因式分解中考题汇总完整版

合集下载

初三因式分解题20道

初三因式分解题20道

20 道初三因式分解题题目一:x² - 9解析:这是平方差公式的形式,x² - 9 = (x + 3)(x - 3)。

题目二:4x² - 25解析:同样是平方差公式,4x² - 25 = (2x + 5)(2x - 5)。

题目三:x² - 4x + 4解析:完全平方公式,x² - 4x + 4 = (x - 2)²。

题目四:9x² + 6x + 1解析:完全平方公式,9x² + 6x + 1 = (3x + 1)²。

题目五:x² + 5x + 6解析:采用十字相乘法,x² + 5x + 6 = (x + 2)(x + 3)。

题目六:x² - 7x + 12解析:十字相乘法,x² - 7x + 12 = (x - 3)(x - 4)。

题目七:2x² - 5x - 3解析:十字相乘法,2x² - 5x - 3 = (2x + 1)(x - 3)。

题目八:3x² + 4x - 4解析:十字相乘法,3x² + 4x - 4 = (3x - 2)(x + 2)。

题目九:x³ - 27解析:立方差公式,x³ - 27 = (x - 3)(x² + 3x + 9)。

题目十:8x³ + 27解析:立方和公式,8x³ + 27 = (2x + 3)(4x² - 6x + 9)。

题目十一:x² - 6x + 9 - y²解析:先将前三项用完全平方公式变形为(x - 3)²,再用平方差公式,(x - 3)² - y² = (x - 3 + y)(x - 3 - y)。

题目十二:4x² - 12xy + 9y²解析:完全平方公式,4x² - 12xy + 9y² = (2x - 3y)²。

2024年全国各省市数学中考真题汇编 专题4因式分解(28题)含详解

2024年全国各省市数学中考真题汇编 专题4因式分解(28题)含详解

专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .92.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.5.(2024·浙江·中考真题)因式分解:27a a -=6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.8.(2024·北京·中考真题)分解因式:325x x -=.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.11.(2024·山东·中考真题)因式分解:22x y xy +=.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.13.(2024·四川广安·中考真题)分解因式:39a a -=.14.(2024·四川自贡·中考真题)分解因式:23x x -=.15.(2024·四川内江·中考真题)分解因式:25m m -=.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.18.(2024·陕西省·中考真题)分解因式:2a ab -=.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.20.(2024·四川宜宾·中考真题)分解因式:222m -=.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.23.(2024·福建省·中考真题)因式分解:x 2+x =.24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=25.(2024·江西省·中考真题)因式分解:22a a +=.三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()214cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .2.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.【答案】()()222x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.【答案】()()222m x y x y +-【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.5.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.【答案】()()322m m m +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据多项式的结构特征,先提公因式再利用平方差公式因式分解即可得到答案,综合应用提公因式法因式分解及公式法因式分解是解决问题的关键.【详解】解:3312m m -()234m m =-()()322m m m =+-,故答案为:()()322m m m +-.8.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.【答案】6-【分析】本题考查了因式分解的应用,先把2212a b -=的左边分解因式,再把2a b -=-代入即可求出a b +的值.【详解】解:∵2212a b -=,∴()()12a b a b +-=,∵2a b -=-,∴6a b +=-.故答案为:6-.11.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +13.(2024·四川广安·中考真题)分解因式:39a a -=.【答案】()()33a a a +-【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a -=+-,故答案为:()()33a a a +-.14.(2024·四川自贡·中考真题)分解因式:23x x -=.【答案】()3x x -【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.(2024·四川内江·中考真题)分解因式:25m m -=.【答案】()5m m -【分析】原式提取公因式即可得到结果.【详解】原式=()5m m -.故答案为:()5m m -.【点睛】本题考查了提公因式法.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.【答案】()()311a m m +-【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.【答案】()21a -/()21a -+【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.18.(2024·陕西省·中考真题)分解因式:2a ab -=.【答案】a (a ﹣b ).【详解】解:2a ab -=a (a ﹣b ).故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).20.(2024·四川宜宾·中考真题)分解因式:222m -=.【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.【答案】3(x ﹣3)2【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.23.(2024·福建省·中考真题)因式分解:x 2+x =.【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).25.(2024·江西省·中考真题)因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()214cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b c m n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.【答案】(1)证明见解析;(2),m n 不可能都为整数,理由见解析.。

专题03 因式分解(共20题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题03 因式分解(共20题)(解析版)-2023年中考数学真题分项汇编(全国通用)

专题03因式分解(20题)一、单选题1.(2023·河北·统考中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除【答案】B【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式.【详解】解:22(23)4k k +-(232)(232)k k k k =+++-3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +-的值总能被3整除,故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b -=-+通过因式分解,可以把多项式分解成若干个整式乘积的形式.2.(2023·甘肃兰州·统考中考真题)计算:255a a a -=-()A .5a -B .5a +C .5D .a【答案】D【分析】分子分解因式,再约分得到结果.【详解】解:255a aa --()55a a a -=-a =,故选:D .【点睛】本题考查了约分,掌握提公因式法分解因式是解题的关键.二、填空题3.(2023·山东东营·统考中考真题)因式分解:22363ma mab mb -+=.【答案】()23m a b -122124mx mx -=⎧∴⎨-=⎩或122222mx mx -=⎧⎨-=⎩或122421mx mx -=⎧⎨-=⎩,1236mx mx =⎧∴⎨=⎩或1244mx mx =⎧⎨=⎩或1263mx mx =⎧⎨=⎩,当1236mx mx =⎧⎨=⎩时,1m =时,123,6x x ==;3m =时,121,2x x ==,故()12,x x 为(3,6),(1,2),共2个;当1244mx mx =⎧⎨=⎩时,1m =时,124,4x x ==;2m =时,122,2x x ==,4m =时,121,1x x ==故()12,x x 为(4,4),(2,2),(1,1),共3个;当1263mx mx =⎧⎨=⎩时,1m =时,126,3x x ==;3m =时,122,1x x ==,故()12,x x 为(6,3),(2,1),共2个;综上所述:共有2327++=个.故答案为:7.【点睛】本题考查了整式方程的代入求值、整式方程的整数解,因式分解的应用,及分类讨论的思想方法.本题的关键及难点是运用分类讨论的思想方法解题.6.(2023·江苏无锡·统考中考真题)分解因式:244x x -+=.【答案】()22x -/()22x -【分析】利用完全平方公式进行因式分解即可.【详解】解:244x x -+=()22x -;故答案为:()22x -.【点睛】本题考查因式分解.熟练掌握完全平方公式法因式分解,是解题的关键.7.(2023·湖北恩施·统考中考真题)因式分解:()21x x -+=.【答案】()21x -/()21x -【分析】利用完全平方公式进行因式分解即可.【详解】解:()()2221211x x x x x -+=-+=-;故答案为a (x+2y )(x ﹣2y ).【点睛】本题考查了提公因式法与公式法分解因式,熟练掌握平方差公式的结构特征是解本题的关键.12.(2023·吉林长春·统考中考真题)分解因式:21a -=.【答案】()()11a a +-.【分析】利用平方差公式分解因式即可得到答案【详解】解:()()2111a a a -=+-.故答案为:()()11a a +-【点睛】本题考查的是利用平方差公式分解因式,掌握利用平方差公式分解因式是解题的关键.13.(2023·贵州·统考中考真题)因式分解:24x -=.【答案】(+2)(-2)x x 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-14.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.【答案】42【分析】首先提取公因式,将已知整体代入求出即可.【详解】22a b ab +()ab a b =+76=⨯42=.故答案为:42.【点睛】此题考查了求代数式的值,提公因式法因式分解,整体思想的应用,解题的关键是掌握以上知识点.15.(2023·黑龙江绥化·统考中考真题)因式分解:2x xy xz yz +--=.【答案】()()x y x z +-【分析】先分组,然后根据提公因式法,因式分解即可求解.【详解】解:2x xy xz yz +--=()()()()x x y z x y x y x z +-+=+-,故答案为:()()x y x z +-.8=;故答案为8.【点睛】本题主要考查因式分解及整体思想,熟练掌握利用整体思维及因式分解求解整式的值.19.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为.【答案】2a【分析】根据确定公因式的确定方法:系数取最大公约数;字母取公共字母;字母指数取最低次的,即可解答.【详解】解:根据确定公因式的方法,可得22a 与4ab 的公因式为2a ,故答案为:2a .【点睛】本题考查了公因式的确定,掌握确定公因式的方法是解题的关键.20.(2023·湖南张家界·统考中考真题)因式分解:22x y xy y ++=.【答案】()21+y x 【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:2222(21)(1)x y xy y y x x y x ++=++=+,故答案为:2(1)y x +.【点睛】题目主要考查因式分解的方法,熟练掌握提公因式法及公式法是解题关键.。

