(完整版)导数在不等式证明中的应用开题报告

合集下载

导数论文:谈导数在不等式问题中的应用

导数论文:谈导数在不等式问题中的应用

导数论文:谈导数在不等式问题中的应用摘要:导数是我们解决有关函数问题的有力工具,导数与函数的最(极)值问题、函数的单调性问题联系比较紧密,是较多知识点的交汇处,甚至在数列证明、不等式证明(恒成立)问题中都有着比较重要的位置,尤其在解决不等式的问题中,若能及时构造出适当的函数,再利用导数的方法研究函数,最后得到所要结论,更会有事半功倍之功效。

关键词:导数;构造;函数;不等式
一、导数在不等式证明问题中的应用
不等式的证明常与函数、导数等内容综合,特别是利用导数证明不等式,体现了导数的工具性。

在高中数学学习以及历届高考试题中,我们常遇到一些不等式的证明,很难找到切入点。

这时我们不妨转换角度,从所证不等式的结构和特点出发,构造一个新的函数,借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明。

用导数方法证明不等式,步骤一般是:构造可导函数→研究所构造函数的单调性或最值→转化为不等关系→得出
结论。

一般地,若f(x)、g(x)在[a,b]连续,在(a,b)上可导,要证明f(x)g(x),x∈(a,b),可以构造函数f(x)=f(x)-g(x),如果f′(x)0,即证明了f(x)>g
(x)。

导数在不等式证明中的应用

导数在不等式证明中的应用

导数在不等式证明中的应用
【摘要】导数概念的产生有着直觉的起源,与曲线的切线和运动质点的速度有密切的关系导数用于描述函数变化率,刻画函数的因变量随自变量变化的快慢程度。

在数学教学中,将数学问题系列化,能够有效地提高学生解决数学问题的能力。

【关键词】导数函数不等式中值定理
一、利用导数的定义证明不等式
定义1:设函数在点某0的某一领域内有定义,在点某0处给自变量以增量(点某0+仍在该领域内),相应地,函数有增量
如果当时比值的极限
存在,则称此极限值为函数在点处的导数,记作,,.并称函数在点处可导.
二、利用中值定理证明不等式
定理1:(拉格朗日中值定理)若函数满足条件:(1)在闭区间上连续;
(2)在开区间内可导,则在区间内至少存在一点,使得.定理2:(柯西中值定理)设函数和满足条件:(1)、在闭区间上连续;(2)、在开区间可导,且,则至少存在一点,使.
三、积分第二中值定理
四、用泰勒公式(Taylor公式)证明不等式
定理5:(泰勒定理)若在包含的某个区间上具有阶导数,则对于此区间内任一点,在此区间内至少存在一点,使得
通常为拉格朗日余项。

从上面的讨论中我们可以得知,导数在证明不等式中的重要性.导数在证明不等式中的应用在历年研究生入学考试及各种《高等数学》竞赛中经常出现。

一些不等式的证明及应用开题报告

一些不等式的证明及应用开题报告

开题报告题目一些不等式的证明及应用学院数学与统计学院班级09数应6班姓名刘忠颖专业数学与应用数学学号21指导教师董芳芳提交日期2013年3月21日天水师范学院毕业论文(设计)开题报告1、文献研究法根据导数在不等式证明中的应用这一研究目的,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究的问题。

2、个案研究法对导数的性质及其应用加以调查分析,弄清其特点及其应用过程的3、探索性研究法用已知导数的性质及其应用等相关信息,进行探索、创新,进而对导数在不等式证明中的应用进行总结。

4 、经验总结法通过对导数性质及其应用的学习,进行归纳与分析,使之系统化、理论化,总结。

七、可行性论证1、通过查资料进行论证2、通过和老师同学的交谈进行论证3、通过分析总结进行论证八、参考文献【1】华东师范大学.数学分析[M].高等教育出版社【2】樊启斌.数学综合复习解题指南[M].武汉:武汉大学出版社【3】刘晓玲.不等式证明中辅助函数的构造一[J] .邯郸师专学报【4】华东师范大学数学系数学分析(第三版)上册[M].高等教育出版社【5】周晓农.导数在不等式证明中的应用[J].金筑大学学报【6】陈秋华.也谈利用凸函数证明初等不等式[J].高等数学研究【7】陶伟高等数学习题集[M].北京国家行政学院出版社【8】曾捷数学分析同步辅导及习题全解[M].中国矿业大学出版社目录摘要 1引言 1一、利用导数的定义证明不等式 1二、利用微分中值定理证明不等式 31.使用拉格朗日中值定理证明不等式 32.使用柯西中值定理证明不等式 4三、利用函数的单调性证明不等 41.直接构造函数,再运用函数的单调性来证明不等式 52.先将不等式变形,然后再构造函数并来证明不等式 5四、利用泰勒公式证明不等式 6五、利用函数的最值(极值)证明不等式 7六、利用函数的凹凸性质证明不等式 8小结9致谢9参考文献9导数在不等式证明中的应用摘要导数是研究函数性质的重要工具之一,也是中学数学中最基本和最重要的内容之一, 利用导数的方法证明不等式是不等式证明中重要的组成部分。

