《热质交换原理与设备》第三版习题答案
《热质交换原理与设备》习题答案
第5章吸附和吸收处理空气的原理与方法1.解:物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,它是一种可逆过程,物理吸附是无选择的,只要条件适宜,任何气体都可以吸附在任何固体上。
吸附热与冷凝热相似。
适应的温度为低温。
吸附过程进行的急快参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与吸附物间的化学键力起作用的结果。
吸附力较物理吸附大,并且放出的热也比较大,化学吸附一般是不可逆的,反应速率较慢,升高温度可以大大增加速率,对于这类吸附的脱附也不易进行,有选择性吸附层在高温下稳定。
人们还发现,同一种物质,在低温时,它在吸附剂上进行物理吸附,随着温度升到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
2、硅胶是传统的吸附除湿剂,比表面积大,表面性质优异,在较宽的相对湿度范围内对水蒸汽有较好的吸附特性,硅胶对水蒸汽的吸附热接近水蒸汽的汽化潜热,较低的吸附热使吸附剂和水蒸汽分子的结合较弱。
缺点是如果暴露在水滴中会很快裂解成粉末。
失去除湿性能。
与硅胶相比,活性铝吸湿能力稍差,但更耐用且成本降低一半。
沸石具有非常一致的微孔尺寸,因而可以根据分子大小有选择的吸收或排除分子,故而称作“分子筛沸石”。
3、目前比较常用的吸附剂主要是活性炭,人造沸石,分子筛等。
活性炭的制备比较容易,主要用来处理常见有机物。
目前吸附能力强的有活性炭纤维,其吸附容量大吸附或脱附速度快,再生容易,而且不易粉化,不会造成粉尘二次污染,对于无机气体如2SO 2X 、H S 、NO 等有也很强的吸附能力,吸附完全,特别适用`于吸附去除6931010/g m --、 量级的有机物,所以在室内空气净化方面有着广阔的应用前景。
4、有效导热系数通常只与多孔介质的一个特性尺度----孔隙率有关。
第6章 间壁式热质交换设备的热工计算1、解:间壁式 换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、螺旋板式等。
提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气与换热面的接触面积。
《热质交换原理与设备》习题答案解析
第5章吸附和吸收处理空气的原理与方法1.解:物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,它是一种可逆过程,物理吸附是无选择的,只要条件适宜,任何气体都可以吸附在任何固体上。
吸附热与冷凝热相似。
适应的温度为低温。
吸附过程进行的急快参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与吸附物间的化学键力起作用的结果。
吸附力较物理吸附大,并且放出的热也比较大,化学吸附一般是不可逆的,反应速率较慢,升高温度可以大大增加速率,对于这类吸附的脱附也不易进行,有选择性吸附层在高温下稳定。
人们还发现,同一种物质,在低温时,它在吸附剂上进行物理吸附,随着温度升到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
2、硅胶是传统的吸附除湿剂,比表面积大,表面性质优异,在较宽的相对湿度范围内对水蒸汽有较好的吸附特性,硅胶对水蒸汽的吸附热接近水蒸汽的汽化潜热,较低的吸附热使吸附剂和水蒸汽分子的结合较弱。
缺点是如果暴露在水滴中会很快裂解成粉末。
失去除湿性能。
与硅胶相比,活性铝吸湿能力稍差,但更耐用且成本降低一半。
沸石具有非常一致的微孔尺寸,因而可以根据分子大小有选择的吸收或排除分子,故而称作“分子筛沸石”。
3、目前比较常用的吸附剂主要是活性炭,人造沸石,分子筛等。
活性炭的制备比较容易,主要用来处理常见有机物。
目前吸附能力强的有活性炭纤维,其吸附容量大吸附或脱附速度快,再生容易,而且不易粉化,不会造成粉尘二次污染,对于无机气体如2SO 2X 、H S 、NO 等有也很强的吸附能力,吸附完全,特别适用`于吸附去除6931010/g m --、 量级的有机物,所以在室内空气净化方面有着广阔的应用前景。
4、有效导热系数通常只与多孔介质的一个特性尺度----孔隙率有关。
第6章 间壁式热质交换设备的热工计算1、解:间壁式 换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、螺旋板式等。
提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气与换热面的接触面积。
(完整版)《热质交换原理与设备》习题答案(第版)
流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,
由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:
16、解: CO2和N2在25 0C时,扩散系数 D 0.167 104 m2 / s
PA1 PA2 (100-50)103 13.6103 9.8 6664Pa
GA
NAA
D(PA1 PA2 ) RT z
1.67 105 6664
4
8314 2981
8.81011koml / s
18、解、该扩散为组分通过停滞组分的扩散过程
/
s
Re
uod v
4 0.08 15.53 106
20605
Sc
v D
15.53 106 0.25 104
0.62
用式子(2-153)进行计算
shm
0.023Re
S 0.83 c
0.44
0.023 206050.83
0.620.44
70.95
hm
shm D d
70.95 0.25104 0.08
0.0222m / s
1.293kg / m,3 1.72105 Pa s,
Pr 0.708, cp 1.005103 J /(kg k)
Sc
D
1.72 105 1.293 1.24 109
10727.74
由热质交换类比律可得
2
hm h
1 cp
热质交换原理与设备第三版重点总复习
热质交换原理与设备第三版重点总复习Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#一、填空题(共30分)1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。
2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。
3、热质交换设备按照工作原理不同可分为_间壁式、_混合式_、_蓄热式_和热管式等类型。
表面式冷却器、省煤器、蒸发器属于__间壁_式,而喷淋室、冷却塔则属于_混合式。
3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。
工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。