中考数学总复习 因式分解 专题训练(含答案)

中考数学总复习 因式分解 专题训练(含答案)

2020年中考数学总复习因式分解专题训练一、单选题1.下列变形是因式分解的是( ) A .22(2)x x x x +=+B .222(1)1x x x +=+-C .22221x x x x ⎛⎫+=+⎪⎝⎭D .22(1)x x x x x +=++2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形3.把(a 2+1)2-4a 2分解因式得( ) A .(a 2+1-4a )2 B .(a 2+1+2a )(a 2+1-2a ) C .(a +1)2(a -1)2D .(a 2-1)2 4.把多项式a 2﹣4a 分解因式,结果正确的是( ) A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)5.下列等式中,从左到右的变形是因式分解的是( ). A .2323623x y x y =⋅B .ax - ay -1 = a (x - y ) -1C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .29x - = (x + 3)(x - 3)6.下列各式中,能用完全平方公式分解因式的多项式的个数为( ). ①x 2-10x + 25;①4x 2+ 4x -1;①9x 2y 2- 6xy +1;①214x x -+;①42144x x -+. A .1个B .2个C .3个D .4个7.下列因式分解:①()()()()22224a b a b a b a b a +++-+-=;①()()()22412a b a b a b +-+-=+-;①()4222211x x x -+=-;①()422244 41x y x y x y x -=-.正确的式子有( )A .1个B .2个C .3个D .4个8.下列各选项中因式分解正确的是( ) A .()2211x x -=-B .()32222a a a aa -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-9.将下列多项式分解因式,结果中不含因式(x +1)的是( ) A .x 2-1 B .x (x -3)-(3-x ) C .x 2-2x +1D .x 2+2x +110.下列从左到右的变形属于因式分解的是( ) A .(x +1)(x -1)=x 2-1 B .m 2-2m -3=m(m -2)-3 C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3)11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )A .1B .-1C .-8D .18-12.下列等式从左到右的变形属于因式分解的是( ) A .()()2224x x x +-=-B .623xy x y =gC .()()23441x x x x --=-+D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭二、填空题13.分解因式:222x -= _________.14.分解因式:32a ab -=_________.15.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________. 16.若x +y =1,xy =-7,则x 2y +xy 2=_____________. 17.分解因式:(2a+b )2﹣(a+2b )2= .18.已知a 、b 、c 是①ABC 的三条边,且2281252a b a b +=+-,其中c 是①ABC 中最短的边长,则c 的取值范围是________.19.已知a ,b ,c 为三角形的三边,且满足a 2c 2-b 2c 2=a 4-b 4,那么它的形状是_______. 20.分解因式:a 2b+4ab+4b=______.三、解答题21.(知识情境)通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >.把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是______________;(拓展探究)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为+a b 的正方体,被如图所示的分割线分成8块.图3(2)用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:_________________________________________________________________; (3)已知4a b +=,2ab =,利用上面的恒等式求33+a b 的值. 22.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因数及m 的值. 解:设另一个因式为()x n +,由题意,得()()243x x m x x n -+=++,化简、整理,得()2433x x m x n x n -+=+++,于是有343n m n +=-⎧⎨=⎩解得217m n =-⎧⎨=-⎩,∴另一个因式为()7x -,m 的值为21-.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +-有一个因式是()4x +,求另一个因式及k 的值.23.观察:22213-=;2222432110-+-=;22222265432121-+-+-=.探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)24.材料1:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.例如:()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可称为分解因式.材料2:只含有一个未知数,且未知数的最高次数是2的整式方程称作一元二次方程.一元二次方程的般形式是:20ax bx c ++=(其中a ,b ,c 为常数且0a ≠).“转化”是一种重要的数学思想方法,我们可以利用因式分解把部分一元二次方程转化为一元一次方程求解.例如解方程;240x -=24(2)(2)x x x -=+-Q()()220x x ∴+-=20x ∴+=或20x -=∴原方程的解是12x =-,22x =①原方程的解是12x =-,22x =又如解方程:2210x x -+=2221(1)x x x -+=-Q()210x ∴-=10x ∴-=∴原方程的解是121x x ==请阅读以上材料回答以下问题:(1)若22(2)(2)x x m x n x -+=+-,则m =_______;n =_______;(2)请将下列多项式因式分解:22a a -=_______,2244x xy y -+=________;(3)在平面直角坐标系中,已知点()2,1P m m -,)Qn ,其中m 是一元二次方程()22(3)134m m m ---=的解,n 为任意实数,求PQ 长度的最小值.参考答案1.A2.C3.C4.A5.D6.C7.B8.D9.C10.D11.A12.C 13.2(x+1)(x -1) 14.()()a a b a b +- 15.15和17; 16.﹣717.3(a+b )(a ﹣b ). 18.24c <<19.直角三角形或等腰三角形或等腰直角三角形. 20.b (a+2)221.(1)a 2-b 2=(a+b)(a -b)(2)(a +b )3=a 3+3a 2b +3ab 2+b 3(3)40 22.另一个因式为()25x -,k 的值为20. 23.(1)36;(2)83n -;(3)210π24.(1)6m =-,3n =;(2)(2)a a -,2(2)x y -;(3)3.。

