氨氮形成、危害及防治
氨氮污染对水产养殖的危害及处理技术分析
氨氮污染对水产养殖的危害及处理技术分析氨氮污染是水产养殖中常见的环境问题之一。
氨氮主要来自于养殖废水和饲料残渣,如果不及时处理和控制,会给水产养殖业产生危害。
本文将分析氨氮污染对水产养殖的危害,并介绍一些常见的处理技术。
氨氮污染对水产养殖的危害主要包括以下几个方面:1. 水质恶化:氨氮是一种常见的水体污染物,高浓度的氨氮会使水体的氧含量降低,造成水体富营养化和缺氧状况,对水生生物的生长和繁殖产生不利影响。
2. 水生生物受损:高浓度的氨氮会对水生动物的呼吸系统造成损害,导致鱼类和虾蟹等养殖物种的营养摄取和生长受到限制。
3. 养殖效益下降:氨氮污染会使鱼类和虾蟹等养殖物种的免疫力下降,易患病死亡,减少养殖产量和经济效益。
1. 生物方法:利用一些生物物种来降解和吸收氨氮,例如利用硝化细菌对氨氮进行硝化转化,将其转化为无害的亚硝酸盐和硝酸盐。
也可以通过放养一些具有氨氮利用能力的水生植物,如水稻苗和苔藓等,通过吸收氨氮来净化养殖水体。
2. 物理-化学方法:采用一些物理或化学手段来处理氨氮污染。
通过通风和曝气等方法,将水中的氨氮气化释放到大气中;利用吸附剂、离子交换剂等物质来吸附和去除水中的氨氮。
3. 循环农业技术:养殖废水中含有的氨氮可以用作农田的有机肥料,通过养殖废水的循环利用,减少氨氮的排放和污染,实现农田和水产养殖的良性循环。
4. 水质监测和管理:建立水质监测系统,定期对养殖水体的氨氮浓度进行监测,及时发现和处理氨氮污染问题。
加强养殖环境管理,控制养殖规模和密度,合理调整饲养方式和投喂量,减少废水和饲料残渣的排放和浪费。
氨氮污染对水产养殖产生的危害不可忽视。
通过采取适当的处理技术,合理管理养殖环境,可以有效降低氨氮污染带来的影响,提高水产养殖的产量和质量。
氨氮对养鱼的危害、预防、解决方案
解读水中杀手“氨”养鱼要先养水,而养水的核心是培养硝化菌来分解水中的毒素。
水中毒素一般是指氨和亚硝酸盐,它们都属于剧毒,可以造成鱼的慢性中毒或者急性死亡。
这两种毒素被称为水中的第一杀手,只需要极少量就会造成鱼的暴毙。
鱼是病从鳃入,氨和亚硝酸盐的慢性中毒会破坏鱼体组织的免疫系统,降低抵抗力。
第一节“氨”一、氨的产生途径:1、鱼的呼吸:鱼通过腮部可以直接将体内产生的氨排出体外。
2、鱼的尿液:鱼的尿液中含有氨。
3、有机物被异营菌分解后的代谢产物:鱼的粪便、残饵、死鱼等有机物被异营菌分解后,其代谢产物为氨,这是氨的主要来源。
二、氨的危害:氨对鱼类的毒害反映非常强,在很低的浓度下即可使许多鱼类产生中毒症状,甚至死亡。
氨对鱼类的毒害情形根据浓度和鱼类的不同会有所差异,大致情况如下:在较低浓度下:鱼类可以忍受一段时间,但长此以往会慢性中毒。
氨会干预鱼类渗透调节系统,破坏鱼鳃的粘膜层,减低血红素携带氧气能力。
鱼类慢性中毒症状表现有:常在水面喘气,鳃转为紫色或暗红,比较容易瞌睡,食欲不振,老停留在缸底不活动,鱼鳍或体表出现异常血丝等。
在低浓度下:氨会和其他疾病一同加速鱼类死亡。
在略高浓度下:会直接破会鱼类皮肤和肠道粘膜,造成体表和内部器官出血,同时伤害大脑和中枢神经系统,鱼类会因急性中毒迅速死亡。
三、氨的中毒机理:毒素通过鱼的呼吸作用,由鳃进入血液,会使其丧失输氧能力,出现组织缺氧,窒息而死。
四、氨中毒的症状:鱼出现窜游现象,并时而出现下沉、侧卧、痉挛等症状。
呼吸急促,大口挣扎,死前眼球突出。
鳃盖部分张开,鳃丝呈紫红色或紫黑色。
鱼鳍舒展,根基出血,体色变浅,体表粘液增多。
打开腹腔,血液不凝,血色发暗,紫而不红,肝脾肾的颜色呈紫色。
五、氨的存在形式:水中的氨有两种不同的形式:一种是分子形态存在的“氨”(NH3);另一种是以离子形态存在的“铵”(NH4+)。
氨有剧毒,铵无毒。
一般氨测试所测的是氨和铵的总浓度,有时候测试出总浓度非常高,但鱼却很健康,这是因为水中铵的比例大,而有毒的氨(NH3)的百分比很小的原因。
氨氮的排放限值
氨氮的排放限值
【原创实用版】
目录
1.氨氮排放限值的定义
2.氨氮排放的来源
3.氨氮排放的危害
4.氨氮排放的法规标准
5.氨氮排放的控制措施
正文
氨氮排放限值是指在一定时间内,允许排放的氨氮总量。
氨氮是一种主要的水污染物,它的排放主要来源于农业、工业和生活三个方面。
农业上,主要是由于化肥和农药的过量使用,导致氨氮含量过高;工业上,主要是一些化工厂、制药厂和食品加工厂等产生的废水排放;生活中,主要是由于生活污水的排放。
氨氮排放对环境的影响非常严重。
首先,氨氮会导致水体富营养化,使水体中的藻类大量繁殖,进而导致水体缺氧,影响水生生物的生存。
