H -----一次网回水压力传感器信号输入端(DC0-10V或4-20mA) CMP3-----压力传感器输入公共端3P2C -----二次网出口压力传感器信号输入端(DC0-10V或4-20mA) CMP4-----压力传感器输入公共端4P2H -----二次网回水压力传感器信号输入端(DC0-10V或4-20mA) YW0-----液位变送器信号输入地YW+-----液位变送器信号输入(DC0-10V或4-20mA)五、系统参数说明1.工程师菜单进入密码操作员进入菜单不需要密码,触摸屏的工程师进入密码为00000000或3370959。
换热机组操作说明(最新版)

换热机组操作说明1.检查柜内电源是否合上,变频器是否已送电。
PLC指示灯是否亮。
触摸屏是否有电。
2.检查柜内元器件是否齐全,无外漏无接的线头。
3.检查触摸屏参数是否设定,压力,温度是否显示正常。
如图4.如参数未设定,在参数设定画面内设定所要求参数如图:5.检查蒸汽和水是否正常。
6.设备自动运行:在柜门上远程-停止-就地旋钮选择就地,自动-停止-手动旋钮,选择自动,在操作画面内先开启供水阀门,再启动循环泵。
如图:选择自动调频,温控自动。
7.设备启动,检查电机运行是否正常,供水阀门和温控阀门是否打开。
设备运行常见故障:1.供水阀门未打开,设备无法正常运行,检查阀门接触器是否吸合或阀门是否坏掉,更换接触器或阀门。
开供水旁路先手动运行。
2.压力或温度显示不正常,检查仪表是否进水或坏掉,及时更换。
3.故障记录中出现二次回水压力低报警,检查管路是否有漏水情况,和检查回水管道上的压力变送器,是否坏掉。
4.故障记录中出现二次供水压力超高报警,检查供水管道阀门是否全打开和供水管道上的压力变送器是否坏掉。
5.出现二次供水温度过高报警,检查温控阀是否有漏气现象。
和检查供水管道上的温度变送器是否出现问题。
6、系统最高端不热,说明补水扬程没有达到,可能是补水泵损坏或是水泵吸入端没有进水,补水泵止回阀坏,水回流到水箱,设定补水参数错误,系统严重漏水,系统管网中有气;8、系统末端不热,循环泵没有达到要求,可能是循环泵扬程不足或是分支管网流量分配不均匀,如果是变频器拖动,可能是设定参数错误,支路管网有堵塞,系统管网中有气;9、系统不热,可能是系统二次阀门没有打开,导致二次水没有循环,系统二次管网中有气,一次热源温度或是压力不足,一次侧温控阀关闭了,温度设定错了。
循环泵变频器参数说明(ABB)指令输入模拟输入加减速时间继电器输出限幅。
换热机组控制方案说明

机组控制方案说明水泵控制方式说明1.补水泵控制部分:补水泵采用变频一拖一形式,两台补水泵一用一备。
分为手动和自动两种控制方式。
1.1、补水泵手动控制时,可通过柜门上的按钮或者变频器面板进行启停控制。
1.2、补水泵自动控制时,采用变频恒压控制技术。
采用模糊-PID控制模式,通过安装在二次网回水管路上的压力传感器来测量回水压力,将此测量值与系统的补水压力设定值(通过触摸屏设定)相比较,通过控制系统自动调节补水泵的转速,使系统的回水压力与设定压力一致,达到恒压补水的目的,当系统压力稳定且不丢水的情况下,补水泵进入休眠状态,实现节能降耗的目的。
当一台泵故障时,另外一台泵自动投入使用。
2.循环泵控制部分:循环泵采用变频一拖一形式,三台循环泵两用一备。
分为手动和自动两种控制方式。
2.1、循环泵手动控制时,可通过柜门上的按钮或者变频器面板进行启停控制及频率给定。
2.2循环泵自动控制时,采用模糊-PID控制模式,根据二次网的供水压力或供回水压差来控制进行PID计算,调节变频器的输出频率,实现自动调节控制,同时避免压力过小或过大对管道及用户的不利影响;当其中一台循环泵故障时,备用泵自动投入使用。
自动控制系统完成的功能能够对热网温度、压力、流量、开关量等信号进行采集测量、控制、远传,实时监控一次网、二次网温度、压力、流量,循环泵、补水泵运行状态,及水箱液位等各个参数状态,进而对供热过程进行有效的监测和控制。
在实际供热中按室外温度调节二次网供回水温度,实现气候补偿节能控制或分时分区节能控制,达到全网平衡、按需供热节约能源的目的。
1、系统功能描述1.1、数据采集?主要完成供热管网的模拟量(如温度、压力、流量、电量、热量等)、状态量(如泵的状态、水位高低状态等)、并完成相应的物理值的上下限标定、PID运算、逻辑运算、参数的测量和显示,测量结果将传送到监控中心。
?①压力:一次网供水压力、一次网回水压力、各供热机组的二次网供水压力、二次网回水压力。
换热器温度控制系统简单控制系统方案

换热器温度控制系统简单控制系统方案(总16页)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March目录目录 (2)1、题目 (2)2、换热器概述 (2)换热器的用途............................................................................................... 错误!未定义书签。
换热器的工作原理及工艺流程图............................................................... 错误!未定义书签。
3、控制系统 (3)控制系统的选择 (3)工艺流程图和系统方框图 (3)4、被控对象特性研究 (4)被控变量的选择 (4)操纵变量的选择 (4)被控对象特性 (5)调节器的调节规律的选择 (6)5、过程检测控制仪表的选用 (7)测温元件及变送器 (7)执行器 (10)调节器 (12)、仪表型号清单列表 (12)6、系统方块图 (13)7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (13)调节控制参数 (13)PID参数整定及系统仿真 (14)系统性能分析 (16)8、参考文献 (17)1、题目热交换器出口温度的控制。