中考分解因式练习题及答案

中考分解因式练习题及答案

中考分解因式练习题及答案一. 选择题1. 下列哪个表达式不能被分解为因式?A. x^2-4B. x^2+6x+9C. x^2-9D. x^2+x+12. 以下哪个分解因式是正确的?A. 4x^2-9=(2x+3)(2x-3)B. x^3-1=(x-1)(x^2+x+1)C. x^4-16=(x^2-4)(x^2+4)D. 2x^2+6x+4=2(x^2+3x+2)3. 如果a和b是方程x^2+px+q=0的根,那么以下哪个表达式是正确的?A. pq=a+bB. a+b=-pC. ab=qD. ab=p二. 填空题1. 将下列表达式分解因式:x^3-1=______。

2. 如果一个二次方程的根是2和-3,那么这个方程可以表示为x^2+______+______=0。

3. 将下列表达式分解因式:a^3+b^3=(a+b)(_____+_____)。

三. 计算题1. 计算并简化下列表达式:(2x+3)^2-(2x-3)^2。

2. 给定方程x^2-5x+6=0,找出x的值。

3. 证明:对于任意实数a和b,(a+b)^3=a^3+3a^2b+3ab^2+b^3。

四. 应用题1. 一个长方形的长是2x+3,宽是x-1,求这个长方形的面积的表达式,并将其分解因式。

2. 一个数的平方比它的两倍多5,设这个数为x,求x的值。

3. 一个长方体的长宽高分别是a+2,a+1,a,求这个长方体的体积的表达式,并将其分解因式。

五. 综合题1. 已知一个多项式f(x)=x^3-6x^2+11x-6,求f(x+1)的表达式,并将其分解因式。

2. 一个二次方程的根的和是5,根的积是6,求这个二次方程。

3. 一个多项式g(x)=x^4-4x^2+4,求g(x)的根,并证明g(x)可以分解为两个二次多项式的乘积。

答案:一. 选择题1. D2. B3. B二. 填空题1. (x-1)(x^2+x+1)2. 3, -23. a^2-b^2, b^2-a^2三. 计算题1. 原式=(2x+3+2x-3)(2x+3-2x+3)=12x2. x=2或x=33. 证明略四. 应用题1. 面积表达式为(2x+3)(x-1)=2x^2+x-3,分解因式为(2x-1)(x+3)2. 设这个数为x,x^2-2x-5=0,解得x=1+√6或x=1-√63. 体积表达式为(a+2)(a+1)a=a(a^2+3a+2),分解因式为a(a+1)(a+2)五. 综合题1. f(x+1)=(x+1)^3-6(x+1)^2+11(x+1)-6,分解因式为(x-1)(x^2+x-6)2. 设二次方程为x^2+px+q=0,由题意得-p=5,q=6,所以二次方程为x^2-5x+6=03. g(x)的根为±√2,±√2i,分解因式为(x^2-2)(x^2+2)。

因式分解中考题型汇总

因式分解中考题型汇总

因式分解中考题型汇总题型一:直接提公因式1. 因式分解:xy -y =2.分解因式:2x x +=.3. 分解因式:24_________.x x -=4. 分解因式:2a 2-4a= .5.(因式分解:2x 3-x 2=______________.6.分解因式:ax+ay=.7.分解因式:24_________.x x -=8.分解因式:23x x +=.题型二:直接用公式平方差公式:))((22b a b a b a -+=-完全平方公式:222)(b ab a b a ++=+222)(b ab a b a +-=-1. 分解因式:225x -=.2. 分解因式:24x -=______.3. 因式分解:21a -=,4. 分解因式:x 2-9=______.5.因式分解:229x y -=_______________.6.分解因式:=-142x ____________________.7.分解因式:41242++x x =. 8. (2011山东威海)分解因式:2168()()x y x y --+-=.题型三:先提公因式,再套平方差或者完全平方公式。

A :先提后套平方差1.分解因式:822-x = .2因式分解:x 3-x =.3.分解因式:24_________.x x -=4.分解因式:2218x -= ______________5.分解因式:9a -ab 2=.6. 因式分解:a 3-a =____7.因式分解:x 3-9x =8、分解因式8a 2-2=_________________.9.因式分解:x 3y 2-x 5=.B :先提后套完全平方1.分解因式:22x y xy y -+=________________.2.因式分解3222x x y xy -+=3. 因式分解:a 2b+2ab+b =4因式分解3222x x y xy -+=.5. 因式分解:x x x 4423+-=6. 因式分解:2a 2-4a +2= ______ .分解因式:32214a ab ab -+-=。

中考数学专题复习:因式分解

中考数学专题复习:因式分解

中考数学专题复习:因式分解一、单项选择题(共6小题)1.下列从左到右的变形是因式分解的是()A.(x-a)(x+a)=x2-a2B.4a2+4a+1=4a(a+1)+1 C.(a+b)2=a2+2ab+b2D.x2-4y2=(x-2y)(x+2y) 2.下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)2 3.已知x-y=2,xy=3,则xy2-x2y的值为()A.5B.6C.-6D.12 4.下列因式分解正确的是()A.a(a-b)-b(a-b)=(a-b)(a+b)B.a2-9b2=(a-3b)2C.a2+4ab+4b2=(a+2b)2D.a2-ab+a=a(a-b)5.已知a-b=2,则a2-b2-4b的值为()A.2B.4C.6D.86.若4x2+(k-1)x+9能用完全平方公式因式分解,则k的值为()A.±6B.±12C.-13或11D.13或-11二、填空题(共4小题)7.分解因式:4-4m2=__________.8.因式分解-a3+2a2-a=__________.9.若x2+ax+4=(x-2)2,则a=__________.10.若a+b=2,ab=2,则12a3b+a2b2+12ab3的值是__________.三、解答题(共6小题)11.将下列各式因式分解:(1)a4-16;(2)-mp2+4mp-4m;(3)(x-3)x2+9(3-x);(4)(m2+2m)2+2(m2+2m)+1.12.已知b2-4b+a2+10a+29=0,求3a+20222⎪⎭⎫⎝⎛b的值。

13.如图,你能用若干个边长为a的小正方形与长、宽分别为a,b的小长方形拼成一个长方形ABCD吗?若能,请画出示意图,再写出表示长方形ABCD面积的一个多项式,并将其因式分解。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。