其次,氨氮还会对人体健康造成影响,它对人体的皮肤、眼睛和呼吸道都有刺激作用,严重时甚至会导致癌症。
我国对氨氮排放的法规标准非常严格。
根据《地表水环境质量标准》和《地下水环境质量标准》,我国的氨氮排放标准为:地表水氨氮排放标准为一级水 0.5mg/L,二级水 1.0mg/L,三级水 1.5mg/L;地下水氨氮排放标准为一级水 0.05mg/L,二级水 0.1mg/L。
针对氨氮排放的问题,我国采取了一系列的控制措施。
在农业上,推广有机农业、绿色农业,减少化肥和农药的使用;在工业上,加强废水处理,确保达标排放;在生活中,推广生活污水处理设施,减少生活污水的
直接排放。
氨氮对水产养殖的危害及防治措施
为 了防止养 殖水 体氨 氮含量 过 高 ,除了定 期检 测水
中氨的指标 外 ,还要注意 : ( 1 )加换新 水 。适 时加注新 水 或换去部分老水 ,是最 直接 、经济而快捷有效的办法 ; ( 2 )增氧 。高 温季节晴 天中午开启增 氧机 曝气 ; ( 3 )生
六 氨氮控制指 标
的皮 、胃、肠道 的粘膜 ,造成 渗透 调节失调 ,引起 体表和 血呈 红色 ,最 为明显 ,其次是臀鳍基部前端 、眼眶外缘 、 内部器官 充血 ,表现 出与 出血性 败血症相似 的症状 ,造成 鳃盖边缘和 口腔 充血呈红色 ;体色变浅 ,体表 粘液增多 , 鱼类大批死亡 。 鳃 丝呈 紫色 。解剖 腹腔 可见 血色 发暗 ,紫 而不 红 ,肝 、
发生。在养殖水域存 在的有害物质 中 ,氨氮 比亚硝酸盐和 多 ,透 明度低 ,一般 在3 0 c m以下 ;二是水质 老化 ,没有 硫 化氢等对水产养殖 的危害事故更频 发 ,带来的经济损 失
更 巨大 ,氨氮 已成为养殖鱼类 的隐性杀手 。
一
,
氨氮的危害
四 氨氮中毒症状
由于氨对水产动物 的毒 害依 其浓度不 同而不 同,氨氮
1 . 慢 性 中毒 症 状
白天有浮头现象 ,采取增 氧措施 效果不明显 ;易发鱼
进入鱼 体 ,损伤鳃表 皮细胞 ,使血液和组织 中氨的浓度升 病 ,即使对症 治疗但效果很差 ,即使 鱼病 治疗 好后很快又
高 ,降低血液的载氧 能力 ,使鱼呼吸 困难 ,食 欲减退 ,影 复发 ,病鱼死亡较快 。
氨 氮 在 养 殖 水 体 中 以 两 种 形 式 存 在 :一 种 是 氨
强 的毒 害性 ;另一种是铵 ( NH ),又叫离子态氨 ,对水 产动物 无毒 。由于氨具有 较高的脂溶性 ,能通 过鳃和皮膜
氨氮的危害及防治措施
水产养殖中氨氮的危害及防治措施衢江区水利局王俏俏随着工业污染排放、畜禽养殖业污水排放、生活污水排放、水产养殖中过量投喂饲料行为等,淡水养殖水体中氨氮超标致使水生生物中毒死亡的的事情频繁发生,给养殖户带来极大的经济损失。
一、水体中氨氮的积累和危害池塘养鱼水体中的总氨氮一般以两种形式即非离子氨(NH3)和铵离子(NH4+)存在,在pH值小于7时,水中的氨几乎都以NH4+的形式存在,在pH大于11时,则几乎都以NH3的形式存在,温度升高,NH3的比例增大。
氨氮对水生生物的危害主要是指非离子氨的危害,非离子氨进入水生生物体内后,对酶水解反应和膜稳定性产生明显影响,表现出呼吸困难、不摄食、抵抗力下降、惊厥、昏迷等现象,甚至导致水生生物大批死亡。
另外,在生物体内富集的高浓度氨氮可转化为亚硝酸盐后对生物体产生危害,而亚硝酸盐又是强氧化剂,不仅会使生物体中毒,它还有致癌作用。
二、氨氮超标的防治措施根据《渔业水质标准》,水产养殖生产中,应将氨的浓度控制在0.02mg/L以下。
目前,可以从以下三个方面降低水体中氨氮的含量,防治氨氮中毒。
(一)科学进行养殖生产1、做好清淤工作,经常换水,保持水体新鲜。
2、饲料过量投喂是造成氨氮污染的主要原因之一,因此要减少饵料系数,提高饲料使用率,减少养殖生物的粪便排泄量。
3、用盐酸或醋酸调节PH值,降低PH值至7.0以下,降低氨氮毒性,再用沸石粉、麦饭石等吸附剂去除水体中的氨氮。
(二)利用微藻减少水体中的氨氮微藻是一种单细胞藻类,以水为电子供体,以光能作为能源,利用氮、磷等营养物质合成有机质。
能吸收水体中的氨氮并将其转换合成氨基酸等含氮物质,是水生生物的天然饵料。
微藻还能产生大量的氧气,水体中充足的氧气能促进亚硝酸盐向硝酸盐的转化,同时可减少水体因缺氧而形成的恶臭气味,改善水体生态环境,抑制和减轻氨氮对鱼类的毒害作用,提高鱼类食欲和饲料利用率,促进鱼类生长发育。
(三)利用微生物制剂减少水体中的氨氮微生物制剂是从天然环境中筛选出来的微生物菌体经培养、繁殖后制成的含有大量有益菌的活性菌制剂。