2、换热器概述换热器的用途换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
进行换热的目的主要有下列四种:.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;.某些工艺过程需要改变无聊的相态;④.回收热量。
由于换热目的的不同,其被控变量也不完全一样。
在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。
换热机组操作说明

换热机组操作说明一.等级密码1.进去系统画面后,选择进入系统,此时为默认操作员用户,只能观察系统数据,无法对机组进行水泵,温控阀启动与调节;用户选为工程师,密码输入5841确认,可进去系统操作界面,对机组进行设定与操作。
二.循环泵控制1. 手动(工频)控制:将电控柜上的循环泵转换开关,打到循环泵手动位置,按循环泵启动按钮(绿色),启动循环泵,按循环泵停止按钮(红色),停止循环泵。
2. 自动(变频)控制:将电控柜上的循环泵转换开关,打到循环泵自动位置,在触摸屏压力控制选项中,循环泵工作模式可以选择为:循环泵强制(定频运行):循环泵可以按照设定的0-50HZ之间任意频率值运行,1#、2#、3#循环泵可任意选择1台启动。
自动(定压运行):循环泵可以按照输入设定的二次网供水压力值,自动调节运行。
1#、2#、3#循环泵可任意选择1台启动。
注:循环泵为两用一备运行方式,启动1#循环泵变频运行,2#循环泵工频运行,3#循环泵为备用泵。
三.补水泵控制1. 手动(工频)控制:将电控柜上的补水泵转换开关,打到补水泵手动位置,按补水泵启动按钮(绿色),启动补水泵,按补水泵停止按钮(红色),停止循环泵。
2. 自动(变频)控制:将电控柜上的补水泵转换开关,打到补水泵自动位置,在触摸屏压力控制选项中,补水泵工作模式可以选择为:补水泵强制(定频运行):补水泵可以按照设定的0-50HZ之间任意频率值运行(此值应不低于30HZ)。
1#、2#补水泵可任意选择1台启动。
补水泵恒压控制(定压运行):补水泵可以按照输入补水PID设定的二次网回水压力值,自动调节运行,实现低于设定二次网回水压力值自动启动,高于设定二次网回水压力值自动停止。
补水泵段控制(节点运行):补水泵可以按照输入启动与停止压力范围内运行。
四.温控阀控制1. 强制控制:在触摸屏温度控制选项中,将强制阀位点红,实现温控阀按照设定的0%-100%之间的任意阀位运行。
2. 恒温控制:在触摸屏温度控制选项中,将温控阀工作模式选为恒温模式,温控阀实现按照设定的温度自动调节运行;将温控阀工作模式选为温度曲线,温控阀实现根据室外温度曲线自动调节运行。
换热站机组自控说明

工业学校换热站机组自控说明工业学校换热站自控改造后可实现以下功能1、二次供水温度控制(电动调节阀控制)可实现分时段控制:供暖时间根据室外平均温度补偿所确定二次网供水温度设定曲线,由安装在一次网上的电动调节阀的开度调节一次网的流量,从而来改变二次网的供水温度。
休息时间低温运行保护管网节约运行费用。
2、自动补水功能采用变频补水的方式,根据补水压力设定值进行闭环自动调节变频补水泵的转速,维持二次网回水压力为恒定值。
并设水箱低水位报警。
3、安全保护控制等功能蒸汽阀门在断电时将自动关闭,通电后手动启动。
防止换热器在没有二次水循环产生高温而损坏的危险。
4、配置明细:DN80温控阀2只西门子执行器12800.00元/只温度传感器4只320.00元/只控制柜1台包括原有配电柜改造11600.00元温控阀安装及改造(包含材料)4600.00元自控系统改造费用合计:肆万叁仟零捌拾元整。
¥43080.005、换热器清洗及更换经现场勘查分析工业学校原有2台管壳式换热器现存在工作负荷偏小有暖气供水温度提升慢,供水温度受限之状况。
原因有二:其一:现有管式换热器热负荷偏小不能满足供暖需要。
解决办法:建议更换高效换热器,增加换热器面积。
其二:换热器内部结垢或杂物堵塞。
解决办法:(一)、清洗管壳式换热器。
在清洗换热器过程中如出现以下情况。
1、管壳式换热器管程有渗漏现象。
2管式换热器管程被较大杂质堵塞。
在几这种情况下只有将出现问题的换热管进出口封堵,造成减少原有换热器换热面积。
使原有换热器的供热能力减少,影响供暖效果。
最主要管壳式换热器属压力容器,按规定每年应通过锅检所检验后方可使用。
若不按时检验将存在安全隐患。
费用:供2.5万平米管壳式换热器清洗费2400元/台供3.5万平米管壳式换热器清洗费2800元/台清洗费用合计:伍仟贰佰元整。
¥5200.00元(二)、更换高效板式换热器费用:建议更换高效板式换热器。
板式换热器换热效率高、检修方便,可更换板片、垫片。
换热机组控制方案说明

换热机组控制方案说明换热机组是一种常见的能源转换装置,它通过将热能从一个系统传输到另一个系统,实现能量的转换。
换热机组通常由换热器、泵、阀门和传感器等组成,通过控制这些设备的运行来实现对热能的转换和传输。
换热机组的控制方案决定了其性能、效率和运行稳定性,因此设计一个合理有效的控制方案非常重要。
1.基本功能控制:这是控制方案的基础,包括启动、停止、运行模式的选择等。
在换热机组的控制系统中,通常设置有自动、手动和远程控制模式,可以根据需要进行切换。
此外,还应具备故障报警、自动保护等功能,以确保设备的安全运行。
2.温度控制:换热机组通常用于控制和调节两个系统之间的温度差,保持系统的热平衡。
因此,温度控制是换热机组控制方案中最重要的一部分。
可以使用PID调节器,根据实际温度与设定温度之间的差异,调节泵和阀门的开启度,实现温度控制。
3.压力控制:在换热机组运行过程中,不同系统之间的压力差也是需要控制的因素之一、通过安装压力传感器,测量差压,并将测量结果输入控制系统中,根据设定值来控制泵和阀门的开关状态,以达到所需的压力差。
4.流量控制:换热机组的流量控制是实现热能传输的关键。