初中数学因式分解100题及答案

初中数学因式分解100题及答案

初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型精选第一组:基础题1、a²b+2ab+b2、2a²-4a+23、16-8(m-n)+(m-n)²4、a²(p-q)-p+q5、a(ab+bc+ac)-abc【答案】1、a²b+2ab+b=b(a²+2a+1)=b(a+1)²2、2a²-4a+2=2(a²-2a+1)=2(a-1)²3、16-8(m-n)+(m-n)²然后运用完全平方公式=4²-2*4*(m-n)+(m-n)²=[4-(m-n)] ²=(4-m+n) ²4、a²(p-q)-p+q=a²(p-q)-(p-q)=(p-q)(a²-1)=(p-q)(a+1)(a-1)5、a(ab+bc+ac)-abc=a[(ab+bc+ac)-bc]=a(ab+bc+ac-bc)bc与-bc 抵消=a(ab+ac)提取公因式a=a²(b+c)第二组:提升题6、(x-y-1)²-(y- x-1)²7、a3b-ab38、b4-14b²+19、x4+x²+2ax+1﹣a²10、a5+a+1【答案】6、(x-y-1)²-(y- x-1)²用平方差公式=[(x-y-1)+(y-x-1)][(x-y-1)-(y-x-1)]去括号,合并同类项=(-2)(2x-2y)提取2= -4(x-y)7、a3b-ab3提取公因式ab=ab(a²-b²)用平方差公式=ab(a+b)(a-b)8、b4-14b²+1将-14b²拆分为:+2b²-16b²=b4+2b²-16b²+1将-16b²移到最后=b4+2b²+1-16b²将前三项结合在一起=(b4+2b²+1)-16b²=( b²+1)²-(4b)²用平方差公式=[( b²+1)+4b][( b²+1)-4b] =( b²+4b+1)( b²-4b+1)9、x4+x²+2ax+1﹣a²将+x²拆分为:+2x²- x²=x4+2x²- x² +2ax+1﹣a²将x4、+2x²、+1结合,将-x²、+2ax、﹣a²结合=(x4+2x²+1)+(-x²+2ax﹣a²)提取-1=( x²+1)² -(x²-2ax+a²)=( x²+1)²-( x-a)²用平方差公式=[(x²+1)+(x-a)][(x²+1)-(x-a)]=(x²+x-a+1)(x²-x+a+1)10、a5+a+1在式子中添加:-a²+a²=a5 - a²+ a²+a+1将前两项结合,后面三项结合=(a5-a²)+(a²+a+1)提取公因式a²=a²(a3-1)+(a²+a+1)用立方差公式=a²(a-1)(a²+a+1)+(a²+a+1)提取公因式(a²+a+1)=(a²+a+1)[a²(a-1)+1]=(a²+a+1)(a3-a²+1)第三组:进阶题11、x4-2y4-2x3y+xy312、(ac-bd)²+(bc+ad)²13、x²(y-z)+y²(z-x)+z²(x-y)14、x²-4ax+8ab-4b²15、xy² +4xz -xz²-4x【答案】11、x4-2y4-2x3y+xy3x4与xy3结合,-2y4与-2x3y结合=(x4+xy3)+(-2y4-2x3y)x-2y,=x(x3+y3)-2y(x3+y3)提取公因式(x3+y3)=(x3+y3)(x-2y)=(x+y)(x2-xy+y2)(x-2y)12、(ac-bd)²+(bc+ad)²去括号展开= a²c² - 2abcd + b²d²+b²c² +2abcd + a²d²- 2abcd与+2abcd 抵消=a²c² + b²d² +b²c² + a²d²a²c²与b²c²结合,b²d²与a²d²结合=(a²c²+b²c²)+( b²d²+a²d²)c², d ²,=c²(a²+b²)+d²(a²+b²)提取公因式(a²+b²)=(a²+b²)(c²+d²)13、x²(y-z)+y²(z-x)+z²(x-y)=x²(y-z)+y²z -y²x +z²x -z²yy²z与-z²y结合,z²x 与-y²x=x²(y-z)+(y²z -z²y)+(z²x-y²x)提取公因式zy提取公因式=x²(y-z)+ zy(y-z)+x(z²-y²)提取公因式(y-z),=(y-z)(x²+zy)+x(z+y)(z-y)y-z),后一项 +x则变为 -x =(y-z)[(x²+zy)-x(z+y)]=(y-z)(x²+zy-xz-xy)14、x²-4ax+8ab-4b²²与-4b²结合,-4ax与+8ab结合=(x²-4b²)+(-4ax+8ab)-4a=(x+2b)(x-2b)-4a(x-2b)x-2b),=(x-2b)[(x+2b)-4a]=(x-2b)(x+2b-4a)15、xy² +4xz -xz²-4xx,=x(y²+4z -z²-4)=x[y²+(4z -z²-4)]-1,=x[y²-(z²-4z+4)]用完全平方公式进行分解,=x[y²-(z-2)²]=x[y+(z-2))][y-(z-2)]=x(y+z-2)(y-z+2)第四组:经典题16、a6(a²-b²)+b6(b²-a²)17、4m3-31m+1518、a3+5a²+3a-919、x4(1- y)²+2x²(y²-1)+(1+ y)²20、2x4 -x3-6x²- x+ 2【答案】16、a6(a²-b²)+b6(b²-a²)-1=a6(a²-b²)-b6(a²-b²)提取公因式(a²-b²)=(a²-b²)(a6-b6)=(a²-b²)(a²-b²)(a4+a²b²+b4)=(a²-b²)²(a4+a²b²+b4)=(a+b)²(a-b)²(a4+a²b²+b4)17、4m3-31m+15-31m拆分为:-m-30m=4m3-m-30m+15=(4m3-m)+(-30m+15)m-15=m(4m²-1)-15(2m-1)=m(2m+1)(2m-1)-15(2m-1)(2m-1),=(2m-1)[m(2m+1)-15]=(2m-1)(2m²+m-15)=(2m-1)(2m-5)(m+3)18、a3+5a²+3a-93a拆分为:-6a+9a =a3+5a²-6a+9a-9=(a3+5a²-6a)+(9a-9)a9=a(a²+5a-6)+9(a-1)=a(a+6)(a-1)+9(a-1)提取公因式(a-1)=(a-1)[a(a+6)+9]=(a-1)(a²+6a+9)=(a-1)(a+3)²19、x4(1- y)²+2x²(y²-1)+(1+ y)²-1=x4(1- y)² - 2x²(1-y²)+(1+ y)²=[x²(1-y)]² -2x²(1-y)(1+y)+(1+ y)²=(x²-yx²-1- y)²20、2x4 -x3-6x²- x+ 2-x拆分为:3x-4x =2x4 -x3-6x²+3x-4x+ 2=(2x4 -x3)+(-6x²+3x)+(-4x+ 2)=(2x-1)(x3-3x-2)第五组:精选题21、a3+2a2+3a+222、x4-6x²+123、x3+3x+424、2a2b2+2a2c2+2b2c2+a4+b4+c425、a3-3a-226、2x3+3x2-127、a2+3ab+2b2+2a+b-3【答案】21、a3+2a2+3a+23a拆分为:a+2a =a3+2a2+a+2a+2=(a3+2a2+a)+(2a+2)=a(a2+2a+1)+2(a+1)=a(a+1)2+2(a+1)a+1)=(a+1)[a(a+1)+2]=(a+1)(a2+a+2)22、x4-6x²+1-6x2拆分为:-2x2-4x2 =x4-2x²-4x²+1-4x2移到最后=x4-2x²+1-4x²=(x4-2x²+1)-4x²=(x2-1)2-(2x)2=[(x2-1)+2x][(x2-1)-2x] =(x2+2x-1)(x2-2x-1)23、x3+3x+44拆分为:3+1=x3+3x+3+1x3与1结合,3x与3结合=(x3+1) + (3x+3)3=(x+1)(x2-x+1)+3(x+1)x+1)=(x+1)[(x2-x+1)+3]=(x+1)(x2-x+4)24、2a2b2+2a2c2+2b2c2+a4+b4+c4=(a4+b4+2a2b2)+(2a2c2+2b2c2)+c4 =(a2+b2)2+2c2(a2+b2)+c4=[(a2+b2)+c2]2=(a2+b2+c2)225、a3-3a-2-3a拆分为:-a-2a=a3-a-2a-2=(a3-a)+(-2a-2)=a(a2-1)-2(a+1)=a(a+1)(a-1)-2(a+1)a+1)=(a+1)[a(a-1)-2]=(a+1)(a2-a-2)=(a+1)(a+1)(a-2)=(a+1)2(a-2)26、2x3+3x2-13x2拆分为:2x2+x2 =2x3+2x2+x2-1=(2x3+2x2)+(x2-1)=2x2(x+1)+(x+1)(x-1)x+1)=(x+1)[2x2+(x-1)]=(x+1)(2x2+x-1)=(x+1)(2x-1)(x+1)=(x+1)2(2x-1)27、a2+3ab+2b2+2a+b-3=(a2+3ab+2b2)+(2a+b)-3 =(a+b)(a+2b)+(2a+b)-3 =[(a+b)-1][(a+2b)+3] =(a+b-1)(a+2b+3)十字叉乘法故:x2+6x+5=(x+1)(x+5)故:2x2+5x+2=(2x+1)(x+2)故:4x2+5x-3=(2x-1)(2x+3)黄勇权2019-7-14。