5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。
6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。
7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。
8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量m A与组分A的_浓度梯度成正比,其表达式为smkgdydCDm AABA⋅-=2;当混合物以某一质平均速度V移动时,该表达式的坐标应取___随整体移动的动坐标__。
9、麦凯尔方程的表达式为:()dAiihdQdmdz-=,它表明当空气与水发生直接接触,热湿交换同时进行时。
总换热量的推动力可以近似认为是湿空气的焓差。
1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是×10-5 m2/s。
《热质交换原理与设备》第三版重点、总复习
一、填空题(共30分)1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。
2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。
3、热质交换设备按照工作原理不同可分为_间壁式、_混合式_、_蓄热式_和热管式等类型。
表面式冷却器、省煤器、蒸发器属于__间壁_式,而喷淋室、冷却塔则属于_混合式。
3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。
工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。
5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。
6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。
7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。
8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量m A与组分A的_浓度梯度成正比,其表达式为smkgdydCDm AABA⋅-=2;当混合物以某一质平均速度V移动时,该表达式的坐标应取___随整体移动的动坐标__。
9、麦凯尔方程的表达式为:()dAiihdQdmdz-=,它表明当空气与水发生直接接触,热湿交换同时进行时。
总换热量的推动力可以近似认为是湿空气的焓差。
1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是1.405×10-5 m2/s。
3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。
热质交换原理与设备课后习题答案
7.04 10 5 m / s
1)(第 3 版 P25)用水吸收氨的过程,气相中的 NH3 (组分 A)通过不扩散的空气
(组分 B),扩散至气液相界面,然后溶于水中,所以
D 为 NH3 在空气中的扩散。
2)刘易斯关系式只对空气 —— 水系统成立, 本题为氨 —— 空气系统, 计算时类比关 系不能简化。
Re uod v
4 0.08 15.53 10 6
20605
v 15.53 10 6 Sc D 0.25 10 4 0.62
用式子( 2-153)进行计算
shm
0.023
R 0.83 e
S 0.44 c
0.023 206050.83 0.620.44
4
hm shmD 70.95 0.25 10 0.0222m / s
热,使蓄热体壁温升高, 把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通
道壁放出的热量。
热管换热器是以热管为换热元件的换热器, 由若干热管组成的换热管束通过中隔板置于 壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,
热、冷流体在通道内横掠管束连续流动实现传热。
第二章 传质的理论基础
3
D DO P0 T 2 0.2 10 4 P T0
3
350 2
273
0.29 10 4m2 / s
氢— 空气
DO 0.511 10 4m2 / s
3
D DO P0 T 2 0.511 10 4 P T0
3
350 2
273
0.742 10 4m2 / s
2-14 溶解度 s 需先转化成摩尔浓度:
CA1 sPA1 5 10 3 0.03 1.5 10 4 kmol / m3
《热质交换原理与设备》习题答案(第3版)
第二章 传质的理论基础3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273PPa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=52115233 1.5410/1.013210(25.6)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+=50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯错误!未找到引用源。
m 2sR 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===第3章传热传质问题的分析和计算5、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mLL D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=-300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯6、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P=于是 325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=第四章 空气的热湿处理1、(1)大气是由干空气和一定量的水蒸汽混合而成的。
《热质交换原理与设备》习题答案分析
第5章吸附和吸收处理空气的原理与方法1.解:物理吸附是被吸附的流体分子与固体表面分子间的作用力为分子间吸引力,它是一种可逆过程,物理吸附是无选择的,只要条件适宜,任何气体都可以吸附在任何固体上。
吸附热与冷凝热相似。
适应的温度为低温。
吸附过程进行的急快参与吸附的各相间的平衡瞬时即可达到。
化学吸附是固体表面与吸附物间的化学键力起作用的结果。
吸附力较物理吸附大,并且放出的热也比较大,化学吸附一般是不可逆的,反应速率较慢,升高温度可以大大增加速率,对于这类吸附的脱附也不易进行,有选择性吸附层在高温下稳定。
人们还发现,同一种物质,在低温时,它在吸附剂上进行物理吸附,随着温度升到一定程度,就开始发生化学变化转为化学吸附,有时两种吸附会同时发生。