通过流量传感器,测量两个系统之间的热传输介质的流量,并将结果反馈给控制系统。
根据设定值来控制泵和阀门的开启度,以实现所需的流量。
5.效率优化:换热机组的设计目标之一是提高能源利用效率,降低能源消耗。
因此,控制方案应该具备效率优化的功能。
例如,通过定时启动、停止机组设备,根据系统需求来调节泵和阀门的工作状态,减少能源浪费和损耗。
6.远程监控和控制:随着科技的发展,远程监控和控制技术已经逐渐应用于换热机组。
通过互联网和现代通信技术,可以实现对换热机组的远程监控和控制。
用户可以通过电脑或手机等终端设备,随时随地进行机组的监控和控制,提高操作的便利性和机组管理的效率。
总之,一个合理有效的换热机组控制方案应该结合实际需要,综合考虑温度、压力、流量等因素,通过合理调节泵和阀门的工作状态,实现热能的传输和转换,提高能源利用效率,保证系统的稳定运行。
换热器自控方案

换热器自控方案随着科技的不断进步和应用领域的扩展,换热器作为热能传递装置的重要组成部分,其自控方案的设计与实施变得越来越关键。
本文将探讨一种有效的换热器自控方案,以实现高效、稳定和可靠的热能传递。
1. 换热器自控方案的背景热能传递在各种工业过程中起着至关重要的作用。
为了提高换热器的效率和适应不同的工艺需求,换热器自控方案应运而生。
该方案旨在实现换热器的自动化控制,以优化热能传递过程,提高能源利用率,并保证系统的安全运行。
2. 换热器自控方案的基本原理换热器自控方案的基本原理是通过传感器实时监测换热器的运行状态和工艺参数,并将数据传输到控制器进行处理。
控制器分析数据,根据设定的控制策略和算法,自动调节换热器的工作模式、介质流量和温度等参数,以实现最佳热能传递效果。
3. 换热器自控方案的关键技术(1)传感器技术:选择合适的传感器,如温度传感器、压力传感器和流量传感器,以获取准确的换热器运行状态和工艺参数数据。
(2)控制器技术:采用先进的控制器,如PID控制器和模型预测控制器,根据传感器数据和控制策略进行实时控制和调节,确保换热器的稳定运行。
(3)通信技术:使用可靠的通信技术,如以太网和无线传输技术,实现传感器和控制器之间的数据传输和信息交互。
4. 换热器自控方案的应用范围该自控方案广泛应用于各种工业领域,特别是化工、电力、石油和制药等行业中的换热器系统。
通过自动化控制,可以提高热能转移的效率,减少能源消耗,降低生产成本,并确保系统的安全性和稳定性。
5. 换热器自控方案的优势和挑战(1)优势:自控方案能够实现换热器的智能化运行,提高热能传递效率,节约能源,降低运维成本,提升系统的可靠性和稳定性。
(2)挑战:换热器自控方案的设计和实施需要对换热器的特性和工艺要求有深刻的理解。
同时,需要考虑传感器的选择、控制器的配置和通信网络的搭建等技术问题,确保方案能够满足实际应用需求。
6. 总结换热器自控方案是提高热能传递效率和系统稳定性的关键措施。
换热站自动控制系统使用说明

换热站自动控制系统使用说明一、概述本换热站自动控制系统,包括受柜、循环泵变频器柜、补水泵变频器柜和控制柜组成,对换热机组进行全面的自动控制。
控制系统使用西门子S7-200系列PLC作为控制器,通过模拟量扩展模块读取现场变送器采集到的现场数据,用于内部控制和送至触摸屏进行显示。
现场操作使用EView触摸屏,简单直观。
本系统触摸屏主要包括一下画面初始画面参数显示参数总览参数设定控制设定巡检画面电流显示报警一览报警设定下面对这些画面作简单说明初始画面为系统上电时屏幕显示的画面,点击手型按钮进入操作各画面。
进入操作画面后不再显示此画面。
参数显示在这个画面显示系统的基本参数,包括高温侧和低温侧压力、温度、流量。
还包括电机温度数据。
参数总览将参数显示在换热系统的示意图上,包括高温侧和低温侧压力、温度、流量及流量累积。
参数设定设定控制参数,包括一次网供水流量设定,二次网捕水压力设定、泻压压力设定。
进入报警设置的密码输入也在这个页面上。
控制设定在这个画面设定控制模式及输入手动时的输出值。
可设定补水泵、泻压阀和电动阀的状态,手动开启补水泵和泻压阀,设定补水泵和电动阀在手动时的输出值。
巡检画面用于上传巡检信息。
电流显示显示循环泵的三相电流大小,并显示一次网和二次网的热量及热量积算。
报警一览显示当前的报警信息报警设定设定报警限。
本画面只有在输入安全密码后才可以进入。
二、操作使用说明1、基本操作说明控制系统使用触摸屏作为人机界面。
触摸屏通过通讯电缆与PLC进行通讯交换数据。
可以通过点击触摸屏上的开关来切换开关的状态。
如果要输入数据,可以用手指点击要输入的数据,将会弹出一个数字小键盘,可以用手指点击相应的数字输入你想要的数值,然后点击小键盘上的ENT确认,便可以输入数据了,如下图所示画面切换可以通过点击画面底部的两个箭头实现。
2、自动补水设定使用自动补水需要按以下规程操作A、将变频补水柜面板上的转换开关调整至1#自动或2#自动状态。
换热机组控制柜仪表技术方案

换热机组控制柜控制及仪表技术方案公司换热机组现状目前公司现有换热站房110多个,共有机组170多套,还有部分换热站未实现自动控制,需要工作人员24小时值守,导致换热站运行成本居高不下,同时存在大量人员费用与安全隐患等一系列问题。
本次改造是在现有换热站的基础上,通过局部改造、优化,实现换热站的集中控制、无人值守,最终达到减员增效、降低运行成本的目的.机组技术总体要求1、先进性采用国际领先的工业自动化控制技术和数据存储管理技术,效益高,投资少,所有设备及设备安装须达到国家相应规定的标准,具有科学、先进性、便于维修和管理的特点,可以保证在未来5〜10年不落后于最新技术的发展.2、稳定性系统注重稳定性和可靠性,图形界面友好、无故障、运行时间长.3、经济性减少一次性的投资,并确保系统具有很高的可靠性和极低的故障率,将功能变更、运行与维护费用减至最低限度。
4、安全性严密的技术防范措施保障系统安全。