中考数学《因式分解》专项练习题及答案

中考数学《因式分解》专项练习题及答案

中考数学《因式分解》专项练习题及答案一、单选题1.下列多项式中,能用提公因式法因式分解的是()A.x2-y B.x2+2x C.x2+y2 D.x2-xy+y22.下列式子变形是因式分解的是()A.x2-5x+6=x(x-5)+6B.x2-5x+6=(x-2)(x-3)C.(x-2)(x-3)=x2-5x+6D.x2-5x+6=(x+2)(x+3)3.下列因式分解正确的是()A.x2y2﹣z2=x2(y+z)(y﹣z)B.﹣x2y﹣4xy+5y=﹣y(x2+4x+5)C.(x+2)2﹣9=(x+5)(x﹣1)D.9﹣12a+4a2=﹣(3﹣2a)24.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x)B.ax2(x﹣2)C.ax(x+1)(x﹣1)D.ax(x﹣1)25.下面从左到右的变形是因式分解的是()A.6xy=2x⋅3y B.(x+1)(x−1)=x2−1C.x2−3x+2=x(x−3)+2D.2x2−4x=2x(x−2)6.对于①(x+3)(x−1)=x2+2x−3,②x−3xy=x(1−3y)从左到右的变形,表述正确的是()A.都是因式分解B.都是整式的乘法C.①是因式分解,②是整式的乘法D.①是整式的乘法,②是因式分解7.若x2+kx+16=(x−4)2,那么()A.k=-8,从左到右是乘法运算B.k=8,从左到右是乘法运算C.k=-8,从左到右是因式分解D.k=8,从左到右是因式分解8.把代数式mx2-6mx+9m分解因式,下列结果中正确的是()A.m(x+3)2B.m(x+3)(x-3)C.m(x-4)2D.m(x-3)29.下列等式中,从左到右的变形是因式分解()A.2x2y+8xy2+6=2xy(x+4y)+6B.(5x−1)(x+3)=5x2−14x−3C.x2−y2=(x+y)(x−y)D.x3+y2+2x+1=(x+1)2+y210.下列等式中,从左到右的变形是因式分解的是()A .x(x −2)=x 2−2xB .(x −1)2=x 2−2x −1C .x 2−4=(x +2)(x −2)D .x 2+3x +2=x(x +3)+211.若多项式mx 2-1n 可分解因式为(3x+15)(3x-15),则m 、n 的值为( )A .m=3,n=5B .m=-3,n=5C .m=9,n=25D .m=-9,n=-2512.下列因式分解正确的是( )A .a 4b ﹣6a 3b +9a 2b =a 2b (a 2﹣6a +9)B .x 2﹣x + 14 =(x ﹣ 12 )2C .x 2﹣2x +4=(x ﹣2)2D .x 2﹣4=(x +4)(x ﹣4)二、填空题13.分解因式: 2a 2−2= . 14.分解因式:2 a 3−8a = . 15.因式分解:a 3﹣2a 2b+ab 2= . 16.已知x+y=6,xy=3,则x 2y+xy 2的值为 . 17.因式分解: 3a 2−6a +3 = . 18.分解因式:xy 2﹣9x= .三、综合题19.综合题(1)已知a+b=1,ab= 14 ,利用因式分解求a(a+b)(a-b)-a(a+b)2的值.(2)若x 2+2x=1,试求1-2x 2-4x 的值.20.我们用xyz ̅̅̅̅̅表示一个三位数,其中x 表示百位上的数,y 表示十位上的数,z 表示个位上的数,即xyz̅̅̅̅̅=100x +10y +z . (1)说明abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数; (2)①写出一组a 、b 、c 的取值,使abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,这组值可以是a= ,b= ,c= ;②若abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅能被11整除,则a 、b 、c 三个数必须满足的数量关系是 .21.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法.如:①用配方法分解因式:a 2+6a+8 解:原式=a 2+6a+8+1-1=a 2+6a+9-1=(a+3)2-12= [(a +3)+1][(a +3)−1]=(a +4)(a +2)②M=a2-2a-1,利用配方法求M的最小值.解:a2−2a−1=a2−2a+1−2=(a−1)2−2∵(a-b)2≥0,∴当a=1时,M有最小值-2.请根据上述材料解决下列问题:2+2x−3.(1)用配方法...因式分解:x(2)若M=2x2−8x,求M的最小值.(3)已知x2+2y2+z2-2xy-2y-4z+5=0,求x+y+z的值.22.由多项式乘法:(x+a)(x+b)=x2+(a+b)x+ab,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b)示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3)(1)尝试:分解因式:x2+6x+8=(x+)(x+);(2)应用:请用上述方法解方程:x2﹣3x﹣4=0.23.将下列各式分解因式:(1)2x2y−8xy+8y(2)a2(x−y)−9b2(x−y)24.因式分解:(1)−20a−15ax(2)(a−3)2−(2a−6)参考答案1.【答案】B 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】D 6.【答案】D 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】C 11.【答案】C 12.【答案】B13.【答案】2(a+1)(a-1) 14.【答案】2a(a+2)(a-2) 15.【答案】a (a ﹣b )2 16.【答案】18 17.【答案】3(a -1)2 18.【答案】x (y ﹣3)(y+3)19.【答案】(1)解:原式=a(a+b)(a-b-a-b)=-2ab(a+b).∵a+b=1,ab= 14∴原式=-2× 14 ×1=- 12 .(2)解:∵x 2+2x=1, ∴1-2x 2-4x=1-2(x 2+2x) =1-2×1=-1.20.【答案】(1)解:abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅ =100a +10b +c +100b +10c +a +100c +10a +b=111a +111b +111c =111(a +b +c)∵a 、b 、c 都是整数 ∴a +b +c 也是整数∴111(a +b +c)是111的倍数∴abc ̅̅̅̅̅+bca ̅̅̅̅̅+cab̅̅̅̅̅一定是111的倍数 (2)2;4;5(答案不唯一);a +b +c =11或a +b +c =22(1≤a ≤9,1≤b ≤9,1≤c ≤9)21.【答案】(1)解:原式 =x 2+2x −3+4−4=x 2+2x +1−4 =(x +1)2−22 =[(x +1)+2][(x +1)−2]=(x +3)(x −1) ;(2)解: 2x 2−8x =2(x 2−4x)=2(x 2−4x +4−4) =2[(x −2)2−4] =2(x −2)2−8 ∵(x −2)2≥0∴ 当 x =2 时, M 有最小值 −8 ; (3)解: x 2+2y 2+z 2−2xy −2y −4z +5=(x 2−2xy +y 2)+(y 2−2y +1)+(z 2−4z +4)=(x −y)2+(y −1)2+(z −2)2 ∵(x −y)2+(y −1)2+(z −2)2=0∴{x −y =0y −1=0z −2=0解得 {x =1y =1z =2则 x +y +z =1+1+2=4 .22.【答案】(1)2;4(2)解:∵x 2﹣3x ﹣4=0 x 2+(﹣4+1)x+(﹣4)×1=0 ∴(x ﹣4)(x+1)=0 则x+1=0或x ﹣4=0 解得:x=﹣1或x=4.23.【答案】(1)解:原式=2y (x 2﹣4x+4)=2y (x ﹣2)2;(2)解:原式=(x ﹣y )(a 2﹣9b 2) =(x ﹣y )(a+3b )(a ﹣3b ).24.【答案】(1)解: −20a −15ax= −5a×4−5a⋅3x=−5a(4+3x);(2)解:(a−3)2−(2a−6) = (a−3)2−2(a−3)= (a−3)(a−3−2)=(a−3)(a−5)。