2、硅胶是传统的吸附除湿剂,比表面积大,表面性质优异,在较宽的相对湿度范围内对水蒸汽有较好的吸附特性,硅胶对水蒸汽的吸附热接近水蒸汽的汽化潜热,较低的吸附热使吸附剂和水蒸汽分子的结合较弱。
缺点是如果暴露在水滴中会很快裂解成粉末。
失去除湿性能。
与硅胶相比,活性铝吸湿能力稍差,但更耐用且成本降低一半。
沸石具有非常一致的微孔尺寸,因而可以根据分子大小有选择的吸收或排除分子,故而称作“分子筛沸石”。
3、目前比较常用的吸附剂主要是活性炭,人造沸石,分子筛等。
活性炭的制备比较容易,主要用来处理常见有机物。
目前吸附能力强的有活性炭纤维,其吸附容量大吸附或脱附速度快,再生容易,而且不易粉化,不会造成粉尘二次污染,对于无机气体如2SO 2X、H S 、NO 等有也很强的吸附能力,吸附完全,特别适用`于吸附去除6931010/g m --、 量级的有机物,所以在室内空气净化方面有着广阔的应用前景。
4、有效导热系数通常只与多孔介质的一个特性尺度----孔隙率有关。
第6章 间壁式热质交换设备的热工计算1、解:间壁式 换热器从构造上可分为:管壳式、胶片管式、板式、板翘式、螺旋板式等。
提高其换热系数措施:⑴在空气侧加装各种形式的肋片,即增加空气与换热面的接触面积。
热质交换原理与设〉课后复习题答案
第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
第二章 热质交换过程1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c GJ J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m hh Le e φ-=⋅5:答:斯密特准则c i v S D =表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c v S D a Le v D a ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系6、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅= 223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+= 50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=7、解:124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯8、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅ 6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lAm A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰9、解:200C 时的空气的物性:353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===10、解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯ 由热质交换类比律可得231Pr m pc h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭11、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s 查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ=33224400 1.0132980.22100.2510/1.0132273O D P T D m sP T --⎛⎫⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭02220209.48/3.140.0253600 1.195360044u m sd πρ===⨯⨯⨯⨯⨯0e 9.480.025R 15488u d υ⨯===⨯-615.2951040.25100.61c D S υ-⨯⨯===-615.29510用式(2--153)计算0.830.440.830.440.0230.023154880.6155.66,m e c sh R S ==⨯⨯=4255.660.2410 5.56610/0.025m m sh D h m sd --⨯⨯===⨯设传质速率为A G ,则 20()()()4A m A s A A dG d dx h d u d ππρρρ⋅=-=21004A A lAm A s A du d dx h ρρρρρ⋅=-⎰⎰1204exp()A s A A A s m h du ρρρρ⋅⋅-=-020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=11AAdρρρ=-1330.003 1.1953.5710/110.003A d kg m d ρρ-⋅⨯∴===⨯++∴ 代入上面的式子得:230.01193/A kg m ρ=112.23/A Ad g kgρρρ==-12、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s 60e 210R 1.1810u l υ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯===因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mL L D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=-300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯13、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H Oh T T h n ∞-=其中fgh 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808SP =于是325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=14、解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当20S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H OS S sP M kgRT ρ⨯===⨯ 2454.3/r kJ kg =1V d d ρρρ∞⋅==+当26t C ∞=,时定性温度为023,2st t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭()1S s m h d T T