在确保供热系统运行安全、可靠的前提与基础上,可以实现其经济性,节约能源.5、可靠性系统对使用环境(温度—25℃~150℃,相对湿度5%~95%)具有良好的适应性,并确保具有极低的故障率.6、可扩展性包含硬件的可扩展性和软件的可扩展性两个方面,升级扩充只需要增加模块,保护投资成本。
具体技术方案如下一、换热机组仪表主要组成①就地显示仪表:温度计为双金属温度计,温度计精度等级1级;压力表为弹簧管式压力表,压力表精度等级W1级;表弯为白钢材质,表座为20#无缝材质;温度测量范围:一次侧0—150℃;二次侧0-100℃;压力测量范围0—1。
6Mpa。
②远传仪表:包括压力传感器、温度传感器、流量计等。
③管路、电缆、电缆桥架及附件二、控制系统:①包括循环水泵变频器、补水泵变频器、可编程控制器和必要的电器元件等。
②控制柜,变频柜要求配线整齐规范,线号清晰,严格按照图纸施工。
③动力线和信号线分开安装在桥架里或者穿线管,桥架设隔板,严格将AC电路和DC电路加以区分。
换热机组机组说明书

一、重要提示1、操作说明⑴操作说明的使用所有从事安装、维护换热机组者,都必须通过书面形式认真阅读本操作说明,并完全地了解各项操作指令。
保证本使用说明已分发至所有操作人员并且随时都可以使用。
请特别注意“安全性”。
⑵操作说明的应用范围本操作说明所提供的资料与封面提供的出厂编号之换热机组相一致。
您可以在您的换热机组的铭牌上找到出厂编号。
对设备有任何疑问或订购备品备件请告诉我们您的换热机组的出厂编号。
2、安全说明换热机组是经常来运用处理高温或低温流体的,并在一定的压力下运行的一种换热设备。
因此,操作换热机组在运行时安全性必须是第一位的!为了确保安全请按照以下的指令进行操作:完全按照选用该设备时计划使用的环境运行该设备。
换热机组可以直接固定安装在混凝土地板或砼基础上。
在全部必要的保护装置未全部安装好之前不要单独运行本设备。
只有当设备处于无压状态、关断机组电源和热源且温度在10℃和40℃之间时,机组才能进行维护和修理工作,才可以被拆开。
防止未经批准的人擅自接触该设备。
保持设备周围的空间清洁卫生;肮脏的环境经常是引起事故的主要原因。
3、按设计工况使用换热机组在设计时已指定了应用的媒体、压力、温度和操作条件,请不要让机组在超过原设计条件的工况下工作。
二、技术参数说明:控制柜和机组一体。
三、机组流程图和装配图四、机组安装说明1、机组可直接放置在机房内混凝土基础上(适合电机功率较小的机组),也可用膨胀螺栓或预埋螺栓固定。
当机组安装在楼板上时,请校核楼板承载能力。
2、机组安装前,需要预做基础的,可先做一素混凝土基础,高大于100mm,长、宽比机组底座尺寸大200mm即可,基础表面要水平。
并考虑四周各有1000~2000mm左右的操作维修间距。
3、安装前,应检查一次侧、二次侧、供水管道和电源是否符合设计要求。
并把与机组相连的管道吹扫、冲洗、试压,验收合格后,方可与机组连接。
4、机组本身在一次侧进口处配置温控阀,注意:温控阀只能作为调节用,不能用作关闭阀使用。
HD-JZ06N换热机组电脑控制系统使用说明书解读

HD-JZ06N换热机组电脑控制系统使用手册一、系统概述HD-JZ06N微电脑控制器是专为全自动换热机组而设计的变频及温度自动控制系统,有多种变频控制模式和温度控制模式可供用户选择。
可同时控制两路温度调节阀及一路补水变频和一路循环变频。
采用最新高速CPU为硬件控制核心,人工智能模糊控制软件最新算法,有看门狗防止软件死机或跑飞,具有控制精度高、调节稳定、触摸屏显示人机交互界面、设定参数少、操作简单明了、参数修改密码锁定等功能。
二、主要性能指标1.补水泵控制方案:a >根据二次网回水压力进行控制;b >根据二次网供水压力进行控制;c >可根据压力区间模式进行补水控制;d >可定时自动换泵,两台泵自动轮换工作;e >具有欠压保护及超压自动泄水控制功能;f >当一台补水泵不够用,可自动启动另一台补水泵投入工作;g>两台补水泵互为备用,一台出现故障时,另一台自动投入运行;2.温度调节阀控制方案:a> 二次网供水温度控制b> 户外温度补偿控制c> 二次网回水温度控制d> 手动控制3.循环泵控制方案:a> 根据二次网供水压力变频控制;b> 根据二次网供、回水压差变频控制;d> 可根据一次网来水温度自动起停循环泵;e> 一用一备工作方式,工作泵故障备用泵自投;f> 两用一备工作方式,工作泵故障备用泵自投;g> 二次网出口压力超压保护运行模式;4. 可同时接入机组运行的5路温度及4路压力信号;5. 可接入各种压力传感器的压力信号输入,温度传感器可接多种Pt1000或Ni1000电阻温度传感器。
6. 具有四路模拟量输出;两路控制温度调节阀,一路控制补水变频,另一路控制循环泵变频;7. 可接入三路模拟量流量信号,一路水箱模拟液位信号;8. 具有动压补水输入接口和水箱低水位开关量输入接口;7. 通过触摸屏可配接远程程数据采集和集中监控接口,可通过GPRS或ADSL进行联网控制;三、安装和配线说明1.控制柜开口尺寸:186mm×136mm(HITECH触摸屏);193mm×139mm(EVIEW触摸屏)2.安装方式: 主机导轨式安装,操作面板卡入式安装;3.使用环境:无水滴、蒸汽、腐蚀、易燃、灰尘及金属微粒的场所;4.使用温度:-10℃~50℃相对湿度:20~90RH;5.使用电压:AC12V±10%;6.系统功耗:<=20W;7.