不等式证明中导数的应用

不等式证明中导数的应用

不等式证明中导数的应用
数学中,不等式是一门研究空间区域的重要概念,也是数学证明的基础工具,有益于理解它们在广泛的应用场景中的表现。

本文将介绍不等式证明中导数的应用,帮助读者更好地理解不等式的重要性。

首先,要讨论不等式证明中的导数,首先需要明确它的定义。

在一般意义上,导数是一种数学工具,用于描述一个函数的变化趋势,反映函数值的“变化率”。

在子多多义中,它也可以用来表示非线性函数的切线在某一点处的斜率。

在不等式证明中,有许多不同的应用场景,导数也是解决问题的有力工具。

比如,在函数最值问题中,利用导数可以在重要的点处求出局部最值;同时,在逼近函数极值问题中,也可以根据满足函数等式的连续性与微分的概念,近似求出函数的极值。

另一方面,导函数也可以用于求解最小值问题,通过利用最小点处导数为0的特点,找到函数的最小值。

解决最小值问题时,还可以结合估计法和凸性等概念,优化求解效果。

此外,对于给定条件下的连续函数,也可以利用微分法,基于函数的导数求解最大值或最小值。

以及,可以基于拓扑概念,运用导数求出极值点。

在总结以上应用之外,对于复杂的不等式证明,导数的应用也是非常有用的。

例如,有时可以同时运用集合论和导数,找出一组函数的最小值,来解决复杂的不等式证明问题。

从上述可以看出,在不等式证明中的导数的应用极其广泛,能够
有效解决各种计算问题。

但同时也要提醒大家,在使用这些数学工具时要小心,确保计算正确,避免误解或忽略重要细节。

综上所述,导数是不等式证明中一种非常重要的数学工具,并且已经成功地帮助解决了许多数学难题,为数学证明提供了重要的指导。

“导数”在不等式证明中的运用

“导数”在不等式证明中的运用

“导数”在不等式证明中的运用导数是近几年高中教材中新增加的一个新的教学内容,是许多传统教材所排斥的课题。

其实作为教材的修订、增减自有教育专家的道理。

就我自身的教学实践而言,对于导数我认为它的引入,是高中数学学习的一次革命性实践,特别在函数与不等式的学习中,它成了必不少的锐利武器。

在此,我就不等式的证明谈一下导数的妙用。

“不等式”一章的学习是中学数学中的重点,但在学习中,不等式的证明是一个难点,也是我们绕道而行的地方。

如今引入了“导数”,不等式的证明便迎刃而解了。

一、化不等式为f(x)>0(或f(x)<0)型的证明例1、证明当x>1时,不等式2x>3-成立:分析:欲证2x>3-,只要证明2x-3+>0。

设f(x)=2x-3+,则把证明原不等式的问题转化为证明函数在区间(1,+∞)内大于零的问题。

证明:设f(x)=2x-3+。

当x>1时,f’(x)= ->0,所以f(x)是增函数。

又f(I)=0,因此,2x-3+>0,即2x>3-。

说明:化原不等式为f(x)>形式证明,是利用导数证明不等式时常采用的一种形式。

从上例的证明不难看出,采用这种形式证明不等式的主要步骤是:(1)利用导数性质判别f(x)在给定区间内的单调性,(2)为保证f(x)>0,考查单调函数f(x)与左端点处函数值f (a)(或右端点处函数值f(b))的大小关系,这两条在证明时是缺一不可的。

一般地,若f(x)在[a,b]上连续,在(a,b)内可导,当f’(x)>0且f(a)=0或f’(x)<0且f(b)=0时,则对于一切x∈[a,b]可得f(x)>0。

二、化不等式为f(x)>m(或f(x)<m,m≠0)型的证明某些不等式化为f(x)>m的形式也可以得到证明,其步骤与前面类似。

例2、证明当0<x<时,不等式x<sinx成立。

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用

导数在证明不等式中的有关应用1.最值的判定导数可以帮助我们判断一个函数在其中一区间的最值。

具体来说,如果在一个区间内,函数的导数恒为零或者导数的正负性在其中一点发生变化,那么在该区间内函数的最值就会出现。

例如,考虑函数$f(x)=x^2-4x+3$。

我们可以通过求取导数$f'(x)=2x-4$,并令其等于零,得到$x=2$。

通过检查导数的符号,可以确认在$x<2$时导数为负,$x>2$时导数为正。

因此,在$x<2$时,函数的导数为负,说明函数在这个区间上是递减的;而在$x>2$时,函数的导数为正,说明函数在这个区间上是递增的。

因此,根据导数的正负性和最值判定原则,我们可以得出结论:函数$f(x)$在区间$(-\infty,2)$上单调递减,在区间$(2,+\infty)$上单调递增。

进一步,我们可以求得函数的最值,即当$x=2$时,函数取得最小值。

因此,我们得到了函数$f(x)$的最值以及最值的取值点。

2.利用导数证明不等式的成立导数可以被用来证明各种类型的不等式。

其中一个常见的方法是使用导数的定义和可微函数的局部性质。

考虑函数$f(x)$在闭区间$[a,b]$上有定义且在开区间$(a,b)$内可微。

如果在$(a,b)$内存在一个点$c$,使得$f'(c)>0$,那么基于导数的定义,我们可以得出结论:对于任意的$x \in (a,b)$,都有$f'(x)>0$。