畜舍内氨气的产生、危害及调控措施
畜舍内氨气的产生、危害及调控措施核心提示:氨气是猪舍内最具危害性的气体,可刺激黏膜引发各种炎症,空气中高浓度的氨气可经肺泡毛细血管壁弥散到血液中,提高血氨气浓度,降低血红蛋白携氧能力,使原本就处于低血氧症边缘的现代基因型猪雪上加霜,生产性能下降,免疫力降低,疾病频发。
猪场应充分重视氨气的危害,有哪些措施可有效降低猪舍氨气的浓度?1 氨气的产生畜舍内的氨气来源主要分为两种:一种胃肠道内的氨气,来源于粪尿、肠胃消化物等,尿氮主要是以尿素形式存在,很容易被脲酶水解,催化生成氨气和二氧化碳。
粪氮主要是以有机物形式存在,不容易分解,但也是氨气形成过程中氮的一个来源。
另一种是舍内环境氨气,是通过堆积的粪尿、饲料残渣和垫草等有机物腐败分解而产生的。
在垫料潮湿、酸碱度适宜和温度高、粪便多而有相当空气的情况下,氨气产生更快。
畜禽舍中氨气的含量取决于舍内温度、饲养密度、通风情况、地面结构、饲养管理水平、粪污清除等。
由于氨气是高度溶于水的,所以在高湿空气中氨气的浓度相对较高。
据Balins测定50~80 kg猪每天排放粪尿6 kg,含氮16~37 g,其中约60%是尿素或铵盐等易转化为氨气的物质。
2 氨气的危害氨气的水溶解度很高,20℃时1 L的水可溶解700 L的氨气,是一种强烈刺激性气体,对黏膜产生刺激从而易引发各种炎症。
氨气对动物造成影响的程度与其浓度和动物种类有关,一般来说,反刍动物对氨气的耐受比单胃动物强,猪又比鸡强。
2.1 对动物生长性能的影响氨气能引起黏膜细胞快速生长和代谢,这就会造成氧和能量的需要增高,同时氨气的解毒过程是一个高度耗能的过程,因此动物用于生长和生产的能量就相应减少,从而影响动物的生长性能。
据报道氨气对畜禽产生影响的起始浓度是25 μL/L,而100 μL/L的氨气浓度对生长性能的影响非常明显。
戴四发等对一栋密闭式种猪舍部分有害气体对猪生长性能实验研究表明,50 μL/L氨气水平,小猪的生长效率减少12%;100和150 μL/L水平,生长效率减少30%。
氨氮污染对水产养殖的危害及处理技术分析
氨氮污染对水产养殖的危害及处理技术分析随着现代工业和城市化的快速发展,水体环境污染问题日益突出,其中氨氮污染是其中一种常见的水体污染物之一。
氨氮是水中的一种重要污染物,主要来源于农业废水、工业废水和城市生活污水等,当水体中的氨氮超过一定浓度时,会对水产养殖造成严重的危害。
本文将从氨氮污染对水产养殖的危害和处理技术两方面展开阐述。
一、氨氮污染对水产养殖的危害1. 影响水产生长发育水产动物对水质的适应能力相对较弱,水中富集的氨氮会对水产动物的生长发育产生不利影响,严重时还会引起大量的死亡。
研究表明,水中氨氮浓度过高会影响水产动物的呼吸、消化和代谢功能,导致营养不良和生长缓慢。
2. 导致水产养殖疾病水体中氨氮过高容易诱发水产动物的疾病,特别是对于鱼类而言,氨中毒是一种常见的疾病。
鱼类在氨氮浓度过高的水中容易受到细菌和寄生虫的感染,导致疾病的发生和传播,进而影响水产养殖的健康发展。
3. 导致水质恶化氨氮是一种有机物质,在水体中会发生降解反应,产生亚硝酸盐和硝酸盐等,这两种物质都是对水产动物有害的物质。
亚硝酸盐对水产动物的神经系统和呼吸系统有强烈毒性,而硝酸盐也会对水产动物的生长和发育产生不良影响。
二、氨氮污染处理技术分析1. 生物法处理生物法是目前常用的氨氮污染处理方法,其利用微生物将氨氮转化为无害的氮气的过程。
常见的生物法包括厌氧处理和好氧处理两种方式,通过控制水体中氧气浓度和微生物的生长环境,达到降解氨氮的目的。
生物法处理氨氮污染的优点是技术成熟、操作简单,但是需要占用一定的土地和维护成本较高。
2. 化学法处理化学法处理氨氮污染主要是通过加入化学药剂将氨氮转化为无害物质,如硝酸盐和氮气。
常用的化学药剂包括活性炭、氧化铁和硫化铁等,这些化学药剂都能有效吸附和氧化水体中的氨氮,从而达到净化水体的目的。
化学法处理氨氮污染的优点是反应速度快,处理效果明显,但是化学药剂的使用成本较高,且还需要考虑对水体中其他物质的影响。
水环境中氨氮危害和分析方法及常用处理工艺
( H3和铵 盐 ( H 形 式 存 在 的 氮 , 者 的组 成 比决 定 于 水 的 其 中前三种方法为环境保护部的标准方法 。 N ) N 4) 两
纳氏试剂 比色法 : 原理是以游离态的氨或铵离子等形式存 其 p H值和温度 , p 当 H值偏 高时 , 离氨 的比例较 高 , 之 , 氨盐 游 反 则 的比例较高 , 水温则相反。 在的氨氮与纳氏试剂反应生 成黄棕色 络合物 , 该络合物的色度与 水 中氨氮主要来源于生活污水 中含氮有机物受微生物作用的 氨氮的含量成正 比。具有操作简便 , 敏度高等优点, 灵 但水体中的