d rh ρρ∞⋅=--+ 41.19326200.0172712454700905910d d-⨯-=-+⨯⨯d=12.5g/kg15、解:325100.04036/8314(27325)i CO P C kmol mRT ===+22N CO C C = 222220.5N N CO N CO C x x C C ===+32254410 1.776/8314298CO iCO M P kg mRT ρ⨯⨯===⨯32252810 1.13/8314298N i N M P kg mRT ρ⨯⨯===⨯22220.611COCO CO Na ρρρ==+20.389N a =16、解:(a )已知A M ,B M ,A x ,B xA A A A AA AB A A B B A A B B M n M x M a M M n M n M x M x M ===+++ B B B B BB A B A A B B A A B B M n M x M a M M n M n M x M x M ===+++ 已知B a ,A a ,A M ,B MA A AA AA A BA BA B A B A B m a n M M x m m a a n n M M M M ===+++B BB B BB A BA BA B A B A B m a n M M x m m a a n n M M M M ===+++(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++20.2692N a =20.4231CO a =若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++20.3982N x =20.2534CO x =17、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动: (b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
热质交换原理与设备习题答案(供参考)
第一章 第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
第二章 热质交换过程1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A A B B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c G J J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔ ③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m h h Le e φ-=⋅5:答:斯密特准则c i v S D = 表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c vS D a Le v Da ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系6、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 32000P T D D P T ⎛⎫= ⎪⎝⎭ (1)氧气和氮气:(2)氨气和空气:7、解:124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯8、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅ 用式子(2-153)进行计算设传质速率为A G ,则9、解:200C 时的空气的物性:(1)用式0.830.440.023m e c sh R S =计算m h(2)用式13340.0395e c sh R S =计算m h10、解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为; 由热质交换类比律可得11、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s 查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ=用式(2--153)计算设传质速率为A G ,则020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=∴ 代入上面的式子得:230.01193/A kg m ρ= 12、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s 转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯===因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c L R S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s 每2m 池水的蒸发速率为()m A A S A n h ρρ⋅∞=- 300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时13、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H O h T T h n ∞-=其中fg h 为水的蒸发潜热 又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808S P =于是14、解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当020S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H O S S s P M kg RT ρ⨯===⨯当026t C ∞=,时定性温度为023,2s t t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅ 由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭d=12.5g/kg15、解:325100.04036/8314(27325)i CO P C kmol m RT ===+16、解:(a )已知A M ,B M ,A x ,B x已知B a ,A a ,A M ,B M(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++ 若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++17、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动:(b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