外部接线端子定义图:四、控制器接线端子定义说明ACIN -----交流电源输入端AC 12V/ 20WNC1,NC2 -----空端CMO1 -----循环泵继电器输出公共点XHB1 -----1#循环泵继电器输出触点XHB2 -----2#循环泵继电器输出触点XHB3 -----3#循环泵继电器输出触点CMO2 -----补水泵继电器输出公共点BSB1 ----- 1#补水泵继电器输出触点BSB2 ----- 2#补水泵继电器输出触点XYF ------ 泄压电磁阀继电器输出触点NC3,NC4,NC5,NC6 -----空端ACM0 -----流量模拟输入公共点LL1-----一次网流量输入点(DC0-10V或4-20mA)LL2-----二次网流量输入点(DC0-10V或4-20mA)LL3-----补水流量输入点(DC0-10V或4-20mA)ADI1-----备用模拟量输入点1 (DC0-10V或4-20mA)ADI2-----备用模拟量输入点2 (DC0-10V或4-20mA)ACM1-----循环泵变频器频率控制电压信号地XHDA-----循环泵变频器频率控制电压信号(DC 0-10V)ACM2-----补水泵变频器频率控制电压信号地BSDA-----补水泵变频器频率控制电压信号(DC 0-10V)ACM3-----1#电动调节阀开度控制电压信号地FDA1 -----1#电动调节阀开度控制电压信号(DC 0-10V)ACM4-----2#电动调节阀开度控制电压信号地FDA2 -----2#电动调节阀开度控制电压信号(DC 0-10V)CMI1----- 输入信号公共点1XHRUN-----循环泵运行信号输入端(无源触点)BSRUN-----补水泵运行信号输入端(无源触点)TJFRUN----电动调节阀运行信号输入端(无源触点)DYBS ----- 动压补水或第二补水压力信号输入端(无源触点)CMI2----- 输入信号公共端2JNIN------ 补水箱缺水报警输入端(无源触点)BSPBJ---- 补水泵变频器故障报警输入端(无源触点)XHBBJ--- 循环泵故障报警输入端(无源触点)BSBBJ----补水泵故障报警输入端(无源触点)CMT1-----温度传感器输入公共端1T1R -----一次网入口温度传感器输入端(PT1000)CMT2----温度传感器输入公共端2T1H -----一次网回水温度传感器输入端(PT1000)CMT3----温度传感器输入公共端3T2C -----二次网出口温度传感器输入端(PT1000)CMT4----温度传感器输入公共端4T2H-----二次网回水温度传感器输入端(PT1000)CMT5----温度传感器输入公共端5THW -----户外温度传感器输入端(PT1000)CMP1-----压力传感器输入公共端1P1R -----一次网入口压力传感器信号输入端(DC0-10V或4-20mA) CMP2-----压力传感器输入公共端2P1H -----一次网回水压力传感器信号输入端(DC0-10V或4-20mA) CMP3-----压力传感器输入公共端3P2C -----二次网出口压力传感器信号输入端(DC0-10V或4-20mA) CMP4-----压力传感器输入公共端4P2H -----二次网回水压力传感器信号输入端(DC0-10V或4-20mA) YW0-----液位变送器信号输入地YW+-----液位变送器信号输入(DC0-10V或4-20mA)五、系统参数说明1.工程师菜单进入密码操作员进入菜单不需要密码,触摸屏的工程师进入密码为00000000或3370959。
换热器温度控制方案

换热器温度控制方案换热器是工业生产中常见的设备,用于将热能从一个介质传递到另一个介质。
在实际应用中,为了确保换热器的效率和安全性,温度的控制是非常重要的。
本文将探讨几种常见的换热器温度控制方案,并对其优缺点进行分析。
首先,我们来介绍一种常见的控制方案——比例控制。
比例控制是通过调节冷却介质流量或加热介质流量的比例来控制换热器的温度。
这种方法简单直接,易于实施。
然而,由于比例控制只能调节流量,而不能对介质的温度进行直接控制,所以在某些情况下,可能无法满足精确控制的要求。
为了更好地控制换热器温度,反馈控制是一种更高级的控制方案。
反馈控制是通过测量换热器的出口温度,并根据测量结果调整加热或冷却介质的流量。
这种方式可以实现对温度的精确控制,提高系统响应速度和控制精度。
然而,反馈控制需要实时监测和计算,对硬件和算法要求较高,增加了系统的复杂性和成本。
除了比例控制和反馈控制,前馈控制也是一种常见的控制方案。
前馈控制是提前根据进口温度和流量变化预测出口温度的变化,并根据预测结果进行相应的调整。
这种方法可以在温度变化前就采取控制行动,提前消除变化带来的影响。
前馈控制在应对外部扰动和预测未来变化方面具有一定的优势。
然而,由于前馈控制无法准确预测所有变化情况,仍然需要与反馈控制结合使用。
在实际应用中,智能控制技术的发展也为温度控制带来了新的方案。
例如,基于人工智能的控制算法可以实时学习和优化系统的控制策略,在保证温度稳定的同时,提高系统的能效和自适应能力。
此外,传感器技术的进步也为温度控制提供了更多的数据来源,使得控制更加精确和可靠。
综上所述,换热器温度的控制方案多种多样,每种方案都有自己的优缺点。
在选择控制方案时,需要根据具体的应用需求、控制精度要求和系统复杂性等因素进行综合考量。
未来随着技术的进一步发展,相信会出现更多高效、智能的控制方案,为换热器温度控制提供更多选择和可能性。
集中供热工程换热站专用控制系统设计和控制方案说明

集中供热工程换热站专用控制系统设计及控制方案技术方案**科达自控工程技术**2011年1月目录1. 第一章设计方案综述11.1热网控制系统技术方案21.1.1 设计原则21.1.2 方案简介21.1.3 功能特点31.2热网控制系统功能51.2.1 网络结构图51.2.2 网络结构概述51.2.3 监控调度中心软件功能61.2.4 本地换热站控制器功能71.2.5 热网平衡模块功能71.第一章设计方案综述本系统是集公司多年来供热工程应用经验,专门针对北方集中供热工程项目提供的换热站专用控制系统.该系统采用**中控自动化仪表**自主研发的U6-200一体化PLC,监控中心上位机软件采用Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对各个小区换热站热网运行参数的采集存储,外界环境温度的补偿,热网温度流量、动力设备的启停及调节、安全报警以及自动分析、热网系统故障诊断、能源计量分析等功能,并配合现场网络视频监控系统,以达到整个热网系统的供热平衡、安全、经济运行,最终实现无人值守型换热站.