氮污染的必要环节 。
1 水体 中氨氮 的来源
测定水 中氨氮 的方法有纳氏试剂分光光度 法、 水杨酸一次氯 蒸馏滴定法 、 电极法 和气相分子吸收光谱法 【l 2。 氨氮 (mmo i adnt gn 简称 NH 一 , a na n ioe , r 1 N) 指水 中以游 离氨 酸盐分光光度法 、
明, 氨氮超标现象仍较严重 。所 以认 清氨氮的来源 , 了解其危害 , 3 环境监 测 中氨氦 的分析 方法
准 确 测 试 其 含量 , 并采 取 有 效 的处 理 措 施 成 为 保 护 水 环 境 不 被 氨
测定水 中的氨氮 , 助于评价水体 被污染和“ 有 自净” 状况 。只 要水 中有氨氮 出现 , 则表示水体受到新的污染 , 自净尚未完成。 水体
使 半透膜与 p H玻 璃电 造成两种健康危害uJ长期 饮用对 身体极 为不利 , , 即诱 发高铁 血 水半渗透薄膜 , 内电解液与外部试液隔开 , 极 问有一层很 薄 的液膜 。当水样 中加入 强碱 溶液将 p H提 高 到 红蛋 白症 和产生致癌的亚硝胺。硝酸盐在 胃肠道细 菌作 用下 , 可 1 使铵盐转化为氨 , 生成 的氨 由于扩 散作用而通 过半透膜 还原成亚硝酸 盐 , 硝酸 盐可 与血 红蛋 白结 合形 成高 铁血 红蛋 1 以上 , 亚 ( 和其他离 子则不 能通过 )使 氯化铵 电解质 液膜层 内 N 4= 水 , H 白, 造成缺氧。2 对生态环境的影响。氨氮对水生物起危 害作用 ) 3 的反应 向左移动 , 引起氢 离子浓度 改变 , p 由 H玻 璃 电 的主要是游离氨 , 其毒性 比铵盐 大几 十倍 , 随碱性 的增强 而增 NH +H 并 测得 的电动 势与水样 中氨 大。氨氮毒性 与池 水的 p H值及 水温有 密切关 系 , 一般 情况 ,H 极测得其变化。在恒定 的离子强度下 , p 氮浓度的对 数成一定 的线性关 系。由此 , 可从测得 的电位值 确定 值及水 温愈高 , 毒性愈强 , 对鱼 的危 害类似 于亚硝酸盐 。鱼类 对 水 中氨氮 比较 敏感 , 有急性 和慢性 之分。慢 性氨 氮 中毒危 害为 : 样品中氨氮的含量 。电极法具 有通常 不需要对 水样 进行预处 理 但电极 寿命 和再现性存在一些问题。 摄食降低 , 生长减慢 ; 组织损 伤 , 降低氧在组织 间的输送 ; 鱼和 虾 和范围广等优点 , 均需要与水体进行离子交 换 ( , 钠 钙等 ) 氨氮过 高会增加 鳃的通 , 气相分子吸收光谱 法的原 理是在水 样 中加 入次 溴酸钠氧化 将氨及铵盐氧化成亚硝酸盐 。然后按亚 硝酸盐氮的气相分子 透性 , 损害鳃的离子交换功能 ; 使水生 生物长期 处于应激状态 , 增 剂 , 加动物对疾病 的易感性 , 降低生长速度 ; 降低生殖能力 , 减少怀卵 吸收光谱 法测定水样 中氨氮 的含量 。但水样 中所含 亚硝酸盐对
氨氮、亚硝酸盐和硫化氢在水产养殖中的危害和防治措施
氨氮、亚硝酸盐和硫化氢在水产养殖中的危害和防治措施1、水体中氮的循环在水产养殖水体中氮是水生植物和浮游植物的营养元素。
水体中无机氮以硝酸盐(N03-)、亚硝酸盐(N02一)、氨(NH。
)和铵(NHt+)四种形式存在,绝大多数藻类总是优先利用氨(NH。
)和铵(NHt+),然后再用硝酸盐氮(N037)。
水体中氮的循环可简述如下:影响硝化作用的因子主要有溶解氧和水温,其适宜溶解氧值应大于1毫克/升,在5—6毫克/升时硝化作用可达到一个高峰值。
当水温在5-30。
C范围内,硝化作用的强度可随水温上升而升高。
反硝化作用也称为脱氮作用,是在脱氮菌(反硝化细菌)作用下完成的。
影响反硝化作用的因子主要有溶解氧、PH值和底物浓度。
溶解氧在0.15—0.5毫克/升范围内利于反硝化作用;PH值在7-8间利于反硝化作用;反硝化作用随N03一和N02一浓度升高而升高,最后达饱和速率。
在水产养殖水体中铵(N}I。
+)和硝酸盐(N03’)是微毒或视为无毒,而氨(NH3)和亚硝酸盐(N02-。
)对鱼类是有毒的,在池塘养殖中养殖密度大表现尤为突出,必须加以控制。
2、氨氮2.1氨氮的来源及危害氨氮在养殖水体以氨(NH。
)和铵(NH4+)两种形式存在,前者对鱼类有较强的毒性。