因式分解中考题汇总

因式分解中考题汇总

因式分解中考题一、选择题:1.(2016·山东滨州市·3分)把多项式x2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是()A .a=2,b=3B .a=﹣2,b=﹣3C .a=﹣2,b=3D .a=2,b=﹣32.(2016·山东济宁市·3分)已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是() A .﹣3 B .0 C .6 D .93. (2016·山东潍坊市·3分)将下列多项式因式分解,结果中不含有因式a+1的是() A .a2﹣1 B .a2+aC .a2+a ﹣2D .(a+2)2﹣2(a+2)+1 4.(2016·山东威海市·3分)若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为()A .4B .﹣4C .16D .﹣16 4. (2015?临沂)多项式mx2﹣m 与多项式x2﹣2x+1的公因式是()A .x ﹣1 B .x+1 C .x2﹣1D .(x ﹣1)25. (2015?枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22ab b a 的值为()A .140B .70C .35D .246.(2015?湖北)已知a ,b ,c 分别是△ABC 的三边长,且满足22224442222c b c a c b a,则△ABC 是()A .等腰三角形 B .等腰直角三角形C .直角三角形D .等腰三角形或直角三角形二、填空题:1.(2016·山东省东营市·3分)分解因式:a3-16a =_____________.2.(5分)(2016?淄博)若x=3﹣,则代数式x 2﹣6x+9的值为.3.(3分)(2016?临沂)分解因式:x 3—2x 2+x= 4.(3分)(2016?济南)分解因式:x 2+2x+1= 5.(3分)(2016?威海)分解因式:(2a+b )2﹣(a+2b )2=2.(2016?百色·3分)观察下列各式的规律(a ﹣b )(a+b )=a2﹣b2(a ﹣b )(a2+ab+b2)=a3﹣b3(a ﹣b )(a3+a2b+ab2+b3)=44b a…可得到(a ﹣b )(2016201520152016...b ab b a a )=3.(2016河北3分)若mn=m+3,则2mn+3m-5nm+10=4.(2016·四川宜宾)分解因式:23444ab ab ab = 5.(2016·四川南充)如果x2+mx+1=(x+n )2,且m >0,则n 的值是6.(2016·湖北荆门·3分)分解因式:(m+1)(m ﹣9)+8m=7.(2016·湖北荆州·3分)将二次三项式x2+4x+5化成(x+p )2+q 的形式应为8.(2016·内蒙古包头·3分)若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为9.(2015?东营)分解因式:4+12(x ﹣y )+9(x ﹣y )2=10.(2015?孝感)分解因式:(a ﹣b )2﹣4b2=11.(2015?南京)分解因式(a﹣b)(a﹣4b)+ab的结果是12.(2014山东潍坊)分解因式:2x(x-3)一8=13. (2014山东淄博)分解因式:8(a2+1)﹣16a=三、解答题14.(2016·山东省菏泽市)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.。

中考数学《因式分解》专题训练(附带答案)

中考数学《因式分解》专题训练(附带答案)