《热质交换原理与设备》第三版重点、总复习
一、填空题(共30分)1、流体的粘性、热传导性和_质量扩散性__通称为流体的分子传递性质。
2、当流场中速度分布不均匀时,分子传递的结果产生切应力;温度分布不均匀时,分子传递的结果产生热传导;多组分混合流体中,当某种组分浓度分布不均匀时,分子传递的结果会产生该组分的_质量扩散_;描述这三种分子传递性质的定律分别是___牛顿粘性定律___、傅立叶定律_、_菲克定律_。
3、热质交换设备按照工作原理不同可分为_间壁式、_混合式_、_蓄热式_和热管式等类型。
表面式冷却器、省煤器、蒸发器属于__间壁_式,而喷淋室、冷却塔则属于_混合式。
3、热质交换设备按其内冷、热流体的流动方向,可分为___顺流__式、_逆流__式、__叉流___式和__混合_____式。
工程计算中当管束曲折的次数超过___4___次,就可以作为纯逆流和纯顺流来处理。
5、__温度差_是热量传递的推动力,而_浓度差_则是产生质交换的推动力。
6、质量传递有两种基本方式:分子扩散和对流扩散,两者的共同作用称为__对流质交换__。
7、相对静坐标的扩散通量称为绝对扩散通量,而相对于整体平均速度移动的动坐标扩散通量则称为相对扩散通量。
8、在浓度场不随时间而变化的稳态扩散条件下,当无整体流动时,组成二元混合物中的组分A和组分B发生互扩散,其中组分A向组分B的质扩散通量mA与组分A的_浓度梯度成正比,其表达式为smkgdydCDm AABA⋅-=2;当混合物以某一质平均速度V移动时,该表达式的坐标应取___随整体移动的动坐标__。
9、麦凯尔方程的表达式为:()dAiihdQdmdz-=,它表明当空气与水发生直接接触,热湿交换同时进行时。
总换热量的推动力可以近似认为是湿空气的焓差。
1、有空气和氨组成的混合气体,压力为2个标准大气压,温度为273K,则空气向氨的扩散系数是1.405×10-5 m2/s。
3、喷雾室是以实现雾和空气在直接接触条件下的热湿交换。
热质交换原理与设备答案
第一章 第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
第二章 热质交换过程1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。
动量、热量和质量的传递,(既可以是由分子的微观运动引起的分子扩散,也可以是由旋涡混合造成的流体微团的宏观运动引起的湍流传递)动量传递、能量传递和质量传递三种分子传递和湍流质量传递的三个数学关系式都是类似的。
4、答:将雷诺类比律和柯尔本类比律推广应用于对流质交换可知,传递因子等于传质因子①2233r P 2m H D t t c G J J S S S ===⋅=⋅② 且可以把对流传热中有关的计算式用于对流传质,只要将对流传热计算式中的有关物理参数及准则数用对流传质中相对应的代换即可,如:r ,,,P ,,mc u h t t t c a D D S N S S S λ↔↔↔↔↔↔③当流体通过一物体表面,并与表面之间既有质量又有热量交换时,同样可用类比关系由传热系数h 计算传质系数m h 23m hh Le e φ-=⋅5:答:斯密特准则c i v S D =表示物性对对流传质的影响,速度边界层和浓度边界层的相对关系刘伊斯准则r P c v S D a Le v D a ===表示热量传递与质量传递能力相对大小 热边界层于浓度边界层厚度关系6、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+= 50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=7、解:124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯8、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰9、解:200C 时的空气的物性:353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===10、解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯ 由热质交换类比律可得231Pr m pc h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭11、解:定性温度为0252022.5,2g t C +==此时空气的 物性ρυ⨯23-6=1.195kg/m ,=15.29510m /s查表得:⨯-42o D =0.2210m /s,0C 25饱和水蒸汽的浓度30.02383/v kg m ρ=33224400 1.0132980.22100.2510/1.0132273O D P T D m sP T --⎛⎫⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭02220209.48/3.140.0253600 1.195360044u m s d πρ===⨯⨯⨯⨯⨯0e 9.480.025R 15488u d υ⨯===⨯-615.2951040.25100.61c D S υ-⨯⨯===-615.29510用式(2--153)计算0.830.440.830.440.0230.023154880.6155.66,m e c sh R S ==⨯⨯=4255.660.2410 5.56610/0.025m m sh D h m sd --⨯⨯===⨯设传质速率为A G ,则 20()()()4A m A s A A dG d dx h d u d ππρρρ⋅=-=21004A A lAm A s A du d dx h ρρρρρ⋅=-⎰⎰1204exp()A s A A A s m h du ρρρρ⋅⋅-=-020C 时,饱和水蒸汽的浓度30.0179/A s kg m ρ⋅=11AAdρρρ=-1330.003 1.1953.5710/110.003A d kg m d ρρ-⋅⨯∴===⨯++∴ 代入上面的式子得:230.01193/A kg m ρ=112.23/A Ad g kgρρρ==-12、解:040,C 时空气的物性ρυ⨯23-6=1.128kg/m ,=16.9610m /s60e 210R 1.1810u lυ⨯===⨯⨯-616.9610转折点出现在56e 510101.1810e R , 4.24R c x l m μν⨯⨯⨯=== 因此,对此层流---湍流混合问题,应用式(2-157)30.8(0.037870)e c LR S Sh γ=-查表2—4得,定性温度为350C 时,324000.26410O D P T D P T -⎛⎫==⨯ ⎪⎝⎭2m /s40.264100.64c DS υ-⨯⨯===-616.9610360.8[0.037(1.1810)870]0.641548.9LSh γ=⨯⨯-⨯=430.288101548.9 4.4610/10mL L D h Sh m sL --⨯⎛⎫==⨯=⨯ ⎪⎝⎭每2m 池水的蒸发速率为()m AA S A n h ρρ⋅∞=- 300C 时,3030.03037/;40,0.05116/A S A S kg m C kg m ρρ⋅⋅'==时 ()354.4610(0.030370.50.05116) 2.1410m A A S A S n h ρϕρ--⋅⋅'=-=⨯⨯-⨯=⨯13、解:在稳定状态下,湿球表面上水蒸发所需的热量来自于空气对湿球表面的对流换热,即可得以下能量守衡方程式2()s fg H Oh T T h n ∞-=其中fgh 为水的蒸发潜热222()H O H O H O m S n h ρρ⋅⋅∞=-22()H O H O ms fgS h T T h h ρρ∞⋅⋅∞=+-又23r P 1m p c h h c S ρ⎛⎫= ⎪⋅⎝⎭ 查附录2—1,当s T =035C 时,水蒸汽的饱和蒸汽压力5808SP =于是325808180.0408/8314308H OS S sP M kg mRT ρ⨯===⨯0ρ∞=14、解:2()()s H O m S h T T r n r h ρρ∞∞-=⋅=⋅-其中0026,20S t C t C ∞== 查表2—1,当20S t C =时水蒸汽的饱和蒸汽压力2330S a P P = 于是22338180.017278314293H OS S s P M kgRT ρ⨯===⨯2454.3/r kJ kg =1V d d ρρρ∞⋅==+当026t C ∞=,时定性温度为023,2st t t C ∞+==31.193/ 1.005/()p kg m c kJ kg k ρ=⋅=⋅由奇科比拟知22334r P 110.749.59101.197 1.0050.6m p c h h c S ρ-⎛⎫⎛⎫===⨯ ⎪ ⎪⋅⨯⎝⎭⎝⎭()1S s m h d T T d rh ρρ∞⋅=--+ 41.19326200.0172712454700905910d d-⨯-=-+⨯⨯ d=12.5g/kg15、解:325100.04036/8314(27325)i CO P C kmol m RT ===+22N CO C C =222220.5N N CO N CO C x x C C ===+322544101.776/8314298CO iCO M P kg m RT ρ⨯⨯===⨯32252810 1.13/8314298N i N M P kg mRT ρ⨯⨯===⨯22220.611COCO CO Na ρρρ==+20.389N a =16、解:(a )已知A M ,B M ,A x ,B xA A A A AA AB A A B B A A B B M n M x M a M M n M n M x M x M ===+++ B B B B BB A B A A B B A A B B M n M x M a M M n M n M x M x M ===+++ 已知B a ,A a ,A M ,B MA A AAAA AB A B A B A B A Bm a n M M x m m a a n n M M M M ===+++B B BBBB AB A B A B A B A B m a n M M x m m a a n n M M M M ===+++(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++20.2692N a =20.4231CO a =若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++20.3982N x =20.2534CO x =17、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动: (b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
《热质交换原理与设备》习题答案(第3版)
第二章 传质的理论基础1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273PPa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T 状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅= 223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.6)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+= 50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯m 2s R 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===2-7、错解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯由热质交换类比律可得231Pr m p c h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭✧ 1)(第3版P25)用水吸收氨的过程,气相中的NH3(组分A )通过不扩散的空气(组分B ),扩散至气液相界面,然后溶于水中,所以D 为NH3在空气中的扩散。
热质交换原理与设备智慧树知到答案章节测试2023年长安大学
第一章测试1.室内环境控制的”四度”除温度和湿度外,还有哪两度()。
A:污染物浓度B:溶解度C:气流速度D:洁净度答案:AC2.在流体系统中质量传递的基本驱动力是()。
A:浓度梯度B:速度梯度C:温度梯度D:湿度梯度答案:A3.分子扩散是由分子的微观运动引起。
()A:对B:错答案:A4.湍流传递是由流体微团的微观运动引起。
()A:对B:错答案:B5.热质交换设备按工作原理可以分为()。
A:逆流式B:热管式C:蓄热式D:直接接触式E:间壁式F:顺流式答案:BCDE第二章测试1.单位体积混合物种某组分的质量可以用以下哪个概念来表达()。
A:物质的量分数B:质量分数C:物质的量浓度D:质量浓度答案:D2.N种组分的混合物总质量浓度等于各组分的质量浓度之和。
()A:对答案:A3.质量浓度与物质的量浓度之间的关系可以用以下哪个关系式来表达()。
A:B:C:D:答案:B4.对流传质系数的单位为()。
A:m2/sB:m/sC:kg/m2D:kg/s答案:B5.对于二元混合物扩散系统,DAB=-DBA。
()A:对B:错答案:A第三章测试1.湍流传递系数只取决于流体的热力学状态,而不受流体宏观运动影响。
()A:错B:对答案:A2.以下针对普朗特数Pr的表述中正确的是()。
A:普朗特数表示速度分布和浓度分布的相互关系B:普朗特数表示扩散传质和对流传质的相互关系C:普朗特数表示速度分布和温度分布的相互关系D:普朗特数表示浓度分布和温度分布的相互关系答案:C3.只要存在浓度边界层,就一定存在速度边界层。
()A:对B:错答案:B4.刘伊斯关系式成立的条件有()。