这意味着$f(x)$在$(a,b)$内是单调递增的。

我们可以进一步得出结论:对于任意的$x \in [a,b]$,都有$f'(x) \geq f'(a)$。

因此,我们可以断定$f(x)$在闭区间$[a,b]$上是凸函数。

根据凸函数的性质,我们可以利用函数的凸性证明各种类型的不等式。

例如,我们可以证明对于任意的$x>0$和$y>0$,成立如下的不等式:$\frac{1}{x}+\frac{1}{y} \geq \frac{4}{x+y}$。

导数在不等式证明中的应用

导数在不等式证明中的应用

导数在不等式证明中的应用在数学中,导数是一种评估函数变化速度的工具。

它可以用于证明不等式,特别是在优化问题中非常有用。

本文将探讨导数在不等式证明中的应用,并通过例子来说明其重要性。

在证明不等式时,我们通常需要使用比较函数值的差异来推断函数的相对值。

导数的主要作用是帮助我们研究函数的增减性质,进而推导出不等式。

首先,我们来看一个简单的例子。

假设我们需要证明当$x>0$时,函数$f(x) = \ln(x)$是递增的。

我们可以通过求导来证明。

首先,求导$f'(x)$:$$f'(x) = \frac{1}{x}$$我们可以发现,$f'(x)>0$对于$x>0$始终成立。

这意味着函数$f(x)$在该区间是递增的。

因此,我们可以得出结论:当$x>0$时,函数$f(x) = \ln(x)$是递增的。

这个例子展示了导数在证明函数性质中的应用。

接下来,我们将探讨导数在不等式证明中的更广泛应用。

一种常见的应用是利用导数研究函数的凹凸性质。

如果一个函数在一些区间上是凹的,那么它的导数在该区间上是递增的。

反之,如果函数在一些区间上是凸的,那么它的导数在该区间上是递减的。

考虑一个例子:证明函数$f(x)=x^2$在$x>0$时是凹的。

首先,求导$f'(x)$:$$f'(x)=2x$$然后,求二阶导数$f''(x)$:$$f''(x)=2$$我们可以看到$f''(x)>0$,对于$x>0$恒成立。