换热站专用控制系统图示在自动化设计上,设置监控中心控制室<调度中心>一个,内含2台调度计算机同时通过通讯的方式对换热站进行监控,2台调度中心计算机为1主1备冗余.主监控操作站完成控制室内人机交互功能,在计算机上显示各站换热网的工艺管道、参数、控制流程图,包含各类热力参数、阀门等各类执行机构状态的显示和自/手动操作.监控操作站除完成基本的各换热站运行数据采集、远程调度控制、数据记录报表生成等之外,还具备热网平衡调节、提供热网负荷需求趋势预测、预测负荷与实际负荷对比、互联网web远程浏览、手机wap浏览、手机短信报警等热网管理功能.换热站采用就地与主控室远程控制协作方式.各站放置独立U6-200一体化PLC一套,该终端设备配有彩色触摸屏,方便巡检人员进行就地观测,实现小区热网运行参数的采集与监控,如压力、温度、流量、电流等,并集中将运行参数发送至远方控制中心;U6-200一体化PLC可就地存储至少一个采暖期的运行参数,实现根据室外温度值自动控制二次供回水温度,并可同时控制循环变频及补水变频,进行量值的调节;在启用换热平衡模块后,各站控制器接收主控室发送的平衡参数,结合各站过程参数调节二次供回水温度;控制器也可接收主控室下发的各项命令,完成远程控制热网温度、流量、动力设备的启停等.同时结合网络视频监控系统,通过变焦功能,手动调节远近焦距,最终实现换热站无人值守.1.1热网控制系统技术方案1.1.1设计原则本设计方案基于"集中管理,分散控制"的模式,数字化、信息化环保工程的思想,着眼于热网"管控一体化"信息系统的建设,建立一个先进、可靠、高效、安全且便于进一步扩充的集过程控制、监视和计算机调度管理于一体并且具备良好开放性的监控系统,完成对整个供热运行的监测与自动控制,实现"换热站无人值守"的目标.1.1.2方案简介自动化热网监控系统,采用分布式计算机系统结构,即采用中央与就地分工协作的监控方法.中央控制室负责全网参数的监视以及必要时的远程调控,在开启平衡模块情况下完成各换热站的流量和能量调配;各换热站根据中央控制室下发的平衡参数进行供回水温度自动,同时也可通过就地手动干预或者远程干预.本系统由调度监控中心、远程终端站、通讯网络和与监测控制有关的仪表等部分组成.调度监控中心起着调度中枢的作用,可以察看全网的供热参数,同时进行热力工况的分析来指导全网的运行.远程终端站由具有测控功能的控制装置和通讯系统组成.远程终端站通过与其相连的仪表和执行机构完成对一、二级换热站和其它现场设备的数据采集和控制功能.该热力站运行管理系统采用的策略为:中央监测、现场控制.中央管理工作站主要负责检测显示热网参数<必要时提供远程控制>和各站的协调;每个热力站独立地工作,互不干扰.即使某一个换热站出现故障也不会影响其它换热站的正常工作.各换热站主要实现以下三方面自动控制:①根据调度监控中心的各站调控参数以及二次侧供回水温度自动控制高温水进入换热器入口调节阀的开度;②根据定压点压力自动控制补水泵转速,若回水压力低于设定值时自动报警;③自动检测循环泵运行状态,并根据压力自动控制主循环泵的转速.整个通讯系统分调度监控中心、各换热站和通讯网络三个部分,通讯采用ADSL通讯方式,在调度监控中心设立专网,在每个换热站独立设立通讯方式,与U6-200一体化PLC的通讯模块相连,进行数据的收发.1.1.3功能特点换热站专用控制器功能:1.专用控制器:专门为换热站量身定做的U6-200一体化PLC,无需用户编程,简单易用,内置的常规功能即可满足所有换热机组控制需求;2.人性化显示:自带7寸真彩触摸屏,内置单双换热机组流程图画面,显示直观,操作方便,易学易懂,充分体现人性化,方便巡检人员进行就地观测,包括温度、压力、流量、循环泵、补水泵的状态等;3.参数检测功能:完成模拟量采集包括:一次网供水温度和压力、一次网回水温度和压力、二次网供水温度和压力、二次网回水温度和压力、室外温度、阀门开度、频率反馈、一次网流量、二次网流量等,状态量采集如:泵状态等;脉冲量采集如:累计补水量、累计耗热量等的测量;4.通讯功能:现场控制设备能够与调度中心进行数据通信,支持采用ADSL或GPRS通讯方式,即通过Internet和移动网络,主从站间进行数据传输,主站可远程监控各从站工况,无论距离远近;5.参数存储:可就地存储至少一个采暖期的运行参数,以便供热企业进行能效分析;6.控制模式:本地监控站可以自动识别中控室传来的控制模式的指令<本地控制、温度控制、直接阀位/频率控制>,经过判断执行其中一种控制指令,并运行对应的控制模式;7.控制功能:根据换热站实际运行情况进行相关控制;a)根据调度监控中心的各站调控参数以及二次侧供回水温度自动控制高温水进入换热器入口调节阀的开度;b)根据定压点压力自动控制补水泵转速,若回水压力低于设定值时自动报警;c)自动检测循环泵运行状态,并根据压力自动控制主循环泵的转速,;8.联锁保护功能:本地监控器诊断到设备出现故障<如电机过流、过压等>或现场工况发生异常变化<如二次网压力过高、过低等>,控制器可根据相应故障诊断软件及工况评估逻辑,立即停止对应的设备运行,同时将报警类型及信息上传至中控室,尽可能地保护系统的安全运行.9.报警功能:根据工艺要求,可将报警分为不同级别.a)各个温度、压力、水位等超限报警.至少包括:一次供水压力、二次回水压力、二次供水温度高限报警,补水箱水位高低限报警等.b)水泵、电机、电动阀、变频器、换热器、通讯系统等故障报警;c)停电报警:换热站配置UPS电源,作为现场控制器和调制解调器的后备电源,当换热站供电出现故障或停电时,控制器能够生成停电报警信号,并通知中央控制室的调度人员采取相应的措施.热网实时监控专用软件功能:1.专用软件功能:各个换热站控制器与调度中心Inscan HRC热网实时监控专用软件进行通讯,实现换热站无人值守,满足所有换热站功能需求;2.