中考数学《因式分解》专题训练(附带答案)一、单选题1.下列分解因式中,完全正确的是()A.x3-x=x(x2-1)B.4a2-4a+1=4a(a-1)+1C.x2+y2=(x+y)2D.6a-9-a2=-(a-3)22.下列等式正确的是()A.(a﹣b)2=a2﹣b2B.9a2﹣b2+6ab=(3a﹣b)2C.3a2+2ab﹣b2=(3a﹣b)(a+b)D.3.把多项式x2+3x−54分解因式,其结果是()A. (x+6 ) (x−9 )B. (x−6 ) (x+9 )C. (x+6 ) (x+9 )D. (x−6 ) (x−9 )4.下列多项式中,不能用公式法因式分解的是()A.x2+xy B.x2+2xy+y2C.﹣x2+y2D.14x2﹣xy+y25.下列各式的变形中,属于因式分解的是( )A.(x+1)(x−3)=x2−2x−3B.x2−y2=(x+y)(x−y)C.x2−xy−1=x(x−y)D.x2−2x+2=(x−1)2+16.边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值为( ) A.35B.70C.140D.2807.把x2﹣4x+c分解因式得:x2﹣4x+c=(x﹣1)(x﹣3),则c的值为()A.3B.4C.﹣3D.﹣48.下列由左边到右边的变形,属于分解因式的变形是()A.ab+ac+d=a(b+c)+d B.a2﹣1=(a+1)(a﹣1)C.12ab2c=3ab•4bc D.(a+1)(a﹣1)=a2﹣19.下列各式中,从左边到右边的变形是因式分解的是()A.(x+2y)(x﹣2y)=x2﹣4y2B.x2y﹣xy2﹣1=xy(x﹣y)﹣1C.a2﹣4ab+4b2=(a﹣2b)2D.ax+ay+a=a(x+y)10.下列因式分解错误的是()A.x2+xy=x(x+y)B.x2−y2=(x+y)(x−y)C.x2+6x+9=(x+3)2D.x2+y2=(x+y)211.把代数式ax2-4ax+4a因式分解,下列结果中正确的是()A.a(x-2)2B.a(x+2)2C.a(x-4)2D.a(x+2)(x-2)12.下列因式分解正确的是( )A .x 2+9=(x+3)2B .a 2+2a+4=(a+2)2C .a 3-4a 2=a 2(a-4)D .1-4x 2=(1+4x )(1-4x )二、填空题13.分解因式:x 2﹣3x ﹣4= ;(a+1)(a ﹣1)﹣(a+1)= . 14.因式分解:x 2−8x −9= .15.把多项式a 3-4a 分解因式的结果是 。

因式分解100题试题附答案精选全文完整版

因式分解100题试题附答案精选全文完整版

100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。

初三因式分解练习题及答案40题

初三因式分解练习题及答案40题

初三因式分解练习题及答案40题一、单项选择题1. x² + 4x + 4 的因式分解形式是:A) (x + 2)²B) (x - 2)²C) (x + 4)²D) (x - 4)²2. 2x² + 3x - 2 的因式分解形式是:A) (2x - 1)(x + 2)B) (2x + 1)(x - 2)C) (2x + 2)(x - 1)D) (2x - 2)(x + 1)3. x² - 36 的因式分解形式是:A) (x - 6)(x + 6)B) (x - 12)(x + 12)C) (x - 18)(x + 18)D) (x - 9)(x + 9)4. 3x² - 7x + 2 的因式分解形式是:A) (3x - 2)(x - 1)B) (3x + 2)(x + 1)C) (3x - 1)(x - 2)D) (3x + 1)(x + 2)5. x³ - 12x 的因式分解形式是:A) x(x - 6)(x + 6)B) x(x - 2)(x + 2)C) x(x - 4)(x + 4)D) x(x - 3)(x + 3)二、填空题1. 16a² - 4b²的因式分解形式是:() ×()2. 2xy² + 5x²y 的因式分解形式是:() ×()3. 4x² - 12xy + 9y²的因式分解形式是:() ×()4. 9a³ - 27a²b + 18ab²的因式分解形式是:() ×()5. 6x³y - 9xy² + 15x²y 的因式分解形式是:() ×() ×()三、解方程1. 解方程 x² - 2x - 15 = 0 的因式分解形式是:() ×()2. 解方程 4x² - 4x - 12 = 0 的因式分解形式是:() ×()3. 解方程 3x² + 11x + 6 = 0 的因式分解形式是:() ×()4. 解方程 x² - 16 = 0 的因式分解形式是:() ×()5. 解方程 x² + 14x + 48 = 0 的因式分解形式是:() ×()四、综合题解方程组:1. 2x + y = 7x - y = 1的解为:(),()2. 3x - 4y = 22x + 5y = 17的解为:(),()3. x - 2y - z = 02x + y - 3z = -1x + 2y + 3z = 6的解为:(),(),()4. 3x + 2y + z = 6x - y + 2z = 102x - 3y - 2z = -10的解为:(),(),()5. x + y + z = 22x - y + 3z = 17x + 3y + 2z = 8的解为:(),(),()答案:一、1. A 2. A 3. A 4. A 5. A二、1. (4a + 2b)(4a - 2b) 2. xy(2y + 5x) 3. (2x - 3y)² 4. 3a(a - b)(3a - 2b) 5. 3xy(2x - 3y + 5)三、1. (x - 5)(x + 3) 2. 2(x - 2)(x + 3) 3. (x + 2)(x + 3) 4. (x - 4)(x + 4)5. (x + 6)(x + 8)四、1. (2, 5) (-1, 0) 2. (2, 1) (5, 3) 3. (1, 2, 1) (2, -2, -2) 4. (1, 2, 3) (-2, 1, 3) 5. (2, 3, -3) (-1, 2, 3)。

因式分解经典实例及解析50题(打印版)

因式分解经典实例及解析50题(打印版)

12.(分解因式):4小瓶—4十九—炉机+人2九
解:原式=4q2(m 一九)一炉(加一九)
=(4。2 —》2)(加—九)
=(2Q + b)(2α —
一九)
13.(分解因式):%(% - 2) -(y + l)(y - 1) 解:原式二%2 - 2% - V + 1 二(/ - 2% + 1) -y2 = (% — I)? — y2 =(% — 1 + y)(% - 1 - y)
10.(分解因式):/ 一 4孙+ 8y + 4y2 一轨 解:原式二(/ - 4%y + 4y2) + (8y - 4%) =(% — 2y7 — 4(% — 2y) =(% - 2y)(% - 2y - 4)
11.(分解因式):%4 - 2/ + %2 - 36 解:原式=%2(%2 一 2% + 1) - 36 =%2(χ - 1)2 — 36 = [%(% — 1) + 6] [%(% — 1) — 6] =(%2 — % + 6)(%2 _ % _ 6) =(%? — % + 6)(% — 3)(% + 2)
二.答案解析
L(分解因式):α% — b% + αy — by 解:原式=%(α - b) + y(α - b)
=(α-b)(% + y)
2.(分解因式):2mα — IOmb + 5献)一九Q 解:原式=2m(α — 5b)—九(G — 5b) =(2租 一 九)(Q _ 5b)
3.(分解因式):/ — %y + * - yz 解:原式二%(% - y) + z(% - y) 二(% + z)(% — y)

因式分解中考真题汇总

因式分解中考真题汇总

精品文档因式分解中考真题汇总三一、选择题1. 〔 2021 山东济宁〕把代数式3x36x2 y3xy2分解因式,结果正确的选项是A.x(3 x y)( x 3 y)B.3x(x22xy y2 )C.x(3 x y)2D.3x( x y)2【答案】 D2.〔 2021 四川眉山〕把代数式 mx26mx9m 分解因式,以下结果中正确的选项是A. m( x3)2B. m( x 3)(x3)C. m( x 4) 2D. m( x 3)2【答案】 D3.〔 2021 台湾〕以下何者为 5x217 x 12的因式?(A) x 1 (B) x 1(C) x 4 (D) x4。