氨具有较高的脂溶性,它通过鳃和皮膜进入鱼体,损伤鳃表皮细胞,使血液和组织中氨的浓度升高,降低血液的载氧能力,使血液PH值升高,从而引起鱼体内多种酶的活力异常变化,反映为机体代谢功能失常或组织机能损伤,使鱼体不能正常反应,严重时由于改变了内脏器官的皮膜通透性,造成渗透调节失调,引起充血,呈现与出血性败血症相似的症状,并降低鱼体的免疫力,影响鱼类的生长。
养殖水体中氨氮的主要来源是水中的残饵、鱼类代谢产物、肥料和水生动植物残骸。
在精养池中人为的大量投饵和施肥,会使池塘中含氮有机物增加,造成水体的污染。
水产养殖中总氮浓度与投饲率及饲料蛋白含量有着直接的关系,其多少主要取决于饲料中蛋自的含量和投饲量。
氨氮的产生
氨氮的产生氨氮是指水体中可溶解态氨和离子态氨(氨盐)所组成的总氮,其中氨是生物分解物的产物,是水体和土壤中的普遍存在的非常重要的化学物质之一。
氨氮是环境中重要的污染物之一,不仅会造成水质污染,而且还会给生态系统带来危害。
下面我们就来了解一下氨氮的产生。
1. 沼气发酵过程中产生的氨氮沼气是指一种由生物质进行发酵所产生的混合气体。
沼气发酵能够利用农业畜禽粪便、作物秸秆等废弃物来产生沼气,并将有害废弃物进行处理、有效利用。
沼气发酵过程中,分解出大量的有机物质,并形成氨氮,通过沼液释放到水中,使得水体中的氨氮浓度升高。
2. 养殖污水中产生的氨氮养殖业是水体中氨氮的主要来源之一。
在养殖过程中,动物的排泄物中含有大量的蛋白质和氮化物,而这些物质在水中被细菌分解后,会产生大量的氨氮。
养殖池中的养殖动物,例如鱼类产生的有机废弃物,可以促进水中氨的生产,造成水体氨氮含量的增加。
自然界中,植物、动物的尸体、粪便和其他有机废弃物都会在降解过程中产生氨氮。
这些有机物质经过微生物的分解作用,会释放出氨,在水中会形成氨氮。
而植物生长的缺乏、阳光较强的干燥年份或气温过高的夏季,水体中的氨氮释放量往往会增加。
4. 化肥的使用中产生的氨氮农业中大量使用化学合成肥料,这些合成肥料中含有大量的氮元素,因此化肥使用是氨氮产生的另一个重要来源。
当化肥施入土壤后,其中的氮可以被植物吸收,或者被土壤微生物分解产生氨氮,而在下雨或灌溉时,氨氮会随着土壤中的水分进入土层,并最终进入地下水和水库中。
因此,化肥的不当使用会导致水体中的氨氮显著增加。
总之,氨氮的产生与人类生产生活密切相关,特别是农业生产和养殖业,因此我们应重视氨氮的污染防治,减少氨氮的产生,实现环境的可持续发展。
氨氮和氮氧化物的来源及危害
氨氮和氮氧化物的来源及危害
(1)氨氮的来源
氨氮主要来源于人和动物的排泄物。
雨水径流以及农用化肥的流失也是氨氮的重要来源。
另外,氨氮还来自化工、冶金、石油化工、油漆颜料、煤气、炼焦、鞣革、化肥等工业废水中。
(2)氨氮对环境的危害
水体中的氨氮是指以氨(NH3)或铵(NH4+)离子形式存在的化合氨。
氨氮是各类型氮中危害影响最大的一种形态,是水体受到污染的标志,其对水生态环境的危害表现在多个方面。
与COD一样,氨氮也是水体中的主要耗氧污染物,氨氮氧化分解消耗水中的溶解氧,使水体发黑发臭。
氨氮中的非离子氨是引起水生生物毒害的主要因子,对水生生物有较大的毒害,其毒性比铵盐大几十倍。
在氧气充足的情况下,氨氮可被微生物氧化为亚硝酸盐氮,进而分解为硝酸盐氮,亚硝酸盐氮与蛋白质结合生成亚硝胺,具有致癌和致畸作用。
同时氨氮是水体中的营养素,可为藻类生长提供营养源,增加水体富营养化发生的几率。
(3)氮氧化物的来源
大气中的氮氧化物主要源于化石燃料的燃烧(如汽车、飞机、内燃机及工业窑炉的燃烧过程)和植物体的焚烧,以及农田土壤和动物排泄物中含氮化合物的转化。
(4)氮氧化物对环境的危害
氮氧化物可刺激肺部,使人较难抵抗感冒之类的呼吸系统疾病,呼吸系统有问题的人士如哮喘病患者,会较易受二氧化氮影响。
对儿童来说,氮氧化物可能会造成肺部发育受损。
汽车尾气中的氮氧化物与氮氢化合物经紫外线照射发生反应形成的有毒烟雾,称为光化学烟雾。
光化学烟雾具有特殊气味,刺激眼睛,伤害植物,并能使大气能见度降低。
另外,氮氧化物与空气中的水反应生成的硝酸和亚硝酸是酸雨的成分。
来源:新疆环保厅。
水产养殖中氨氮和亚硝酸盐氮的危害及治理分析
S h u i c h a n y u y e随着经济的发展和人们生活水平的提高,工业污染、非点源污染、畜禽产业的污水排放、生活污水的排放以及氨氮污染和亚硝酸盐污染的其他原因的增加,水体中的藻类和其他微生物的大量繁殖,形成富营养化污染,其可导致水中溶解氧的过渡消耗致使水产生物无法存活,不仅降低了经济效益,还破坏了生态环境。
水体中的氨氮和硝酸盐具毒性,其对水产养殖产品的产量及品质有一定的影响,严重制约水产养殖业的可持续发展。
特别是近几年高密度工业养殖技术的不断普及,对氨氮污染控制的需求越来越突出。