这意味着函数$f(x)$在该区间上是凹的。

因此,我们可以得出结论:当$x>0$时,函数$f(x)=x^2$是凹的。

这个例子显示了利用导数来证明函数的凹凸性质的方法。

凹凸性质在不等式证明中非常有用,因为它可以帮助我们推断函数值的大小关系。

另一个应用是利用导数求解优化问题中的最值。

如果一个函数在一些点处取得极小值,那么它的导数在该点处为零或不存在。

不等式证明的开题报告

不等式证明的开题报告

不等式证明的开题报告不等式证明的开题报告一、引言不等式是数学中重要的概念之一,它在解决实际问题和推导数学结论中起着重要的作用。

本开题报告将探讨不等式证明的方法和技巧,以及在解决实际问题中的应用。

二、不等式证明的基本方法1. 数学归纳法数学归纳法是一种常用的证明不等式的方法。

它基于以下两个步骤:首先证明当n=1时不等式成立;然后假设当n=k时不等式成立,通过推理证明当n=k+1时不等式也成立。

这种方法常用于证明与自然数相关的不等式,例如证明n(n+1)/2 > n。

2. 反证法反证法是一种常用的证明不等式的方法。

它基于以下思路:假设不等式不成立,通过推理推导出矛盾的结论,从而证明原不等式成立。

这种方法常用于证明与实数相关的不等式,例如证明√2是无理数。

3. 代入法代入法是一种常用的证明不等式的方法。

它基于以下思路:将不等式中的变量用特定的值代入,通过计算得出结果,从而证明不等式成立。

这种方法常用于证明与特定数值相关的不等式,例如证明当x>0时,x^2 > 0。

三、不等式证明的技巧1. 利用基本不等式基本不等式指的是诸如AM-GM不等式、柯西-施瓦茨不等式等常用的不等式。

在证明不等式时,可以利用这些基本不等式进行变形和推导,从而得到所要证明的结果。

2. 利用等价不等式等价不等式指的是与所要证明的不等式具有相同结构但不等号方向相反的不等式。

在证明不等式时,可以通过将所要证明的不等式转化为等价不等式,然后利用已知的结论进行推导,最终得到所要证明的结果。

3. 利用对称性质有些不等式具有对称性质,即交换不等式两边的变量不会改变不等式的成立性。

在证明这类不等式时,可以利用对称性质进行变形和推导,从而得到所要证明的结果。

四、不等式证明的实际应用不等式证明不仅仅是数学理论的研究,还具有广泛的实际应用。

以下是几个不等式在实际问题中的应用示例:1. 经济学中的应用在经济学中,不等式的证明可以用于分析市场供求关系、收入分配等问题。

开题报告

开题报告

二、研究目的
• 不等式证明是数学学习中的重要 内容之一,其常用的方法有:比 较法,分析法,综合法,归纳法, 特殊不等式法。导数作为微积分 学的主要内容,利用其证明不等 式是一种行之有效的好方法,它 能将某些不等式的证明化难为易, 迎刃而解。
The end,thank you!
elements
开题报告
导数在不等式中的应用
班级:数本一班 姓名:1111
主要有以下步骤
一. 主要研究方向 二. 研究目的 三. 研究方法
ቤተ መጻሕፍቲ ባይዱ
一.主要研究方向
导数在不等式证明中的应用
• • • • • • • • •
利用导数的定义证明不等式 利用中值定理证明不等式 利用函数的单调性证明不等式 利用导数的几何意义证明不等式 利用函数的最值性(极值性)证明不等式 利用泰勒公式证明不等式 利用函数的凹凸性证明不等式 利用导数的不等性证明不等式 利用偏导数证明不等式

不等式证明的开题报告

不等式证明的开题报告

不等式证明的开题报告引言不等式是数学中常见的一个概念,它描述了数值之间的大小关系。

不等式证明是数学研究中重要的一部分,对于提高数学推理能力和解决实际问题有着重要的意义。

本文将介绍不等式证明的背景和意义,并提出本次研究的目标和方法。

背景和意义不等式证明在数学中有着广泛的应用,它不仅可以用于解决各类数学问题,还可以用于解决实际生活中的一些问题。

不等式证明的研究可以帮助我们更好地理解数学的本质和规律,提高数学推理能力,培养逻辑思维和解决问题的能力。

目标和方法本次研究的目标是探索不等式证明的方法和技巧,以提高我们解决不等式问题的能力。

我们将运用数学知识和推理能力来证明一些常见的不等式,并通过实例分析和逻辑思考来总结出一些通用的证明方法和技巧。

具体的研究方法包括以下几个步骤: 1. 研究不等式的基本性质和定义,理解不等式的意义和作用; 2. 研究不等式的基本运算规则和推导方法,掌握不等式的变化规律; 3. 探索不等式证明的常用方法和技巧,分析一些典型的不等式证明过程;4. 运用所学的知识和技巧,证明一些常见的不等式,总结出一些通用的证明方法;5. 分析实例,考察不等式证明在实际问题中的应用;6. 总结研究成果,提出进一步的研究方向和展望。

预期结果通过本次研究,我们预期能够掌握不等式证明的基本方法和技巧,提高解决不等式问题的能力。

具体的预期结果包括: 1. 理解不等式的基本性质和定义,掌握不等式的意义和作用; 2. 掌握不等式的基本运算规则和推导方法,能够灵活运用不等式的变化规律; 3. 掌握不等式证明的常用方法和技巧,能够分析和证明一些常见的不等式; 4. 能够将不等式证明应用到实际问题中,解决实际生活中的不等式问题; 5. 总结出一些通用的证明方法和技巧,为进一步的研究提供基础和参考。

结论不等式证明作为数学研究中的重要部分,对于提高数学推理能力和解决实际问题有着重要的意义。

本次研究旨在探索不等式证明的方法和技巧,通过理论分析和实例分析,总结出一些通用的证明方法和技巧。

导数在不等式证明中的应用研究开题报告(1)

导数在不等式证明中的应用研究开题报告(1)

南昌工程学院2013 级毕业(设计)论文开题报告理学系(院)09信息与计算科学专业题目导数在不等式证明中的应用研究学生姓名张积磊班级09信息与计算科学学号**********指导教师谢杰华日期2012 年12 月20 日南昌工程学院教务处订制一、选题的依据及课题的意义(一)选题的依据在如今初,高等教育中,利用导数证明不等式应用广泛。

利用导数证明不等式,就是利用不等式与函数之间的紧密联系,将不等式的部分或全部投射到函数上,直接或等价变形后,结合不等式的结构特征,构造相应的函数,通过导数运算判断出函数的单调性,或利用导数运算来求函不等式的证明是数学学习中的重要内容之一其常用方法有比较法、分析法、综合法、归纳法、特殊不等式法等。

导数作为微积分学的基本内容利用其证明不等式是一种行之有效的好方法。

它能将某些不等式的证明化难为易、迎刃而解在函数的导数可以用极限概念定义导数在数学中的应用非常广泛涉及到各个方面。

应用导数处理问题提高学生的思维能力突出了通法淡化了技巧利用导数分析函数的性态是一种重要手段。

在分析函数的图象、判断函数的单调性、求解函数的最值等方面利用导数可使复杂问题简单化、程序化。

导数的应用涉及到很多内容因此在学习导数这部分内容时不仅要掌握导数的概念、求导公式和求导法则还要学会导数在函数单调性和最值、曲线的切线等问题上的应用。

同时导数是我们研究数学的一个有力工具,有助于我们对数学的深入学习。

不等式的证明,在初等数学里已介绍过若干种方法,如比较法、分析法、综合法、放缩法、反证法、数学归纳法和构造法等.然而有些不等式用初等数学方法是很难证明的,但用导数证明却相对容易些,利用导数证明不等式,通常需要构造辅助函数,把不等式的证明转化为利用导数来研究函数的性态.对于这种解决问题的思路和方法,在今后的数学学习中将会运用得更多,所以,应该引起我们的足够重视.(二)研究该课题的意义导数是研究函数性质的一种重要工具。