供热参数实时监测功能:调度中心直观显示各个换热站在区域内的分布图,点击可进入换热站运行参数详细图,实时显示热力站一级网和二级网供回水温度和压力、流量、热量、阀门开度、水泵开启状态、循环泵变频、补水泵变频、液位等参数;3.手自动控制模式:a)根据现场工况提供两种控制模式用于控制换热站的一次网阀门开度,分别为:本地温度控制、直接阀位控制.b)根据现场工况提供三种控制模式用于控制换热站的二次网循环水流量,分别为:本地手动控制、本地自动控制、直接转速控制.4.远程修正功能:中控计算机能对本地控制站进行参数组态,包括修改温度控制参数的给定值、控制模式及比例系数、积分系数及供热曲线等控制参数;参数修正要设定权限.5.故障诊断及报警功能:根据参数信息及时诊断各系统的故障并指导维护.应能诊断以下故障:压力、温度、流量传感器故障;通讯系统故障;各热力站水泵、电机、电动阀、变频器等设备的故障;各热力站的超限报警;第一时间接收各远端控制站报警和故障信号,能及时发出声光信号,并进行记录.6.多功能报表:运行记录、报表及图形打印功能:可以自动生成、打印多种多样的报表和参数变化曲线,至少包括各种运行记录的日报表,统计分析报表及设备的故障状态和维护清单,包括日/月/季等报表以及各个换热站对比统计分析,为供热企业分析热网运行提供数据分析依据.7.参数统计及能源计量功能:根据实测参数统计各站及全网的能耗和水耗,计算出其平均值和累计值.计量时间可以为时、日、月、年,计量结果将以数据文件的形式存储在外存储器内,为量化管理和收费提供依据.8.热网平衡功能:自动根据换热站远近距离、换热站负荷大小,现实换热站间热力/水力平衡;9.短信报警功能:可将报警信息发送到相关责任人的手机上,用于及时处理报警,排除险情10.手机监管:支持WAP手机浏览:通过手机,直接浏览关键的运行参数,真正做到远程监控的管理方式;11.视频监控:可结合网络视频监控系统,通过变焦功能,手动调节远近焦距,最终实现换热站无人值守;1.2热网控制系统功能1.2.1网络结构图集中供热工程换热站专用控制系统图示<adsl网络连接>1.2.2网络结构概述本方案将采用先进的分布式和模块化设计理念,利用成熟的软硬件产品完成整个系统体系结构的搭建.本系统由各换热站采集控制设备、通讯网络和监控中心组成.各换热站采集控制设备使用U6-200一体化PLC,该设备是一套相对独立运行的可编程控制设备,可对现场设备进行监测和控制;能够满足需要进行流量计算、PID闭环控制和逻辑顺序控制等应用的场合.通讯网络是监控中心与各换热站间连接的桥梁,承载着数据传送的功能.监控中心采用上位机软件Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对监控数据进行高效采集、长期存储、查询、数据处理等功能;以数据库为核心构成完整的数据服务层,为上层应用系统提供稳定的数据源.1.2.3监控调度中心软件功能热力公司下属的各个换热站采集的实时数据,通过ADSL+VPN的方式传递到调度中心<调度中心需要有使用公网固定IP或域名>,由运行在调度中心的组态监控软件对换热站内的压力、温度和流量数据进行实时监控,统一调整各站参数,统一调整管网平衡.提供热网管线非矢量的地理分布图,地理分布图上标有各个换热站的实际位置,并显示换热站的主要运行参数,在该画面上通过按钮可以切换到任一个换热站,查看换热站的详细信息.换热站管网运行图提供换热站数据总貌画面,总貌画面以数据列表的形式,呈现了各个换热站在一次网、二环网中的实时采集数据以及通讯状态.热网换热站监控总貌提供单个换热站的运行监控画面,该画面显示单个换热站内的各数据采集点的实时运行数据.换热站远程监控提供单个换热站的补/回水泵远程控制画面,通过该画面可远程监控某个换热站内的补水泵和循环泵运行.换热站远程补水/回水控制提供数据的自动保存功能,保存的历史数据可随时供使用者调取、查询.提供数据报表生成和打印功能,可生成日报、月报、年报及同期比较报表,通过报表分析数据的变化情况,判断管路的失水情况,分析设备运行是否正常.能耗数据查询表热网关键参数报表提供多种数据曲线/图形显示功能,可选择任意换热站的数据点进行查看,比较实时或历史的曲线数据.运行数据曲线气温预测曲线各个换热站供热区域对比饼图提供位于实时数据采集和管理分析软件基础之上的换热站综合运行软件,拥有热网平衡轮询监视、气象数据更新、DCS数据采集报警、平衡数据分析等功能,是一套拥有强大扩展性的综合应用软件.换热站综合运行软件图示平衡运行前后数据对比图多级操作权限设置,不同的操作人员设置不同的功能权限,防止不同级别的操作人员越权操作.换热站综合管理登录系统登录异常情况报警<通信失败、循环泵全停、超流量、低流量、超温、低温等>,当发生系统报警时,自动出现报警提示,并提供报警历史查询功能.中控室报警画面具备异常情况报警信息短信通知功能,当变量报警产生后,按预先设定好的手机号码和报警内容进行发送,及时通知相关值班维护人员.短消息报警图示提供数据的分析功能,通过记录的热网运行历史数据,在一个采暖期结束后与前期数据进行比较分析,查出整个换热管网的主要问题,为今后的升级改造提供有针对性的分析.热网换热站统计报表能耗数据明细提供双机冗余备份功能,系统由两套组态相同的监控软件,一套设为主站,另一套设为从站,系统正常工作时只有主机和换热站通讯,从机不通讯,从机通过主站进行数据备份和同步.如果主机出现故障,其中一个从机接管主机工作.等主机恢复之后,可以通过自动或手动方式进行干预来恢复先前状态.本系统采用网络化设计,在服务器端运行WEB SERVER程序并发布监控画面后,用户可通过IE浏览器访问换热站数据采集系统采集到的各种运行数据.同时,可按用户需求,定制若干手机浏览页面,供用户便捷的进行访问.手机WAP浏览可结合网络视频监控系统,通过变焦功能,远程调节摄像头的观察位置和远近焦距,最终实现换热站无人值守.