因此,找寻合理的方法将氨氮和亚硝酸盐氮的危害性降到不具备威胁的范围内,实现水生物的健康生长,成为目前人们研究关注的热点。
一、水产养殖中氨氮与亚硝酸盐氮的危害鱼虾蛋白质的代谢就会产生氨,甲壳类动物的排泄物含有超高的氮,所以氨氮的产生是无法避免的,在水产养殖中如果不能有效对水中氨氮含量进行有效降低,会严重危害鱼虾的正常生长,甚至会让鱼虾身体中的酶产生作用,导致其被毒害;亚硝酸盐氮对水产品的危害在于能破坏鱼虾器官,导致鱼虾难以进行氧气的输送,必须对这些危害因素进行有效预防,保障水产养殖户的劳动资本。
以对虾的危害为例,根据相关专家的研究发现,氨氮对虾的幼体具有毒害的作用,虾会随着不断的增长而增强对氨氮的抵抗力,而虾的幼体则难以承受,在虾的幼体培养中,氨氮会基于LC50的安全浓度为0.093mg/L,EC50的安全浓度则为0.025mg/ L;用亚硝酸盐氮对虾幼体进行实验,斑节对虾自无节幼体变态到仔虾的发育过程,虾的幼体随着成长对亚硝酸盐氮的耐受性不断增加,无节幼体的亚硝酸盐氮基于96h LC50的安全浓度为0.11mg/L左右;仔虾的亚硝酸盐氮基于96h LC50的安全浓度为1.36mg/L左右,由此得出,氨氮与亚硝酸盐会让虾体中的PO、溶菌酶与SOD的活性变低,自由基氧化物会变多,导致虾体的抵抗力衰减,正常生理被破坏。
氨氮超标原因危害及解决办法全套
氨氮超标原因危害及解决办法全套氨氮的来源含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。
含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。
人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。
人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。
随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。
近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。
氮在废水中以有机态氮、氨态氮(NH4 + -N )、硝态氮(N03-N )以及亚硝态氮(N02-N ) 等多种形式存在,而氨态氮是最主要的存在形式之一。
废水中的氨氮是指以游离氨和离子镀形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。
氨氮污染源多,排放量大,并且排放的浓度变化大。
氨氮超标的危害对人体健康的影响氨在自然环境中会进行氨的硝化过程,即有机物的生物分解转化环节,氨化作用将复杂有机物转换为氨氮。
速度较快,硝化作用是在亚硝化菌、硝化菌作用下,在好氧条件下,将氨氮氧化成硝酸盐和亚硝酸盐;反硝化作用是在外界提供有机碳源情况下,由反硝化菌把硝酸盐和和亚硝酸盐还原成氮气。
氨氮在水体中硝化作用的产物硝酸盐和亚硝酸盐对饮用水有很大危害。
硝酸盐和亚硝酸盐浓度高的饮用水可能对人体造成两种健康危害,长期饮用对身体极为不利,即诱发高铁血红蛋白症和产生致癌的亚硝胺。
硝酸盐在胃肠道细菌作用下,可还原成亚硝酸盐,亚硝酸盐可与血红蛋白结合形成高铁血红蛋白,造成缺氧。
对生态环境的影响氨氮对水生物起危害作用的主要是游离氨。
其毒性比钱盐大几十倍,并随碱性的增强而增大。
氨氮毒性与池水的PH值及水温有密切关系,一般情况,PH值与水温愈高,毒性愈强,对鱼的危害类似于亚硝酸盐。
氨氮超标的危害
氨氮的危害与预防措施健康的水产养殖生产,一般不会发生氨氮中毒。
但是由于水产养殖实用技术还没有得到广泛普及,养殖户也没有按照行业操作规范进行操作,常会发生池塘氨氮含量偏高而引起鱼类免疫力和抵抗力下降,生长缓慢,甚至发生急性、慢性中毒死亡等现象的发生。
一、氨氮产生的原因氨氮是由鱼虾蟹的残饵、排泄物、生物尸体和底层有机物等分解的产生。
由于放养数量多,品种单一,饵料得不到充分利用,将残饵、粪便及各种生物尸体等含蛋白质的物质分解,造成含氨氮大量积累在水和池底,将引起氨氮积累过量而超标。
二、氨氮对鱼蟹的危害氨氮是水体中存在的物质,氨氮超标可引起养殖鱼、蟹的生存和生长,轻者导致鱼、蟹生长缓慢,吃食量减弱,引发各种疾病,食用品质差;重者将引起鱼类中毒死亡。
三、预防氨氮积累的措施1、清除池塘中过多的淤泥,干池冰冻和暴晒10-15天,并且让空气与池塘底泥充分接触,使底质有机质充分氧化,矿化成无机盐,为蟹塘中生物提供营养源,降低池塘有机质含量。