高中数学 导数在不等式中的应用(解析版)

高中数学 导数在不等式中的应用(解析版)

第15讲-导数在不等式中的应用一、经典例题考点一 构造函数证明不等式 【例1】 已知函数f (x )=1-x -1ex,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e2.证明 (1)由题意得g ′(x )=x -1x(x >0),当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0, 即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数. 所以g (x )≥g (1)=1,得证. (2)由f (x )=1-x -1ex ,得f ′(x )=x -2ex, 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, 即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数, 所以f (x )≥f (2)=1-1e2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),② 且①②等号不同时取得, 所以(x -ln x )f (x )>1-1e2.规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ). 2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式 【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值; (2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e2x成立.(1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞). 当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2. 由f ′(x )=0,得x =1e2.当x ∈⎝⎛⎭⎪⎫0,1e2时,f ′(x )<0;当x >1e2时,f ′(x )>0. 所以f (x )在⎝ ⎛⎭⎪⎫0,1e2上单调递减,在⎝ ⎛⎭⎪⎫1e2,+∞上单调递增.因此f (x )在x =1e2处取得最小值,即f (x )min =f ⎝ ⎛⎭⎪⎫1e2=-1e2,但f (x )在(0,+∞)上无最大值.(2)证明 当x >0时,ln x +1>1ex +1-2e2x 等价于x (ln x +1)>x ex +1-2e2.由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e2,当且仅当x =1e2时取等号.设G (x )=x ex +1-2e2,x ∈(0,+∞),则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e2,当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e2x.规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题 角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin xx(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎪⎫0,π2上的单调性;(2)若f (x )<a 在区间⎝ ⎛⎭⎪⎫0,π2上恒成立,求实数a 的最小值.解 (1)f ′(x )=xcos x -sin xx2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎪⎫0,π2,则g ′(x )=-x sin x ,显然,当x ∈⎝ ⎛⎭⎪⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减,且g (0)=0.从而g (x )在区间⎝ ⎛⎭⎪⎫0,π2上恒小于零,所以f ′(x )在区间⎝⎛⎭⎪⎫0,π2上恒小于零,所以函数f (x )在区间⎝⎛⎭⎪⎫0,π2上单调递减.(2)不等式f (x )<a ,x ∈⎝⎛⎭⎪⎫0,π2恒成立,即sin x -ax <0恒成立.令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎪⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎪⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎪⎫0,π2上存在唯一解x 0,当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝ ⎛⎭⎪⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾. 故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ). (1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围. 解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞). (2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x2-2xx -ln x在区间[1,e]上有解. 令h (x )=x2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2.因为x ∈[1,e],所以x +2>2≥2ln x , 所以h ′(x )≥0,h (x )在[1,e]上单调递增, 所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,e(e -2)e -1.规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ; a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min . [方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则 (1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0; ∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0; ∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、 课时作业1.函数f (x )的定义域为,,对任意,,则的解集为( )A.B.C.D.【答案】C【解析】设,则,所以为减函数,又,所以根据单调性可知,即的解集是.2.下列三个数:,大小顺序正确的是()A.B.C.D.【答案】A【解析】构造函数,因为对一切恒成立,所以函数在上是减函数,从而有,即,故选A.3.