换热站视频监控同时,使用数据实时转发技术,可远程浏览控制专网内的DCS运行数据,真正实现全厂信息的集中监控.DCS运行数据的WEB发布1.2.4本地换热站控制器功能本地换热站在U6-200一体化PLC的7寸真彩触摸屏上提供单个换热站的运行监控流程图画面,显示直观,操作方便,易学易懂,充分体现人性化,方便巡检人员进行就地观测.双换热机组本地监控换热站本地补水/回水控制1.2.5热网平衡模块功能在运行与控制方面最重要的问题在于热网平衡.一个集中供热系统,特别是一个大的集中供热系统,要实现稳定运行和均衡供热的基本条件是保证管网的水力工况平衡.过去,热网平衡问题一直是难以解决的问题,一些系统中存在的工作压力不能满足正常工作需要,热力站不能获得需要的压差,用户普遍不热,或者前端用户压差高,流量超过设计值,而末端压差不足流量低于设计值因而造成近端用户过热,远端用户不热的原因,就是因为系统存在水力工况不平衡的问题.造成系统水力工况不平衡原因是多方面的主要有:受热源厂设备的限制,供给的压力不足,或者因为系统的循环水量超过原设计值,使循环水泵的供给压力下降;管网设计不合理,或者管网堵塞造成系统的压力损失过大,超出了热源厂设备所能提供的压力;系统〕管网和热力站〔缺少合理分配水量的手段,为解决末端用户不热的问题而加大循环水量,因而降低了一次供水温度.解决此类问题虽然需要由设备选型与管线铺设来保障,但是在控制上仍需要由控制手段来保障,特别是在整个热网负荷变化的情况下协调各换热站的能量分配.对于热网平衡来说,目的是使总能量在各站之间均匀分配,使各站的温度尽量均匀,但同时也要考虑到各站的暖气和地暖因素影响,这会造成有些地区的温度偏高或偏低.整个平衡是按照周期性进行控制<考虑二网滞后因素影响>,综合考虑各站的供回水温度和流量,经过平衡算法得到各站平衡参数,将参数下发给各换热站由各站控制器来合理地调整一网流量,使得整个网络中各站温度趋于平衡.算法中的主要模块配置参数和参数使用说明如下:一、优先级该参数表明换热站在整个平衡系统中的优先级,级别越高表明该站能优先从热网中得到更多的资源,往往也能获得较高的温度.二、敏感度该参数表明换热站覆盖区域温度变化对阀门开度大小变化的敏感性,级别越高表明一定的阀门开度变化造成的温度改变越大.该参数是匹配性参数,需根据换热站特性设置.三、回水相关度该参数表明平衡系统衡量标准与二次网回水温度的相关程度,级别越高表明二网回水温度在整个平衡效果评价体系中占的分量越重,同时也表明二网回水温度控制将会越平均. 四、鲁棒性该参数表明换热站区域温度的可控程度,鲁棒性越强表明该站温度的可调程度和范围越大.该参数是匹配性参数,强烈建议采用模块默认设置.。
换热机组自动控制柜说明

换热机组自动控制系统技术说明一、系统概述换热机组自动控制系统采用微电脑控制,可根据户外温度自动调节二次网出口温度,还可根据不同的时间段,自动调节二次网的出口温度,可以达到节能的效果。
直观的人机界面易于更改参数和监视换热机组的运行状态。
二、主要性能循环泵控制系统:1、循环泵采用变频压力控制,根据二次网供、回水压差或供水压力自动调节循环泵的转速,保证二次网出口压力或供、回水压差稳定。
2、循环泵也可切换到温度控制模式,根据二次网供回水温差或回水温度自动调节循环泵转速,达到自动节能目的;3、系统可根据一次网的供水温度自动控制循环泵的起动和停止,达到自动节能的效果;4、系统也可人工定速控制循环泵恒速运行;一次网流量调节控制系统:1、根据二次网出口温度自动控制一次网流量调节阀的阀门开度,保证二次网出口温度稳定;2、具有户外温度补偿控制功能,根据户外温度的变化,自动调节二次网出口温度:户外温度越高,二次网出口温度越低;户外温度越低,二次网出口温度越高;另外系统还可根据不同的时间段,自动调节二次网的出口温度,达到自动节能的目的。
3、系统也可手动设定电动调节的开度,保证一次网流量的稳定。
具备远程联网通讯功能:本控制系统标准配备RS485/RS232远程数据通讯接口,标准MODBUS 通讯协议,可通过ADSL宽带或GPRS无线联网;组态王、昆仑通态、三维力控、图灵开物等多款国内主流工业组态软件驱动支持。
1、备用泵自投控制功能:当前工作循环泵出现故障时,如果系统有备用泵,控制系统能够自动将备用的循环泵投入运行,不需要人工干预。
2、一次网流量调节阀与二次网循环泵互锁控制:一次网的热源为蒸汽或高温热水时,当循环泵不转或系统停电时,一次网的流量调节阀能够自动关闭,防止高温汽、水对换热器造成损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
换热机组控制方案说明
摘要:
本文档旨在介绍换热机组控制方案,包括基本原理、组成部分、操作流程以及示例案例等内容。
通过详细的说明和分析,读者将能够了解换热机组的控制方案,并根据实际情况进行应用。
第一部分:引言
1.1背景介绍
1.2目的和目标
1.3文档结构
第二部分:基本原理
2.1换热机组的概述
2.2换热机组的工作原理
2.3控制的必要性和意义
第三部分:组成部分
3.1主要设备
3.2控制系统
3.3传感器
3.4执行器
3.5人机界面
第四部分:操作流程
4.1基本操作流程
4.2运行参数设置和调整
4.3故障处理
第五部分:示例案例分析
5.1基于温度控制的换热机组
5.2基于压力控制的换热机组
5.3基于流量控制的换热机组
第六部分:实际应用和注意事项
6.1控制方案的选择和应用
6.2换热机组的优化与改进
6.3安全和维护注意事项
第七部分:实施计划和成本估算
7.1实施计划
7.2成本估算
第八部分:结论
8.1总结
8.2展望
附录:
附录A:换热机组技术参数表
附录B:换热机组控制方案流程图
该文档详细介绍了换热机组控制方案的基本原理、组成部分、操作流程以及示例案例等内容。
通过阅读本文档,读者将能够了解换热机组的控制方案,并具备实际应用和维护换热机组的能力。
同时,本文档还提供实施计划和成本估算等内容,帮助读者更好地进行实施和管理。