【答案】 C4.〔 2021贵州贵阳〕以下多项式中,能用公式法分解因式的是〔A〕x2xy〔B〕x2xy〔C〕x2y 2〔D〕x2y 2【答案】 D5.〔 2021 四川自贡〕把 x2-y2- 2y -1 分解因式结果正确的选项是〔〕。

A.〔 x+ y+1〕(x - y- 1)B.〔 x+ y-1〕(x -y -1)C.〔 x+ y-1〕(x + y+ 1)D.〔 x- y+1〕(x +y +1)【答案】 A6.〔 2021 宁夏回族自治区〕把多项式x32x2x分解因式结果正确的选项是〔〕A.x( x22x)B.x2( x2)C.x(x1)(x 1)D.x( x1)2【答案】 D二、填空题1.〔 2021 江苏苏州〕分解因式 a2- a=▲.【答案】2.〔2021 安徽芜湖〕因式分解: 9x2-y2-4 y- 4=.【答案】3.〔2021 广东广州, 15 , 3 分〕因式分解: 3ab2+ a2 b=.【答案】 ab (3b+ a)4.〔 2021 江苏南通〕分解因式:ax2ax =▲.【答案】 ax〔 x-1〕5.〔 2021 江苏盐城〕因式分解:2a24a▲.【答案】 2a( a-2)6.〔 2021 浙江杭州〕分解因式m 3–4m =.【答案】 m(m +2)( m –2)7.〔 2021 浙江嘉兴〕因式分解:2mx24mx 2m▲.【答案】 2m(x1) 28.〔 2021 浙江绍兴〕因式分解:x2y9 y =.【答案】 y( x 3)( x3)29.〔2021 浙江省温州〕分解因式: m— 2m=.【答案】 m〔 m-2〕10.〔 2021 浙江台州市〕因式分解:x216=▲.【答案】 ( x 4)( x 4)11.〔2021 山东聊城〕分解因式:4x2- 25=.【答案】〔 2x+5〕〔 2x- 5〕12.〔 2021 福建德化〕分解因式:a24a 4 =_______________【答案】 ( a2) 213.〔 2021福建晋江〕分解因式:x2 6 x _________.【答案】 x( x6)14.〔 2021 江苏宿迁〕因式分解:a2 1 =▲.【答案】 (a+1)(a-1)15.〔 2021 浙江金华〕分解因式x29▲.【答案】 (x- 3)( x+3)16.〔 2021山东济南〕分解因式2x2-8=_____.【答案】 2(x+2)( x-2)17.〔 2021浙江衢州〕分解因式:x2- 9=.全品中考网【答案】 (x+3)( x- 3)18.〔2021 福建福州〕因式分解:x2- 1=.【答案】〔 x+1〕〔 x-1〕19.〔2021 江苏无锡〕分解因式:4a 21▲.【答案】 (2 a 1)(2a1)20.〔2021 年上海〕分解因式: a 2─ a b =.【答案】 a〔 a─b〕21.〔2021 四川宜宾〕分解因式:2a2–4a + 2=【答案】 2(a-1) 222.〔 2021黄冈〕分解因式:x2-x=__________.【答案】 x〔x+1 〕(x - 1)23.〔 2021山东莱芜〕分解因式:x3 2 x2x.【答案】x( x1)224.〔 2021 广东珠海〕分解因式ax2ay2=________________.【答案】 a(x+y)(x-y)25.〔 2021 福建宁德〕分解因式: ax2+2axy+ ay2= ______________________.【答案】 a(x + y) 226. 2021 江西〕因式分解:2a28.【答案】 2(a 2)( a2)27.〔 2021 四川巴中〕把多项式3x23x 6 分解因式的结果是【答案】 3〔x-1 〕228.〔 2021江苏常州〕分解因式: a24b2=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解中考题汇总集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
因式分解中考题
一、选择题:
1.(2016·山东滨州市·3分)把多项式x2+ax+b 分解因式,得(x+1)(x ﹣
3)则a ,b 的值分别是()
A .a=2,b=3
B .a=﹣2,b=﹣3
C .a=﹣2,b=3
D .a=2,b=﹣3
2.(2016·山东济宁市·3分)已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是()
A .﹣3
B .0
C .6
D .9
3.(2016·山东潍坊市·3分)将下列多项式因式分解,结果中不含有因式a+1的是()
A .a2﹣1
B .a2+a
C .a2+a ﹣2
D .(a+2)2﹣2(a+2)+1
4.(2016·山东威海市·3分)若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为( )
A .4
B .﹣4
C .16
D .﹣16
4.(2015临沂)多项式mx2﹣m 与多项式x2﹣2x+1的公因式是()
A .x ﹣1
B .x+1
C .x2﹣1
D .(x ﹣1)2
5.(2015枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则
22ab b a +的值为( )
A .140
B .70
C .35
D .24
6.(2015湖北)已知a ,b ,c 分别是△ABC 的三边长,且满足
22224442222c b c a c b a +=++
,则△ABC 是()A .等腰三角形B .等腰直角三角形
C .直角三角形
D .等腰三角形或直角三角形
二、填空题:
1.(2016·山东省东营市·3分)分解因式:a3-16a =_____________.
2.(5分)(2016?淄博)若x=3﹣,则代数式x 2﹣6x+9的值
为 .
3.(3分)(2016?临沂)分解因式:x 3—2x 2+x=
4.(3分)(2016济南)分解因式:x 2+2x+1=
5.(3分)(2016?威海)分解因式:(2a+b )2﹣(a+2b )2=
2.(2016百色·3分)观察下列各式的规律
(a ﹣b )(a+b )=a2﹣b2
(a ﹣b )(a2+ab+b2)=a3﹣b3
(a ﹣b )(a3+a2b+ab2+b3)=44b a -…
可得到(a ﹣b )(2016201520152016...b ab b a a ++++)=
3.(2016河北3分)若mn=m+3,则2mn+3m-5nm+10=
4.(2016·四川宜宾)分解因式:23444ab ab ab +-=
5.(2016·四川南充)如果x2+mx+1=(x+n)2,且m>0,则n的值是
6.(2016·湖北荆门·3分)分解因式:(m+1)(m﹣9)+8m=
7.(2016·湖北荆州·3分)将二次三项式x2+4x+5化成(x+p)2+q的形式应为
8.(2016·内蒙古包头·3分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为
9.(2015东营)分解因式:4+12(x﹣y)+9(x﹣y)2=
10.(2015孝感)分解因式:(a﹣b)2﹣4b2=
11.(2015南京)分解因式(a﹣b)(a﹣4b)+ab的结果是
12.(2014山东潍坊)分解因式:2x(x-3)一8=
13.(2014山东淄博)分解因式:8(a2+1)﹣16a=
三、解答题
14.(2016·山东省菏泽市)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.。

相关文档
最新文档