A:B:C:D:答案:ABD5.在获得湿球温度时,空气与水在传热上达到平衡,但传质上尚未达到平衡状态。
()B:错答案:A第四章测试1.以下哪些方式可以实现空气的等温加湿()。
A:喷淋室喷等温水B:喷淋室喷热水C:喷淋室喷循环水D:喷淋室喷蒸汽答案:AD2.只要空气中含水汽未饱和(不饱和空气),该空气与同温度的水接触其传质方向必由水到空气。
(完整版)《热质交换原理与设备》习题答案(第版).doc
第一章绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在);热量传递:温度梯度的存在(或温度分布不均匀);质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
3、解:顺流式又称并流式,其内冷、热两种流体平行地向着同方向流动,即冷、热两种流体由同一端进入换热器。
逆流式,两种流体也是平行流体,但它们的流动方向相反,即冷、热两种流体逆向流动,由相对得到两端进入换热器,向着相反的方向流动,并由相对的两端离开换热器。
叉流式又称错流式,两种流体的流动方向互相垂直交叉。
混流式又称错流式,两种流体的流体过程中既有顺流部分,又有逆流部分。
顺流和逆流分析比较:在进出口温度相同的条件下,逆流的平均温差最大,顺流的平均温差最小,顺流时,冷流体的出口温度总是低于热流体的出口温度,而逆流时冷流体的出口温度却可能超过热流体的出口温度,以此来看,热质交换器应当尽量布置成逆流,而尽可能避免布置成顺流,但逆流也有一定的缺点, 即冷流体和热流体的最高温度发生在换热器的同一端,使得此处的壁温较高,为了降低这里的壁温,有时有意改为顺流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论1、答:分为三类。
动量传递:流场中的速度分布不均匀(或速度梯度的存在); 热量传递:温度梯度的存在(或温度分布不均匀); 质量传递:物体的浓度分布不均匀(或浓度梯度的存在)。
2、解:热质交换设备按照工作原理分为:间壁式,直接接触式,蓄热式和热管式等类型。
● 间壁式又称表面式,在此类换热器中,热、冷介质在各自的流道中连续流动完成热量传递任务,彼此不接触,不掺混。
● 直接接触式又称混合式,在此类换热器中,两种流体直接接触并且相互掺混,传递热量和质量后,在理论上变成同温同压的混合介质流出,传热传质效率高。
● 蓄热式又称回热式或再生式换热器,它借助由固体构件(填充物)组成的蓄热体传递热量,此类换热器,热、冷流体依时间先后交替流过蓄热体组成的流道,热流体先对其加热,使蓄热体壁温升高,把热量储存于固体蓄热体中,随即冷流体流过,吸收蓄热体通道壁放出的热量。
● 热管换热器是以热管为换热元件的换热器,由若干热管组成的换热管束通过中隔板置于壳体中,中隔板与热管加热段,冷却段及相应的壳体内穷腔分别形成热、冷流体通道,热、冷流体在通道内横掠管束连续流动实现传热。
第二章 传质的理论基础1、答:单位时间通过垂直与传质方向上单位面积的物质的量称为传质通量。
传质通量等于传质速度与浓度的乘积。
以绝对速度表示的质量通量:,,A A A B B B A A B B m u m u m e u e u ρρ===+ 以扩散速度表示的质量通量:(),(),A A A B B B B A B j u u j u u u j j j ρρ=-=-=+以主流速度表示的质量通量:1()()A A A AB B A A B e u e e u e u a m m e ⎡⎤=+=+⎢⎥⎣⎦()B B A B e u a m m =+2、答:碳粒在燃烧过程中的反应式为22C O CO +=,即为1摩尔的C 与1摩尔的2O 反应,生成1摩尔的2CO ,所以2O 与2CO 通过碳粒表面边界界层的质扩散为等摩尔互扩散。
3、从分子运动论的观点可知:D ∽312p T -两种气体A 与B 之间的分子扩散系数可用吉利兰提出的半经验公式估算:410D -=若在压强5001.01310,273P Pa T K =⨯=时各种气体在空气中的扩散系数0D ,在其他P 、T状态下的扩散系数可用该式计算32000P T D D P T ⎛⎫= ⎪⎝⎭(1)氧气和氮气:2233025.610/()32o V m kg kmol μ-=⨯⋅=223331.110/()28N N V m kg kmol μ-=⨯⋅=525233 1.5410/1.013210(25.631.1)D m s -==⨯⨯⨯+(2)氨气和空气:51.013210P Pa =⨯ 25273298T K =+= 50 1.013210P Pa =⨯ 0273T K =3221.0132980.2()0.228/1.0132273D cm s=⨯⨯=2-4、解:气体等摩尔互扩散问题124230.610(160005300)()0.0259/()8.3142981010A A A D N P P kmol m s RT z --⨯⨯-=-==⋅∆⨯⨯⨯m 2s R 0通用气体常数单位:J/kmol ﹒K5、解:250C 时空气的物性:351.185/, 1.83510,kg m Pa s ρμ-==⨯⋅ 6242015.5310/,0.2210/m s D m s υ--=⨯=⨯32420006640.2510/40.08Re 2060515.531015.53100.620.2510o c P T D D m s P T u d v v S D ----⎛⎫==⨯ ⎪⎝⎭⨯===⨯⨯===⨯用式子(2-153)进行计算0.830.440.830.4440.0230.023206050.6270.9570.950.25100.0222/0.08m e c m m sh R S sh D h m sd -==⨯⨯=⨯⨯===设传质速率为A G ,则211220000()()()44ln4A A A m A s A A lA m A s AA s A m A s A dG d dx h d u d du d dx h du l h ρρππρρρρρρρρρρ⋅⋅⋅⋅=-==--=-⎰⎰2-6、解:20℃时的空气的物性:(注:状态不同,D 需修正)353352244200505541.205/, 1.8110,1.013102930.22100.2410/1.0132102730.053 1.205Re 99901.81101.81100.6261.2050.2410o c kg m Pa s P T D D m s P T u dv S D ρμρμρ------==⨯⋅⎛⎫⨯⎛⎫==⨯⨯⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭⨯⨯===⨯⨯===⨯⨯(1)用式0.830.440.023m e c sh R S =计算m h 0.830.4440.02399900.6260.24100.018750.05m m sh D h d -⨯⨯⨯⨯===(2)用式13340.0395e c sh R S =计算m h134340.0395(9990)(0.626)0.24100.01621/0.05m sh D h m sd -⨯⨯===2-7、错解:氨在水中的扩散系数921.2410/D m s -=⨯,空气在标准状态下的物性为;353591.293/, 1.7210,Pr 0.708, 1.00510/()1.721010727.741.293 1.2410p c kg m Pa s c J kg k S D ρμμρ----==⨯⋅==⨯⋅⨯===⨯⨯ 由热质交换类比律可得231Pr m pc h h c S ρ⎛⎫= ⎪⎝⎭223351Pr 560.7087.0410/1.293100110727.74m p c h m s h c S ρ-⎛⎫⎛⎫==⨯=⨯ ⎪ ⎪⨯⎝⎭⎝⎭✧ 1)(第3版P25)用水吸收氨的过程,气相中的NH3(组分A )通过不扩散的空气(组分B ),扩散至气液相界面,然后溶于水中,所以D 为NH3在空气中的扩散。