设函数在R上存在导数,对任意的有,且在上. 若,则实数的范围是()A.B.C.D.【答案】A【解析】令,则,故为偶函数,在,上,,且,故在,上单调递增,根据偶函数的对称性可知,在上单调递减,由,可得,即,则,可转化为,解可得,,4.若关于x的不等式恒成立,则实数a的取值范围为()A.B.C.D.【答案】D【解析】因为关于x的不等式恒成立,所以恒成立,令,,当时,,当时,,所以当时,取得最大值2.又因为,所以故实数a的取值范围为.5.已知定义域为的函数满足(为函数的导函数),则不等式的解集为()A.B.C.D.【答案】D【解析】令,则,定义域为的函数满足,,函数在上单调递增,当时,由,知,当时,显然不等式成立.当时,则,所以,整理得,即,所以,,得,则;当时,则,所以,整理得,即,所以,,得,则.综上所述,原不等式的解集为.6.定义在上的函数,则满足的取值范围是()A.B.C.D.【答案】D【解析】因为为偶函数,且在上恒成立,所以在上单调递增,在上单调递减,且图象关轴对称,则由)得,解得;故选D.7.已知函数,若存在,使得,则实数的取值范围是()A.B.C.(﹣∞,3)D.【答案】B【解析】∵,,∴,∴,∵存在,使得,即∴,设,∴∴,当时,解得:,当时,即时,函数单调递增,当时,即时,函数单调递减,因为,所以∴,8.已知是可导的函数,且对于恒成立,则()A.,B.,C.,D.,【答案】D【解析】构造函数,则,所以,函数为上的减函数.对于A选项,,,则,,所以,,,A选项错误;对于B选项,,则,所以,,B选项错误;对于C选项,,则,所以,,C选项错误;对于D选项,,则,所以,,D选项正确.9.已知函数是定义在上的奇函数.当时,,则不等式的解集为()A.B.C.D.【答案】C【解析】令,,当,时,,,即函数单调递增.又,时,,是定义在,上的奇函数,是定义在,上的偶函数.不等式,即,即,,①,又,故②,由①②得不等式的解集是.10.关于函数,有下述四个结论:①是周期函数.②在上单调递增.③的值域为.④若函数有且仅有两个不同的零点,则.其中所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】C【解析】当时,,所以,令得:或,所以当时,,递增,当时,,递减,且,则的图象如图所示:由图可知:不是周期函数,故①错误;在上单调递增,故②正确;的值域为,故③错误;若函数有且仅有两个不同的零点,即函数与函数有两个交点,所以由图可知:,故④正确.综上,②④正确.11.已知函数,且,则实数的取值范围是()A.B.C.D.【答案】C【解析】构造函数,则函数的定义域为.当时,,,函数在区间上单调递增,则,所以,函数在区间上单调递减;当时,,则,所以,函数在区间上单调递减.,所以,函数在定义域上单调递减.由,得,即,所以,,解得.因此,实数的取值范围是.12.如果关于的不等式在上恒成立,则实数的取值范围为()A.B.C.D.【答案】D【解析】当时,不等式成立.当时,不等式在上恒成立等价于恒成立.令则.又,令,解得所以在上单调递增,在上单调递减, 单调递增.又因为.所以.所以.13.函数,若存在唯一整数使得,则的取值范围是().A.B.C.D.【答案】B【解析】,令,则,当;当,在单调递增,在单调递减,且,如图所示:恒过定点,且,,,,存在唯一整数使得,当时,存在唯一的整数使得命题成立,14.若对于任意的,都有,则的最大值为()A.B.C.1 D.【答案】C【解析】由已知有,两边同时除以,化简有,而,构造函数,令令,所以函数在上为增函数,在上为减函数,由对于恒成立,即在为增函数,则,故的最大值为1,选C. 15.已知为常数,函数有两个极值点,(),则()A.,B.,C.,D.,【答案】C【解析】因为,令,由题意可得有两个解,即函数有且只有两个零点,即在上的唯一极值不等于0,又由,①当时,单调递增,因此至多有一个零点,不符合题意;②当时,令,解得,因为,,函数单调递增;,,函数单调递减,所以是函数的极大值点,则,即,所以,所以,即,故当时,的两个根,且,又,所以,从而可知函数在区间上递减,在区间上递增,在区间上递减,所以,故选C.16.对于任意正实数,都有,则实数的取值范围为()A.B.C.D.【答案】A【解析】,则,设,,,则,,恒成立,导函数单调递减,故时,,函数单调递增;当时,,函数单调递减.故,故,故.17.(多选题)已知是可导的函数,且,对于恒成立,则下列不等关系正确的是()A.,B.,C.,D.,【答案】AC【解析】设,所以,因为,所以,所以在R上是减函数,所以,,,即,,,18.(多选题)若满足,对任意正实数,下面不等式恒成立的是()A.B.C.D.【答案】BD【解析】设,,因为,所以,在R上是增函数,因为是正实数,所以,所以,因为,大小不确定,故A错误,因为,所以,即,故B正确.因为,所以,因为,大小不确定.故C错误.,因为,所以,故D正确.19.(多选题)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是()A.B.C.D.【答案】BCD【解析】令函数,因为,,为奇函数,当时,,在上单调递减,在上单调递减.存在,得,,即,;,为函数的一个零点;当时,,函数在时单调递减,由选项知,取,又,要使在时有一个零点,只需使,解得,的取值范围为,20.定义在上的函数满足,,则不等式的解集为______.【答案】【解析】由,设,则.故函数在上单调递增,又,故的解集为,即的解集为.21.已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)+xf'(x)>0,且f(3)=0,则不等式xf(x)>0的解集是_____.【答案】(﹣∞,﹣3)∪(3,+∞)【解析】令,当x>0时,∴x∈(0,+∞)上,函数单调递增.,∴.∵函数是定义在R上的奇函数,∴函数是定义在R上的偶函数.由,即,∴|x|>3,解得x>3,或x<﹣3.∴不等式的解集是.故答案为:.22.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,,则f(x)>2x+4的解集为____.【答案】(-1,+∞)【解析】构造函数F(x)=f(x)-2x,,所以即求F(x)>4=F(-1)的解集,而F(x)在R上是单调递增函数,所以x>-1,填.23.设函数,.(1)当时,判断函数的单调性;(2)当时,恒成立,求实数的取值范围.【解析】(1)当时,所以.令,,由,可得.当时,,单调递减,当时,,单调递增,当时,,即,,则在是增函数;(2)解:设,所以.令,则.①当时,,在上单调递增,.,在上单调递增,则,结论成立;②当时,由,可得,当时,,单调递减,又,时,恒成立,即.时,单调递减,此时,结论不成立.综上,即为所求.24.已知函数.(1)若函数在上恰有两个零点,求实数的取值范围.(2)记函数,设是函数的两个极值点,若,且恒成立,求实数的最大值.【解析】(1)因为,∴函数,令,则,令得,,列表得:12单调递减极小值单调递增∴当时,的极小值为,又,.∵函数在上恰有两个零点,∴即,解得.(2),∴,令得,∵,是的极值点,∴,,∴,∵,∴解得:,.∴,.令,则,∴在上单调递减;∴当时,,根据恒成立,可得,∴的最大值为.25.已知函数,,曲线在点处的切线与轴垂直;(1)求的值;(2)求证:【解析】(1)曲线在点处的切线与轴垂直,该切线的斜率(2)由(1)可得只需证设令,得当时,,当时,即函数在上单调递减,在上单调递增。