2、定期加注新水,水质要符合国家渔业用水标准,如果是虾、蟹池可在池塘中种植伊乐藻、苦草、轮叶黑藻、水花生等水生植物,可有效吸收氨氮等有害物质。
3、放养的密度适宜,搭配比例科学合理。
通过池塘中自然生物和投放的苗种之间的生物链和食物链的关系,来直接或间接地降低或控制氨氮的含量。
4、使用优质优质饲料:饲料营养全面,新鲜适口,易消化吸收,饵料系数低,投饵后残饵少,粪便少,氨氮产生的浓度也就相对的低。
5、使用底层微孔曝气,遵循“三开、二不开”的原则。
一般情况下,适宜的开机时间多为黎明前3-4点钟,因这一时间由于水生植物不能进行光合作用制造氧气,且产生氨氮等有毒物质再增多,也是一天中最多、最集中的时候。
简述氨氮的定义
简述氨氮的定义
氨氮(NH3-N)是指有机氮(N2O)和氨(NH3)的混合物,是自然界中最常见的氮
元素来源之一。
氨氮通常存在于废水、废气、垃圾等环境污染源中,是一种有害污染物。
氨氮是蛋白质合成的必需元素之一,但摄入过多的氨氮也会对人体造成危害。
氨氮可以通过工业废水、农业废水、城市污水等途径排放到水体中,导致水质恶化、水生生物死亡,对生态环境造成破坏。
为了减少氨氮污染,人们可以采取一系列措施,如采用高效过滤器、絮凝剂、生物处理等技术,降低废水中的氨氮含量;加强环境监测和监管,规范企业排放行为;推广生态农业,减少农业废水的排放等。
此外,氨氮也可以通过一些生物处理方法转化为无害的氮化合物,如氨化还
原法、生物膜反应器法等。
这些方法不仅减少了氨氮污染,还可以提高生产效率和资源利用率。
氨氮是一种有害污染物,但通过技术和管理的创新,可以减少其对人类和环
境的危害。
因此,我们需要加强环境保护意识,采取有效的措施,共同保护我们的生态环境。
氨氮污染对水产养殖的危害及处理技术分析
氨氮污染对水产养殖的危害及处理技术分析随着养殖规模的不断扩大,水产养殖所形成的污染问题也日益引起人们的关注。
其中,氨氮污染是水产养殖中重要的化学污染物之一,如果不加以处理,会对水产养殖产生严重的危害。
本文将从氨氮污染的危害和处理技术两个方面进行分析。
一、氨氮污染的危害氨氮污染是水产养殖中常见的一种污染问题,主要是由于水产养殖废水中饲料残渣、粪便、尿液等有机物分解释放出来的氨氮导致的。
而氨氮的高浓度会对水产养殖产生以下几种严重的危害:(一) 影响水生生物的健康氨氮的浓度一旦超过了一定的范围,就会对水生生物的健康造成严重的威胁,导致鱼类的呼吸困难和死亡。
其主要原因是氨氮可以直接进入到水生生物的体内,对其呼吸系统和神经系统造成影响,让其难以正常呼吸和运动。
(二) 促进藻类的生长氨氮也会促进水中藻类的生长繁殖,一旦藻类过多,就会对水的透明度和氧气水平产生影响,导致水中的氧含量降低,从而对水生生物产生危害。
(三) 降低水生生物的产量和质量由于氨氮的存在,水中的氧气含量会降低,从而影响了水中的微生物群落的成长,影响了水产养殖的产量和质量。
二、处理技术分析为了控制氨氮的浓度,保证水产养殖的健康和发展,各种处理技术已经应用于水产养殖废水的处理。
下面是几种常用的处理技术。
(一) 生物净化法生物净化法是一种比较常见的氨氮处理技术,其主要原理是将一些可以降解有机物和氨氮的好氧或厌氧微生物应用于处理废水。
有机物与氨氮最终转化为微生物的生物质和二氧化碳等物质,从而实现氨氮的降解。
这种方法操作简单,处理效果好,成本低,尤其在小型场地使用更为节约。
(二) 化学沉淀法化学沉淀法是一种将废水中的氨氮通过添加一定的化学试剂来沉淀和处理的方法,常用的化学试剂有氯化铁、聚合氯化铝等。
这种方法的处理效果非常好,可以快速地降低废水中的氨氮浓度,但是在实际操作过程中需要耗费较多的化学试剂,并可能导致废水中产生的化学物质会对水生生物产生影响。
氨氮在水产鱼养殖中的产生危害及控制25页PPT
56、死去何所道,托体同山阿。 57、春秋多佳日,登高赋新诗。 58、种豆南山下,草盛豆苗稀。晨兴 理荒秽 ,带月 荷锄归 。道狭 草木长 ,夕露 沾我衣 。衣沾 不足惜 ,但使 愿无违 。 59、相见无杂言,但道桑麻长。 6吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改善人类生活品质 成就世界水产品牌
Page 6
二、氨氮的危害
影响氨氮毒性的因素: TAN:TAN(总氨氮)中非离子氨具有很强的毒性。 pH值:每增加一单位,NH3所占的比例约增加10倍。 温度:在pH值7.8-8.2内,温度每上升10度,NH3的比例 增加一倍。 溶氧:较高溶氧有助于降低氨氮毒性 。 盐度:盐度上升氨氮的毒性升高。
相应温度和pH值下分子氨(NH3)占总氨氮的比例(%)