✧ 2)刘易斯关系式只对空气——水系统成立,本题为氨——空气系统,计算时类比关系不能简化。
✧ 3)定压比热的单位是J/kgK正解:组分A 为NH3,组分B 为空气,空气在0℃时物性参数查附录3-1)2-2P36(/102.0708.0Pr 664.0102.01028.132446表查s m D D S c ---⨯===⨯⨯==υ231Pr m pc h h c S ρ⎛⎫= ⎪⎝⎭h m s m Sc c h h pm /10161/98.44708.0664.0005.1293.156Pr 33/23/2⨯==⎪⎭⎫ ⎝⎛⨯⨯=⎪⎭⎫ ⎝⎛⋅=--ρ8、解:325100.04036/8314(27325)i CO P C kmol m RT ===+22N CO C C =222220.5N N CO N CO C x x C C ===+32254410 1.776/8314298CO iCO M P kg mRT ρ⨯⨯===⨯32252810 1.13/8314298N i N M P kg mRT ρ⨯⨯===⨯22220.611COCO CO Na ρρρ==+20.389N a =9、解:(a )已知A M ,B M ,A x ,B xA A A A AA AB A A B B A A B B M n M x M a M M n M n M x M x M ===+++ B B B B BB A B A A B B A A B B M n M x M a M M n M n M x M x M ===+++ 已知B a ,A a ,A M ,B MA A AA AA A BA BA B A B A B m a n M M x m m a a n n M M M M ===+++B BB B BB A BA BA B A B A B m a n M M x m m a a n n M M M M ===+++(b )222222222320.3077322844O O O O O N N CO CO x M a x M x M x M ===++++20.2692N a =20.4231CO a =若质量分数相等,则2222222221320.3484111322844O O O O N CO O N CO a M x a a a M M M ===++++20.3982N x =20.2534CO x =10、解;(a )2O ,2N 的浓度梯度沿垂直方向空气由上部向下部运动: (b )2O ,2N 的浓度梯度沿垂直方向空气由下部向上部运动,有传质过程。
2-11、解;12()aVA A aV A A DA G N A C C z==-∆21212()ln aV L r r A r r π-=✧ 1)柱形:L d V r r r r L A av 2121241,ln )(2ππ=-=球形:32134,4d V r r A av ππ==✧ 2)d=100mm 为内径,所以r 1=50,r 2=52若为球形A av =0.033,质量损失速率为1.46×10-12kg/s ;压力损失速率3.48×10-2Pa/s2-12、解:9812310(0.020.005)() 1.510/()110A A A DN C C kmol m s z ---⨯-=-==⨯⋅∆⨯✧ 1)j A 为A 的质量扩散通量,kg/m 2s ;J A 为A 的摩尔扩散通量kmol/m 2s ;✧ 2)题中氢氦分子量不同2-13、解: 氨---空气4250000.210/, 1.01310,273,350,O a D m s P P T K T K P P -=⨯=⨯===3322442003500.2100.2910/273O D P T D m sP T --⎛⎫⎛⎫==⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭氢—空气420.51110/O D m s -=⨯3322442003500.511100.74210/273O D P T D m sP T --⎛⎫⎛⎫==⨯⨯=⨯ ⎪ ⎪⎝⎭⎝⎭2-14溶解度s 需先转化成摩尔浓度: 34311/105.103.0105m kmol sP C A A --⨯=⨯⨯==()()s kmol C C Z DA A N G A A av av A A /1025.20105.101.05310104921---⨯=-⨯⨯⨯=-∆=⋅= skg M G M A A A/1005.4181025.2910--*⨯=⨯⨯=⨯=τ2-15、解、3221212()20.5100.12420ln ln 19.5aV L r r A m r r ππ--⨯⨯=== 3111602320/A A C sP kmol m ==⨯=3221600.116/A A C sP koml m ==⨯=1161231.8100.124()(32016) 1.357100.510aVA A A DA G C C z ---⨯⨯'=-=⨯-=⨯∆⨯/koml s 质量损失661.3571022.71410/A G kg s --=⨯⨯=⨯16、解:02225CO N C 和在时,扩散系数420.16710/D m s -=⨯33121013.6109.86664A A aP P P --=⨯⨯⨯⨯=(100-50)51112 1.67106664()48.810/83142981A A A A D P P G N A koml sRT zπ--⨯⨯⨯-====⨯∆⨯⨯18、解、该扩散为组分通过停滞组分的扩散过程(),0AA A AB B A A A AdG N Dx N N N dr dGN D x N dr =-++==-+ ,A AA A P P C x RT P == A AA AdP P D N N RT dr P =-+整理得()A A A dP DPN RT P P dr =-- 24A A r G N A r π==24()A A A G dP DPr RT P P dr π=--分离变量,并积分得0024AS A Ar P AG RT dP dr DP r P P π∞=--⎰⎰得4lnASA P P DPr G RT P π-=-第3章传热传质问题的分析和计算1、答:当物系中存在速度、温度和浓度的梯度时,则分别发生动量、热量和质量的传递现象。