(完整版)导数证明不等式题型全

(完整版)导数证明不等式题型全

导数题型一:证明不等式不等式的证明问题是中学数学教学的一个难点,传统证明不等式的方法技巧性强,多数学生不易想到,并且各类不等式的证明没有通性通法.随着新教材中引入导数,这为我们处理不等式的证明问题又提供了一条新的途径,并且在近年高考题中使用导数证明不等式也时有出现,但现行教材对这一问题没有展开研究,使得学生对这一简便方法并不了解.利用导数证明不等式思路清晰,方法简捷,操作性强,易被学生掌握。

下面介绍利用单调性、极值、最值证明不等式的基本思路,并通过构造辅助函数,证明一些不等式。

一.构造形似函数型例1.求证下列不等式(1))1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x (相减)(2)πx x 2sin > )2,0(π∈x (相除两边同除以x 得π2sin >x x )(3)x x x x -<-tan sin )2,0(π∈x(4)已知:)0(∞+∈x ,求证xx x x 11ln 11<+<+;(换元:设x x t 1+=)(5)已知函数()ln(1)f x x x =+-,1x >-,证明:11ln(1)1x x x -≤+≤+巩固练习:1.证明1>x 时,不等式xx 132-> 2.0≠x ,证明:x e x +>13.0>x 时,求证:)1ln(22x x x +<- 4.证明: ).11(,32)1ln(32<<-+-≤+x x x x x 5.证明: 331an x x x t +>,)2,0(π∈x .二、需要多次求导例2.当)1,0(∈x 时,证明:22)1(ln )1(x x x <++例3.求证:x >0时,211x 2x e x ->+例4.设函数f (x )=ln x +2a x 2-(a +1)x (a >0,a 为常数).若a =1,证明:当x >1时,f (x )<12x 2-21x x +三、作辅助函数型例5.已知:a 、b 为实数,且b >a >e ,其中e 为自然对数的底,求证:a b >b a .例6.已知函数f(x)=ln(1+x)-x,g(x)=xlnx,(i)求函数f(x)的最大值;(ii)设0<a<b,证明0<g(a)+g(b)-2g(2b a +)<(b-a)ln2.巩固练习6、证明 (1) )0(ln b a a ab a bb ab <<-<<-(2)0,0>>b a ,证明b a b a b a b a ≤++)2((3)若2021π<<<x x ,证明:1212tan tan x x x x >四、同增与不同增例7.证明:对任意21ln 0,1e e x x x x x ---><+.例8.已知函数1()1,()ln x x f x g x x x e-=-=-证明:21(ln )()1x x f x e ->-.五、极值点偏移(理科)例9.已知函数.如果且证明.例10.已知函数()(1)e x f x x x -=-∈R ,,其中e 是自然对数的底数.若12x x ≠,且12()()f x f x =,求证:12 4.x x +>六、放缩法例11.已知:2≥∈n N n 且,求证:11211ln 13121-+++<<+++n n n 。

高数利用导数证明不等式及导数的应用

高数利用导数证明不等式及导数的应用

an n2
a n a n1 ln a
a n1 (n 1)2
x x2 x3 ln(1 x) 0 f (x) 0 x x2 x3 ln(1 x)
23
23
20 利用函数的单调性 当要证的不等式两端是给定的两个表达式,或不等式一端 或两端含f(x),且知道f’(x)>0(或f”(x)>0)则常需要用单调性证. 解::为证不等式,只要证 例2 当x>0时,证明不等式
ln a n(n 1)
n 1 n
其中 ( 1 , 1)
n 1 n
1
an
1
a n1
a
ln a(1
1
),
n n 1
1
1
1
1
a n a a n1
an
a
a n1
n(n 1) n(n 1) n(n 1)
a 1, 1 1
n
n 1
1
1
1
1
1
1
an n2
a n(n 1)
a n1 (n 1)2
其辅助函数为
f
( x)
2
2 (1 x)3
2[1
(1
1 x)3
]
0
(x 0)
f (x) 1 x x 2 1 1 x
f (x) 1 2x 1 , (1 x) 2
f (0) 0 f (0) 0
f (x) x x 2 x3 ln(1 x) f (x) 0 f (0) 23
一. 证明不等式 二. 证明方程根的个数 三. 导数的应用
第五讲 利用导数 证明不等式
单击此处添加正文具体内容
一.利用导数证明不等式
利用导数证明不等式是常考的题型.主要的方法有:

导数在解决与不等式有关问题时的作用

导数在解决与不等式有关问题时的作用

导数在解决与不等式有关问题时的作用摘要:导数是研究函数性质的一种重要工具。

例如求函数的单调区间、求最大(小)值、求函数的值域等等。

而在处理与不等式有关的综合性问题时往往需要利用函数的性质。

因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。

下面具体讨论导数在解决与不等式有关的问题时的作用。

关键词:导数不等式作用一、利用导数证明不等式1.利用导数得出函数单调性来证明不等式我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减)。

因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的,即把证明不等式转化为证明函数的单调性。

可直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立。

例:x>0时,求证x-ln(1+x)<0。

证明:设f(x)=x--ln(1+x)(x>0),则f`(x)=-。

∵x>0,∴f`(x)<0;故f(x)在(0,+∞)上递减,所以x>0时,f(x)<f (0)=0,即x-ln(1+x)<0成立。

2.利用导数求出函数的最值(或值域)后,再证明不等式导数的另一个作用是求函数的最值,因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值,由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立,从而把证明不等式问题转化为函数求最值问题。

例:求证:n∈N*,n≥3时,2n>2n+1。

证明:要证原式,即需证:2n-2n-1>0,n≥3时成立。

设f(x)=2x-2x-1(x≥3),则f`(x)=2xln2-2(x≥3)。

∵x≥3,∴f`(x)≥23ln3-2>0,∴f(x)在[3,+∞)上是增函数,∴f(x)的最小值为f(3)=23-2×3-1=1>0。

导数开题报告

导数开题报告

毕业论文选题报告
研究方法、技术路线、实验方案、可行性分析:
查阅相关资料,看看导数在对中学数学的一些应用,对一些题目由导数来解的方法和思路,使一些题目简单化。

判断函数的单调性,求函数极值或最值,解决几何问题等相关数学的应用,导数是我们研究中学数学的一个有力工具,可以解决许多问题,使我们更加牢固的掌握中学数学的内容,例如:常用的不等式的证明方法有换元法、分析法、综合法、归纳法等基本方法,但对于某些含有对数或指数的超越不等式运用上述方法却无所适从,若采用导数方法证明这些不等式,则会取得理想的效果,将在其中找出一些思路,分析与综合以及概括等方法。

导数的应用涉及到很多内容,学习导数这部分内容时,不仅要掌握导数的概念、求导公式和求导法则,还要学会导数在函数单调性和最值、曲线的切线等问题上的应用。

同时,导数是我们研究中学数学的一个有力工具,它使各个章节的内容联系的更加紧密,有助于我们对中学数学的深入学习。

数学思想方法是数学新课程的重要目的,是发展学生智力的关键所在,是培养学生
数学创新意识的基础,也是一个人数学素养的重要组成部分,在大力倡导新课程改革的今天如何在常规教学中,渗透数学思想是数学教师的主要任务。

导数是高中数学的重要知识,是研究函数的重要工具和手段,由于它是高中数学与大学数学分析的衔接点,受到广大师生的高度重视,也是数学思想体现最丰富的知识点,有关高次方程或非常规方程的根的分布问题也是应用导数研究的重要内容,渗透数学思想方法分析研究导数的作用。

我将从高中教材入手,从易到难,在一些题目中突出导数的作用,和导数相关的一些微积分知识,是解决实际问题的强有力的数学工具,运用导数的有关知识研究函数的性质,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4、为结合学科竞赛;
5、模拟仿真;
6、其它
题目来源――A.指导教师出题;B.学生自定、自拟
开题报告内容:(调研资料的准备与总结,研究目的、要求、思路与预期成果;任务完成的阶段内容及时间安排;完成毕业设计(论文、创作)所具备的条件因素等。

一研究内容:主要研究导数在不等式证明中的一些应用,其次研究导数的一些性质和证明不等式的一些方法;
二研究目的:不等式证明是数学学习中的重要内容之一,其常用的方法有:比较法, 分析法,综合法,归纳法,特殊不等式法。

导数作为微积分学的主要内容,利用其证明不等式是一种行之有效的好方法,它能将某些不等式的证明化难为易,迎刃而解。

三研究方法:1.参考大量的相关文献及相关论文,通过中国知识网,中国学术期刊网等收集所需资料
2. 借助学过的专业知识,尤其是数学分析方面的知识和理论,微积分理论,深入分析题目,提出提纲,确定论文思路。

3. 整理导数在不等式证明中各种应用,并归纳总结。

4. 对各种应用进行比对,分析,并进行深入研究
四预期成果及形式:通过导数在不等式证明中的各种应用进行深入分析研究,并形成5000字论文。

五时间安排:1――3周,对论题有大致的了解,通过查阅资料和请教老师确定论文的方向并完成开题报告。

4 ――5周,查阅资料,知识回顾复习,以确定主要努力的方向及目标
6 ----- 12周,整理相关资料,认真思索,研究细节并形成论文。

13 ―― 14周,完成毕业论文,进行毕业答辩。

学生签名: 指导教师审核签名: 日
期:。

相关文档
最新文档