改善人类生活品质 成就世界水产品牌
Page 7
三、氨氮的消除途径
(1)硝化和脱氮。氨(NH3)被亚硝化细菌氧化成亚硝酸, 亚硝酸再被硝化细菌氧化成硝酸,称为硝化作用,硝化作 用需要消耗氧气,当水中溶氧浓度低于1~2毫克/升时硝 化作用速度明显降低。在水中溶氧缺乏的情况下,反硝化 细菌能将硝酸还原为亚硝酸、次硝酸、羟胺或氮时,这种 过程称为硝酸还原,当形成的气态氮作为代谢物释放并从 系统中流失时,就称之为脱氮作用。
改善人类生活品质 成就世界水产品生活品质 成就世界水产品牌
Page 12
改善人类生活品质 成就世界水产品牌
Page 10
四、氨氮的控制方法
(4)加强投饲管理。选用优质蛋白原料,使用具有更 高氨基酸消化率的饲料,避免过量投喂,提高饲料的能 量、蛋白比
(5)在池塘中定期施用水体用微生态制剂 ,如光合细 菌。
(6)其他措施。合理的放养密度,定期检测水质指标, 施用沸石粉吸附氨氮(1g沸石可除去8.5mg总氨氮), 多开 增氧机,使用磷肥来刺激藻类生长,吸收氨氮, 控制水体 pH在7.6-8.5之间,不让池塘的pH值过高
改善人类生活品质 成就世界水产品牌
Page 5
二、氨氮的危害
(2)氨氮对水生动物的危害:有急性和慢性之分。
慢性氨氮中毒危害表现为:
摄食降低,生长减慢; 组织损伤,降低氧在组织间的输送; 鱼和虾均需要与水体进行离子交换(钠,钙等),氨氮过高会增加鳃的通透性, 损害鳃的离子交换功能; 使水生生物长期处于应激状态,增加动物对疾病的易感性,降低生长速度,常 常会发生细菌性疾病如烂鳃、肝胆综合症、败血症等,而且难以控制,给养殖造 成很大损失; 降低生殖能力,减少怀卵量,降低卵的存活力,延迟产卵繁殖。
(1)清淤、干塘。每年养殖结束后,进行清淤、干塘, 曝晒池底,使用生石灰、强氯精、漂白粉等对池底彻底消 毒,可去除氨氮,增强水体对pH值的缓冲能力,保持水体 微碱性。 (2)加换新水。换水是最快速、有效的途径,要求加入 的新水水质良好,新水的温度、盐度等尽可能与原来的池 水相近。 (3)增加池塘中的溶氧。在池塘中使用池塘底部增氧剂, 可保持池塘中的溶氧充足,加快硝化反应,降低氨氮的毒 性。
改善人类生活品质 成就世界水产品牌
Page 4
二、氨氮的危害
1)氨氮的中毒机理: 氨氮以两种形式存在于水中,一种是氨(NH3),又叫非离 子氨,脂溶性,对水生生物有毒。另一种是铵(NH4+), 又叫离子氨,对水生生物无毒。当氨(NH3)通过鳃进入水 生生物体内时,会直接增加水生生物氨氮排泄的负担,氨 氮在血液中的浓度升高,血液pH值随之相应上升,水生 生物体内的多种酶活性受到抑制,并可降低血液的输氧能 力,破坏鳃表皮组织,降低血液的携氧能力,导致氧气和 废物交换不畅而窒息。此外,水中氨浓度高还会影响水对 水生生物的渗透性,降低内部离子浓度。
氨氮形成、危害及防治
汇报人:黄斌杰
改善人类生活品质 成就世界水产品牌
Page 1
主要内容
一、氨氮的形成 二、氨氮的危害 三、氨氮的消除途径 四、氨氮的控制方法
改善人类生活品质 成就世界水产品牌
Page 2
一、氨氮的形成
改善人类生活品质 成就世界水产品牌
Page 3
一、氨氮的形成
池塘中的氨氮主要来源于三种途径: (1)水生动物的排泄物、施加的肥料、残饵、动植物尸 体含有大量蛋白质,被池塘中的微生物菌分解后形成氨基 酸,再进一步分解成氨氮。 (2)当氧气不足时,水体发生反硝化反应,亚硝酸盐、 硝酸盐在反硝化细菌的作用下分解而产生氨氮。 (3)鱼类可通过鳃和尿液、甲壳类能通过鳃和触角腺向 水中排出体内的氨氮,以免发生体内氨中毒。
(4)矿化及回到生物体内。所谓矿化,即部分氨氮以 有机物的形式存在于池底土壤中,这些有机物质分解 后又回到水中,分解速度依赖于温度、pH值、溶氧以 及有机物质的数量和质量。当水中氨氮浓度高时,氨 (NH3不是NH4+)能通过鳃进入水生生物体内。
改善人类生活品质 成就世界水产品牌
Page 9
四、氨氮的控制方法
(2)藻类和植物的吸收。因为藻类和水生植物能利用铵 (NH4+) 合成氨基酸,所以藻类对氨氮的吸收是池塘中氨 氮去除的主要方法,冬天藻类的减少和死亡会使水中的氨 氮含量明显上升。
改善人类生活品质 成就世界水产品牌
Page 8
三、氨氮的消除途径
(3)挥发及底泥吸收。在池塘中氨氮浓度高、pH值高, 采取增氧措施,在有风浪、搅动水流等情况下,都会 有利于氨氮的挥发。底泥土壤中的阴离子可以结合铵 离子(NH4+),在拉网或发生类似的引起底部搅动的操 作时,池底沉积物会暂时悬浮在水中,铵离子(NH4+) 就会被释放出来。